1
|
Qin P, He C, Ye P, Li Q, Cai C, Li Y. PKCδ regulates the vascular biology in diabetic atherosclerosis. Cell Commun Signal 2023; 21:330. [PMID: 37974282 PMCID: PMC10652453 DOI: 10.1186/s12964-023-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Diabetes mellitus, known for its complications, especially vascular complications, is becoming a globally serious social problem. Atherosclerosis has been recognized as a common vascular complication mechanism in diabetes. The diacylglycerol (DAG)-protein kinase C (PKC) pathway plays an important role in atherosclerosis. PKCs can be divided into three subgroups: conventional PKCs (cPKCs), novel PKCs (nPKCs), and atypical PKCs (aPKCs). The aim of this review is to provide a comprehensive overview of the role of the PKCδ pathway, an isoform of nPKC, in regulating the function of endothelial cells, vascular smooth muscle cells, and macrophages in diabetic atherosclerosis. In addition, potential therapeutic targets regarding the PKCδ pathway are summarized. Video Abstract.
Collapse
Affiliation(s)
- Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changhuai He
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pin Ye
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Yang CC, Lee IT, Lin YJ, Wu WB, Hsiao LD, Yang CM. Thrombin-Induced COX-2 Expression and PGE 2 Synthesis in Human Tracheal Smooth Muscle Cells: Role of PKCδ/Pyk2-Dependent AP-1 Pathway Modulation. Int J Mol Sci 2023; 24:15130. [PMID: 37894811 PMCID: PMC10606820 DOI: 10.3390/ijms242015130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we confirmed that thrombin significantly increases the production of COX-2 and PGE2 in human tracheal smooth muscle cells (HTSMCs), leading to inflammation in the airways and lungs. These molecules are well-known contributors to various inflammatory diseases. Here, we investigated in detail the involved signaling pathways using specific inhibitors and small interfering RNAs (siRNAs). Our results demonstrated that inhibitors targeting proteins such as protein kinase C (PKC)δ, proline-rich tyrosine kinase 2 (Pyk2), c-Src, epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), or activator protein-1 (AP-1) effectively reduced thrombin-induced COX-2 and PGE2 production. Additionally, transfection with siRNAs against PKCδ, Pyk2, c-Src, EGFR, protein kinase B (Akt), or c-Jun mitigated these responses. Furthermore, our observations revealed that thrombin stimulated the phosphorylation of key components of the signaling cascade, including PKCδ, Pyk2, c-Src, EGFR, Akt, and c-Jun. Thrombin activated COX-2 promoter activity through AP-1 activation, a process that was disrupted by a point-mutated AP-1 site within the COX-2 promoter. Finally, resveratrol (one of the most researched natural polyphenols) was found to effectively inhibit thrombin-induced COX-2 expression and PGE2 release in HTSMCs through blocking the activation of Pyk2, c-Src, EGFR, Akt, and c-Jun. In summary, our findings demonstrate that thrombin-induced COX-2 and PGE2 generation involves a PKCδ/Pyk2/c-Src/EGFR/PI3K/Akt-dependent AP-1 activation pathway. This study also suggests the potential use of resveratrol as an intervention for managing airway inflammation.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan 333008, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yan-Jyun Lin
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung 406040, Taiwan;
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| |
Collapse
|
3
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
4
|
Li KX, Wang ZC, Machuki JO, Li MZ, Wu YJ, Niu MK, Yu KY, Lu QB, Sun HJ. Benefits of Curcumin in the Vasculature: A Therapeutic Candidate for Vascular Remodeling in Arterial Hypertension and Pulmonary Arterial Hypertension? Front Physiol 2022; 13:848867. [PMID: 35530510 PMCID: PMC9075737 DOI: 10.3389/fphys.2022.848867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Meng-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jie Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-Kai Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang-Ying Yu
- Nursing School of Wuxi Taihu University, Wuxi, China
| | - Qing-Bo Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Pei Z, Lou Z, Zhang B, Wang H, Li Y. Development of a compound oral liquid containing herbal extracts and its effect on immunity and gastric mucosa. J Food Sci 2021; 86:2684-2699. [PMID: 34096062 DOI: 10.1111/1750-3841.15761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 01/21/2023]
Abstract
Nowadays, consumers have an increasing demand for health products. In this study, an oral liquid was developed using a compound extract consisting of three herbal extracts (Dendrobium nobile Lindl., Lycium barbarum, and Puerariae lobatae Radix) because the compound extract (a combination of all three extracts) was superior to every single extract in promoting the phagocytic capacity of RAW264.7 macrophages and the proliferation ability of GES-1 cells. In this oral liquid, the dosage of the stabilizer and the sweetener was selected using a stability test and sensory quality evaluation. When 0.30% (m/v) xanthan gum and 0.20% (m/v) mogroside were added, the oral liquid had not only a good stability but also the highest sensory score for overall acceptability. The chemical composition analysis showed that the oral liquid had various functional ingredients including polysaccharides, phenols, alkaloids, and so forth. The immune-enhancing efficacy of the oral liquid was evaluated in BALB/c mice by measuring the levels of different immune indicators. The results indicated that the oral liquid obviously enhanced nonspecific and specific immunity. A rat model with ethanol-induced gastric ulcer was used to examine the protective effect of the oral liquid on the gastric mucosa and to explore the related mechanisms. The oral administration of the oral liquid for days significantly prevented the formation of gastric ulcer. This study provided an effective oral liquid that could enhance immunity and protect gastric mucosa.
