1
|
Kim KS, Ko YG, Yang WS, Kim HY, Cho JY. A parallel reaction monitoring-mass spectrometric method for studying lipid biosynthesis in vitro using 13C 16-palmitate as an isotope tracer. Anal Chim Acta 2025; 1354:344003. [PMID: 40253071 DOI: 10.1016/j.aca.2025.344003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/17/2025] [Accepted: 03/30/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Palmitate, which is the end product of fatty acid synthase, is the key fatty acid for understanding of lipid biosynthetic process in mammalian cells. Mass spectrometry (MS) methodology using 13C-palmitate can trace the lipid biosynthesis such as glycerolipids, glycerophospholipids, and sphingolipids. However, due to the interferences of natural heavy isotopes, accurate measurement of 13C-labeled lipid species has been limited. Here we describe a high-throughput isotope tracing experiment to assess lipid biosynthesis using parallel reaction monitoring-MS (PRM-MS) with 13C16-palmitate as an isotope tracer. RESULTS The developed method can trace 14 13C16-labeled lipid classes without disturbance from the heavy isotope patterns of natural lipids. Lipid class-based separation was achieved through hydrophilic interaction liquid chromatography (HILIC) which allows facile identification of lipid, and PRM-MS was performed for accurate detection of the 13C16-labeled lipids. A fibroblast (NIH/3T3) cell line was used as an in vitro model, and the NIH/3T3 cells were treated with bovine serum albumin (BSA)-bound 13C16-palmitate. The isotopic disturbance from natural lipid was eliminated using 13C16-palmitate, rather than 13C1-palmitate, as an isotope tracer. After 24 h of incubation with 0.1 mmol/L of BSA-bound 13C16-palmitate in the fibroblasts, NIH/3T3 cells synthesized the 127 13C16-labeled lipid species of glycerolipids, glycerophospholipids, and sphingolipids. Finally, in the NIH/3T3 cells incubated for 1, 6, and 24 h after the treatment of the isotope tracer exhibited an increased profile of 13C16-labeled lipidome, depending on duration of incubation. SIGNIFICANCE The HILIC/PRM-MS method using 13C16-palmitate as an isotope tracer enables identification of 13C16-labeled lipid species by annotating 13C16-labeled position, including the 13C16-fatty acyl chain and 13C16-sphingolipid headgroup, without interference of natural heavy isotope patterns. This lipidomic flux analysis using PRM approach is expected to provide insights into assessment of isotope-labeled lipids.
Collapse
Affiliation(s)
- Kyeong-Seog Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, Republic of Korea
| | - Young Gyun Ko
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Life Science, Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Woo Seok Yang
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Life Science, Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Life Science, Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, Republic of Korea; Kidney Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Crotta Asis A, Asaro A, D'Angelo G. Single cell lipid biology. Trends Cell Biol 2025:S0962-8924(24)00255-1. [PMID: 39814618 DOI: 10.1016/j.tcb.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
Lipids are major cell constituents endowed with astonishing structural diversity. The pathways responsible for the assembly and disposal of different lipid species are energetically demanding, and genes encoding lipid metabolic factors and lipid-related proteins comprise a sizable fraction of our coding genome. Despite the importance of lipids, the biological significance of lipid structural diversity remains largely obscure. Recent technological developments have enabled extensive lipid analysis at the single cell level, revealing unexpected cell-cell variability in lipid composition. This new evidence suggests that lipid diversity is exploited in multicellularity and that lipids have a role in the establishment and maintenance of cell identity. In this review, we highlight the emerging concepts and technologies in single cell lipid analysis and the implications of this research for future studies.
Collapse
Affiliation(s)
- Agostina Crotta Asis
- Institute of Bioengineering (IBI) and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Antonino Asaro
- Institute of Bioengineering (IBI) and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Giovanni D'Angelo
- Institute of Bioengineering (IBI) and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Hachem M, Ahmmed MK, Nacir-Delord H. Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol 2024; 61:3272-3295. [PMID: 37981628 PMCID: PMC11087356 DOI: 10.1007/s12035-023-03793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospholipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism and activities of phospholipids in brain disorders such as Alzheimer's and Parkinson's diseases. In the brain, identifying specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these diseases through a variety of sensitive analytical techniques. Phospholipidomics has emerged as a promising tool in clinical studies, with immense potential to advance our knowledge of neurological diseases and enhance diagnosis and treatment options for patients. In the present review paper, we discussed numerous applications of phospholipidomics tools in clinical studies, with a particular focus on the neurological field. By exploring phospholipids' functions in neurological diseases and the potential of phospholipidomics in clinical research, we provided valuable insights that could aid researchers and clinicians in harnessing the full prospective of this innovative practice and improve patient outcomes by providing more potent treatments for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Houda Nacir-Delord
- Department of Chemistry, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Calvo I, Montilla A, Huergo C, Martín-Saiz L, Martín-Allende J, Tepavcevic V, Domercq M, Fernández JA. Combining imaging mass spectrometry and immunohistochemistry to analyse the lipidome of spinal cord inflammation. Anal Bioanal Chem 2024; 416:1923-1933. [PMID: 38326664 PMCID: PMC10902057 DOI: 10.1007/s00216-024-05190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Inflammation is a complex process that accompanies many pathologies. Actually, dysregulation of the inflammatory process is behind many autoimmune diseases. Thus, treatment of such pathologies may benefit from in-depth knowledge of the metabolic changes associated with inflammation. Here, we developed a strategy to characterize the lipid fingerprint of inflammation in a mouse model of spinal cord injury. Using lipid imaging mass spectrometry (LIMS), we scanned spinal cord sections from nine animals injected with lysophosphatidylcholine, a chemical model of demyelination. The lesions were demonstrated to be highly heterogeneous, and therefore, comparison with immunofluorescence experiments carried out in the same section scanned by LIMS was required to accurately identify the morphology of the lesion. Following this protocol, three main areas were defined: the lesion core, the peri-lesion, which is the front of the lesion and is rich in infiltrating cells, and the uninvolved tissue. Segmentation of the LIMS experiments allowed us to isolate the lipid fingerprint of each area in a precise way, as demonstrated by the analysis using classification models. A clear difference in lipid signature was observed between the lesion front and the epicentre, where the damage was maximized. This study is a first step to unravel the changes in the lipidome associated with inflammation in the context of diverse pathologies, such as multiple sclerosis.
Collapse
Affiliation(s)
- Ibai Calvo
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Alejandro Montilla
- Achucarro Basque Center for Neurosciencie, Bº Sarriena s/n, 48940, Leioa, Spain
- Department Neuroscience, Faculty of Medicine, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Cristina Huergo
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Lucía Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Javier Martín-Allende
- Department of Languages and Computer Systems, School of Engineering, University of the Basque Country (UPV/EHU), Paseo Rafael Moreno "Pitxitxi", n. 2/3, 48013, Bilbao, Spain
| | - Vanja Tepavcevic
- Achucarro Basque Center for Neurosciencie, Bº Sarriena s/n, 48940, Leioa, Spain
| | - María Domercq
- Achucarro Basque Center for Neurosciencie, Bº Sarriena s/n, 48940, Leioa, Spain.
- Department Neuroscience, Faculty of Medicine, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain.
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain.
| |
Collapse
|
5
|
Huergo-Baños C, Velasco V, Garate J, Fernández R, Martín-Allende J, Zabalza I, Artola JL, Martí RM, Asumendi A, Astigarraga E, Barreda-Gómez G, Fresnedo O, Ochoa B, Boyano MD, Fernández JA. Lipid fingerprint-based histology accurately classifies nevus, primary melanoma, and metastatic melanoma samples. Int J Cancer 2024; 154:712-722. [PMID: 37984064 DOI: 10.1002/ijc.34800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Probably, the most important factor for the survival of a melanoma patient is early detection and precise diagnosis. Although in most cases these tasks are readily carried out by pathologists and dermatologists, there are still difficult cases in which no consensus among experts is achieved. To deal with such cases, new methodologies are required. Following this motivation, we explore here the use of lipid imaging mass spectrometry as a complementary tool for the aid in the diagnosis. Thus, 53 samples (15 nevus, 24 primary melanomas, and 14 metastasis) were explored with the aid of a mass spectrometer, using negative polarity. The rich lipid fingerprint obtained from the samples allowed us to set up an artificial intelligence-based classification model that achieved 100% of specificity and precision both in training and validation data sets. A deeper analysis of the image data shows that the technique reports important information on the tumor microenvironment that may give invaluable insights in the prognosis of the lesion, with the correct interpretation.
