1
|
Wang D, Chu X, Cao J, Peng Y. Correlation of serum Klotho, fetuin-A, and MGP levels with coronary artery calcification in maintenance hemodialysis patients. Clinics (Sao Paulo) 2024; 79:100417. [PMID: 39089098 PMCID: PMC11342211 DOI: 10.1016/j.clinsp.2024.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/24/2024] [Accepted: 06/11/2024] [Indexed: 08/03/2024] Open
Abstract
OBJECTIVE This study was to investigate the role of serum Klotho, fetuin-A, and Matrix Gla Protein (MGP) in Coronary Artery Calcification (CAC) in patients with Maintenance Hemodialysis (MHD) and their predictive value for CAC. METHODS 100 patients receiving MHD were selected. Serum Klotho, fetuin-A, and MGP levels were detected by ELISA. CAC scores were assessed by coronary CT scan. Multifactor analysis was used to evaluate the risk factors affecting CAC. The ability of serum Klotho, fetuin-A, and MGP levels to diagnose CAC was evaluated by receiver operating characteristic curves. RESULTS Serum Klotho, fetuin-A, and MGP were independent risk factors for CAC. Serum Klotho, fetuin-A, and MGP were valuable in the diagnosis of CAC in MHD patients. CONCLUSION There is a close relationship between Klotho, fetuin-A, and MGP levels in MHD patients and CAC.
Collapse
Affiliation(s)
- Dan Wang
- Department of East Hospital Nephrology, Yantaishan Hospital, Yantai City, Shandong Province, China
| | - XiuLin Chu
- Department of Nephrology, The People's Hospital of Xushui, Baoding City, Hebei Province, China
| | - JuHua Cao
- Department of Outpatient, The General Hospital of Western Theater Command of Chinese people's liberation army, Chengdu City, Sichuan Province, China
| | - YunHua Peng
- Department of Nephrology, Dafeng People's Hospital, Yancheng City, JiangSu Province, China.
| |
Collapse
|
2
|
Li J, Barlow LN, Sask KN. Enhancement of protein immobilization on polydimethylsiloxane using a synergistic combination of polydopamine and micropattern surface modification. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2376-2399. [PMID: 37609691 DOI: 10.1080/09205063.2023.2248799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
Understanding protein interactions at biointerfaces is critical for the improved design of biomaterials and medical devices. Polydimethylsiloxane (PDMS) is used for numerous device applications, and surface modifications can enhance protein immobilization and the response to cells. A multifunctional approach combining topographical and biochemical modifications was applied to PDMS by fabricating 10-20 µm scale patterns onto PDMS surfaces and by coating with polydopamine (PDA). The modifications were confirmed by surface characterization and bovine serum albumin (BSA), fibrinogen (Fg), and fetuin-A (Fet-A) were radiolabeled with 125I. The amounts of protein attached to the surface before and after elution with sodium dodecyl sulfate (SDS) were quantified from single and complex multi-protein solutions to determine protein stability and competitive binding. The PDA coatings were the most stable and capable of immobilizing the highest levels of all proteins. Furthermore, combinations of PDA coatings with the smallest micropatterns provided an additional improvement, enhancing the amount immobilized and the stability. The adsorption of BSA and Fg from plasma demonstrated competitive binding and possible orientation changes, respectively. It was determined that Fet-A, a less studied protein, adsorbed from plasma at low levels, but the adsorption from fetal bovine serum (FBS) was significantly greater, providing important quantification data from radiolabeling that is relevant to many cell culture studies. Overall, combining topography and PDA modification has a synergistic effect on improving protein immobilization. These findings provide new insight on the quantities of proteins bound to PDMS and PDA coatings with implications for cell interactions in various biotechnology and medical applications.
Collapse
Affiliation(s)
- Jie Li
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Leah N Barlow
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Kyla N Sask
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Pejchinovski I, Turkkan S, Pejchinovski M. Recent Advances of Proteomics in Management of Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2648. [PMID: 37627907 PMCID: PMC10453063 DOI: 10.3390/diagnostics13162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.
Collapse
Affiliation(s)
- Ilinka Pejchinovski
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Sibel Turkkan
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Martin Pejchinovski
- Department of Analytical Instruments Group, Thermo Fisher Scientific, 82110 Germering, Germany
| |
Collapse
|
4
|
Miller C, Sask KN. Fetuin-A adsorption to tunable polydimethylsiloxane and subsequent macrophage response. J Biomed Mater Res A 2023; 111:1096-1109. [PMID: 36592125 DOI: 10.1002/jbm.a.37491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023]
Abstract
Surface modifications can be applied to biomaterials to alter the various surface properties that influence protein-material interactions and the cellular response. The plasma protein fetuin-A has been found to adsorb to many biomaterials but details of its interactions with polydimethylsiloxane (PDMS) and roles in regulating the immune response are not clear. Here, PDMS modifications are achieved by altering the ratio of PDMS formulations to control elastic modulus, and by coating PDMS with polydopamine (PDA) to attach fetuin-A. Surface characterization confirmed that altering the PDMS formulation changed the elastic modulus without affecting surface wetting properties. Surface roughness was measured using atomic force microscopy and surface chemistry was determined using X-ray photoelectron spectroscopy, with only minor changes detected on the softest samples. PDA deposition on PDMS was confirmed and contact angle measurements demonstrated an increase in hydrophilicity. Fetuin-A adsorption was influenced by the PDMS formulations, adsorption changed in a competitive plasma environment, and PDA was able to immobilize the greatest amount of fetuin-A. The inflammatory effects of fetuin-A were investigated, and data suggests that the elastic modulus influences cytokine secretion from macrophages at certain timepoints, a result likely due to varied protein amounts and orientations/conformations in response to material stiffness. The addition of a PDA layer demonstrated the potentially cytokine mitigating effect upon fetuin-A immobilization when compared to unmodified PDMS samples. The results provide new insight into the interactions of fetuin-A with PDMS and PDA, and the potential immune regulatory properties of fetuin-A modified materials.
Collapse
Affiliation(s)
- Chelsea Miller
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Kyla N Sask
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Kulik L, Renner B, Laskowski J, Thurman JM, Michael Holers V. Highly pathogenic natural monoclonal antibody B4-IgM recognizes a post-translational modification comprised of acetylated N-terminal methionine followed by aspartic or glutamic acid. Mol Immunol 2023; 157:112-128. [PMID: 37018938 PMCID: PMC11669889 DOI: 10.1016/j.molimm.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
The natural monoclonal antibody B4-IgM recognizes murine annexin 4 (mAn4) and exacerbates ischemia-reperfusion injury in many mouse models. During apoptosis, the intracellular mAn4 protein translocates to the membrane surface, remaining attached to the outer membrane leaflet where it is recognized by the anti-mAn4 B4-IgM antibody. B4-IgM does not recognize human annexin 4 (hAn4). However, the B4-IgM antibody epitope was detected by Western blot of unknown human proteins and by flow cytometry on all studied human cell lines undergoing apoptosis and on a minor subset of healthy cells. The B4-IgM antibody also recognizes the epitope on necrotic cells in cytoplasmic proteins, apparently entering through pores large enough to allow natural antibodies to penetrate the cells and bind to the epitope expressed on self-proteins. Using proteomics and site-directed mutagenesis, we found that B4-IgM binds to an epitope with post-translationally modified acetylated N-terminal methionine, followed by either glutamic or aspartic acid. The epitope is not induced by apoptosis or injury because this modification can also occur during protein translation. This finding reveals an additional novel mechanism whereby injured cells are detected by natural antibodies that initiate pathogenic complement activation through the recognition of epitopes that are shared across multiple proteins found in variable cell lines.
Collapse
Affiliation(s)
- Liudmila Kulik
- Division of Rheumatology, University of Colorado Denver, USA.
| | - Brandon Renner
- Division of Renal Diseases and Hypertension, University of Colorado Denver, USA
| | - Jennifer Laskowski
- Division of Renal Diseases and Hypertension, University of Colorado Denver, USA
| | - Joshua M Thurman
- Division of Renal Diseases and Hypertension, University of Colorado Denver, USA
| | | |
Collapse
|
6
|
Jose J, Hoque M, Engel J, Beevi SS, Wahba M, Georgieva MI, Murphy KJ, Hughes WE, Cochran BJ, Lu A, Tebar F, Hoy AJ, Timpson P, Rye KA, Enrich C, Rentero C, Grewal T. Annexin A6 and NPC1 regulate LDL-inducible cell migration and distribution of focal adhesions. Sci Rep 2022; 12:596. [PMID: 35022465 PMCID: PMC8755831 DOI: 10.1038/s41598-021-04584-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
Cholesterol is considered indispensable for cell motility, but how physiological cholesterol pools enable cells to move forward remains to be clarified. The majority of cells obtain cholesterol from the uptake of Low-Density lipoproteins (LDL) and here we demonstrate that LDL stimulates A431 squamous epithelial carcinoma and Chinese hamster ovary (CHO) cell migration and invasion. LDL also potentiated epidermal growth factor (EGF) -stimulated A431 cell migration as well as A431 invasion in 3-dimensional environments, using organotypic assays. Blocking cholesterol export from late endosomes (LE), using Niemann Pick Type C1 (NPC1) mutant cells, pharmacological NPC1 inhibition or overexpression of the annexin A6 (AnxA6) scaffold protein, compromised LDL-inducible migration and invasion. Nevertheless, NPC1 mutant cells established focal adhesions (FA) that contain activated focal adhesion kinase (pY397FAK, pY861FAK), vinculin and paxillin. Compared to controls, NPC1 mutants display increased FA numbers throughout the cell body, but lack LDL-inducible FA formation at cell edges. Strikingly, AnxA6 depletion in NPC1 mutant cells, which restores late endosomal cholesterol export in these cells, increases their cell motility and association of the cholesterol biosensor D4H with active FAK at cell edges, indicating that AnxA6-regulated transport routes contribute to cholesterol delivery to FA structures, thereby improving NPC1 mutant cell migratory behaviour.