Collapse
Affiliation(s)
- Zejun Pei
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai, China.,Department of Pharmacy, Nanjing Medical University Affiliated Wuxi No. 2 People's hospital, Wuxi, China
| | - Zaixiang Lou
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingjie Zhang
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongxin Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaqin Li
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Rudyk O, Aaronson PI. Redox Regulation, Oxidative Stress, and Inflammation in Group 3 Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:209-241. [PMID: 33788196 DOI: 10.1007/978-3-030-63046-1_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Group 3 pulmonary hypertension (PH), which occurs secondary to hypoxia lung diseases, is one of the most common causes of PH worldwide and has a high unmet clinical need. A deeper understanding of the integrative pathological and adaptive molecular mechanisms within this group is required to inform the development of novel drug targets and effective treatments. The production of oxidants is increased in PH Group 3, and their pleiotropic roles include contributing to disease progression by promoting prolonged hypoxic pulmonary vasoconstriction and pathological pulmonary vascular remodeling, but also stimulating adaptation to pathological stress that limits the severity of this disease. Inflammation, which is increasingly being viewed as a key pathological feature of Group 3 PH, is subject to complex regulation by redox mechanisms and is exacerbated by, but also augments oxidative stress. In this review, we investigate aspects of this complex crosstalk between inflammation and oxidative stress in Group 3 PH, focusing on the redox-regulated transcription factor NF-κB and its upstream regulators toll-like receptor 4 and high mobility group box protein 1. Ultimately, we propose that the development of specific therapeutic interventions targeting redox-regulated signaling pathways related to inflammation could be explored as novel treatments for Group 3 PH.
Collapse
Affiliation(s)
- Olena Rudyk
- School of Cardiovascular Medicine & Sciences, King's College London, British Heart Foundation Centre of Research Excellence, London, UK.
| | - Philip I Aaronson
- School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
7
|
Lee TH, Liu PS, Tsai MM, Chen JL, Wang SJ, Hsieh HL. The COX-2-derived PGE 2 autocrine contributes to bradykinin-induced matrix metalloproteinase-9 expression and astrocytic migration via STAT3 signaling. Cell Commun Signal 2020; 18:185. [PMID: 33228717 PMCID: PMC7685582 DOI: 10.1186/s12964-020-00680-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Background The matrix metalloproteinase-9 (MMP-9) is up-regulated by several proinflammatory mediators in the central nervous system (CNS) diseases. Increasing reports show that MMP-9 expression is an inflammatory biomarker of several CNS disorders, including the CNS inflammation and neurodegeneration. Bradykinin (BK) is a common proinflammatory mediator and elevated in several brain injury and inflammatory disorders. The raised BK may be detrimental effects on the CNS that may aggravate brain inflammation through MMP-9 up-regulation or cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) production in brain astrocytes. However, the relationship between BK-induced MMP-9 expression and COX-2-derived PGE2 release in brain astrocytes remains unclear. Methods Herein we used rat brain astrocytes (RBA) to investigate the role of the COX-2/PGE2 system in BK-induced MMP-9 expression. We used zymographic, RT-PCR, EIA, and Western blotting analyses to confirm that BK induces MMP-9 expression via a COX-2/PGE2-dependent pathway. Results Our results show activation of native COX-2 by BK led to PGE2 production and release. Subsequently, PGE2 induced MMP-9 expression via PGE2 receptor (EP)-mediated c-Src, Jak2, ERK1/2, and then activated signal transducer and activator of transcription 3 (STAT3) signaling pathway. Finally, up-regulation of MMP-9 by BK via the pathway may promote astrocytic migration. Conclusion These results demonstrated that a novel autocrine pathway for BK-induced MMP-9 protein expression is mediated through activation of STAT3 by native COX-2/PGE2-mediated c-Src/Jak2/ERK cascades in brain astrocytes. Video Abstract
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Stroke Center and Stroke Section, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Shan Liu
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, 261 Wenhua 1st Road, Guishan, Taoyuan, Taiwan.,Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jiun-Liang Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, 261 Wenhua 1st Road, Guishan, Taoyuan, Taiwan. .,Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Activation of Protein Kinase Cδ Contributes to the Induction of Src/EGF Receptor/ERK Signaling in Ammonia-treated Astrocytes. J Mol Neurosci 2020; 70:1110-1119. [PMID: 32125625 DOI: 10.1007/s12031-020-01517-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Previously, we showed that Src-mediated EGF receptor transactivation/ERK activation mediates ammonia-induced astrocyte swelling, which represents a major component of brain edema in hyperammonemic disorders. Here, we tested the role of PKC in the induction of this signaling pathway and its involvement in ammonia-mediated cell swelling. We found that incubating astrocytes with bisindolylmaleimide (BIM, an inhibitor of classical and novel PKC isoforms) or rottlerin, a PKCδ-specific inhibitor, attenuated the ammonia-induced phosphorylation of EGFR, while GF109203X had no effect on this pathway. We further found that BIM or rottlerin pretreatment inhibited the ammonia-induced phosphorylation of Src and that ammonia significantly increased the level of PKCδ pulled down by a Src antibody. AG1478, a specific EGFR kinase activity inhibitor, effectively inhibited phosphorylation at Tyr1068 but had no discernable effect on phosphorylation at Tyr845. Moreover, BIM or rottlerin abrogated ammonia-induced ERK phosphorylation. BIM-, rottlerin-, or GF109203X-treated astrocytes showed a significant reduction in cell swelling compared to that observed after treatment with ammonia alone. Finally, it was found that AG1478 attenuated ammonia-induced PKCα translocation to the particulate fraction. Taken together, our results indicate that PKCδ mediates ammonia-induced astrocyte swelling by activating Src and downstream EGF receptor/ERK signaling, which may contribute to the pathogenesis of neuropsychiatric disorders associated with hyperammonemia.