Collapse
Affiliation(s)
- Cristina Huergo-Baños
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Verónica Velasco
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Jone Garate
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Javier Martín-Allende
- Languages and Computer Systems, School of Engineering University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ignacio Zabalza
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Department of Pathology, Galdakao-Usansolo University Hospital, Galdakao, Spain
| | - Juan L Artola
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Department of Dermatology, Galdakao-Usansolo University Hospital, Galdakao, Spain
| | - Rosa M Martí
- Department of Dermatology, Arnau de Vilanova University Hospital, Institute of Biomedic Research (IRBLleida), University of Lleida, Lleida, Spain
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Aintzane Asumendi
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | | | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maria D Boyano
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
6
|
Maiellaro M, Bottillo G, Cavallo A, Camera E. Comparison between ammonium formate and ammonium fluoride in the analysis of stratum corneum lipids by reversed phase chromatography coupled with high resolution mass spectrometry. Sci Rep 2024; 14:40. [PMID: 38167931 PMCID: PMC10762128 DOI: 10.1038/s41598-023-50051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Lipids are key constituents of the barrier function in the human stratum corneum (SC), which is the outermost layer of the epidermis and amenable to non-invasive sampling by tape stripping. The three major lipid classes in the SC, i.e., ceramides, fatty acids, and cholesterol, present equimolar concentration. Liquid chromatography coupled with mass spectrometry (LCMS) is elective in profiling lipids in the SC in both positive and negative ion modes. Nevertheless, the latter one allows for the simultaneous detection of the three major epidermal components of the SC. Determination of ceramides in the SC poses analytical challenges due to their wide range of structures and concentrations especially in the case of limited sample amounts. Ammonium formate is a commonly used modifier added to the mobile phase to assist ionization. However, it introduces uncertainty in the identification of ceramides when operating in negative ion mode, even with high resolution MS. We tested the advantages of using fluoride in the lipid profiling of SC and unambiguous identification of ceramides subclasses. The use of fluoride enhanced the ionization of ceramides, regardless the specific substructure, solved misidentification issues, and was successfully applied to the simultaneous detection of all three lipid classes in the human SC.
Collapse
Affiliation(s)
- Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute - IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Grazia Bottillo
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute - IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Alessia Cavallo
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute - IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute - IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
7
|
Wang D, Xiao H, Lv X, Chen H, Wei F. Mass Spectrometry Based on Chemical Derivatization Has Brought Novel Discoveries to Lipidomics: A Comprehensive Review. Crit Rev Anal Chem 2023; 55:21-52. [PMID: 37782560 DOI: 10.1080/10408347.2023.2261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Lipids, as one of the most important organic compounds in organisms, are important components of cells and participate in energy storage and signal transduction of living organisms. As a rapidly rising field, lipidomics research involves the identification and quantification of multiple classes of lipid molecules, as well as the structure, function, dynamics, and interactions of lipids in living organisms. Due to its inherent high selectivity and high sensitivity, mass spectrometry (MS) is the "gold standard" analysis technique for small molecules in biological samples. The combination chemical derivatization with MS detection is a unique strategy that could improve MS ionization efficiency, facilitate structure identification and quantitative analysis. Herein, this review discusses derivatization-based MS strategies for lipidomic analysis over the past decade and focuses on all the reported lipid categories, including fatty acids and modified fatty acids, glycerolipids, glycerophospholipids, sterols and saccharolipids. The functional groups of lipids mainly involved in chemical derivatization include the C=C group, carboxyl group, hydroxyl group, amino group, carbonyl group. Furthermore, representative applications of these derivatization-based lipid profiling methods were summarized. Finally, challenges and countermeasures of lipid derivatization are mentioned and highlighted to guide future studies of derivatization-based MS strategy in lipidomics.
Collapse
Affiliation(s)
- Dan Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Huaming Xiao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Xin Lv
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Hong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei, PR China
| |
Collapse
|
8
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
9
|
Hristova J, Svinarov D. Enhancing precision medicine through clinical mass spectrometry platform. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Julieta Hristova
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Dobrin Svinarov
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
10
|
Bailey LS, Prajapati DV, Basso KB. Optimization of the Sulfo-Phospho-Vanillin Assay for Total Lipid Normalization in Untargeted Quantitative Lipidomic LC-MS/MS Applications. Anal Chem 2022; 94:17810-17818. [PMID: 36520113 DOI: 10.1021/acs.analchem.2c03488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Liquid chromatography (LC)-mass spectrometry (MS)/MS lipidomic normalization is generally performed by equalizing pre-extraction sample materials or via DNA or protein pre-quantitation methods, which have known measurement inaccuracies. We propose the use of the sulfo-phospho-vanillin assay (SPVA), a total lipid colorimetric analysis, as a pre-quantitation method to normalize lipids in lipidomic LC-MS/MS applications. The assay has been applied to a 300 μL well volume in a 96-well plate and tested using Avanti total lipid standards of porcine brain and E. coli. Assay parameters for lipid sample volume, sulfuric acid, vanillin/phosphoric acid, post-reaction incubation time, and wavelength are optimized for robust application to biologically sourced lipid samples. Standard test samples were prepared using three concentrations covering approximately 100 μg/mL range. The optimized assay yielded test sample errors less than 10%, indicating a precise and accurate assay performance. The test samples were then analyzed by LC-MS/MS and normalized using SPVA pre-quantitation and pseudo-mass normalization. The detected lipids showed smaller standard deviations and greater relative concentration differences compared to the pseudo-mass normalized lipids, showing promise as a normalization method.
Collapse
Affiliation(s)
- Laura S Bailey
- Mass Spectrometry Research and Education Center, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Dilip V Prajapati
- Mass Spectrometry Research and Education Center, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kari B Basso
- Mass Spectrometry Research and Education Center, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
11
|
Shields SWJ, Sanders JD, Brodbelt JS. Enhancing the Signal-to-Noise of Diagnostic Fragment Ions of Unsaturated Glycerophospholipids via Precursor Exclusion Ultraviolet Photodissociation Mass Spectrometry (PEx-UVPD-MS). Anal Chem 2022; 94:11352-11359. [PMID: 35917227 PMCID: PMC9484799 DOI: 10.1021/acs.analchem.2c02128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding and elucidating the diverse structures and functions of lipids has motivated the development of many innovative tandem mass spectrometry (MS/MS) strategies. Higher-energy activation methods, such as ultraviolet photodissociation (UVPD), generate unique fragment ions from glycerophospholipids that can be used to perform in-depth structural analysis and facilitate the deconvolution of isomeric lipid structures in complex samples. Although detailed characterization is central to the correlation of lipid structure to biological function, it is often impeded by the lack of sufficient instrument sensitivity for highly bioactive but low-abundance phospholipids. Here, we present precursor exclusion (PEx) UVPD, a simple yet powerful technique to enhance the signal-to-noise (S/N) of informative low-abundance fragment ions produced from UVPD of glycerophospholipids. Through the exclusion of the large population of undissociated precursor ions with an MS3 strategy, the S/N of diagnostic fragment ions from PC 18:0/18:2(9Z, 12Z) increased up to an average of 13x for PEx-UVPD compared to UVPD alone. These enhancements were extended to complex mixtures of lipids from bovine liver extract to confidently identify 35 unique structures using liquid chromatography PEx-UVPD. This methodology has the potential to advance lipidomics research by offering deeper structure elucidation and confident identification of biologically active lipids.
Collapse
Affiliation(s)
- Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Petan T, Manček-Keber M. Half is enough: Oxidized lysophospholipids as novel bioactive molecules. Free Radic Biol Med 2022; 188:351-362. [PMID: 35779690 DOI: 10.1016/j.freeradbiomed.2022.06.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Studies in the last decade have established the roles of oxidized phospholipids as modulators of various cellular processes, from inflammation and immunity to cell death. Oxidized lysophospholipids, formed through the activity of phospholipases and oxidative enzymes and lacking an acyl chain in comparison with parent phospholipids, are now emerging as novel bioactive lipid mediators. Their detection and structural characterization have been limited in the past due to low amounts and the complexity of their biosynthetic and removal pathways, but recent studies have unequivocally demonstrated their formation under inflammatory conditions. The involvement of oxidized lysophospholipids in immune regulation classifies them as damage-associated molecular patterns (DAMPs), which can promote sterile inflammation and contribute to autoimmune and chronic diseases as well as aging-related diseases. Their signaling pathways are just beginning to be revealed. As the first publications indicate that oxidized lysophospholipids use the same receptors as pathogen-associated molecular patterns (PAMPs), it is likely that the inhibition of signaling pathways activated by oxidized lysophospholipids would affect innate immunity per se. On the other hand, inhibition or modulation of their enzymatic formation, which would not interfere with the response to pathogens, might be beneficial and is potentially a promising new field of research.