Collapse
Affiliation(s)
- Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Monira Hoque
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.,Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW, 2000, Australia
| | - Johanna Engel
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Syed S Beevi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.,KIMS Foundation and Research Centre, KIMS Hospitals, 1-8-31/1, Minister Road, Secunderabad, Telangana, 500003, India
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mariya Ilieva Georgieva
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kendelle J Murphy
- Cancer Research Program, Garvan Institute of Medical Research and Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2010, Australia
| | - William E Hughes
- Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Blake J Cochran
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Paul Timpson
- Cancer Research Program, Garvan Institute of Medical Research and Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2010, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain. .,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
7
|
In Vitro Investigation on Degradable Mg-Based Biomaterial under the Impact of the Serum Glycoprotein Fetuin. MATERIALS 2021; 14:ma14175005. [PMID: 34501095 PMCID: PMC8434450 DOI: 10.3390/ma14175005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
Biomedical applications of magnesium (Mg) and its alloys are generally dependent on their degradation behavior in vivo. Despite its attractive properties, which make Mg suitable for orthopedic applications, the in vivo material-tissue (bone, blood, and lymph tissues) interaction is not yet fully understood. To investigate the influence of major serum proteins on the degradation, this study focused on fetuin, which is one of the major non-collagenous plasma proteins and which is essential for biomineralization. This study used a physiological setup to investigate the influence of fetuin on the degradation behavior of pure Mg in the presence of calcium (Ca). Extruded pure Mg samples were immersed under cell culture conditions in Hank’s balanced salt solution (HBSS) under defined Ca regimes. The results showed a significant decrease in the degradation rate (DR) when both fetuin and Ca were present in an immersion medium as compared to media where they were not simultaneously present. A possible reason for this behavior was the forming of a dense, protein-degradation products protection barrier at the material surface. Furthermore, the limitation of freely available Ca might be a reason for a decreased degradation. The cultivation of primary osteoblasts (pOB) was possible at the fetuin-coated Mg-surface without additional serum supplementation.
Collapse
|
8
|
Bozycki L, Mroczek J, Bessueille L, Mebarek S, Buchet R, Pikula S, Strzelecka-Kiliszek A. Annexins A2, A6 and Fetuin-A Affect the Process of Mineralization in Vesicles Derived from Human Osteoblastic hFOB 1.19 and Osteosarcoma Saos-2 Cells. Int J Mol Sci 2021; 22:ijms22083993. [PMID: 33924370 PMCID: PMC8069967 DOI: 10.3390/ijms22083993] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
The mineralization process is initiated by osteoblasts and chondrocytes during intramembranous and endochondral ossifications, respectively. Both types of cells release matrix vesicles (MVs), which accumulate Pi and Ca2+ and form apatites in their lumen. Tissue non-specific alkaline phosphatase (TNAP), a mineralization marker, is highly enriched in MVs, in which it removes inorganic pyrophosphate (PPi), an inhibitor of apatite formation. MVs then bud from the microvilli of mature osteoblasts or hypertrophic chondrocytes and, thanks to the action of the acto-myosin cortex, become released to the extracellular matrix (ECM), where they bind to collagen fibers and propagate mineral growth. In this report, we compared the mineralization ability of human fetal osteoblastic cell line (hFOB 1.19 cells) with that of osteosarcoma cell line (Saos-2 cells). Both types of cells were able to mineralize in an osteogenic medium containing ascorbic acid and beta glycerophosphate. The composition of calcium and phosphate compounds in cytoplasmic vesicles was distinct from that in extracellular vesicles (mostly MVs) released after collagenase-digestion. Apatites were identified only in MVs derived from Saos-2 cells, while MVs from hFOB 1.19 cells contained amorphous calcium phosphate complexes. In addition, AnxA6 and AnxA2 (nucleators of mineralization) increased mineralization in the sub-membrane region in strongly mineralizing Saos-2 osteosarcoma, where they co-localized with TNAP, whereas in less mineralizing hFOB 1.19 osteoblasts, AnxA6, and AnxA2 co-localizations with TNAP were less visible in the membrane. We also observed a reduction in the level of fetuin-A (FetuA), an inhibitor of mineralization in ECM, following treatment with TNAP and Ca channels inhibitors, especially in osteosarcoma cells. Moreover, a fraction of FetuA was translocated from the cytoplasm towards the plasma membrane during the stimulation of Saos-2 cells, while this displacement was less pronounced in stimulated hFOB 19 cells. In summary, osteosarcoma Saos-2 cells had a better ability to mineralize than osteoblastic hFOB 1.19 cells. The formation of apatites was observed in Saos-2 cells, while only complexes of calcium and phosphate were identified in hFOB 1.19 cells. This was also evidenced by a more pronounced accumulation of AnxA2, AnxA6, FetuA in the plasma membrane, where they were partly co-localized with TNAP in Saos-2 cells, in comparison to hFOB 1.19 cells. This suggests that both activators (AnxA2, AnxA6) and inhibitors (FetuA) of mineralization were recruited to the membrane and co-localized with TNAP to take part in the process of mineralization.
Collapse
Affiliation(s)
- Lukasz Bozycki
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland; (L.B.); (J.M.); (S.P.)
| | - Joanna Mroczek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland; (L.B.); (J.M.); (S.P.)
- Department of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland
| | - Laurence Bessueille
- Department of Biosciences, Université de Lyon, CEDEX 69622 Villeurbanne, France; (L.B.); (S.M.); (R.B.)
- Department of Biosciences, Université Lyon 1, CEDEX 69622 Villeurbanne, France
- INSA de Lyon, CEDEX 69621 Villeurbanne, France
- CPE Lyon, CEDEX 69616 Villeurbanne, France
- ICBMS CNRS UMR 5246, CEDEX 69622 Villeurbanne, France
| | - Saida Mebarek
- Department of Biosciences, Université de Lyon, CEDEX 69622 Villeurbanne, France; (L.B.); (S.M.); (R.B.)
- Department of Biosciences, Université Lyon 1, CEDEX 69622 Villeurbanne, France
- INSA de Lyon, CEDEX 69621 Villeurbanne, France
- CPE Lyon, CEDEX 69616 Villeurbanne, France
- ICBMS CNRS UMR 5246, CEDEX 69622 Villeurbanne, France
| | - René Buchet
- Department of Biosciences, Université de Lyon, CEDEX 69622 Villeurbanne, France; (L.B.); (S.M.); (R.B.)
- Department of Biosciences, Université Lyon 1, CEDEX 69622 Villeurbanne, France
- INSA de Lyon, CEDEX 69621 Villeurbanne, France
- CPE Lyon, CEDEX 69616 Villeurbanne, France
- ICBMS CNRS UMR 5246, CEDEX 69622 Villeurbanne, France
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland; (L.B.); (J.M.); (S.P.)
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland; (L.B.); (J.M.); (S.P.)
- Correspondence: ; Tel.: +48-22-5892276; Fax: +48-22-8224352
| |
Collapse
|
9
|
Icer MA, Yıldıran H. Effects of fetuin-A with diverse functions and multiple mechanisms on human health. Clin Biochem 2020; 88:1-10. [PMID: 33245873 DOI: 10.1016/j.clinbiochem.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Fetuin-A (Alfa 2-Heremans-Schmid) is a glycoprotein that is mainly synthesized by hepatocytes and then released into the bloodstream. While fetuin-A, a multifunctional protein, has inhibitory effects on health in the processes of calcification, mineralization, coronary artery calcification (CAC), and kidney stone formation by various mechanisms, it has such stimulatory effects as obesity, diabetes, and tumor progression processes. Fetuin-A produces these effects on the organism mainly by playing a role in the secretion levels of some inflammatory cytokines and exosomes, preventing unwanted calcification, inhibiting the autophosphorylation of tyrosine kinase, suppressing the release of adiponectin and peroxisome proliferator-activated receptor-γ (PPARγ), activating the toll-like receptor 4 (TLR-4), triggering the phosphatidylinositol 3 (PI3) kinase/Akt signaling pathway and cell proliferation, and mimicking the transforming growth factor-beta (TGF-β) receptor. In the present review, fetuin-A was examined in a wide perspective from the structure and release of fetuin-A to its effects on health.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06500 Ankara, Turkey.