Collapse
|
9
|
Protective mechanisms of resveratrol derivatives against TNF-α-induced inflammatory responses in rat mesangial cells. Cytokine 2018; 113:380-392. [PMID: 30389230 DOI: 10.1016/j.cyto.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/18/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Resveratrol has been reported to alleviate inflammatory responses and oxidative stress in mesangial cells and in several types of renal injury in animal models. Previously, the active resveratrol derivatives from the roots of Vitis thunbergii Sieb. & Zucc. (Vitaceae) were shown to have significant anti-platelet and anti-oxidative activities. However, the anti-inflammatory mechanisms of these resveratrol derivatives in rat mesangial cells (RMCs) have not been clarified fully. METHODS The protective mechanisms of resveratrol derivatives involved in tumor necrosis factor-α (TNF-α)-induced inflammatory responses were assessed by Western blot analysis, real-time PCR, and RT-PCR. The involvement of various signaling molecules in these responses was investigated using selective pharmacological inhibitors. RESULTS Nontoxic concentrations of the resveratrol derivatives significantly attenuated cytosolic phospholipase A2 (cPLA2) and cyclooxygenase 2 (COX-2) expression in RMCs challenged by TNF-α. These resveratrol derivatives inhibited TNF-α-activated ERK1/2 and JNK1/2 without affecting p38 phosphorylation. Next, we demonstrated that TNF-α induced NF-κB activation, translocation, and promoter activity, which was inhibited by pretreatment with resveratrol derivatives in RMCs. CONCLUSION The protective mechanisms of resveratrol derivatives against TNF-α-stimulated inflammatory responses via cPLA2/COX-2/PGE2 inhibition was caused by the attenuation of the JNK1/2, ERK1/2, and NF-κB signaling pathways in RMCs.
Collapse
|
10
|
Bazzani L, Donnini S, Finetti F, Christofori G, Ziche M. PGE2/EP3/SRC signaling induces EGFR nuclear translocation and growth through EGFR ligands release in lung adenocarcinoma cells. Oncotarget 2018; 8:31270-31287. [PMID: 28415726 PMCID: PMC5458206 DOI: 10.18632/oncotarget.16116] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Prostaglandin E2 (PGE2) interacts with tyrosine kinases receptor signaling in both tumor and stromal cells supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, A549 and GLC82, PGE2 promotes nuclear translocation of epidermal growth factor receptor (nEGFR), affects gene expression and induces cell growth. Indeed, cyclin D1, COX-2, iNOS and c-Myc mRNA levels are upregulated following PGE2 treatment. The nuclear localization sequence (NLS) of EGFR as well as its tyrosine kinase activity are required for the effect of PGE2 on nEGFR and downstream signaling activities. PGE2 binds its bona fide receptor EP3 which by activating SRC family kinases, induces ADAMs activation which, in turn, releases EGFR-ligands from the cell membrane and promotes nEGFR. Amphiregulin (AREG) and Epiregulin (EREG) appear to be involved in nEGFR promoted by the PGE2/EP3-SRC axis. Pharmacological inhibition or silencing of the PGE2/EP3/SRC-ADAMs signaling axis or EGFR ligands i.e. AREG and EREG expression abolishes nEGFR induced by PGE2. In conclusion, PGE2 induces NSCLC cell proliferation by EP3 receptor, SRC-ADAMs activation, EGFR ligands shedding and finally, phosphorylation and nEGFR. Since nuclear EGFR is a hallmark of cancer aggressiveness, our findings reveal a novel mechanism for the contribution of PGE2 to tumor progression.
Collapse
Affiliation(s)
- Lorenzo Bazzani
- Department of Life Sciences, University of Siena, 53100, Siena, Italy.,Department of Biomedizin, University of Basel, 4058, Basel, Switzerland
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Federica Finetti
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | | | - Marina Ziche
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| |
Collapse
|
11
|
Zhang ZY, Chen LL, Xu W, Sigdel K, Jiang XT. Effects of silencing endothelin-1 on invasion and vascular formation in lung cancer. Oncol Lett 2017; 13:4390-4396. [PMID: 28599441 DOI: 10.3892/ol.2017.6027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/27/2017] [Indexed: 02/05/2023] Open
Abstract
Endothelin-1 (ET-1), which exists not only in the vascular endothelium but is also widely present in various tissues and cells, is an important cardiovascular regulatory factor that serves an important role in maintaining the basal vascular tone and homeostasis in the cardiovascular system. In the present study, the ET-1 gene was silenced by RNA interference, and the effects on lung cancer cell proliferation and tumor cell invasion were then detected by Cell Counting kit-8 and Transwell assays. In addition, the expression of apoptosis, growth and invasion-associated proteins, including RhoA/C, vascular endothelial growth factor, pigment epithelium-derived factor, AKT, E-cadherin and cyclooxygenase-2 was evaluated by western blotting upon silencing ET-1. In the present study, Endostar, a recombinant human endostatin injectable drug, was also used, and it was assessed whether the sensitivity of tumor cells to this drug could be increased by silencing ET-1. Both in vivo and in vivo tests were carried out in the present study. The experimental data indicated that ET-1 silencing can inhibit tumor cell proliferation and invasion, particularly in the presence of Endostar.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Li-Li Chen
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Wei Xu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Keshavraj Sigdel
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Xing-Tang Jiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
12
|
Gao J, Long B, Wang Z. Role of Notch signaling pathway in pancreatic cancer. Am J Cancer Res 2017; 7:173-186. [PMID: 28337369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 09/28/2022] Open
Abstract
Pancreatic cancer (PC) is one of the highly aggressive malignancies in the United States. It has been shown that multiple signaling pathways are involved in the pathogenesis of PC, such as JNK, PI3K/AKT, Rho GTPase, Hedgehog (Hh) and Skp2. In recent years, accumulated evidence has demonstrated that Notch signaling pathway plays critical roles in the development and progression of PC. Therefore, in this review we discuss the recent literature regarding the function and regulation of Notch in the pathogenesis of PC. Moreover, we describe that Notch signaling pathway could be down-regulated by its inhibitors or natural compounds, which could be a novel approach for the treatment of PC patients.