Collapse
Affiliation(s)
- Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Wurl A, Ott M, Plato E, Meister A, Hamdi F, Kastritis PL, Blume A, Ferreira TM. Filling the Gap with Long n-Alkanes: Incorporation of C20 and C30 into Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8595-8606. [PMID: 35786894 DOI: 10.1021/acs.langmuir.2c00872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Investigating how hydrophobic molecules mix with phospholipid bilayers and how they affect membrane properties is commonplace in biophysics. Despite this, a molecular-level empirical description of a membrane model as simple as a phospholipid bilayer with long linear hydrophobic chains incorporated is still missing. Here, we present an unprecedented molecular characterization of the incorporation of two long n-alkanes, n-eicosane (C20) and n-triacontane (C30) with 20 and 30 carbons, respectively, in phosphatidylcholine (PC) bilayers using a combination of experimental techniques (2H NMR, 31P NMR, 1H-13C dipolar recoupling solid-state NMR, X-ray scattering, and cryogenic electron microscopy) and atomistic molecular dynamics (MD) simulations. At low hydration, deuterated C20 and C30 yield 2H NMR spectra evidencing anisotropic-motion, which demonstrates their miscibility in PC membranes up to a critical alkane-to-acyl-chain volume fraction, ϕc. The acquired 2H NMR spectra of C20 and C30 have notably different lineshapes. At low alkane volume fractions below ϕc, CHARMM36 MD simulations predict such 2H NMR spectra qualitatively and thus enable an atomistic-level interpretation of the spectra. Above ϕc, the 2H NMR lineshapes become characteristic of motions in the intermediate-regime that, together with the MD simulation results, suggest the onset of immiscibility between the alkane molecules and the acyl chains. For all the systems investigated, the phospholipid molecular structure is unperturbed by the presence of the alkanes. However, at conditions of excess hydration and at surprisingly low alkane fractions below ϕc, a peak characteristic of isotropic motion is observed in both the 2H spectra of the alkanes and 31P spectra of the phospholipids, strongly indicating that the incorporation of the alkanes induces a reduction on the average radius of the lipid vesicles.
Collapse
Affiliation(s)
- Anika Wurl
- NMR Group - Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Maria Ott
- Department of Biotechnology and Biochemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Eric Plato
- NMR Group - Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Annette Meister
- Department of Biotechnology and Biochemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Farzad Hamdi
- Department of Biotechnology and Biochemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Panagiotis L Kastritis
- Department of Biotechnology and Biochemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Alfred Blume
- Insitute of Chemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Tiago M Ferreira
- NMR Group - Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
14
|
Yang T, Zhao J, Liu F, Li Y. Lipid metabolism and endometrial receptivity. Hum Reprod Update 2022; 28:858-889. [PMID: 35639910 DOI: 10.1093/humupd/dmac026] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity has now been recognized as a high-risk factor for reproductive health. Although remarkable advancements have been made in ART, a considerable number of infertile obese women still suffer from serial implantation failure, despite the high quality of embryos transferred. Although obesity has long been known to exert various deleterious effects on female fertility, the underlying mechanisms, especially the roles of lipid metabolism in endometrial receptivity, remain largely elusive. OBJECTIVE AND RATIONALE This review summarizes current evidence on the impacts of several major lipids and lipid-derived mediators on the embryonic implantation process. Emerging methods for evaluating endometrial receptivity, for example transcriptomic and lipidomic analysis, are also discussed. SEARCH METHODS The PubMed and Embase databases were searched using the following keywords: (lipid or fatty acid or prostaglandin or phospholipid or sphingolipid or endocannabinoid or lysophosphatidic acid or cholesterol or progesterone or estrogen or transcriptomic or lipidomic or obesity or dyslipidemia or polycystic ovary syndrome) AND (endometrial receptivity or uterine receptivity or embryo implantation or assisted reproductive technology or in vitro fertilization or embryo transfer). A comprehensive literature search was performed on the roles of lipid-related metabolic pathways in embryo implantation published between January 1970 and March 2022. Only studies with original data and reviews published in English were included in this review. Additional information was obtained from references cited in the articles resulting from the literature search. OUTCOMES Recent studies have shown that a fatty acids-related pro-inflammatory response in the embryo-endometrium boundary facilitates pregnancy via mediation of prostaglandin signaling. Phospholipid-derived mediators, for example endocannabinoids, lysophosphatidic acid and sphingosine-1-phosphate, are associated with endometrial receptivity, embryo spacing and decidualization based on evidence from both animal and human studies. Progesterone and estrogen are two cholesterol-derived steroid hormones that synergistically mediate the structural and functional alterations in the uterus ready for blastocyst implantation. Variations in serum cholesterol profiles throughout the menstrual cycle imply a demand for steroidogenesis at the time of window of implantation (WOI). Since 2002, endometrial transcriptomic analysis has been serving as a diagnostic tool for WOI dating. Numerous genes that govern lipid homeostasis have been identified and, based on specific alterations of lipidomic signatures differentially expressed in WOI, lipidomic analysis of endometrial fluid provides a possibility for non-invasive diagnosis of lipids alterations during the WOI. WIDER IMPLICATIONS Given that lipid metabolic dysregulation potentially plays a role in infertility, a better understanding of lipid metabolism could have significant clinical implications for the diagnosis and treatment of female reproductive disorders.
Collapse
Affiliation(s)
- Tianli Yang
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| | - Jing Zhao
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| |
Collapse
|
15
|
Chen J, Hu Y, Shao C, Zhou H, Lv Z. The Imprinted PARAFILM as a New Carrier Material for Dried Plasma Spots (DPSs) Utilizing Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) in Phospholipidomics. Front Chem 2021; 9:801043. [PMID: 34957053 PMCID: PMC8702624 DOI: 10.3389/fchem.2021.801043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The application of desorption electrospray ionization mass spectrometry (DESI-MS) and dried blood spot (DBS) sampling has been successfully implemented several times. However, the difficulty of combining DBS sampling with DESI-MS is still the carrier material used for the blood samples. In this study, a new, easily obtained, and cost-effective carrier substrate for dried plasma spot (DPS) sampling and DESI-MS analysis and its application in phospholipidomics studies was described. First, the effects of several carrier materials, including cellulose-based materials (31 ET paper and filter paper) and non-cellulose-based materials (PARAFILM and its shape-modified material, PTFE-printed glass slide and polyvinylidene fluoride film), were tested. Second, a method combining DPS sampling with DESI-MS for phospholipidomics analysis was established, and parameters affecting compound signal intensities, such as sample volume and sprayer solvent system, were optimized. In conclusion, the total signal intensity obtained from shape-modified PARAFILM was the strongest. The suitable plasma sample volume deposited on PARAFILM carriers was 5 μl, and acetonitrile (ACN) was recommended as the optimal spray solvent for phospholipid (PL) profiling. Repeatability (87.5% of compounds with CV < 30%) and stability for data acquisition (48 h) were confirmed. Finally, the developed method was applied in phospholipidomics analysis of schistosomiasis, and a distinguished classification between control mice and infected mice was observed by using multivariate pattern recognition analysis, confirming the practical application of this new carrier material for DPS sampling and DESI-MS analysis. Compared with a previously reported method, the rapid metabolomics screening approach based on the implementation of DPS sampling coupled with the DESI-MS instrument developed in this study has increased analyte sensitivity, which may promote its further application in clinical studies.
Collapse
Affiliation(s)
- Jiansong Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Congxiang Shao
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiyun Zhou
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Zhiyue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
16
|
Tötsch K, Fjeldsted JC, Stow SM, Schmitz OJ, Meckelmann SW. Effect of Sampling Rate and Data Pretreatment for Targeted and Nontargeted Analysis by Means of Liquid Chromatography Coupled to Drift Time Ion Mobility Quadruple Time-of-Flight Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2592-2603. [PMID: 34515480 DOI: 10.1021/jasms.1c00217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion mobility as an additional separation dimension can help to resolve and annotate metabolite and lipid biomarkers and provides important information about the components in a sample. Identifying relevant information in the resulting data is challenging because of the complexity of the data and data evaluation strategies for both targeted or nontargeted workflows. Frequently, feature analysis is used as a first step to search for differences between samples in discovery workflows. However, follow-up experimentation often leads to more targeted data extraction methods. In both cases, optimizing data sets for data extraction can make an important contribution to the overall results. In this work, we evaluate the effect of experimental conditions including acquisition sampling rate and data pretreatment on lipid standards and lipid extracts as examples of complex biological samples analyzed by liquid chromatography coupled to drift time ion mobility quadrupole time-of-flight mass spectrometry. The results show that a reduction of both peak variation and background noise can be achieved by optimizing the sampling rate. The use of data pretreatment including data smoothing, intensity thresholding, and spike removal also play an important role in improving detection and annotation of analytes from complex biological samples, whereas nonoptimal data sampling rates and preprocessing can lead to adverse effects including the loss or alternation of small, or closely eluting, low-abundant peaks.