| | - Hilal Yıldıran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06500 Ankara, Turkey
| |
Collapse
|
10
|
Korolkova OY, Widatalla SE, Williams SD, Whalen DS, Beasley HK, Ochieng J, Grewal T, Sakwe AM. Diverse Roles of Annexin A6 in Triple-Negative Breast Cancer Diagnosis, Prognosis and EGFR-Targeted Therapies. Cells 2020; 9:E1855. [PMID: 32784650 PMCID: PMC7465958 DOI: 10.3390/cells9081855] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
The calcium (Ca2+)-dependent membrane-binding Annexin A6 (AnxA6), is a multifunctional, predominantly intracellular scaffolding protein, now known to play relevant roles in different cancer types through diverse, often cell-type-specific mechanisms. AnxA6 is differentially expressed in various stages/subtypes of several cancers, and its expression in certain tumor cells is also induced by a variety of pharmacological drugs. Together with the secretion of AnxA6 as a component of extracellular vesicles, this suggests that AnxA6 mediates distinct tumor progression patterns via extracellular and/or intracellular activities. Although it lacks enzymatic activity, some of the AnxA6-mediated functions involving membrane, nucleotide and cholesterol binding as well as the scaffolding of specific proteins or multifactorial protein complexes, suggest its potential utility in the diagnosis, prognosis and therapeutic strategies for various cancers. In breast cancer, the low AnxA6 expression levels in the more aggressive basal-like triple-negative breast cancer (TNBC) subtype correlate with its tumor suppressor activity and the poor overall survival of basal-like TNBC patients. In this review, we highlight the potential tumor suppressor function of AnxA6 in TNBC progression and metastasis, the relevance of AnxA6 in the diagnosis and prognosis of several cancers and discuss the concept of therapy-induced expression of AnxA6 as a novel mechanism for acquired resistance of TNBC to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Olga Y. Korolkova
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Sarrah E. Widatalla
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Stephen D. Williams
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Diva S. Whalen
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Heather K. Beasley
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Amos M. Sakwe
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| |
Collapse
|
11
|
Makuloluwa AK, Stewart RMK, Kaye SB, Williams RL, Hamill KJ. Mass Spectrometry Reveals α-2-HS-Glycoprotein as a Key Early Extracellular Matrix Protein for Conjunctival Cells. Invest Ophthalmol Vis Sci 2020; 61:44. [PMID: 32232343 PMCID: PMC7401837 DOI: 10.1167/iovs.61.3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose To determine the composition of extracellular matrix (ECM) proteins secreted by a conjunctival epithelial cell line and to identify components that aid conjunctival epithelial cell culture. Methods Human conjunctival epithelial cell line (HCjE-Gi) cells were cultured in serum-free media and their ECM isolated using ammonium hydroxide. Growth characteristics were evaluated for fresh HCjE-Gi cells plated onto ECMs obtained from 3- to 28-day cell cultures. Mass spectrometry was used to characterize the ECM composition over 42 culture days. Cell adhesion and growth on pre-adsorbed fibronectin and α-2-HS-glycoprotein (α-2-HS-GP) were investigated. Results Day 3 ECM provided the best substrate for cell growth compared to ECM obtained from 5- to 28-day cell cultures. Mass spectrometry identified a predominantly laminin 332 matrix throughout the time course, with progressive changes to matrix composition over time: proportional decreases in matrix-bound growth factors and increases in proteases. Fibronectin and α-2-HS-GP were 5- and 200-fold enriched as a proportion of the early ECM relative to the late ECM, respectively. Experiments on these proteins in isolation demonstrated that fibronectin supported rapid cell adhesion, whereas fibronectin and α-2-HS-GP both supported enhanced cell growth compared to tissue culture polystyrene. Conclusions These data reveal α-2-HS-GP as a candidate protein to enhance the growth of conjunctival epithelial cells and raise the possibility of exploiting these findings for targeted improvement to synthetic tissue engineered conjunctival substrates.
Collapse
|
12
|
Strzelecka-Kiliszek A, Romiszewska M, Bozycki L, Mebarek S, Bandorowicz-Pikula J, Buchet R, Pikula S. Src and ROCK Kinases Differentially Regulate Mineralization of Human Osteosarcoma Saos-2 Cells. Int J Mol Sci 2019; 20:ijms20122872. [PMID: 31212828 PMCID: PMC6628028 DOI: 10.3390/ijms20122872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 06/10/2019] [Indexed: 12/29/2022] Open
Abstract
Osteoblasts initiate bone mineralization by releasing matrix vesicles (MVs) into the extracellular matrix (ECM). MVs promote the nucleation process of apatite formation from Ca2+ and Pi in their lumen and bud from the microvilli of osteoblasts during bone development. Tissue non-specific alkaline phosphatase (TNAP) as well as annexins (among them, AnxA6) are abundant proteins in MVs that are engaged in mineralization. In addition, sarcoma proto-oncogene tyrosine-protein (Src) kinase and Rho-associated coiled-coil (ROCK) kinases, which are involved in vesicular transport, may also regulate the mineralization process. Upon stimulation in osteogenic medium containing 50 μg/mL of ascorbic acid (AA) and 7.5 mM of β-glycerophosphate (β-GP), human osteosarcoma Saos-2 cells initiated mineralization, as evidenced by Alizarin Red-S (AR-S) staining, TNAP activity, and the partial translocation of AnxA6 from cytoplasm to the plasma membrane. The addition of 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d] pyrimidine (PP2), which is an inhibitor of Src kinase, significantly inhibited the mineralization process when evaluated by the above criteria. In contrast, the addition of (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide hydrochloride (Y-27632), which is an inhibitor of ROCK kinase, did not affect significantly the mineralization induced in stimulated Saos-2 cells as denoted by AR-S and TNAP activity. In conclusion, mineralization by human osteosarcoma Saos-2 cells seems to be differently regulated by Src and ROCK kinases.
Collapse
Affiliation(s)
- Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | - Marta Romiszewska
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | - Lukasz Bozycki
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | - Saida Mebarek
- Université de Lyon, CEDEX 69622 Villeurbanne, France.
- Université Lyon 1, CEDEX 69622 Villeurbanne, France.
- NSA de Lyon, CEDEX 69621 Villeurbanne, France.
- CPE Lyon, CEDEX 69616 Villeurbanne, France.
- ICBMS CNRS UMR 5246, CEDEX 69622 Villeurbanne, France.
| | - Joanna Bandorowicz-Pikula
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | - Rene Buchet
- Université de Lyon, CEDEX 69622 Villeurbanne, France.
- Université Lyon 1, CEDEX 69622 Villeurbanne, France.
- NSA de Lyon, CEDEX 69621 Villeurbanne, France.
- CPE Lyon, CEDEX 69616 Villeurbanne, France.
- ICBMS CNRS UMR 5246, CEDEX 69622 Villeurbanne, France.
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| |
Collapse
|
13
|
Stolwijk JA, Wegener J. Impedance-Based Assays Along the Life Span of Adherent Mammalian Cells In Vitro: From Initial Adhesion to Cell Death. BIOANALYTICAL REVIEWS 2019. [DOI: 10.1007/11663_2019_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Ochieng J, Nangami G, Sakwe A, Rana T, Ingram S, Goodwin JS, Moye C, Lammers P, Adunyah SE. Extracellular histones are the ligands for the uptake of exosomes and hydroxyapatite-nanoparticles by tumor cells via syndecan-4. FEBS Lett 2018; 592:3274-3285. [PMID: 30179249 PMCID: PMC6188801 DOI: 10.1002/1873-3468.13236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022]
Abstract
The mechanisms by which exosomes (nano-vesicular messengers of cells) are taken up by recipient cells are poorly understood. We hypothesized that histones associated with these nanoparticles are the ligands which facilitate their interaction with cell surface syndecan-4 (SDC4) to mediate their uptake. We show that the incubation with fetuin-A (exosome-associated proteins) and histones mediates the uptake of exosomes that are normally not endocytosed. Similarly, hydroxyapatite-nanoparticles incubated with fetuin-A and histones (FNH) are internalized by tumor cells, while nanoparticles incubated with fetuin-A alone (FN) are not. The uptake of exosomes and FNH, both of which move to the perinuclear region of the cell, is attenuated in SDC4-knockdown cells. Data show that FNH can compete with exosomes for uptake and that both use SDC4 as uptake receptors.
Collapse
Affiliation(s)
- Josiah Ochieng
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208,Corresponding author: Josiah Ochieng, Ph.D. ; phone: 615-327-6119; Fax: 615-327-6442
| | - Gladys Nangami
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208,Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208
| | - Amos Sakwe
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208,Graduate School, Meharry Medical College, Nashville, TN 37208
| | - Tanu Rana
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| | - Shalonda Ingram
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| | - J. Shawn Goodwin
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| | - Cierra Moye
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| | - Philip Lammers
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208
| | - Samuel E. Adunyah
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| |
Collapse
|
15
|
Impact of Fetuin-A (AHSG) on Tumor Progression and Type 2 Diabetes. Int J Mol Sci 2018; 19:ijms19082211. [PMID: 30060600 PMCID: PMC6121429 DOI: 10.3390/ijms19082211] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022] Open
Abstract
Fetuin-A is the protein product of the AHSG gene in humans. It is mainly synthesized by the liver in adult humans and is secreted into the blood where its concentration can vary from a low of ~0.2 mg/mL to a high of ~0.8 mg/mL. Presently, it is considered to be a multifunctional protein that plays important roles in diabetes, kidney disease, and cancer, as well as in inhibition of ectopic calcification. In this review we have focused on work that has been done regarding its potential role(s) in tumor progression and sequelae of diabetes. Recently a number of laboratories have demonstrated that a subset of tumor cells such as pancreatic, prostate and glioblastoma multiform synthesize ectopic fetuin-A, which drives their progression. Fetuin-A that is synthesized, modified, and secreted by tumor cells may be more relevant in understanding the pathophysiological role of this enigmatic protein in tumors, as opposed to the relatively high serum concentrations of the liver derived protein. Lastly, auto-antibodies to fetuin-A frequently appear in the sera of tumor patients that could be useful as biomarkers for early diagnosis. In diabetes, solid experimental evidence shows that fetuin-A binds the β-subunit of the insulin receptor to attenuate insulin signaling, thereby contributing to insulin resistance in type 2 diabetes mellitus (T2DM). Fetuin-A also may, together with free fatty acids, induce apoptotic signals in the beta islets cells of the pancreas, reducing the secretion of insulin and further exacerbating T2DM.
Collapse
|
16
|
Kodama Y, Hanamura H, Muro T, Nakagawa H, Kurosaki T, Nakamura T, Kitahara T, Kawakami S, Nakashima M, Sasaki H. Gene delivery system of pDNA using the blood glycoprotein fetuin. J Drug Target 2017; 26:604-609. [PMID: 29132248 DOI: 10.1080/1061186x.2017.1405425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fetuin is a biocompatible plasma protein and strongly enhances phagocytosis of bacteria, DNA and apoptotic cells by peripheral blood cells such as monocytes, macrophages and dendritic cells. We developed a novel gene delivery system: ternary complexes constructed with pDNA, polyethylenimine (PEI) and fetuin. Without covalent binding, fetuin was able to coat pDNA-PEI complexes, and stable anionic nanoparticles formed at a weight ratio greater than 30. Optimised pDNA-PEI-fetuin complexes significantly decreased the cytotoxicity of pDNA-PEI complexes in the melanoma cell line B16F10. Furthermore, the pDNA-PEI-fetuin complexes had higher transgene efficiency compared to that of commercial lipofectin previously reported in B16F10 cells despite an anionic surface. The pDNA-PEI-fetuin complexes did not agglutinate with erythrocytes. The pDNA-PEI-fetuin complexes had high gene expression in the spleen after intravenous administration in mice. Thus, the pDNA-PEI-fetuin complexes were a useful in vivo gene delivery system with tropism for the spleen.