Collapse
Affiliation(s)
- Jiankun Gao
- Sichuan College of Tranditional Chinese Medicine Mianyang, Sichuan, China
| | - Bo Long
- Department of Infectious Diseases, Mianyang 404 Hospital Mianyang, Sichuan, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow UniversitySuzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolMA 02215, USA
| |
Collapse
|
13
|
Interacting post-muscarinic receptor signaling pathways potentiate matrix metalloproteinase-1 expression and invasion of human colon cancer cells. Biochem J 2017; 474:647-665. [PMID: 28008134 DOI: 10.1042/bcj20160704] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022]
Abstract
M3 muscarinic receptor (M3R) expression is increased in colon cancer; M3R activation stimulates colon cancer cell invasion via cross-talk with epidermal growth factor receptors (EGFR), post-EGFR activation of mitogen-activated protein kinase (MAPK) extracellular signal-related kinase 1/2 (ERK1/2), and induction of matrix metalloproteinase-1 (MMP1) expression. MMP1 expression is strongly associated with tumor metastasis and adverse outcomes. Here, we asked whether other MAPKs regulate M3R agonist-induced MMP1 expression. In addition to activating ERK1/2, we found that treating colon cancer cells with acetylcholine (ACh) stimulated robust time- and dose-dependent phosphorylation of p38 MAPK. Unlike ERK1/2 activation, ACh-induced p38 phosphorylation was EGFR-independent and blocked by inhibiting protein kinase C-α (PKC-α). Inhibiting activation of PKC-α, EGFR, ERK1/2, or p38-α/β alone attenuated, but did not abolish ACh-induced MMP1 expression, a finding that predicted potentiating interactions between these pathways. Indeed, ACh-induced MMP1 expression was abolished by incubating cells with either an EGFR or MEK/ERK1/2 inhibitor combined with a p38-α/β inhibitor. Activating PKC-α and EGFR directly with the combination of phorbol 12-myristate 13-acetate (PMA) and EGF potentiated MMP1 gene and protein expression, and cell invasion. PMA- and ACh-induced MMP1 expression were strongly diminished by inhibiting Src and abolished by concurrently inhibiting both p38-α/β and Src, indicating that Src mediates the cross-talk between PKC-α and EGFR signaling. Using siRNA knockdown, we identified p38-α as the relevant p38 isoform. Collectively, these studies uncover novel functional interactions between post-muscarinic receptor signaling pathways that augment MMP1 expression and drive colon cancer cell invasion; targeting these potentiating interactions has therapeutic potential.
Collapse
|
14
|
Atef ME, Anand-Srivastava MB. Role of PKCδ in Enhanced Expression of Gqα/PLCβ1 Proteins and VSMC Hypertrophy in Spontaneously Hypertensive Rats. PLoS One 2016; 11:e0157955. [PMID: 27379421 PMCID: PMC4933357 DOI: 10.1371/journal.pone.0157955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/06/2016] [Indexed: 02/07/2023] Open
Abstract
Gqα signaling has been implicated in cardiac hypertrophy. In addition, angiotensin II (Ang II) was also shown to induce its hypertrophic effect through Gqα and PKCδ activation. We recently showed the role of enhanced expression of Gqα/PLCβ1 proteins in vascular smooth muscle cell (VSMC) hypertrophy, however, the role of PKCδ in VSMC hypertrophy in animal model is still lacking. The present study was therefore undertaken to examine the role of PKCδ and the associated signaling mechanisms in VSMC hypertrophy using 16-week-old spontaneously hypertensive rats (SHR). VSMC from 16-week-old SHR exhibited enhanced phosphorylation of PKCδ-Tyr311 and increased protein synthesis, marker of hypertrophy, as compared to WKY rats which was attenuated by rottlerin, an inhibitor of PKCδ. In addition, knocking down of PKCδ by PKCδ-siRNA also attenuated enhanced protein synthesis in VSMC from SHR. Furthermore, rottlerin attenuated the increased production of superoxide anion, NAD(P)H oxidase activity, increased expression of Gqα, phospholipase C (PLC)β1, insulin like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) proteins in VSMC from SHR. In addition, the enhanced phosphorylation of c-Src, PKCδ-Tyr311, IGF-1R, EGFR and ERK1/2 exhibited by VSMC from SHR was also attenuated by rottlerin. These results suggest that VSMC from SHR exhibit enhanced activity of PKCδ and that PKCδ is the upstream molecule of reactive oxygen species (ROS) and contributes to the enhanced expression of Gqα and PLCβ1 proteins and resultant VSMC hypertrophy involving c-Src, growth factor receptor transactivation and MAP kinase signaling.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Animals
- Benzopyrans/pharmacology
- Blotting, Western
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Hypertrophy
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NADPH Oxidases/metabolism
- Phospholipase C beta/metabolism
- Phosphorylation/drug effects
- Protein Kinase C-delta/genetics
- Protein Kinase C-delta/metabolism
- Proto-Oncogene Proteins pp60(c-src)/metabolism
- RNA Interference
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Growth Factor/metabolism
- Species Specificity
- Superoxides/metabolism
- Tyrosine/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Mohammed Emehdi Atef
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Madhu B. Anand-Srivastava
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
15
|
Han X, Lan X, Li Q, Gao Y, Zhu W, Cheng T, Maruyama T, Wang J. Inhibition of prostaglandin E2 receptor EP3 mitigates thrombin-induced brain injury. J Cereb Blood Flow Metab 2016; 36:1059-74. [PMID: 26661165 PMCID: PMC4908617 DOI: 10.1177/0271678x15606462] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022]
Abstract
Prostaglandin E2 EP3 receptor is the only prostaglandin E2 receptor that couples to multiple G-proteins, but its role in thrombin-induced brain injury is unclear. In the present study, we exposed mouse hippocampal slice cultures to thrombin in vitro and injected mice with intrastriatal thrombin in vivo to investigate the role of EP3 receptor in thrombin-induced brain injury and explore its underlying cellular and molecular mechanisms. In vitro, EP3 receptor inhibition reduced thrombin-induced hippocampal CA1 cell death. In vivo, EP3 receptor was expressed in astrocytes and microglia in the perilesional region. EP3 receptor inhibition reduced lesion volume, neurologic deficit, cell death, matrix metalloproteinase-9 activity, neutrophil infiltration, and the number of CD68(+) microglia, but increased the number of Ym-1(+) M2 microglia. RhoA-Rho kinase levels were increased after thrombin injection and were decreased by EP3 receptor inhibition. In mice that received an intrastriatal injection of autologous arterial blood, inhibition of thrombin activity with hirudin decreased RhoA expression compared with that in vehicle-treated mice. However, EP3 receptor activation reversed this effect of hirudin. These findings show that prostaglandin E2 EP3 receptor contributes to thrombin-induced brain damage via Rho-Rho kinase-mediated cytotoxicity and proinflammatory responses.