Collapse
Affiliation(s)
- Kristina Tötsch
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - John C Fjeldsted
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Sarah M Stow
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
17
|
Guschina IA, Ninkina N, Roman A, Pokrovskiy MV, Buchman VL. Triple-Knockout, Synuclein-Free Mice Display Compromised Lipid Pattern. Molecules 2021; 26:3078. [PMID: 34064018 PMCID: PMC8196748 DOI: 10.3390/molecules26113078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies have implicated synucleins in several reactions during the biosynthesis of lipids and fatty acids in addition to their recognised role in membrane lipid binding and synaptic functions. These are among aspects of decreased synuclein functions that are still poorly acknowledged especially in regard to pathogenesis in Parkinson's disease. Here, we aimed to add to existing knowledge of synuclein deficiency (i.e., the lack of all three family members), with respect to changes in fatty acids and lipids in plasma, liver, and two brain regions in triple synuclein-knockout (TKO) mice. We describe changes of long-chain polyunsaturated fatty acids (LCPUFA) and palmitic acid in liver and plasma, reduced triacylglycerol (TAG) accumulation in liver and non-esterified fatty acids in plasma of synuclein free mice. In midbrain, we observed counterbalanced changes in the relative concentrations of phosphatidylcholine (PC) and cerebrosides (CER). We also recorded a notable reduction in ethanolamine plasmalogens in the midbrain of synuclein free mice, which is an important finding since the abnormal ether lipid metabolism usually associated with neurological disorders. In summary, our data demonstrates that synuclein deficiency results in alterations of the PUFA synthesis, storage lipid accumulation in the liver, and the reduction of plasmalogens and CER, those polar lipids which are principal compounds of lipid rafts in many tissues. An ablation of all three synuclein family members causes more profound changes in lipid metabolism than changes previously shown to be associated with γ-synuclein deficiency alone. Possible mechanisms by which synuclein deficiency may govern the reported modifications of lipid metabolism in TKO mice are proposed and discussed.
Collapse
Affiliation(s)
- Irina A. Guschina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| | - Andrei Roman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| | - Mikhail V. Pokrovskiy
- Research Institute of Living Systems Pharmacology, Belgorod State National Research University, 85 Pobedy Street, Belgorod 308015, Belgorod Oblast, Russia;
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| |
Collapse
|
18
|
Fitzner D, Bader JM, Penkert H, Bergner CG, Su M, Weil MT, Surma MA, Mann M, Klose C, Simons M. Cell-Type- and Brain-Region-Resolved Mouse Brain Lipidome. Cell Rep 2021; 32:108132. [PMID: 32937123 DOI: 10.1016/j.celrep.2020.108132] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023] Open
Abstract
Gene and protein expression data provide useful resources for understanding brain function, but little is known about the lipid composition of the brain. Here, we perform quantitative shotgun lipidomics, which enables a cell-type-resolved assessment of the mouse brain lipid composition. We quantify around 700 lipid species and evaluate lipid features including fatty acyl chain length, hydroxylation, and number of acyl chain double bonds, thereby identifying cell-type- and brain-region-specific lipid profiles in adult mice, as well as in aged mice, in apolipoprotein-E-deficient mice, in a model of Alzheimer's disease, and in mice fed different diets. We also integrate lipid with protein expression profiles to predict lipid pathways enriched in specific cell types, such as fatty acid β-oxidation in astrocytes and sphingolipid metabolism in microglia. This resource complements existing brain atlases of gene and protein expression and may be useful for understanding the role of lipids in brain function.
Collapse
Affiliation(s)
- Dirk Fitzner
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Department of Neurology, University of Göttingen Medical Center, 37075 Göttingen, Germany.
| | - Jakob M Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Horst Penkert
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany; Department of Neurology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Caroline G Bergner
- Department of Neurology, University of Göttingen Medical Center, 37075 Göttingen, Germany; Department of Neuropathology, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Minhui Su
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Marie-Theres Weil
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | | | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Mikael Simons
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
19
|
Castellanos DB, Martín-Jiménez CA, Rojas-Rodríguez F, Barreto GE, González J. Brain lipidomics as a rising field in neurodegenerative contexts: Perspectives with Machine Learning approaches. Front Neuroendocrinol 2021; 61:100899. [PMID: 33450200 DOI: 10.1016/j.yfrne.2021.100899] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Lipids are essential for cellular functioning considering their role in membrane composition, signaling, and energy metabolism. The brain is the second most abundant organ in terms of lipid concentration and diversity only after adipose tissue. However, in the central system (CNS) lipid dysregulation has been linked to the etiology, progression, and severity of neurodegenerative diseases such as Alzheimeŕs, Parkinson, and Multiple Sclerosis. Advances in the human genome and subsequent sequencing technologies allowed us the study of lipidomics as a promising approach to diagnosis and treatment of neurodegeneration. Lipidomics advances rapidly increased the amount and quality of data allowing the integration with other omic types as well as implementing novel bioinformatic and quantitative tools such as machine learning (ML). Integration of lipidomics data with ML, as a powerful quantitative predictive approach, led to improvements in diagnostic biomarker prediction, clinical data integration, network, and systems approaches for neural behavior, novel etiology markers for inflammation, and neurodegeneration progression and even Mass Spectrometry image analysis. In this sense, by exploiting lipidomics data with ML is possible to improve the identification of new biomarkers or unveil new molecular mechanisms associated with lipid impairment across neurodegeneration. In this review, we present the lipidomic neurobiology state-of-the-art highlighting its potential applications to study neurodegenerative conditions. Also, we present theoretical background, applications, and advances in the integration of lipidomics with ML. This review opens the door to new approaches in this rising field.
Collapse
Affiliation(s)
- Daniel Báez Castellanos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Cynthia A Martín-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Felipe Rojas-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - George E Barreto
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
20
|
Krettler CA, Thallinger GG. A map of mass spectrometry-based in silico fragmentation prediction and compound identification in metabolomics. Brief Bioinform 2021; 22:6184408. [PMID: 33758925 DOI: 10.1093/bib/bbab073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Metabolomics, the comprehensive study of the metabolome, and lipidomics-the large-scale study of pathways and networks of cellular lipids-are major driving forces in enabling personalized medicine. Complicated and error-prone data analysis still remains a bottleneck, however, especially for identifying novel metabolites. Comparing experimental mass spectra to curated databases containing reference spectra has been the gold standard for identification of compounds, but constructing such databases is a costly and time-demanding task. Many software applications try to circumvent this process by utilizing cutting-edge advances in computational methods-including quantum chemistry and machine learning-and simulate mass spectra by performing theoretical, so called in silico fragmentations of compounds. Other solutions concentrate directly on experimental spectra and try to identify structural properties by investigating reoccurring patterns and the relationships between them. The considerable progress made in the field allows recent approaches to provide valuable clues to expedite annotation of experimental mass spectra. This review sheds light on individual strengths and weaknesses of these tools, and attempts to evaluate them-especially in view of lipidomics, when considering complex mixtures found in biological samples as well as mass spectrometer inter-instrument variability.
Collapse
Affiliation(s)
- Christoph A Krettler
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16/I, 8010, Graz, Austria.,Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
| | - Gerhard G Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16/I, 8010, Graz, Austria.,Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
| |
Collapse
|
21
|
Edwards ME, De Luca T, Ferreira CR, Collins KS, Eadon MT, Benson EA, Sobreira TJP, Cooks RG. Multiple reaction monitoring profiling as an analytical strategy to investigate lipids in extracellular vesicles. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4681. [PMID: 33210411 PMCID: PMC7941191 DOI: 10.1002/jms.4681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Extracellular vesicles (EVs) convey information used in cell-to-cell interactions. Lipid analysis of EVs remains challenging because of small sample amounts available. Lipid discovery using traditional mass spectrometry platforms based on liquid chromatography and high mass resolution typically employs milligram sample amounts. We report a simple workflow for lipid profiling of EVs based on multiple reaction monitoring (MRM) profiling that uses microgram amounts of sample. After liquid-liquid extraction, individual EV samples were injected directly into the electrospray ionization (ESI) ion source at low flow rates (10 μl/min) and screened for 197 MRM transitions chosen to be a characteristic of several classes of lipids. This choice was based on a discovery experiment, which applied 1,419 MRMs associated with multiple lipid classes to a representative pooled sample. EVs isolated from 12 samples of human lymphocytes and 16 replicates from six different rat cells lines contained an estimated amount of total lipids of 326 to 805 μg. Samples showed profiles that included phosphatidylcholine (PC), sphingomyelin (SM), cholesteryl ester (CE), and ceramide (Cer) lipids, as well as acylcarnitines. The lipid profiles of human lymphocyte EVs were distinguishable using principal component and cluster analysis in terms of prior antibody and drug exposure. Lipid profiles of rat cell lines EV's were distinguishable by their tissue of origin.
Collapse
Affiliation(s)
- Madison E Edwards
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Thomas De Luca
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Christina R Ferreira
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Kimberly S Collins
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Michael T Eadon
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Eric A Benson
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Tiago J P Sobreira
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Robert Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
22
|
Zardini Buzatto A, Kwon BK, Li L. Development of a NanoLC-MS workflow for high-sensitivity global lipidomic analysis. Anal Chim Acta 2020; 1139:88-99. [DOI: 10.1016/j.aca.2020.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022]
|
23
|
Penkert H, Lauber C, Gerl MJ, Klose C, Damm M, Fitzner D, Flierl-Hecht A, Kümpfel T, Kerschensteiner M, Hohlfeld R, Gerdes LA, Simons M. Plasma lipidomics of monozygotic twins discordant for multiple sclerosis. Ann Clin Transl Neurol 2020; 7:2461-2466. [PMID: 33159711 PMCID: PMC7732246 DOI: 10.1002/acn3.51216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 01/09/2023] Open
Abstract
Blood biomarkers of multiple sclerosis (MS) can provide a better understanding of pathophysiology and enable disease monitoring. Here, we performed quantitative shotgun lipidomics on the plasma of a unique cohort of 73 monozygotic twins discordant for MS. We analyzed 243 lipid species, evaluated lipid features such as fatty acyl chain length and number of acyl chain double bonds, and detected phospholipids that were significantly altered in the plasma of co‐twins with MS compared to their non‐affected siblings. Strikingly, changes were most prominent in ether phosphatidylethanolamines and ether phosphatidylcholines, suggesting a role for altered lipid signaling in the disease.