Collapse
Affiliation(s)
- Yukinobu Kodama
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan.,b Department of Pharmacy Practice, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Hiroki Hanamura
- b Department of Pharmacy Practice, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Takahiro Muro
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hiroo Nakagawa
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tomoaki Kurosaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tadahiro Nakamura
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takashi Kitahara
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Shigeru Kawakami
- c Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Mikiro Nakashima
- b Department of Pharmacy Practice, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Hitoshi Sasaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| |
Collapse
|
17
|
Pérez-Sotelo D, Roca-Rivada A, Larrosa-García M, Castelao C, Baamonde I, Baltar J, Crujeiras AB, Seoane LM, Casanueva FF, Pardo M. Visceral and subcutaneous adipose tissue express and secrete functional alpha2hsglycoprotein (fetuin a) especially in obesity. Endocrine 2017; 55:435-446. [PMID: 27738888 DOI: 10.1007/s12020-016-1132-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023]
Abstract
The secretion of the hepatokine alpha-2-Heremans-Schmid glycoprotein/Fetuin A, implicated in pathological processes including systemic insulin resistance, by adipose tissue has been recently described. Thus, we have recently identified its presence in white adipose tissue secretomes by mass spectrometry. However, the secretion pattern and function of adipose-derived alpha-2-Heremans-Schmid glycoprotein are poorly understood. The aim of this study is to evaluate the expression and secretion of total and active phosphorylated alpha-2-Heremans-Schmid glycoprotein by adipose tissue from visceral and subcutaneous localizations in animals at different physiological and nutritional status including anorexia and obesity. Alpha-2-Heremans-Schmid glycoprotein expression and secretion in visceral adipose tissue and subcutaneous adipose tissue explants from animals under fasting and exercise training, at pathological situations such as anorexia and obesity, and from human obese individuals were assayed by immunoblotting, quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. We reveal that visceral adipose tissue expresses and secretes more alpha-2-Heremans-Schmid glycoprotein than subcutaneous adipose tissue, and that this secretion is diminished after fasting and exercise training. Visceral adipose tissue from anorectic animals showed reduced alpha-2-Heremans-Schmid glycoprotein secretion; on the contrary, alpha-2-Heremans-Schmid glycoprotein is over-secreted by visceral adipose tissue in the occurrence of obesity. While secretion of active-PhophoSer321α2HSG by visceral adipose tissue is independent of body mass index, we found that the fraction of active-alpha-2-Heremans-Schmid glycoprotein secreted by subcutaneous adipose tissue increments significantly in situations of obesity. Functional studies show that the inhibition of adipose-derived alpha-2-Heremans-Schmid glycoprotein increases insulin sensitivity in differentiated adipocytes. In conclusion, visceral adipose tissue secretes more alpha-2-Heremans-Schmid glycoprotein than subcutaneous adipose tissue and this secretion is more sensitive to nutritional and physiological changes. The over-secretion of alpha-2-Heremans-Schmid glycoprotein by visceral adipose tissue, the increased secretion of the active phosphorylated form by subcutaneous adipose tissuein obese animals, and the adipose-derived alpha-2-Heremans-Schmid glycoprotein capacity to inhibit the insulin pathway suggest the participation of adipose-derived alpha-2-Heremans-Schmid glycoprotein in the deleterious effects of obesity.
Collapse
Affiliation(s)
- Diego Pérez-Sotelo
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Arturo Roca-Rivada
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María Larrosa-García
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Cecilia Castelao
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Iván Baamonde
- Servicio de Cirugía General, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Javier Baltar
- Servicio de Cirugía General, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Ana Belen Crujeiras
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Luisa María Seoane
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - María Pardo
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
18
|
Grewal T, Hoque M, Conway JRW, Reverter M, Wahba M, Beevi SS, Timpson P, Enrich C, Rentero C. Annexin A6-A multifunctional scaffold in cell motility. Cell Adh Migr 2017; 11:288-304. [PMID: 28060548 DOI: 10.1080/19336918.2016.1268318] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Annexin A6 (AnxA6) belongs to a highly conserved protein family characterized by their calcium (Ca2+)-dependent binding to phospholipids. Over the years, immunohistochemistry, subcellular fractionations, and live cell microscopy established that AnxA6 is predominantly found at the plasma membrane and endosomal compartments. In these locations, AnxA6 acts as a multifunctional scaffold protein, recruiting signaling proteins, modulating cholesterol and membrane transport and influencing actin dynamics. These activities enable AnxA6 to contribute to the formation of multifactorial protein complexes and membrane domains relevant in signal transduction, cholesterol homeostasis and endo-/exocytic membrane transport. Hence, AnxA6 has been implicated in many biological processes, including cell proliferation, survival, differentiation, inflammation, but also membrane repair and viral infection. More recently, we and others identified roles for AnxA6 in cancer cell migration and invasion. This review will discuss how the multiple scaffold functions may enable AnxA6 to modulate migratory cell behavior in health and disease.
Collapse
Affiliation(s)
- Thomas Grewal
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Monira Hoque
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - James R W Conway
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Meritxell Reverter
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Mohamed Wahba
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Syed S Beevi
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Paul Timpson
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Carlos Enrich
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Carles Rentero
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| |
Collapse
|
19
|
González-Noriega A, Michalak C, Cervantes-Roldán R, Gómez-Romero V, León-Del-Río A. Two translation initiation codons direct the expression of annexin VI 64kDa and 68kDa isoforms. Mol Genet Metab 2016; 119:338-343. [PMID: 27743858 DOI: 10.1016/j.ymgme.2016.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
Abstract
Annexin A6 is a multicompetent, multifunctional protein involved in several biological processes within and outside of the cell. Whereas HeLa cells express annexin A6 only as a 68/67-kDa doublet, indicating alternative splicing (Smith PD et al. (1994) Proc Natl Acad Sci USA 91, 2713-2717), the GMO2784 human fibroblast cell line expresses two additional isoforms at 64 and 58kDa. In both cell lines, annexin A6 is located intracellularly and on the plasma membrane. In vitro eukaryotic protein synthesis of pIRESneoAnxA6 cDNA and pIRESneoAnxA6/Met1- or Met33- using a reticulocyte lysate coupled transcription/translation system revealed that this gene contains two translation start codons, Met1 and Met33. Immunoprecipitation of the products obtained from the transcription/translation system using various anti-annexin A6 antibodies confirmed the presence of several isoforms and suggested that this protein might be present in different configurations.
Collapse
Affiliation(s)
- Alfonso González-Noriega
- Departamento de Biología Celular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, México.
| | - Colette Michalak
- Departamento de Biología Celular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | - Rafael Cervantes-Roldán
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, México; Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | - Vania Gómez-Romero
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, México; Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | - Alfonso León-Del-Río
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, México; Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, México.
| |
Collapse
|
20
|
Vyner MC, Amsden BG. Polymer chain flexibility-induced differences in fetuin A adsorption and its implications on cell attachment and proliferation. Acta Biomater 2016; 31:89-98. [PMID: 26607770 DOI: 10.1016/j.actbio.2015.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Tissue cells are known to respond to the stiffness of the polymer substrate on which they are grown. It has been suggested that material stiffness influences the composition of the protein layer that adsorbs to the material surface, which affects subsequent cell behavior. Previously, the stiffness of a biomaterial elastomer formed from an acrylated star-poly(d,l lactide-co-ε-caprolactone) was found to influence both fibroblast proliferation as well as the adsorption of certain proteins. However, it remained unresolved as to whether material stiffness influenced protein adsorption from serum supplemented environments and which protein(s) may have been responsible for the difference in fibroblast proliferation. Using quantitative proteomics, we show that polymer stiffness influenced the composition of the protein layers that adsorb from serum supplemented media. Fetuin A was identified as a protein that influenced fibroblast proliferation and, when combined with basic fibroblast growth factor as a medium supplement, improved fibroblast proliferation over 14days. This study is the first to correlate cell proliferation to surface adsorbed fetuin A and presents the potential new application for fetuin A as biomaterial coating or surface modifier. This work also demonstrates a novel application of quantitative proteomics for the investigation of competitive protein adsorption to biomaterial surfaces. STATEMENT OF SIGNIFICANCE Cells are able to respond to the stiffness of their material substrate, but the method by which they sense material stiffness is still under investigation. Previously, material stiffness was found to impact the individual adsorption of fibronectin, a protein associated with cell attachment; however, it was unclear if stiffness was able to affect protein adsorption in environments with multiple proteins. This study shows that material stiffness affects the compositions of protein layers adsorbed from supplemented media, and suggests that cells may sense material stiffness via the adsorbed protein layer. Interestingly, fetuin A was found to be affecting cell proliferation and not fibronectin. Finally, this research demonstrates the use of relative quantitation proteomics as a potentially powerful method to improve biomaterial compatibility.
Collapse
|
21
|
García-Melero A, Reverter M, Hoque M, Meneses-Salas E, Koese M, Conway JRW, Johnsen CH, Alvarez-Guaita A, Morales-Paytuvi F, Elmaghrabi YA, Pol A, Tebar F, Murray RZ, Timpson P, Enrich C, Grewal T, Rentero C. Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration. J Biol Chem 2015; 291:1320-35. [PMID: 26578516 DOI: 10.1074/jbc.m115.683557] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 01/01/2023] Open
Abstract
Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVβ3 and α5β1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration.