Collapse
Affiliation(s)
- Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiang Li
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yufeng Gao
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Zhu
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tian Cheng
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takayuki Maruyama
- Project Management, Discovery and Research, Ono Pharmaceutical Co. Ltd., Mishima-gun, Osaka, Japan
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Schreier B, Schwerdt G, Heise C, Bethmann D, Rabe S, Mildenberger S, Gekle M. Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1519-33. [PMID: 27012600 DOI: 10.1016/j.bbamcr.2016.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 11/26/2022]
Abstract
Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany.
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Christian Heise
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Daniel Bethmann
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Sindy Rabe
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| |
Collapse
|
17
|
Chuang JY, Chen PC, Tsao CW, Chang AC, Lein MY, Lin CC, Wang SW, Lin CW, Tang CH. WISP-1 a novel angiogenic regulator of the CCN family promotes oral squamous cell carcinoma angiogenesis through VEGF-A expression. Oncotarget 2016; 6:4239-52. [PMID: 25738362 PMCID: PMC4414186 DOI: 10.18632/oncotarget.2978] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/19/2014] [Indexed: 11/25/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), which accounts for nearly 90% of head and neck cancers, is characterized by poor prognosis and a low survival rate. VEGF-A is the most established angiogenic factor involved in the angiogenic-regulated tumor progression. WISP-1/CCN4 is an extracellular matrix-related protein that belongs to the Cyr61, CTGF, Nov (CCN) family and regulates many biological functions, such as angiogenesis. Previous studies indicated the role of WISP-1 in tumor progression. However, the angiogenic property of WISP-1 in the cancer microenvironment has never been discussed. Here, we provide novel insights regarding the role of WISP-1 in the angiogenesis through promoting VEGF-A expression. In this study, the correlation of WISP-1 and VEGF-A was confirmed by IHC staining of specimens from patients with OSCC. In vitro results indicated that WISP-1 induced VEGF-A expression via the integrin αvβ3/FAK/c-Src pathway, which transactivates the EGFR/ERK/HIF1-α signaling pathway in OSCC. This pathway in turn induces the recruitment of endothelial progenitor cells and triggers the neovascularization in the tumor microenvironment. Our in vivo data revealed that tumor-secreted WISP-1 promoted the angiogenesis through VRGF expression and increased angiogenesis-related tumor growth. Our study offers new information that highlights WISP-1 as a potential novel therapeutic target for OSCC.
Collapse
Affiliation(s)
- Jing-Yuan Chuang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Po-Chun Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Wen Tsao
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - An-Chen Chang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ming-Yu Lein
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Chia Lin
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
18
|
Popli P, Sirohi VK, Manohar M, Shukla V, Kaushal JB, Gupta K, Dwivedi A. Regulation of cyclooxygenase-2 expression in rat oviductal epithelial cells: Evidence for involvement of GPR30/Src kinase-mediated EGFR signaling. J Steroid Biochem Mol Biol 2015; 154:130-41. [PMID: 26241029 DOI: 10.1016/j.jsbmb.2015.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 11/26/2022]
Abstract
The oviduct plays a crucial role in female reproduction by regulating gamete transport, providing a specific microenvironment for fertilization and early embryonic development. Cyclooxygenase (COX)-derived prostaglandins play essential role in carrying out these oviduct-specific functions. Estrogen upregulates COX-2 expression in rat oviduct; however, the mechanisms responsible for regulation of COX-2 expression in rat oviductal epithelial cells (OECs) remain unclear. In the present study, we proposed that estrogen induces COX-2 expression via G-protein coupled receptor i.e., GPR30 in OECs. To investigate this hypothesis, we examined the effects of E2-BSA, ICI 182,780, GPR30 agonist and GPR30 antagonist on COX-2 expression and explored potential signaling pathway leading to COX-2 expression. Co-localization experiments revealed GPR30 to be primarily located in the peri-nuclear space, which was also the site of E2-BSA-fluorescein isothiocyanate (E2-BSA-FITC) binding. The E2-BSA induced-COX-2 and prostaglandin release were subjected to regulation by both EGFR and PI3K signaling as inhibitors of c-Src kinase (PP2), EGFR (EGFR inhibitor) and PI-3 kinase (LY294002) attenuated E2-BSA mediated effect. These results suggest that EGFR transactivation leading to activation of PI-3K/Akt pathway participates in COX-2 expression in rat OECs. Interestingly, E2-BSA induced COX-2 expression and subsequent prostaglandin release were abolished by NF-κB inhibitor. In addition, E2-BSA induced the nuclear translocation of p65-NF-κB and up-regulated the NF-κB promoter activity in rat OECs. Taken together, results demonstrated that E2-BSA induced the COX-2 expression and consequent PGE2 and PGF2α release in rat OECs. These effects are mediated through GPR30-derived EGFR transactivation and PI-3K/Akt cascade leading to NF-κB activation.