Collapse
Affiliation(s)
- Horst Penkert
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, 81675, Germany.,Institute of Neuronal Cell Biology, Technical University Munich, Munich, 80802, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, 81377, Germany
| | | | | | | | | | - Dirk Fitzner
- Department of Neurology, University of Göttingen Medical Center, Göttingen, 37075, Germany
| | - Andrea Flierl-Hecht
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Martin Kerschensteiner
- Munich Cluster of Systems Neurology (SyNergy), Munich, 81377, Germany.,Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, 81377, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, 82152, Germany
| | - Reinhard Hohlfeld
- Munich Cluster of Systems Neurology (SyNergy), Munich, 81377, Germany.,Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Lisa A Gerdes
- Munich Cluster of Systems Neurology (SyNergy), Munich, 81377, Germany.,Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, 81377, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, 82152, Germany
| | - Mikael Simons
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, 81675, Germany.,Institute of Neuronal Cell Biology, Technical University Munich, Munich, 80802, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, 81377, Germany
| |
Collapse
|
24
|
Linke V, Overmyer KA, Miller IJ, Brademan DR, Hutchins PD, Trujillo EA, Reddy TR, Russell JD, Cushing EM, Schueler KL, Stapleton DS, Rabaglia ME, Keller MP, Gatti DM, Keele GR, Pham D, Broman KW, Churchill GA, Attie AD, Coon JJ. A large-scale genome-lipid association map guides lipid identification. Nat Metab 2020; 2:1149-1162. [PMID: 32958938 PMCID: PMC7572687 DOI: 10.1038/s42255-020-00278-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Despite the crucial roles of lipids in metabolism, we are still at the early stages of comprehensively annotating lipid species and their genetic basis. Mass spectrometry-based discovery lipidomics offers the potential to globally survey lipids and their relative abundances in various biological samples. To discover the genetics of lipid features obtained through high-resolution liquid chromatography-tandem mass spectrometry, we analysed liver and plasma from 384 diversity outbred mice, and quantified 3,283 molecular features. These features were mapped to 5,622 lipid quantitative trait loci and compiled into a public web resource termed LipidGenie. The data are cross-referenced to the human genome and offer a bridge between genetic associations in humans and mice. Harnessing this resource, we used genome-lipid association data as an additional aid to identify a number of lipids, for example gangliosides through their association with B4galnt1, and found evidence for a group of sex-specific phosphatidylcholines through their shared locus. Finally, LipidGenie's ability to query either mass or gene-centric terms suggests acyl-chain-specific functions for proteins of the ABHD family.
Collapse
Affiliation(s)
- Vanessa Linke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ian J Miller
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Dain R Brademan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul D Hutchins
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Edna A Trujillo
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Thiru R Reddy
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Emily M Cushing
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Donald S Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mary E Rabaglia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Duy Pham
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Karl W Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Aristizabal-Henao JJ, Jones CM, Lippa KA, Bowden JA. Nontargeted lipidomics of novel human plasma reference materials: hypertriglyceridemic, diabetic, and African-American. Anal Bioanal Chem 2020; 412:7373-7380. [PMID: 32851459 DOI: 10.1007/s00216-020-02910-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
The unavailability of appropriate quality assurance/quality control materials in many lipidomics applications poses a significant challenge for lipidomics research. It is recommended that samples with certified values and/or consensus estimates, such as NIST SRM 1950-Metabolites in Frozen Human Plasma, be implemented in routine analyses to enable community-wide comparisons of lipidomics results and analytical workflows. Herein, we applied a nontargeted lipidomics method for the analysis of a new human plasma reference material suite developed by NIST (hypertriglyceridemic, diabetic, and African-American plasma pools), in addition to SRM 1950. We identified specific lipidomics fingerprints associated with each sample type, including lauric acid-containing lipids and elevated triacylglycerol levels in hypertriglyceridemic plasma, palmitoleic acid-containing lipids in diabetic plasma, and oxidized fatty acid-containing phospholipids in African-American plasma. This work highlights the importance of developing and profiling application-specific reference materials, while establishing reference data that may be used for system suitability and/or quality control metrics.Graphical abstract.
Collapse
Affiliation(s)
- Juan J Aristizabal-Henao
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, USA
| | - Christina M Jones
- Chemical Sciences Division, National Institutes of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Katrice A Lippa
- Chemical Sciences Division, National Institutes of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|
26
|
Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00135-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Abstract
Untargeted metabolomics aims to quantify the complete set of metabolites within a biological system, most commonly by liquid chromatography/mass spectrometry (LC/MS). Since nearly the inception of the field, compound identification has been widely recognized as the rate-limiting step of the experimental workflow. In spite of exponential increases in the size of metabolomic databases, which now contain experimental MS/MS spectra for over a half a million reference compounds, chemical structures still cannot be confidently assigned to many signals in a typical LC/MS dataset. The purpose of this Perspective is to consider why identification rates continue to be low in untargeted metabolomics. One rationalization is that many naturally occurring metabolites detected by LC/MS are true "novel" compounds that have yet to be incorporated into metabolomic databases. An alternative possibility, however, is that research data do not provide database matches because of informatic artifacts, chemical contaminants, and signal redundancies. Increasing evidence suggests that, for at least some sample types, many unidentifiable signals in untargeted metabolomics result from the latter rather than new compounds originating from the specimen being measured. The implications of these observations on chemical discovery in untargeted metabolomics are discussed.
Collapse
Affiliation(s)
- Miriam Sindelar
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J. Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
28
|
Klein DR, Blevins MS, Macias LA, Douglass MV, Trent MS, Brodbelt JS. Localization of Double Bonds in Bacterial Glycerophospholipids Using 193 nm Ultraviolet Photodissociation in the Negative Mode. Anal Chem 2020; 92:5986-5993. [PMID: 32212719 PMCID: PMC7385702 DOI: 10.1021/acs.analchem.0c00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The need for detailed structural characterization of glycerophospholipids (GPLs) for many types of biologically motivated applications has led to the development of novel mass spectrometry-based methodologies that utilize alternative ion activation methods. Ultraviolet photodissociation (UVPD) has shown great utility for localizing sites of unsaturation within acyl chains and to date has predominantly been used for positive mode analysis of GPLs. In the present work, UVPD is used to localize sites of unsaturation in GPL anions. Similar to UVPD mass spectra of GPL cations, UVPD of deprotonated or formate-adducted GPLs yields diagnostic fragment ions spaced 24 Da apart. This method was integrated into a liquid chromatography workflow and used to evaluate profiles of sites of unsaturation of lipids in Escherichia coli (E. coli) and Acinetobacter baumannii (A. baumannii). When assigning sites of unsaturation, E. coli was found to contain all unsaturation elements at the same position relative to the terminal methyl carbon of the acyl chain; the first carbon participating in a site of unsaturation was consistently seven carbons along the acyl chain when counting carbons from the terminal methyl carbon. GPLs from A. baumannii exhibited more variability in locations of unsaturation. For GPLs containing sites of unsaturation in both acyl chains, an MS3 method was devised to assign sites to specific acyl chains.
Collapse
Affiliation(s)
- Dustin R Klein
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Molly S Blevins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Martin V Douglass
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602, United States
| | - M Stephen Trent
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602, United States
- Department of Microbiology, The University of Georgia, College of Arts and Sciences, Athens, Georgia 30602, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
29
|
Noto D, Di Gaudio F, Altieri IG, Cefalù AB, Indelicato S, Fayer F, Spina R, Scrimali C, Giammanco A, Mattina A, Indelicato S, Greco M, Bongiorno D, Averna M. Automated untargeted stable isotope assisted lipidomics of liver cells on high glucose shows alteration of sphingolipid kinetics. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158656. [PMID: 32045699 DOI: 10.1016/j.bbalip.2020.158656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/04/2019] [Accepted: 02/06/2020] [Indexed: 12/23/2022]
Abstract
Untargeted lipidomics is a powerful tool to discover new biomarkers and to understand the physiology and pathology of lipids. The use of stable isotopes as tracers to investigate the kinetics of lipids is another tool able to supply dynamic information on lipid synthesis and catabolism. Coupling the two methodology is then very appealing in the study of lipid metabolism. The main issue to face is to perform thousands of calculations in order to obtain kinetic parameters starting from the MS raw data. An automated computerized routine able to do accomplish such task is presented in this paper. We analyzed the lipid kinetics of palmitic acid (PA) in hepatoma liver cells cultured in vitro in which insulin resistance has been induced by high glucose supplementation. The deuterated palmitate tracer (d5PA) was administered as a bolus and the cells were harvested daily for 48 h. 5dPA was incorporated into 326 monoisotopic compounds and in 84 of their [M + 1] isotopologues detected by high resolution orbitrap MS. The differences between the kinetics curves showed that at least four long chain triglycerides (TG) species incorporated more PA in glucose treated cells, while phosphocholines, sphingomyelins, mono- and di-glycerides and ceramides (Cer) incorporated less tracer under glucose treatment. Nevertheless, Cer amount was increased by glucose treatment. In conclusion we developed an automated powerful algorithm able to model simultaneously hundreds of kinetic curves obtained in a cell culture spiked with a stable isotope tracer, and to analyze the difference between the two different cell models.