Collapse
Affiliation(s)
- Ana García-Melero
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Meritxell Reverter
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Monira Hoque
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elsa Meneses-Salas
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Meryem Koese
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - James R W Conway
- Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Camilla H Johnsen
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Alvarez-Guaita
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Frederic Morales-Paytuvi
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Yasmin A Elmaghrabi
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Albert Pol
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| | - Francesc Tebar
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| | - Rachael Z Murray
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4095, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Carlos Enrich
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia,
| | - Carles Rentero
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| |
Collapse
|
22
|
A functional proteomics approach to the comprehension of sarcoidosis. J Proteomics 2015; 128:375-87. [PMID: 26342673 DOI: 10.1016/j.jprot.2015.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Pulmonary sarcoidosis (Sar) is an idiopathic disease histologically typified by non-caseating epitheliod cell sarcoid granulomas. A cohort of 37 Sar patients with chronic persistent pulmonary disease was described in this study. BAL protein profiles from 9 of these Sar patients were compared with those from 8 smoker (SC) and 10 no-smoker controls (NSC) by proteomic approach. Principal Component Analysis was performed to clusterize the samples in the corresponding conditions highlighting a differential pattern profiles primarily in Sar than SC. Spot identification reveals thirty-four unique proteins involved in lipid, mineral, and vitamin Dmetabolism, and immuneregulation of macrophage function. Enrichment analysis has been elaborated by MetaCore, revealing 14-3-3ε, α1-antitrypsin, GSTP1, and ApoA1 as "central hubs". Process Network as well as Pathway Maps underline proteins involved in immune response and inflammation induced by complement system, innate inflammatory response and IL-6signalling. Disease Biomarker Network highlights Tuberculosis and COPD as pathologies that share biomarkers with sarcoidosis. In conclusion, Sar protein expression profile seems more similar to that of NSC than SC, conversely to other ILDs. Moreover, Disease Biomarker Network revealed several common features between Sar and TB, exhorting to orientate the future proteomics investigations also in comparative BALF analysis of Sar and TB.
Collapse
|
23
|
Qi H, Liu S, Guo C, Wang J, Greenaway FT, Sun MZ. Role of annexin A6 in cancer. Oncol Lett 2015; 10:1947-1952. [PMID: 26622779 DOI: 10.3892/ol.2015.3498] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 06/16/2015] [Indexed: 12/14/2022] Open
Abstract
Annexin A6 (AnxA6) is a member of a conserved superfamily of Ca2+-dependent membrane-binding annexin proteins. It participates in membrane and cytoskeleton organization, cholesterol homeostasis, membrane trafficking, cell adhesion and signal transduction. The expression levels of AnxA6 are closely associated with melanoma, cervical cancer, epithelial carcinoma, breast cancer, gastric cancer, prostate cancer, acute lymphoblastic leukemia, chronic myeloid leukemia, large-cell lymphoma and myeloma. AnxA6 exhibits dual functions in cancer, acting either as a tumor suppressor or promoter, depending on the type of cancer and the degree of malignancy. In several types of cancer, AnxA6 acts via Ras, Ras/MAPK and/or FAK/PI3K signaling pathways by mainly mediating PKCα, p120GAP, Bcr-Abl and YY1. In the present review, the roles of AnxA6 in different types of cancer are summarized.
Collapse
Affiliation(s)
- Houbao Qi
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jiasheng Wang
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Frederick T Greenaway
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
24
|
Nangami G, Koumangoye R, Shawn Goodwin J, Sakwe AM, Marshall D, Higginbotham J, Ochieng J. Fetuin-A associates with histones intracellularly and shuttles them to exosomes to promote focal adhesion assembly resulting in rapid adhesion and spreading in breast carcinoma cells. Exp Cell Res 2014; 328:388-400. [PMID: 25194507 DOI: 10.1016/j.yexcr.2014.08.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/08/2014] [Accepted: 08/23/2014] [Indexed: 01/11/2023]
Abstract
The present analyses were undertaken to define the mechanisms by which fetuin-A modulates cellular adhesion. FLAG-tagged fetuin-A was expressed in breast carcinoma and HEK-293T cells. We demonstrated by confocal microscopy that fetuin-A co-localizes with histone H2A in the cell nucleus, forms stable complexes with histones such as H2A and H3 in solution, and shuttles histones to exosomes. The rate of cellular adhesion and spreading to either fibronectin or laminin coated wells was accelerated significantly in the presence of either endogenous fetuin-A or serum derived protein. More importantly, the formation of focal adhesion complexes on surfaces coated by laminin or fibronectin was accelerated in the presence of fetuin-A or histone coated exosomes. Cellular adhesion mediated by histone coated exosomes was abrogated by heparin and heparinase III. Heparinase III cleaves heparan sulfate from cell surface heparan sulfate proteoglycans. Lastly, the uptake of histone coated exosomes and subsequent cellular adhesion, was abrogated by heparin. Taken together, the data suggest a mechanism where fetuin-A, either endogenously synthesized or supplied extracellularly can extract histones from the nucleus or elsewhere in the cytosol/membrane and load them on cellular exosomes which then mediate adhesion by interacting with cell surface heparan sulfate proteoglycans via bound histones.
Collapse
Affiliation(s)
- Gladys Nangami
- Departments of Biochemistry and Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA
| | - Rainelli Koumangoye
- Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J Shawn Goodwin
- Departments of Biochemistry and Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA
| | - Amos M Sakwe
- Departments of Biochemistry and Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA
| | - Dana Marshall
- Departments of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - James Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Josiah Ochieng
- Departments of Biochemistry and Cancer Biology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA.
| |
Collapse
|
25
|
Alpha-2 Heremans Schmid Glycoprotein (AHSG) modulates signaling pathways in head and neck squamous cell carcinoma cell line SQ20B. Exp Cell Res 2013; 321:123-32. [PMID: 24332981 DOI: 10.1016/j.yexcr.2013.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 01/06/2023]
Abstract
This study was performed to identify the potential role of Alpha-2 Heremans Schmid Glycoprotein (AHSG) in Head and Neck Squamous Cell Carcinoma (HNSCC) tumorigenesis using an HNSCC cell line model. HNSCC cell lines are unique among cancer cell lines, in that they produce endogenous AHSG and do not rely, solely, on AHSG derived from serum. To produce our model, we performed a stable transfection to down-regulate AHSG in the HNSCC cell line SQ20B, resulting in three SQ20B sublines, AH50 with 50% AHSG production, AH20 with 20% AHSG production and EV which is the empty vector control expressing wild-type levels of AHSG. Utilizing these sublines, we examined the effect of AHSG depletion on cellular adhesion, proliferation, migration and invasion in a serum-free environment. We demonstrated that sublines EV and AH50 adhered to plastic and laminin significantly faster than the AH20 cell line, supporting the previously reported role of exogenous AHSG in cell adhesion. As for proliferative potential, EV had the greatest amount of proliferation with AH50 proliferation significantly diminished. AH20 cells did not proliferate at all. Depletion of AHSG also diminished cellular migration and invasion. TGF-β was examined to determine whether levels of the TGF-β binding AHSG influenced the effect of TGF-β on cell signaling and proliferation. Whereas higher levels of AHSG blunted TGF-β influenced SMAD and ERK signaling, it did not clearly affect proliferation, suggesting that AHSG influences on adhesion, proliferation, invasion and migration are primarily due to its role in adhesion and cell spreading. The previously reported role of AHSG in potentiating metastasis via protecting MMP-9 from autolysis was also supported in this cell line based model system of endogenous AHSG production in HNSCC. Together, these data show that endogenously produced AHSG in an HNSCC cell line, promotes in vitro cellular properties identified as having a role in tumorigenesis.
Collapse
|
26
|
Saroha A, Kumar S, Chatterjee BP, Das HR. Jacalin bound plasma O-glycoproteome and reduced sialylation of alpha 2-HS glycoprotein (A2HSG) in rheumatoid arthritis patients. PLoS One 2012; 7:e46374. [PMID: 23056292 PMCID: PMC3463590 DOI: 10.1371/journal.pone.0046374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 09/03/2012] [Indexed: 01/26/2023] Open
Abstract
Glycosylation studies of plasma proteins can reveal information about the onset and progression of diseases, where in the glycan biosynthetic pathways are disturbed as in rheumatoid arthritis (RA). The present study was focused on analysis of O-linked glycoproteins of plasma in RA patients. Two dimensional gel electrophoresis of jacalin bound plasma of RA patients revealed a number of differentially expressed protein spots as compared to healthy controls. Eighteen protein spots were found to have statistically significant (p<0.05) difference in their expression level from four sets of gels and were identified by MALDI-TOF MS. Most of the identified proteins were predicted to be O-glycosylated proteins by Net-O-Gly 3.1 algorithm. Among these the alpha 2HS glycoprotein (A2HSG) was found to be down regulated whereas inter alpha trypsin inhibitor H4 (ITIH4) was up regulated and this was validated by Western blotting. The glycosylation studies showed the reduced N-linked sialylation of A2HSG in RA patients. Altered glycoprotein expression and functional as well as structural studies of glycans might help in the diagnosis of RA and understanding the disease pathogenesis.