Collapse
Affiliation(s)
- Pooja Popli
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Vijay Kumar Sirohi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Murli Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Kanchan Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| |
Collapse
|
19
|
Jang EJ, Jeong HO, Park D, Kim DH, Choi YJ, Chung KW, Park MH, Yu BP, Chung HY. Src Tyrosine Kinase Activation by 4-Hydroxynonenal Upregulates p38, ERK/AP-1 Signaling and COX-2 Expression in YPEN-1 Cells. PLoS One 2015; 10:e0129244. [PMID: 26466383 PMCID: PMC4605600 DOI: 10.1371/journal.pone.0129244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/06/2015] [Indexed: 01/02/2023] Open
Abstract
4-Hydroxynonenal (4-HNE), a major end product of lipid peroxidation, is highly reactive and involved in various cellular processes, such as inflammatory signaling. However, to date, the mechanistic roles of 4-HNE in inflammatory signaling related to protein tyrosine kinases have not been elucidated. In the present study, we investigated the interaction between 4-HNE and Src (a non-receptor tyrosine kinase) for its involvement in the molecular modulation of the inflammatory signaling pathway utilizing the YPEN-1 cell system. Immunoprecipitation experiments showed that 4-HNE phosphorylates (activates) Src at Tyr416 via adduct formation. In addition, LC-MS/MS and a docking simulation model revealed an addiction site at the Cys248 residue of Src, resulting in the stimulation of downstream p38, ERK/AP-1 and cyclooxygenase-2 (COX-2) signaling in YPEN-1 cells. The role of 4-HNE-activated Src in downstream inflammatory signaling was further investigated using dasatinib (a Src inhibitor) and by siRNA knockdown of Src. p38 and ERK were directly regulated by Src, as revealed by immunoblotting of the phosphorylated forms of mitogen-activated protein kinases (MAPKs), which are key elements in the signaling transduction pathway initiated by Src. The study also shows that Src modulates the HNE-enhanced activation of AP-1 and the expression of COX-2 (a target gene of AP-1). Together, the results of this study show that 4-HNE stimulates Src tyrosine kinase in activation of the inflammation process.
Collapse
Affiliation(s)
- Eun Ji Jang
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hyoung Oh Jeong
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 609–735, Republic of Korea
| | - Daeui Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 609–735, Republic of Korea
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yeon Ja Choi
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min Hi Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229–3900, United States of America
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Lin CC, Pan CS, Wang CY, Liu SW, Hsiao LD, Yang CM. Tumor necrosis factor-alpha induces VCAM-1-mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts. J Biomed Sci 2015; 22:53. [PMID: 26173590 PMCID: PMC4502472 DOI: 10.1186/s12929-015-0165-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/07/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine and elevated in the regions of tissue injury and inflammatory diseases. The deleterious effects of TNF-α on fibroblasts may aggravate heart inflammation mediated through the up-regulation of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1). However, the mechanisms underlying TNF-α-induced VCAM-1 expression in cardiac fibroblasts remain unknown. This study aimed to investigate the roles of TNF-α in VCAM-1 expression and its effects on human cardiac fibroblasts (HCFs). RESULTS The primary culture HCFs were used in this study. The results obtained with Western blotting, real time-quantitative PCR, and promoter activity analyses showed that TNF-α-induced VCAM-1 expression was mediated through TNF receptor (TNFR) 1-dependent gene up-regulation. Activation of TNFR1 by TNF-α transactivated c-Src-dependent EGF receptor (EGFR) linking to PI3K/Akt cascade, and then led to transcriptional activity of NF-κB. Moreover, the results of promoter reporter assay demonstrated that the phosphorylated p65 NF-κB turned on VCAM-1 gene expression. Subsequently, up-regulation of VCAM-1 promoted monocytes adhesion to HCFs challenged with TNF-α determined by cell adhesion assay. CONCLUSIONS Taken together, these results indicate that in HCFs, activation of NF-κB by c-Src-mediated transactivation of EGFR/PI3K/Akt cascade is required for TNF-α-induced VCAM-1 expression. Finally, increased VCAM-1 enhances monocytes adhering to HCFs challenged with TNF-α. Understanding the mechanisms of VCAM-1 up-regulated by TNF-α on HCFs may provide rationally therapeutic interventions for heart injury or inflammatory diseases.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, Kwei-Shan, Tao-Yuan, Taiwan.,College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chih-Shuo Pan
- Department of Physiology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chen-Yu Wang
- Department of Physiology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan
| | - Shiau-Wen Liu
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, Kwei-Shan, Tao-Yuan, Taiwan.,College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, Kwei-Shan, Tao-Yuan, Taiwan.,College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan. .,Department of Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
21
|
Chien PTY, Lin CC, Hsiao LD, Yang CM. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol 2015; 409:59-72. [PMID: 25869400 DOI: 10.1016/j.mce.2015.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 12/27/2022]
Abstract
Thrombin and COX-2 regulating cardiac hypertrophy are via various signaling cascades. Several transcriptional factors including CREB involve in COX-2 expression. However, the interplay among thrombin, CREB, and COX-2 in primary human neonatal ventricular cardiomyocytes remains unclear. In this study, thrombin-induced COX-2 promoter activity, mRNA and protein expression, and PGE2 synthesis were attenuated by pretreatment with the inhibitors of c-Src (PP1), Pyk2 (PF431396), EGFR (AG1478), PI3K/Akt (LY294002/SH-5), and p300 (GR343), or transfection with siRNAs of c-Src, Pyk2, EGFR, p110, Akt, CREB, and p300. Moreover, thrombin-stimulated phosphorylation of c-Src, Pyk2, EGFR, Akt, CREB and p300 was attenuated by their respective inhibitors. These results indicate that thrombin-induced COX-2 expression is mediated through PAR-1/c-Src/Pyk2/EGFR/PI3K/Akt linking to CREB and p300 cascades. Functionally, thrombin-induced hypertrophy and ANF/BNP release were, at least in part, mediated through a PAR-1/COX-2-dependent pathway. We uncover the importance of COX-2 regarding human cardiomyocyte hypertrophy that will provide a therapeutic intervention in cardiovascular diseases.