Collapse
Affiliation(s)
- Davide Noto
- Department ProMISE (Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties), University of Palermo, Palermo, Italy.
| | - Francesca Di Gaudio
- Department of Biopatologia e Biotecnologie Mediche e Forensi (DiBiMEF), AOUP "Paolo Giaccone" University of Palermo, Palermo, Italy
| | - Ida Grazia Altieri
- Department ProMISE (Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties), University of Palermo, Palermo, Italy
| | - Angelo Baldassare Cefalù
- Department ProMISE (Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties), University of Palermo, Palermo, Italy
| | - Sergio Indelicato
- Mass Spectrometry Laboratory for Clinical Risk and Quality Control, A.O.U.P. "P. Giaccone", University of Palermo, Palermo, Italy
| | - Francesca Fayer
- Department ProMISE (Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties), University of Palermo, Palermo, Italy
| | - Rossella Spina
- Department ProMISE (Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties), University of Palermo, Palermo, Italy
| | - Chiara Scrimali
- Department ProMISE (Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties), University of Palermo, Palermo, Italy
| | - Antonina Giammanco
- Department ProMISE (Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties), University of Palermo, Palermo, Italy
| | - Alessandro Mattina
- Department ProMISE (Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties), University of Palermo, Palermo, Italy
| | - Serena Indelicato
- Mass Spectrometry Laboratory for Clinical Risk and Quality Control, A.O.U.P. "P. Giaccone", University of Palermo, Palermo, Italy
| | - Massimiliano Greco
- Mass Spectrometry Laboratory for Clinical Risk and Quality Control, A.O.U.P. "P. Giaccone", University of Palermo, Palermo, Italy
| | - David Bongiorno
- Mass Spectrometry Laboratory for Clinical Risk and Quality Control, A.O.U.P. "P. Giaccone", University of Palermo, Palermo, Italy
| | - Maurizio Averna
- Department ProMISE (Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties), University of Palermo, Palermo, Italy
| |
Collapse
|
30
|
Chollet C, Boutet-Mercey S, Laboureur L, Rincon C, Méjean M, Jouhet J, Fenaille F, Colsch B, Touboul D. Supercritical fluid chromatography coupled to mass spectrometry for lipidomics. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:791-801. [PMID: 31652381 DOI: 10.1002/jms.4445] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Supercritical fluid chromatography (SFC) has experienced a particular revival in recent years thanks to the development of robust and efficient commercial systems. Because of its physico-chemical properties, supercritical carbon dioxide (CO2 ) mixed with cosolvents and additives is particularly suitable for SFC to allow the elution of compounds of different polarities and more particularly complex lipids. Hyphenation with mass spectrometry (MS) is increasingly described in the literature but still requires many further developments in order to be as user-friendly as coupling with liquid chromatography. The basic concepts of SFC and MS hyphenation will be first considered. Then a representative example of method development in lipidomics will be introduced. In conclusion, the challenges and future needs in this field of research will be discussed.
Collapse
Affiliation(s)
- Céline Chollet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris-Saclay. MetaboHUB, F-91191, Gif-sur-Yvette, France
| | - Stéphanie Boutet-Mercey
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Laurent Laboureur
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Carlos Rincon
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Marie Méjean
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Juliette Jouhet
- Univ. Grenoble Alpes, CNRS, INRA, CEA, IRIG-LPCV, 38000, Grenoble, France
| | - François Fenaille
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris-Saclay. MetaboHUB, F-91191, Gif-sur-Yvette, France
| | - Benoit Colsch
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris-Saclay. MetaboHUB, F-91191, Gif-sur-Yvette, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| |
Collapse
|
31
|
de Diego I, Peleg S, Fuchs B. The role of lipids in aging-related metabolic changes. Chem Phys Lipids 2019; 222:59-69. [DOI: 10.1016/j.chemphyslip.2019.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022]
|
32
|
Yazdani M, Elgstøen KBP, Rootwelt H, Shahdadfar A, Utheim ØA, Utheim TP. Tear Metabolomics in Dry Eye Disease: A Review. Int J Mol Sci 2019; 20:E3755. [PMID: 31374809 PMCID: PMC6695908 DOI: 10.3390/ijms20153755] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial syndrome that can be caused by alteration in the quality or quantity of the precorneal tear film. It is considered one of the most common ocular conditions leading patients to seek eye care. The current method for diagnostic evaluations and follow-up examinations of DED is a combination of clinical signs and symptoms determined by clinical tests and questionnaires, respectively. The application of powerful omics technologies has opened new avenues toward analysis of subjects in health and disease. Metabolomics is a new emerging and complementary research discipline to all modern omics in the comprehensive analysis of biological systems. The identification of distinct metabolites and integrated metabolic profiles in patients can potentially inform clinicians at an early stage or during monitoring of disease progression, enhancing diagnosis, prognosis, and the choice of therapy. In ophthalmology, metabolomics has gained considerable attention over the past decade but very limited such studies have been reported on DED. This paper aims to review the application of tear metabolomics in DED.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- The Norwegian Dry Eye Clinic, 0366 Oslo, Norway.
| | | | - Helge Rootwelt
- Department of Medical Biochemistry, Oslo University Hospital, 0027 Oslo, Norway
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | | | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
- The Norwegian Dry Eye Clinic, 0366 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway
- Department of Maxillofacial Surgery, Oslo University Hospital, 0450 Oslo, Norway
- Department of Ophthalmology, Vestre Viken Hospital Trust, 3019 Drammen, Norway
- Department of Ophthalmology, Stavanger University Hospital, 4011 Stavanger, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4604 Arendal, Norway
- Department of Life Sciences and Health, Oslo Metropolitan University, 0130 Oslo, Norway
| |
Collapse
|
33
|
Ugalde CL, Lawson VA, Finkelstein DI, Hill AF. The role of lipids in α-synuclein misfolding and neurotoxicity. J Biol Chem 2019; 294:9016-9028. [PMID: 31064841 DOI: 10.1074/jbc.rev119.007500] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The misfolding and aggregation of α-synuclein (αsyn) in the central nervous system is associated with a group of neurodegenerative disorders referred to as the synucleinopathies. In addition to being a pathological hallmark of disease, it is now well-established that upon misfolding, αsyn acquires pathogenic properties, such as neurotoxicity, that can contribute to disease development. The mechanisms that produce αsyn misfolding and the molecular events underlying the neuronal damage caused by these misfolded species are not well-defined. A consistent observation that may be relevant to αsyn's pathogenicity is its ability to associate with lipids. This appears important not only to how αsyn aggregates, but also to the mechanism by which the misfolded protein causes intracellular damage. This review discusses the current literature reporting a role of lipids in αsyn misfolding and neurotoxicity in various synucleinopathy disorders and provides an overview of current methods to assess protein misfolding and pathogenicity both in vitro and in vivo.
Collapse
Affiliation(s)
- Cathryn L Ugalde
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia, .,the Departments of Microbiology and Immunology and.,the Howard Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia, and
| | | | - David I Finkelstein
- the Howard Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Andrew F Hill
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia, .,Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia, and
| |
Collapse
|
34
|
Native Nanodiscs and the Convergence of Lipidomics, Metabolomics, Interactomics and Proteomics. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The omics disciplines remain largely distinct sciences due to the necessity of separating molecular classes for different assays. For example, water-soluble and lipid bilayer-bound proteins and metabolites are usually studied separately. Nonetheless, it is at the interface between these sciences where biology happens. That is, lipid-interacting proteins typically recognize and transduce signals and regulate the flow of metabolites in the cell. Technologies are emerging to converge the omics. It is now possible to separate intact membrane:protein assemblies (memteins) directly from intact cells or cell membranes. Such complexes mediate complete metabolon, receptor, channel, and transporter functions. The use of poly(styrene-co-maleic acid) (SMA) copolymers has allowed their separation in a single step without any exposure to synthetic detergents or artificial lipids. This is a critical development as these agents typically strip away biological lipids, signals, and metabolites from their physiologically-relevant positions on proteins. The resulting SMA lipid particles (SMALPs) represent native nanodiscs that are suitable for elucidation of structures and interactions that occur in vivo. Compatible tools for resolving the contained memteins include X-ray diffraction (XRD), cryo-electron microscopy (cryoEM), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy. Recent progress shows that memteins are more representative than naked membrane proteins devoid of natural lipid and is driving the development of next generation polymers.