Collapse
Affiliation(s)
- Ashish Saroha
- Genomics and Molecular Medicine Division, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
- Department of Natural Science, West Bengal University of Technology, Kolkata, West Bengal, India
| | - Saravanan Kumar
- Genomics and Molecular Medicine Division, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Bishnu P. Chatterjee
- Department of Natural Science, West Bengal University of Technology, Kolkata, West Bengal, India
| | - Hasi R. Das
- Genomics and Molecular Medicine Division, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
- * E-mail:
| |
Collapse
|
27
|
Herrmann M, Schäfer C, Heiss A, Gräber S, Kinkeldey A, Büscher A, Schmitt MM, Bornemann J, Nimmerjahn F, Herrmann M, Helming L, Gordon S, Jahnen-Dechent W. Clearance of Fetuin-A–Containing Calciprotein Particles Is Mediated by Scavenger Receptor-A. Circ Res 2012; 111:575-84. [DOI: 10.1161/circresaha.111.261479] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marietta Herrmann
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Cora Schäfer
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Alexander Heiss
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Steffen Gräber
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Anne Kinkeldey
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Andrea Büscher
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Martin M.N. Schmitt
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Jörg Bornemann
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Falk Nimmerjahn
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Martin Herrmann
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Laura Helming
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Siamon Gordon
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| | - Willi Jahnen-Dechent
- From Helmholtz Institute for Biomedical Engineering, Biointerface Group (M.H., C.S., A.H., S.G., A.K., A.B., W.J.-D.), Institute for Molecular Cardiovascular Research (M.M.N.S.), and Department of Pathology, Electron Microscopic Facility (J.B.), RWTH Aachen University, Germany; the Department of Biology, Institute of Genetics, Friedrich-Alexander University of Erlangen-Nuremberg, Germany (F.N.); the Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University
| |
Collapse
|
28
|
Fetuin-A triggers the secretion of a novel set of exosomes in detached tumor cells that mediate their adhesion and spreading. FEBS Lett 2012; 586:3458-63. [PMID: 22980907 DOI: 10.1016/j.febslet.2012.07.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/31/2012] [Indexed: 11/23/2022]
Abstract
Our goal in this study was to define the mechanisms by which fetuin-A mediates the adhesion of tumor cells. The data show that in the absence of fetuin-A, detached tumor cells secrete exosomes that contain most of the known exosomal associated proteins but lack the capacity to mediate cellular adhesion. In the presence of fetuin-A, the cells secrete exosomes, which contain, in addition to the other exosomal proteins, fetuin-A, plasminogen and histones. These exosomes mediate adhesion and cell spreading. Plasminogen is a participant in this novel adhesion mechanism. The data suggest that these exosomes play a role in tumor progression.
Collapse
|
29
|
Ramírez-Mata A, Michalak C, Mendoza-Hernández G, León-Del-Río A, González-Noriega A. Annexin VI is a mannose-6-phosphate-independent endocytic receptor for bovine β-glucuronidase. Exp Cell Res 2011; 317:2364-73. [PMID: 21672540 DOI: 10.1016/j.yexcr.2011.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 12/30/2022]
Abstract
Endocytosis and transport of bovine liver β-glucuronidase to lysosomes in human fibroblasts are mediated by two receptors: the well-characterized cation-independent mannose 6-phosphate receptor (IGF-II/Man6PR) and an IGF-II/Man6PR-independent receptor, which recognizes a Ser-Trp*-Ser sequence present on the ligand. The latter receptor was detergent extracted from bovine liver membranes and purified. LC/ESI-MS/MS analysis revealed that this endocytic receptor was annexin VI (AnxA6). Several approaches were used to confirm this finding. First, the binding of bovine β-glucuronidase to the purified receptor from bovine liver membranes and His-tagged recombinant human AnxA6 protein was confirmed using ligand-blotting assays. Second, western blot analysis using antibodies raised against IGF-II/Man6PR-independent receptor as well as commercial antibodies against AnxA6 confirmed that the receptor and AnxA6 were indeed the same protein. Third, double immunofluorescence experiments in human fibroblasts confirmed a complete colocalization of the bovine β-glucuronidase and the AnxA6 receptor on the plasma membrane. Lastly, two cell lines were stably transfected with a plasmid containing the cDNA for human AnxA6. In both transfected cell lines, an increase in cell surface AnxA6 and in mannose 6-phosphate-independent endocytosis of bovine β-glucuronidase was detected. These results indicate that AnxA6 is a novel receptor that mediates the endocytosis of the bovine β-glucuronidase.
Collapse
Affiliation(s)
- Alberto Ramírez-Mata
- Department of Cell Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico
| | | | | | | | | |
Collapse
|
30
|
Sakwe AM, Koumangoye R, Guillory B, Ochieng J. Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions. Exp Cell Res 2011; 317:823-37. [PMID: 21185831 PMCID: PMC3049817 DOI: 10.1016/j.yexcr.2010.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 01/21/2023]
Abstract
The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell-cell cohesion, cell adhesion/spreading onto collagen type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell-cell and/or cell-ECM contacts and anchorage-independent cell proliferation.
Collapse
Affiliation(s)
- Amos M Sakwe
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | |
Collapse
|
31
|
Sakwe AM, Koumangoye R, Goodwin SJ, Ochieng J. Fetuin-A ({alpha}2HS-glycoprotein) is a major serum adhesive protein that mediates growth signaling in breast tumor cells. J Biol Chem 2010; 285:41827-35. [PMID: 20956534 DOI: 10.1074/jbc.m110.128926] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identity of the cell adhesive factors in fetal bovine serum, commonly used to supplement growth media, remains a mystery due to the plethora of serum proteins. In the present analyses, we showed that fetuin-A, whose function in cellular attachment in tissue culture has been debated for many years, is indeed a major serum cell attachment factor particularly for tumor cells. We are able to report this because of a new purification strategy that has for the first time given us a homogeneous protein band in colloidal Coomassie-stained gels that retains biological activity. The tumor cells adhered to immobilized fetuin-A and not α(2)-macroglobulin, its major contaminant. The interaction of cells with fetuin-A was driven mainly by Ca(2+) ions, and cells growing in regular medium supplemented with fetal bovine serum were just as sensitive to loss of extracellular Ca(2+) ions as cells growing in fetuin-A. Fractionation of human serum revealed that cell attachment was confined to the fractions that had fetuin-A. Interestingly, the tumor cells also took up fetuin-A and secreted it back to the medium using an unknown mechanism that can be observed in live cells. The attachment of tumor cells to fetuin-A was accompanied by phosphatidylinositol 3-kinase/Akt activation that was down-regulated in cells that lack annexin-A6, one of the cell surface receptors for fetuin-A. Taken together, our data show the significance of fetuin-A in tumor cell growth mechanisms in vitro and open new research vistas for this protein.
Collapse
Affiliation(s)
- Amos M Sakwe
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Cystatins, the classical inhibitors of C1 cysteine proteinases, have been extensively studied and reviewed in the literature. Over the last 20 years, however, proteins containing cystatin domains but lacking protease inhibitory activities have been identified, and most likely more will be described in the near future. These proteins together with family 1, 2, and 3 cystatins constitute the cystatin superfamily. Mounting evidence points to the new roles that some members of the superfamily have acquired over the course of their evolution. This review is focused on the roles of cystatins in: 1) tumorigenesis, 2) stabilization of matrix metalloproteinases, 3) glomerular filtration rate, 4) immunomodulation, and 5) neurodegenerative diseases. It is the goal of this review to get as many investigators as possible to take a second look at the cystatin superfamily regarding their potential involvement in serious human ailments.
Collapse
Affiliation(s)
- Josiah Ochieng
- Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA.
| | | |
Collapse
|
33
|
Kulik L, Fleming SD, Moratz C, Reuter JW, Novikov A, Chen K, Andrews KA, Markaryan A, Quigg RJ, Silverman GJ, Tsokos GC, Holers VM. Pathogenic natural antibodies recognizing annexin IV are required to develop intestinal ischemia-reperfusion injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5363-73. [PMID: 19380783 PMCID: PMC2820395 DOI: 10.4049/jimmunol.0803980] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intestinal ischemia-reperfusion (IR) injury is initiated when natural IgM Abs recognize neo-epitopes that are revealed on ischemic cells. The target molecules and mechanisms whereby these neo-epitopes become accessible to recognition are not well understood. Proposing that isolated intestinal epithelial cells (IEC) may carry IR-related neo-epitopes, we used in vitro IEC binding assays to screen hybridomas created from B cells of unmanipulated wild-type C57BL/6 mice. We identified a novel IgM mAb (mAb B4) that reacted with the surface of IEC by flow cytometric analysis and was alone capable of causing complement activation, neutrophil recruitment and intestinal injury in otherwise IR-resistant Rag1(-/-) mice. mAb B4 was found to specifically recognize mouse annexin IV. Preinjection of recombinant annexin IV blocked IR injury in wild-type C57BL/6 mice, demonstrating the requirement for recognition of this protein to develop IR injury in the context of a complex natural Ab repertoire. Humans were also found to exhibit IgM natural Abs that recognize annexin IV. These data in toto identify annexin IV as a key ischemia-related target Ag that is recognized by natural Abs in a pathologic process required in vivo to develop intestinal IR injury.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Annexin A4/administration & dosage
- Annexin A4/immunology
- Annexin A4/metabolism
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/physiology
- Cell Line, Tumor
- Female
- Humans
- Immunoglobulin M/adverse effects
- Immunoglobulin M/biosynthesis
- Immunoglobulin M/metabolism
- Immunoglobulin M/physiology
- Intestinal Mucosa/blood supply
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Receptors, Complement 3d/deficiency
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/immunology
- Reperfusion Injury/immunology
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
Collapse
Affiliation(s)
- Liudmila Kulik
- Departments of Medicine and Immunology, UCDHSC, Denver, CO 80045
| | | | - Chantal Moratz
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- Uniform Services University of the Health Sciences, Bethesda, MD 20814
| | - Jason W. Reuter
- Departments of Medicine and Immunology, UCDHSC, Denver, CO 80045
| | - Aleksey Novikov
- Departments of Medicine and Immunology, UCDHSC, Denver, CO 80045
| | - Kuan Chen
- Departments of Medicine and Immunology, UCDHSC, Denver, CO 80045
| | - Kathy A. Andrews
- Rheumatic Diseases Core Center, University of California, San Diego, La Jolla, CA 92093
| | - Adam Markaryan
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Richard J. Quigg
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Gregg J. Silverman
- Rheumatic Diseases Core Center, University of California, San Diego, La Jolla, CA 92093
| | - George C. Tsokos
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- Rheumatology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02115
| | | |
Collapse
|
34
|
Caballero-Hernández D, Gomez-Flores R, Tamez-Guerra P, Tamez-Guerra R, Rodríguez-Padilla C. Role of immunogenic fetuin A on L5178Y-R lymphoma tumorigenesis. Cancer Invest 2009; 27:257-63. [PMID: 19194829 DOI: 10.1080/07357900802337209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the present study, we report the detection of immunogenic fetuin-A on L5178Y-R (LY-R) lymphoma cells. Fetuin-A was recognized by antibodies present in the serum of LY-R tumor-bearing and immunized mice, but not by sera of mice immunized with the non-tumorigenic variant LY-S or by healthy mouse sera. However, according with Western blot analysis with commercial anti-fetuin antibodies, fetuin-A is present in both cell types which suggests that the fetuin recognized by anti-LY-R antibodies is an immunogenic form associated only with the tumorigenic LY-R cells and might be involved in tumor progression in this lymphoma.