Collapse
Affiliation(s)
- Peter Tzu-Yu Chien
- Graduate Institute of Biomedical Sciences, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Sciences, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
| |
Collapse
|
22
|
Smiljanic K, Obradovic M, Jovanovic A, Djordjevic J, Dobutovic B, Jevremovic D, Marche P, Isenovic ER. Thrombin stimulates VSMC proliferation through an EGFR-dependent pathway: involvement of MMP-2. Mol Cell Biochem 2014; 396:147-60. [PMID: 25047892 DOI: 10.1007/s11010-014-2151-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/11/2014] [Indexed: 01/23/2023]
Abstract
In this study, the role of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK1/2), heparin-binding EGF-like growth factor (HB-EGF), general metalloproteinases, matrix metalloproteinases-2 (MMP-2) in mediating the mitogenic action of thrombin in rat vascular smooth muscle cells (VSMC) was investigated. The incubation of rat VSMC with thrombin (1 U/ml) for 5 min resulted in significant (p < 0.001) increase of ERK1/2 phosphorylation by 8.7 ± 0.9-fold, EGFR phosphorylation by 8.5 ± 1.3-fold (p < 0.001) and DNA synthesis by 3.6 ± 0.4-fold (p < 0.001). Separate 30-min pretreatments with EGFR tyrosine kinase irreversible inhibitor, 10 µM PD169540 (PD), and 20 µM anti-HB-EGF antibody significantly reduced thrombin-stimulated EGFR and ERK1/2 phosphorylation by 81, 72 % and by 48 and 61 %, respectively. Furthermore, the same pretreatments with PD or anti-HB-EGF antibody reduced thrombin-induced VSMC proliferation by 44 and 45 %, respectively. In addition, 30-min pretreatments with 10 µM specific MMP-2 inhibitor significantly reduced thrombin-stimulated phosphorylation of both EGFR and ERK1/2 by 25 %. Moreover, the same pretreatment with MMP-2 inhibitor reduced thrombin-induced VSMC proliferation by 45 %. These results show that the thrombin-induced DNA synthesis correlates with the level of ERK1/2 activation rather than EGFR activation. These results further suggest that thrombin acts through EGFR and ERK 1/2 signaling pathways involving MMP-2 to upregulate proliferation of VSMC.
Collapse
Affiliation(s)
- Katarina Smiljanic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang SW, Liu SC, Sun HL, Huang TY, Chan CH, Yang CY, Yeh HI, Huang YL, Chou WY, Lin YM, Tang CH. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment. Carcinogenesis 2014; 36:104-14. [PMID: 25330803 DOI: 10.1093/carcin/bgu218] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chemokines modulate angiogenesis and metastasis that dictate cancer development in tumor microenvironment. Osteosarcoma is the most frequent bone tumor and is characterized by a high metastatic potential. Chemokine CCL5 (previously called RANTES) has been reported to facilitate tumor progression and metastasis. However, the crosstalk between chemokine CCL5 and vascular endothelial growth factor (VEGF) as well as tumor angiogenesis in human osteosarcoma microenvironment has not been well explored. In this study, we found that CCL5 increased VEGF expression and production in human osteosarcoma cells. The conditioned medium (CM) from CCL5-treated osteosarcoma cells significantly induced tube formation and migration of human endothelial progenitor cells. Pretreatment of cells with CCR5 antibody or transfection with CCR5 specific siRNA blocked CCL5-induced VEGF expression and angiogenesis. CCL5/CCR5 axis demonstrably activated protein kinase Cδ (PKCδ), c-Src and hypoxia-inducible factor-1 alpha (HIF-1α) signaling cascades to induce VEGF-dependent angiogenesis. Furthermore, knockdown of CCL5 suppressed VEGF expression and attenuated osteosarcoma CM-induced angiogenesis in vitro and in vivo. CCL5 knockdown dramatically abolished tumor growth and angiogenesis in the osteosarcoma xenograft animal model. Importantly, we demonstrated that the expression of CCL5 and VEGF were correlated with tumor stage according the immunohistochemistry analysis of human osteosarcoma tissues. Taken together, our findings provide evidence that CCL5/CCR5 axis promotes VEGF-dependent tumor angiogenesis in human osteosarcoma microenvironment through PKCδ/c-Src/HIF-1α signaling pathway. CCL5 may represent a potential therapeutic target against human osteosarcoma.
Collapse
Affiliation(s)
- Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Shih-Chia Liu
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Hui-Lung Sun
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio state University, Columbus, OH 43210, USA
| | - Te-Yang Huang
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Chia-Han Chan
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Chen-Yu Yang
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan
| | - Wen-Yi Chou
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital Medical Center, Kaohsiung 833, Taiwan
| | - Yu-Min Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Department of Orthopedic Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan,
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan, Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan and Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
24
|
Nobe K, Takenouchi Y, Kasono K, Hashimoto T, Honda K. Two types of overcontraction are involved in intrarenal artery dysfunction in type II diabetic mouse. J Pharmacol Exp Ther 2014; 351:77-86. [PMID: 25085043 DOI: 10.1124/jpet.114.216747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Contractile responses in small intrarenal arteries are associated with diabetic nephropathy. However, the mechanisms that induce and maintain altered small vessel contraction are not clearly understood. To further understand intrarenal artery dysfunction in diabetes, phenylephrine (PE)-induced force development was assessed in the intrarenal artery [interlobar artery (ILA)] in control (lean) and type II diabetic (ob/ob) mice. PE-induced dose-dependent force development in the ILA was significantly greater in ob/ob mice than in lean mice (592.8 ± 5.2 and 770.1 ± 12.1 µ/mm tissue, respectively, following administration of 30 µM PE, n = 5). Under high-glucose conditions (twice the normal concentration of glucose), PE-induced force development in the ILA was only enhanced in ob/ob mice (946.0 ± 18.2 µN/mm tissue; n = 5). ILA dysfunction reduces blood flow to the glomerulus and may induce diabetic nephropathy. Basal overcontraction of the ILA in ob/ob mice under normal-glucose conditions was reduced by pretreatment with rottlerin, a calcium-independent protein kinase C (PKCδ) inhibitor. Total PKC activity was also reduced by rottlerin. Under high-glucose conditions, the enhanced ILA contraction in diabetic mice was suppressed by rho A and rho kinase inhibitors. Our results indicate two types of ILA dysfunction in diabetes, as follows: 1) a basal increase in PE-induced contraction under normal-glucose conditions, and 2) extracellular glucose-dependent enhancement of PE-induced contraction. We believe that these dysfunctions are mediated by the activation of the PKCδ and rho A-rho kinase pathways, respectively.