Collapse
|
35
|
Wozny K, Lehmann WD, Wozny M, Akbulut BS, Brügger B. A method for the quantitative determination of glycerophospholipid regioisomers by UPLC-ESI-MS/MS. Anal Bioanal Chem 2018; 411:915-924. [PMID: 30580388 PMCID: PMC6338697 DOI: 10.1007/s00216-018-1517-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 01/15/2023]
Abstract
Diacyl glycerophospholipids (GPs) belong to the most abundant lipid species in living organisms and consist of a glycerol backbone with fatty acyl groups in sn-1 and sn-2 and a polar head group in the sn-3 position. Regioisomeric mixed diacyl GPs have the same fatty acyl composition but differ in their allocation to sn-1 or sn-2 of the glycerol unit. In-depth analysis of regioisomeric mixed diacyl GP species composed of fatty acyl moieties that are similar in length and degree of saturation typically requires either chemical derivatization or sophisticated analytical instrumentation, since these types of regioisomers are not well resolved under standard ultra-performance liquid chromatography (UPLC) conditions. Here, we introduce a simple and fast method for diacyl GP regioisomer analysis employing UPLC tandem mass spectrometry (MS/MS). This GP regioisomer analysis is based both on minor chromatographic retention time shifts and on major differences in relative abundances of the two fatty acyl anion fragments observed in MS/MS. To monitor these differences with optimal precision, MS/MS spectra are recorded continuously over the UPLC elution profile of the lipid species of interest. Quantification of relative abundances of the regioisomers was performed by algorithms that we have developed for this purpose. The method was applied to commercially available mixed diacyl GP standards and to total lipid extracts of Escherichia coli (E. coli) and bovine liver. To validate our results, we determined regioisomeric ratios of phosphatidylcholine (PC) standards using phospholipase A2-specific release of fatty acids from the sn-2 position of the glycerol backbone. Our results show that most analyzed mixed diacyl GPs of biological origin exhibit significantly higher regioisomeric purity than synthetic lipid standards. In summary, this method can be implemented in routine LC-MS/MS-based lipidomics workflows without the necessity for additional chemical additives, derivatizations, or instrumentation.
Collapse
Affiliation(s)
- Katharina Wozny
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Wolf D Lehmann
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Manfred Wozny
- MassMap GmbH & Co. KG, Meichelbeckstraße 13a, 85356, Freising, Germany
| | | | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Braga DPDAF, Borges E, Godoy AT, Montani DA, Setti AS, Zanetti BF, Figueira RDCS, Eberlin MN, Lo Turco EG. Lipidomic profile as a noninvasive tool to predict endometrial receptivity. Mol Reprod Dev 2018; 86:145-155. [PMID: 30418697 DOI: 10.1002/mrd.23088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 12/28/2022]
Abstract
For the present study we asked whether the endometrial fluid lipidomic may be a useful approach to predict endometrial receptivity in freeze-all cycles. For this case-control study, endometrial fluid samples were collected from 41 patients undergoing freeze-all cycles. Samples were split depending on the pregnancy outcome: positive group (n = 24) and negative group (n = 17). Data were acquired by the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were applied. A list of potential biomarker ion ratios was obtained and the values were used to build a receiver operating characteristic (ROC) curve to predict pregnancy success. The lipid categories were attributed by LIPID MAPS database. Ion ratios were established according to their correlations and used for the analysis. The PCA showed a tendency of separation between the studied groups, whereas the PLS-DA was able to clearly distinguish them. Fifteen ratios (13 hyper-represented in the negative and two hyper-represented in the positive group) were selected according to their importance for model prediction. These ratios were used to build the ROC curve, which presented an area under curve of 84.0% (95%CI: 69.2-97.4%; p = 0.009). These findings suggest that lipidomic profiling of endometrial fluid may be a valuable tool for identifying the time interval comprising the window of implantation.
Collapse
Affiliation(s)
- Daniela Paes de Almeida Ferreira Braga
- Departamento de Cirurgia, Disciplina de Urologia, Universidade Federal de São Paulo -UNIFESP, São Paulo, Brazil.,Fertility Medical Group, Av. Brigadeiro Luiz Antônio, 4545 São Paulo, Brazil
| | - Edson Borges
- Fertility Medical Group, Av. Brigadeiro Luiz Antônio, 4545 São Paulo, Brazil
| | - Adriana Teixeira Godoy
- Laboratorio ThoMSon de Espectrometria de Massas, Universidade de Campinas-UNICAMP, Rua Sérgio Buarque de Holanda, S/N - Cidade Universitária, Campinas, Brazil
| | - Daniela Antunes Montani
- Departamento de Cirurgia, Disciplina de Urologia, Universidade Federal de São Paulo -UNIFESP, São Paulo, Brazil
| | - Amanda Souza Setti
- Fertility Medical Group, Av. Brigadeiro Luiz Antônio, 4545 São Paulo, Brazil
| | | | | | - Marcos Nogueira Eberlin
- Laboratorio ThoMSon de Espectrometria de Massas, Universidade de Campinas-UNICAMP, Rua Sérgio Buarque de Holanda, S/N - Cidade Universitária, Campinas, Brazil
| | - Edson Guimarães Lo Turco
- Departamento de Cirurgia, Disciplina de Urologia, Universidade Federal de São Paulo -UNIFESP, São Paulo, Brazil
| |
Collapse
|
37
|
Ma HF, Wei F, Wu BF, Yang C, Xie Y, Wu ZY, Lv X, Chen H. Profiling and quantification of aminophospholipids based on chemical derivatization coupled with HPLC-MS. J Lipid Res 2018; 60:121-134. [PMID: 30482807 DOI: 10.1194/jlr.m089482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/01/2018] [Indexed: 01/21/2023] Open
Abstract
In this study, a novel strategy based on acetone stable-isotope derivatization coupled with HPLC-MS for profiling and accurate quantification of aminophospholipids (phosphatidylethanolamine and phosphatidylserine) in biological samples was developed. Acetone derivatization leads to alkylation of the primary amino groups of aminophospholipids with an isopropyl moiety; the use of deuterium-labeled acetone (d6-acetone) introduced a 6 Da mass shift that was ideally suited for profiling and quantification analysis with high selectivity and accuracy. After derivatization, significantly increased column efficiency for chromatographic separation and detection sensitivity for MS analysis of aminophospholipids was observed. Furthermore, an accuracy quantification method was developed. Aminophospholipids in biological samples were derivatized with d0-acetone; while more than two aminophospholipid standards were selected for each class of aminophospholipid and derivatized with d6-acetone, which were then used as the internal standards to typically construct a calibration curve for each class to normalize the nonuniformity response caused by the differential fragmentation kinetics resulting from the distinct chemical constitution of individual aminophospholipid species in the biological samples. The excellent applicability of the developed method was validated by profiling and quantification of aminophospholipids presented in liver samples from rats fed with different diets.
Collapse
Affiliation(s)
- Hui-Fang Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Fang Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Bang-Fu Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Chen Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ya Xie
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Zong-Yuan Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xin Lv
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Hong Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| |
Collapse
|
38
|
Schlotterbeck J, Chatterjee M, Gawaz M, Lämmerhofer M. Comprehensive MS/MS profiling by UHPLC-ESI-QTOF-MS/MS using SWATH data-independent acquisition for the study of platelet lipidomes in coronary artery disease. Anal Chim Acta 2018; 1046:1-15. [PMID: 30482286 DOI: 10.1016/j.aca.2018.08.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/13/2023]
Abstract
A non-targeted lipidomics workflow based on C8 core-shell particle ultra high-performance liquid chromatography (UHPLC) hyphenated to ESI-QTOF-MS in data-independent acquisition (DIA) mode with sequential window acquisition of all theoretical fragment ion spectra (SWATH) was developed and applied to differential platelet lipidomics profiling of cardiovascular disease patients (stable angina pectoris (n = 10), ST-elevated myocardial infarction (n = 13)) against healthy controls (n = 10). DIA with SWATH generates comprehensive MS and MS/MS data throughout the entire chromatograms and all study samples. Hence, chromatograms can be extracted based on precursors or fragments which provided some benefits in terms of assay specificity in some cases. SWATH acquisition offers flexible experimental design with variable Q1 isolation windows. Liquid chromatography as well as SWATH settings were optimized to cover the lipidome of human platelets. The flexibility of the SWATH experiment design was utilized to implement target SWATH windows with narrow 5 Da Q1 precursor ion selection width (multiple reaction monitoring (MRM)-like SWATH windows) for the detection of low abundant oxidized phospholipids. Data processing was performed with MS-DIAL, and its feasibilities and caveats are discussed by illustrative examples. Thereby, identification of lipids is still a bottleneck in non-targeted lipidomics workflow. MS-DIAL, however, offers automatic identification via spectral matching using an in silico library. In total 1971 molecular features were detected cross the samples of which 611 were identified (total score >70%). The quality of the acquired data was validated with embedded quality control samples (n = 11). 80.3% of all features detected in the QC samples showed a coefficient of variation of below 30%. Multivariate statistics were used to visualize differences in the lipidome of distinct sample groups at a false discovery rate of 5%.