Collapse
Affiliation(s)
- Diana Caballero-Hernández
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León, México
| | | | | | | | | |
Collapse
|
35
|
Heiss A, Eckert T, Aretz A, Richtering W, van Dorp W, Schäfer C, Jahnen-Dechent W. Hierarchical role of fetuin-A and acidic serum proteins in the formation and stabilization of calcium phosphate particles. J Biol Chem 2008; 283:14815-25. [PMID: 18364352 DOI: 10.1074/jbc.m709938200] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serum protein fetuin-A is a potent systemic inhibitor of soft tissue calcification. Fetuin-A is highly effective in the formation and stabilization of protein-mineral colloids, referred to as calciprotein particles (CPPs). These particles ripen in vitro in a two-step process, indicated by a morphological conversion from spheres to larger prolate ellipsoids. Using a combined light scattering and electron microscopic imaging approach we determined that the second-stage particles resulted from a highly anisotropic outgrowth of the first-stage particles. Electron microscopy of ascites fluid from a patient with calcifying peritonitis revealed particles reminiscent of secondary CPPs. Thus, CPPs form in the body and undergo the two-step ripening at least in pathological conditions. Unlike in vitro generated CPPs, ascites-derived CPPs contained little fetuin-A but large amounts of albumin. This prompted us to study the role of fetuin-A combined with other serum proteins in CPP formation. Fetuin-A was indispensable for primary CPP formation. Albumin and acidic proteins in general greatly enhanced the fetuin-A triggered formation of secondary CPPs and, thus, substituted substantial amounts of fetuin-A without loss of inhibition of calcium phosphate precipitation. Thus, direct mineral deposition from solute in the body is unlikely even at low fetuin-A serum levels as long as sufficient bulk acidic protein is available. Collectively fetuin-A and other acidic bulk plasma proteins may be considered as mineral chaperones mediating the stabilization, safe transport, and clearance in the body of calcium and phosphate as colloidal complexes, thus, preventing ectopic calcification.
Collapse
Affiliation(s)
- Alexander Heiss
- Helmholtz Institute for Biomedical Engineering, Biointerface Group, Institute for Physical Chemistry, and Central Facility for Electron Microscopy, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Karamessinis PM, Malamitsi-Puchner A, Boutsikou T, Makridakis M, Vougas K, Fountoulakis M, Vlahou A, Chrousos G. Marked Defects in the Expression and Glycosylation of α2-HS Glycoprotein/Fetuin-A in Plasma from Neonates with Intrauterine Growth Restriction. Mol Cell Proteomics 2008; 7:591-9. [DOI: 10.1074/mcp.m700422-mcp200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Mehrotra R. Emerging role for fetuin-A as contributor to morbidity and mortality in chronic kidney disease. Kidney Int 2007; 72:137-40. [PMID: 17625580 DOI: 10.1038/sj.ki.5002355] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular calcification (VC) is an important reason for the high burden of vascular disease among chronic dialysis patients. Chronic kidney disease (CKD) is associated with increased promoters and decreased inhibitors of VC. The circulating levels of fetuin-A, a well-described inhibitor of calcification, regulate the cell-dependent process of osteogenesis. It is not surprising that the low circulating fetuin-A levels are associated with a greater prevalence and/or severity of VC and increased risk for all-cause and cardiovascular mortality. However, high circulating fetuin-A levels appear to induce insulin resistance and, in non-dialyzed subjects with diabetic nephropathy, are directly related to VC burden. These findings underscore the need to further clarify the multiple, systemic effects of fetuin-A and its role in health and various stages of CKD.
Collapse
Affiliation(s)
- R Mehrotra
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA.
| |
Collapse
|
38
|
Baptiste TA, James A, Saria M, Ochieng J. Mechano-transduction mediated secretion and uptake of galectin-3 in breast carcinoma cells: implications in the extracellular functions of the lectin. Exp Cell Res 2007; 313:652-64. [PMID: 17184769 PMCID: PMC1885467 DOI: 10.1016/j.yexcr.2006.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 11/09/2006] [Accepted: 11/09/2006] [Indexed: 11/22/2022]
Abstract
In the following experiments, we sought to understand the triggering mechanism which propels galectin-3 to be secreted into the extracellular compartment from its intracellular stores in breast carcinoma cells. We also wanted to analyze in greater details the role of galectin-3 in cellular adhesion and spreading. To do this, we made use of two pairs of breast carcinoma cell lines where one of the pair has high expression of galectin-3 and the other low expression of the lectin. We determined that galectin-3 secreted into the conditioned medium of sub-confluent and spread cells in culture was quite low, almost negligible. However, once the cells were detached and rounded up, a mechano-sensing mechanism triggered the rapid secretion of galectin-3 into the conditioned medium. The secretion was constitutive as long as the cells remained detached. Galectin-3 was shown to be actively taken up from the conditioned medium by spreading cells. The cells which express and secrete high levels of galectin-3 adhered and spread much faster on plastic than those with reduced expression. The uptake of galectin-3 according to our data was important in cell spreading because if this process was compromised significantly, cells failed to spread. The data suggested that galectin-3 uptake modulates the adhesion plaques in that cells which express high levels of galectin-3 have thin-dot like plaques that may be suited for rapid adhesion and spreading while cells in which galectin-3 expression is reduced or knocked-down, have thick and elongated plaques which may be suited for a firmer adhesion to the substratum. Recombinant galectin-3 added exogenously reduced the thickness of the adhesion plaques of tumor cells with reduced galectin-3 expression. Taken together, the present data suggest that galectin-3 once externalized, is a powerful modulator of cellular adhesion and spreading in breast carcinoma cells.
Collapse
Affiliation(s)
- Trevor A. Baptiste
- Department of Biomedical Sciences, Division of Cancer Biology, Meharry Medical College, Vanderbilt University, Nashville, Tennessee
| | - Ashley James
- Department of Biomedical Sciences, Division of Cancer Biology, Meharry Medical College, Vanderbilt University, Nashville, Tennessee
| | - Margaret Saria
- Department of Biomedical Sciences, Division of Cancer Biology, Meharry Medical College, Vanderbilt University, Nashville, Tennessee
| | - Josiah Ochieng
- Department of Biomedical Sciences, Division of Cancer Biology, Meharry Medical College, Vanderbilt University, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
39
|
Chen NX, O'Neill KD, Chen X, Duan D, Wang E, Sturek MS, Edwards JM, Moe SM. Fetuin-A uptake in bovine vascular smooth muscle cells is calcium dependent and mediated by annexins. Am J Physiol Renal Physiol 2007; 292:F599-606. [PMID: 16968889 DOI: 10.1152/ajprenal.00303.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fetuin-A is a known inhibitor of vascular calcification in vitro. In arteries with calcification, there is increased immunostaining for fetuin-A. However, vascular smooth muscle cells (VSMC) do not synthesize fetuin-A, suggesting fetuin-A may be endocytosed to exert its inhibitory effects. To examine the mechanism by which fetuin-A is taken up in bovine VSMC (BVSMC), we examined living cells by confocal microscopy and determined the uptake of Cy5-labeled fetuin-A. The results demonstrated that fetuin-A was taken up in BVSMC only in the presence of extracellular calcium, whereas phosphorus had no effect. Additional studies demonstrated the calcium-dependent uptake was specific for fetuin-A and only observed in BVSMC and osteoblasts, but not epithelial, endothelial, or adipose cells. The uptake was dose dependent, but could not be inhibited by excess unlabeled fetuin-A, suggesting a fluid phase rather than a receptor-mediated process. Fetuin-A also induced a sustained increase in intracellular calcium in BVSMC in the presence of extracellular calcium, whereas there was no increase in the absence of extracellular calcium. To further characterize the uptake, we utilized an inhibitor of annexin calcium channel activity, demonstrating inhibition of both fetuin-A uptake and intracellular calcium increase. Finally, we demonstrate that fetuin-A binds to annexin II at the cell membrane of BVSMC. In summary, our study demonstrates calcium- and annexin-dependent uptake of fetuin-A that leads to a sustained rise in intracellular calcium. This regulated uptake may be a mechanism by which fetuin-A inhibits VSMC calcification in the presence of excess calcium.
Collapse
Affiliation(s)
- Neal X Chen
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ramachandra Rao SP, Wassell R, Shaw MA, Sharma K. Profiling of human mesangial cell subproteomes reveals a role for calmodulin in glucose uptake. Am J Physiol Renal Physiol 2007; 292:F1182-9. [PMID: 17200159 DOI: 10.1152/ajprenal.00268.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteomics combined with cell fractionation was used to identify proteins regulated by high glucose (HG) in human mesangial cells (HMC). Total membrane and cytosolic fraction proteins derived from HMC after 7 days of HG exposure were resolved by a two-dimensional gel electrophoresis approach. DeCyder software was used to analyze the HG-induced protein spot dysregulation. In the membrane subproteome, of the 92 spots that were matched across all gels, HG induced significant downregulation of only 4 protein spots. The dysregulated spots from the membrane subproteome included binding protein (BiP), calreticulin precursor protein, a 63-kDa transmembrane protein from a ER/Golgi intermediate, and beta-subunit of collagen proline 4-hydroxylase. In the cytosolic subproteome, of the 122 spots that were matched across all gels, HG induced downregulation of 3 protein spots and upregulation of 2 protein spots significantly. Enolase 1, annexin VI, and gamma(2)-actin were decreased, whereas heat shock protein-70 kDa and calmodulin (CaM) were increased. Further confocal microscopy and Western immunoblotting of mesangial cells validated the increase in CaM. Immunoblotting of diabetic mouse and rat kidneys exhibited a marked increase in CaM at both early and late stages of diabetes, reflecting the potential physiological relevance of CaM upregulation. CaM-specific inhibitors blocked glucose transport stimulated by transforming growth factor-beta and insulin in mesangial cells. In conclusion, using a combination of cell fractionation and protein expression profiling, we identified a cohort of HG-dysregulated proteins in the HMC and identified a critical and as yet unrecognized role for CaM in glucose transport in mesangial cells.
Collapse
Affiliation(s)
- Satish P Ramachandra Rao
- Dept. of Medicine, Center for Novel Therapies for Kidney Disease, Suite 365 Jefferson Alumni Hall, 1020 Locust St., Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
41
|
Tjalsma H, Pluk W, van den Heuvel LP, Peters WHM, Roelofs R, Swinkels DW. Proteomic inventory of "anchorless" proteins on the colon adenocarcinoma cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1607-17. [PMID: 17030026 DOI: 10.1016/j.bbapap.2006.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 11/23/2022]
Abstract
Surface proteins play important pathophysiological roles in health and disease, and accumulating proteomics-based studies suggest that several "non-membrane" proteins are sorted to the cell surface by unconventional mechanisms. Importantly, these proteins may comprise attractive therapeutic targets and novel disease markers for colon cancer. To perform a proteomics-based inventory of these so-called "anchorless" surface proteins, intact colon adenocarcinoma SW480 cells were labeled with membrane-impermeable biotin after which only soluble biotinylated proteins were isolated and identified by nanoLC-MS/MS. Computer-assisted analysis predicted that only 9 of the 97 identified surface-exposed proteins have predicted secretory signal peptides, whereas 2 other proteins have a putative transmembrane segment. Of the 9 proteins with putative signal peptides, 1 was predicted to be retained at the cell surface by a GPI-anchor, whereas 5 other proteins contained an ER-retention motif (KDEL) that should prevent them from being sorted to the cell surface. The remaining 86 soluble "surface" proteins lack known export signals and the possibility that these proteins are candidate substrates of non-classical transporters or exported by unconventional mechanisms is discussed. Alternatively, the large number of "intracellular" and ER-resident proteins may imply that biotinylation approaches are not only specific for surface proteins, but also biased against a certain subset of non-surface proteins. This underscores the importance of post-proteomic verification of proteomics-based inventories on surface-exposed proteins, which eventually should reveal to which extent non-classical export and retention mechanisms contribute to the sorting of "anchorless" proteins to the surface of colon tumor cells.
Collapse
Affiliation(s)
- Harold Tjalsma
- Department of Clinical Chemistry, 441, Radboud University Nijmegen-Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Lam WY, Leung KT, Law PTW, Lee SMY, Chan HLY, Fung KP, Ooi VEC, Waye MMY. Antiviral effect of Phyllanthus nanus ethanolic extract against hepatitis B virus (HBV) by expression microarray analysis. J Cell Biochem 2006; 97:795-812. [PMID: 16237706 DOI: 10.1002/jcb.20611] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ethanolic extract of Phyllanthus nanus (P. nanus) treatment exhibited potent antiviral activity against Hepatitis B virus (HBV). The effects of these extracts on HBV in the HBV genome integrated cell lines--Alexander cells and HepG2 2.2.15 cells were examined. Experimental results showed that the ethanolic extract of P. nanus produced suppressive effect on HBsAg secretion and HBsAg mRNA expression. The extract also inhibited HBV replication as measured by HBV DNA level in vitro. In addition, using a duck HBV (DHBV) primary culture model, the P. nanus ethanolic extract suppressed viral replication of DHBV in DHBV infected primary duck hepatocytes. The gene expression pattern in Alexander cells that had been treated with the ethanolic extract of P. nanus was also revealed by microarray techniques. The microarray results indicated that there was up-regulation of expression of several genes, including annexin A7 (Axn7). The subcellular localization of Axn7 and anti-HBV effect of Axn7 over-expression in Alexander cells were also investigated. Results showed that expression of Axn7-GFP fusion protein are localized around the secretory vesicles and could cause a decrease in HBsAg secretion in Alexander cells. Axn7 protein might play an important role in the medicinal effect of the active principle(s) of P. nanus.
Collapse
Affiliation(s)
- Wai-Yip Lam
- Department of Biochemistry, The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Cystatins form a large superfamily of proteins with diverse biologic activities. All members of the cystatin superfamily share the presence of one, two or three cystatin domains. Cystatins were initially believed to act mainly as inhibitors of lysosomal cysteine proteases. In recent years, however, there has been increased awareness of additional or alternate biologic functions for these proteins. In this review, the authors will discuss the most recent findings and hypotheses that suggest that some members of the cystatin superfamily may play important roles during tumor progression. Special emphasis is given to their potential role as novel anti-angiogenic agents.
Collapse
Affiliation(s)
- Daniel Keppler
- Louisiana State University Health Sciences Center, Department of Cellular Biology & Anatomy and Feist-Weiller Cancer Center, School of Medicine, Shreveport, LA 71130, USA.
| | | |
Collapse
|
44
|
Reynolds JL, Skepper JN, McNair R, Kasama T, Gupta K, Weissberg PL, Jahnen-Dechent W, Shanahan CM. Multifunctional Roles for Serum Protein Fetuin-A in Inhibition of Human Vascular Smooth Muscle Cell Calcification. J Am Soc Nephrol 2005; 16:2920-30. [PMID: 16093453 DOI: 10.1681/asn.2004100895] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vascular calcification predicts an increased risk for cardiovascular events/mortality in atherosclerosis, diabetes, and ESRD. Serum concentrations of alpha(2)-Heremens-Schmid glycoprotein, commonly referred to as fetuin-A, are reduced in ESRD, a condition associated with an elevated circulating calcium x phosphate product. Mice that lack fetuin-A exhibit extensive soft tissue calcification, which is accelerated on a mineral-rich diet, suggesting that fetuin-A acts to inhibit calcification systemically. Western blot and immunohistochemistry demonstrated that serum-derived fetuin-A co-localized with calcified human vascular smooth muscle cells (VSMC) in vitro and in calcified arteries in vivo. Fetuin-A inhibited in vitro VSMC calcification, induced by elevated concentrations of extracellular mineral ions, in a concentration-dependent manner. This was achieved in part through inhibition of apoptosis and caspase cleavage. Confocal microscopy and electron microscopy-immunogold demonstrated that fetuin-A was internalized by VSMC and concentrated in intracellular vesicles. Subsequently, fetuin-A was secreted via vesicle release from apoptotic and viable VSMC. Vesicles have previously been identified as the nidus for mineral nucleation. The presence of fetuin-A in vesicles abrogated their ability to nucleate basic calcium phosphate. In addition, fetuin-A enhanced phagocytosis of vesicles by VSMC. These observations provide evidence that the uptake of the serum protein fetuin-A by VSMC is a key event in the inhibition of vesicle-mediated VSMC calcification. Strategies aimed at maintaining normal circulating levels of fetuin-A may prove beneficial in patients with ESRD.
Collapse
Affiliation(s)
- Joanne L Reynolds
- Division of Cardiovascular Medicine, Level 6, ACCI, Box 110, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kundranda MN, Henderson M, Carter KJ, Gorden L, Binhazim A, Ray S, Baptiste T, Shokrani M, Leite-Browning ML, Jahnen-Dechent W, Matrisian LM, Ochieng J. The Serum Glycoprotein Fetuin-A Promotes Lewis Lung Carcinoma Tumorigenesis via Adhesive-Dependent and Adhesive-Independent Mechanisms. Cancer Res 2005. [DOI: 10.1158/0008-5472.499.65.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Fetuin-A is a serum glycoprotein in the cystatin family associated with the regulation of soft tissue calcification. We tested the role of systemic fetuin in tumor cell growth and metastasis by injecting Lewis lung carcinoma (LLC) cells into fetuin-A null and their wild-type (WT) littermate control C57BL/6 mice via the tail vein, s.c., and intrasplenic routes. In the experimental metastasis assay, the lungs of the WT mice were filled with metastatic nodules, whereas the lungs of the fetuin-A null mutant mice were virtually free of colonies at the end of 2 weeks. Lung colonization responded to the levels of serum fetuin-A in a dose-dependent manner, as observed by the formation of half as many colonies in mice heterozygous for the fetuin-A locus compared with homozygous WT mice and restoration of lung colonization by the administration of purified fetuin-A to fetuin-A-null mice. Serum fetuin-A also influenced the growth of LLC cells injected s.c.: fetuin-A-null mice developed small s.c. tumors only after a substantial delay. Similarly, intrasplenic injection of LLC cells resulted in rapid colonization of the liver with metastasis to the lungs within 2 weeks in the WT but not fetuin-A null mice. To examine the mechanism by which fetuin-A influences LLC colonization and growth, we showed that LLC tumor cells adhere to fetuin-A in a Ca2+-dependent fashion, resulting in growth of the tumor cells. These studies support the role of fetuin-A as a major growth promoter in serum that can influence tumor establishment and growth.
Collapse
Affiliation(s)
| | - Melodie Henderson
- 3Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, and
| | - Kathy J. Carter
- 3Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, and
| | - Lee Gorden
- 3Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, and
| | | | | | | | | | | | | | - Lynn M. Matrisian
- 3Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, and
| | - Josiah Ochieng
- 1Biochemistry and Departments of
- 3Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, and
| |
Collapse
|