Collapse
Affiliation(s)
- Jörg Schlotterbeck
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
39
|
Aristizabal Henao JJ, Bradley RM, Duncan RE, Stark KD. Categorizing and qualifying nutritional lipidomic data: defining brutto, medio, genio, and infinio lipid species within macrolipidomics and microlipidomics. Curr Opin Clin Nutr Metab Care 2018; 21:352-359. [PMID: 29912810 DOI: 10.1097/mco.0000000000000495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Lipidomic profiling of biological samples is increasing in nutritional research applications. 'Lipidomic analyses' however can be quite variable in specific methods and the type of information about the specific lipids that is revealed. The lack of defined and simple terminology to describe aspects of lipidomics presents a challenge in the use of lipidomics across interdisciplinary research groups. RECENT FINDINGS We propose the use of macrolipidomics and microlipidomics to define lipidomic strategies based on analytical outcomes. Macrolipidomics involves the global characterization of the most abundant lipids in a system, whereas microlipidomics examines low abundant lipids with potent bioactivity that typically require specialized analyses. We also propose that in addition to the term 'brutto', the terms 'medio, genio, and infinio' be used to indicate when information about the lipid molecule increases from isobars/isomers to regio-isomers with carbon-carbon double bond information. SUMMARY The use of these terms will help establish a common language around the field of lipidomics and improve communication and uptake in the field of clinical nutrition. Macrolipidomic and microlipidomic terms quickly convey the general purpose of the approach. Brutto, medio, genio, and infino quickly convey the nature of the lipid identification.
Collapse
|
40
|
Metcalfe LK, Smith GC, Turner N. Defining lipid mediators of insulin resistance - controversies and challenges. J Mol Endocrinol 2018; 62:JME-18-0023. [PMID: 30068522 DOI: 10.1530/jme-18-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Abstract
Essential elements of all cells, lipids play important roles in energy production, signalling and as structural components. Despite these critical functions, excessive availability and intracellular accumulation of lipid is now recognised as a major factor contributing to many human diseases, including obesity and diabetes. In the context of these metabolic disorders, ectopic deposition of lipid has been proposed to have deleterious effects of insulin action. While this relationship has been recognised for some time now, there is currently no unifying mechanism to explain how lipids precipitate the development of insulin resistance. This review summarises the evidence linking specific lipid molecules to the induction of insulin resistance, describing some of the current controversies and challenges for future studies in this field.
Collapse
Affiliation(s)
- Louise K Metcalfe
- L Metcalfe, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Greg C Smith
- G Smith, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Nigel Turner
- N Turner, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
41
|
Isoprostanoids in Clinical and Experimental Neurological Disease Models. Antioxidants (Basel) 2018; 7:antiox7070088. [PMID: 29997375 PMCID: PMC6071265 DOI: 10.3390/antiox7070088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/28/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
Isoprostanoids are a large family of compounds derived from non-enzymatic oxidation of polyunsaturated fatty acids (PUFAs). Unlike other oxidative stress biomarkers, they provide unique information on the precursor of the targeted PUFA. Although they were discovered about a quarter of century ago, the knowledge on the role of key isoprostanoids in the pathogenesis of experimental and human disease models remains limited. This is mainly due to the limited availability of highly purified molecules to be used as a reference standard in the identification of biological samples. The accurate knowledge on their biological relevance is the critical step that could be translated from some mere technical/industrial advances into a reliable biological disease marker which is helpful in deciphering the oxidative stress puzzle related to neurological disorders. Recent research indicates the value of isoprostanoids in predicting the clinical presentation and evolution of the neurological diseases. This review focuses on the relevance of isoprostanoids as mediators and potential biomarkers in neurological diseases, a heterogeneous family ranging from rare brain diseases to major health conditions that could have worldwide socioeconomic impact in the health sector. The current challenge is to identify the preferential biochemical pathways that actually follow the oxidative reactions in the neurological diseases and the consequence of the specific isoprostanes in the underlying pathogenic mechanisms.
Collapse
|
42
|
Li XS, Wang Z, Cajka T, Buffa JA, Nemet I, Hurd AG, Gu X, Skye SM, Roberts AB, Wu Y, Li L, Shahen CJ, Wagner MA, Hartiala JA, Kerby RL, Romano KA, Han Y, Obeid S, Lüscher TF, Allayee H, Rey FE, DiDonato JA, Fiehn O, Tang WHW, Hazen SL. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight 2018; 3:99096. [PMID: 29563342 DOI: 10.1172/jci.insight.99096] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/07/2018] [Indexed: 01/26/2023] Open
Abstract
Using an untargeted metabolomics approach in initial (N = 99 subjects) and replication cohorts (N = 1,162), we discovered and structurally identified a plasma metabolite associated with cardiovascular disease (CVD) risks, N6,N6,N6-trimethyl-L-lysine (trimethyllysine, TML). Stable-isotope-dilution tandem mass spectrometry analyses of an independent validation cohort (N = 2,140) confirmed TML levels are independently associated with incident (3-year) major adverse cardiovascular event risks (hazards ratio [HR], 2.4; 95% CI, 1.7-3.4) and incident (5-year) mortality risk (HR, 2.9; 95% CI, 2.0-4.2). Genome-wide association studies identified several suggestive loci for TML levels, but none reached genome-wide significance; and d9(trimethyl)-TML isotope tracer studies confirmed TML can serve as a nutrient precursor for gut microbiota-dependent generation of trimethylamine (TMA) and the atherogenic metabolite trimethylamine N-oxide (TMAO). Although TML was shown to be abundant in both plant- and animal-derived foods, mouse and human fecal cultures (omnivores and vegans) showed slow conversion of TML to TMA. Furthermore, unlike chronic dietary choline, TML supplementation in mice failed to elevate plasma TMAO or heighten thrombosis potential in vivo. Thus, TML is identified as a strong predictor of incident CVD risks in subjects and to serve as a dietary precursor for gut microbiota-dependent generation of TMAO; however, TML does not appear to be a major microbial source for TMAO generation in vivo.
Collapse
Affiliation(s)
- Xinmin S Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tomas Cajka
- Department of Molecular and Cellular Biology and Genome Center, University of California Davis, Davis, California, USA
| | - Jennifer A Buffa
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ina Nemet
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alex G Hurd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xiaodong Gu
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sarah M Skye
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam B Roberts
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yuping Wu
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, USA
| | - Lin Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher J Shahen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew A Wagner
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jaana A Hartiala
- Departments of Preventive Medicine and Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Robert L Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kymberleigh A Romano
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yi Han
- Departments of Preventive Medicine and Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Slayman Obeid
- University Heart Center, Department of Cardiology, University Hospital Zurich, Switzerland
| | - Thomas F Lüscher
- University Heart Center, Department of Cardiology, University Hospital Zurich, Switzerland.,Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Hooman Allayee
- Departments of Preventive Medicine and Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph A DiDonato
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Oliver Fiehn
- Department of Molecular and Cellular Biology and Genome Center, University of California Davis, Davis, California, USA.,Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
43
|
Rustam YH, Reid GE. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal Chem 2017; 90:374-397. [PMID: 29166560 DOI: 10.1021/acs.analchem.7b04836] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yepy H Rustam
- Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Gavin E Reid
- Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3010, Australia.,School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
44
|
Lum KM, Sato Y, Beyer BA, Plaisted WC, Anglin JL, Lairson LL, Cravatt BF. Mapping Protein Targets of Bioactive Small Molecules Using Lipid-Based Chemical Proteomics. ACS Chem Biol 2017; 12:2671-2681. [PMID: 28930429 PMCID: PMC5650530 DOI: 10.1021/acschembio.7b00581] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipids play critical roles in cell biology, often through direct interactions with proteins. We recently described the use of photoreactive lipid probes combined with quantitative mass spectrometry to globally map lipid-protein interactions, and the effects of drugs on these interactions, in cells. Here, we investigate the broader potential of lipid-based chemical proteomic probes for determining the cellular targets of biologically active small molecules, including natural product derivatives and repurposed drugs of ill-defined mechanisms. We identify the prostaglandin-regulatory enzyme PTGR2 as a target of the antidiabetic hops derivative KDT501 and show that miconazole-an antifungal drug that attenuates disease severity in preclinical models of multiple sclerosis-inhibits SGPL1, an enzyme that degrades the signaling lipid sphingosine-1-phosphate, drug analogues of which are used to treat multiple sclerosis in humans. Our findings highlight the versatility of lipid-based chemical proteomics probes for mapping small molecule-protein interactions in human cells to gain mechanistic understanding of bioactive compounds.
Collapse
Affiliation(s)
- Kenneth M. Lum
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yoshiaki Sato
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brittney A. Beyer
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Justin L. Anglin
- California Institute for Biomedical Research, La Jolla, CA 92037, USA
| | - Luke L. Lairson
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin F. Cravatt
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|