Collapse
Affiliation(s)
- Koji Nobe
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan (K.N., Y.T., K.K.); and Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (T.H., K.H.)
| | - Yasuhiro Takenouchi
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan (K.N., Y.T., K.K.); and Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (T.H., K.H.)
| | - Keizo Kasono
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan (K.N., Y.T., K.K.); and Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (T.H., K.H.)
| | - Terumasa Hashimoto
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan (K.N., Y.T., K.K.); and Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (T.H., K.H.)
| | - Kazuo Honda
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan (K.N., Y.T., K.K.); and Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (T.H., K.H.)
| |
Collapse
|
25
|
Chien PTY, Hsieh HL, Chi PL, Yang CM. PAR1-dependent COX-2/PGE2 production contributes to cell proliferation via EP2 receptors in primary human cardiomyocytes. Br J Pharmacol 2014; 171:4504-19. [PMID: 24902855 PMCID: PMC4209155 DOI: 10.1111/bph.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/15/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Different protease-activated receptors (PARs) activated by thrombin are involved in cardiovascular disease, via up-regulation of inflammatory proteins including COX-2. However, the mechanisms underlying thrombin-regulated COX-2 expression in human cardiomyocytes remain unclear. EXPERIMENTAL APPROACH Human cardiomyocytes were used in the study. Thrombin-induced COX-2 protein and mRNA expression, and signalling pathways were determined by Western blot, real-time PCR and COX-2 promoter luciferase reporter assays, and pharmacological inhibitors or siRNAs. PGE2 generation and cell proliferation were also determined. KEY RESULTS Thrombin-induced COX-2 protein and mRNA expression, promoter activity and PGE2 release was attenuated by the PAR1 antagonist (SCH79797) or the inhibitors of proteinase activity (PPACK), MEK1/2 (U0126), p38 MAPK (SB202190) or JNK1/2 (SP600125), and transfection with small interfering RNA (siRNA) of PAR1, p38, p42 or JNK2. These results suggested that PAR1-dependent MAPKs participate in thrombin-induced COX-2 expression in human cardiomyocytes. Moreover, thrombin stimulated phosphorylation of MAPKs, which was attenuated by PPACK and SCH79797. Furthermore, thrombin-induced COX-2 expression was blocked by the inhibitors of AP-1 (tanshinone IIA) and NF-κB (helenalin). Moreover, thrombin-stimulated phosphorylation of c-Jun/AP-1 and p65/NF-κB was attenuated by tanshinone IIA and helenalin, respectively, suggesting that thrombin induces COX-2 expression via PAR1/MAPKs/AP-1 or the NF-κB pathway. Functionally, thrombin increased human cardiomyocyte proliferation through the COX-2/PGE2 system linking to EP2 receptors, as determined by proliferating cell nuclear antigen and cyclin D1 expression. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that MAPKs-mediated activation of AP-1/NF-κB pathways is, at least in part, required for COX-2/PGE2 /EP2 -triggered cell proliferation in human cardiomyocytes.
Collapse
Affiliation(s)
- Peter Tzu-Yu Chien
- Graduate Institute of Biomedical Science, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Hsi-Lung Hsieh
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and TechnologyTao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Science, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| |
Collapse
|
26
|
The characteristics of thrombin in osteoarthritic pathogenesis and treatment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:407518. [PMID: 25313362 PMCID: PMC4182002 DOI: 10.1155/2014/407518] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/01/2014] [Indexed: 01/08/2023]
Abstract
Osteoarthritis (OA) is a mechanical abnormality associated with degradation of joints. It is characterized by chronic, progressive degeneration of articular cartilage, abnormalities of bone, and synovial change. The most common symptom of OA is local inflammation resulting from exogenous stress or endogenous abnormal cytokines. Additionally, OA is associated with local and/or systemic activation of coagulation and anticoagulation pathways. Thrombin plays an important role in the stimulation of fibrin deposition and the proinflammatory processes in OA. Thrombin mediates hemostatic and inflammatory responses and guides the immune response to tissue damage. Thrombin activates intracellular signaling pathways by interacting with transmembrane domain G protein coupled receptors (GPCRs), known as protease-activated receptors (PARs). In pathogenic mechanisms, PARs have been implicated in the development of acute and chronic inflammatory responses in OA. Therefore, discovery of thrombin signaling pathways would help us to understand the mechanism of OA pathogenesis and lead us to develop therapeutic drugs in the future.
Collapse
|
27
|
Gao M, Zhan YQ, Yu M, Ge CH, Li CY, Zhang JH, Wang XH, Ge ZQ, Yang XM. Hepassocin activates the EGFR/ERK cascade and induces proliferation of L02 cells through the Src-dependent pathway. Cell Signal 2014; 26:2161-6. [PMID: 24768768 DOI: 10.1016/j.cellsig.2014.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/11/2014] [Indexed: 12/26/2022]
Abstract
Hepassocin (HPS) is a secreted protein with mitogenic activity on primary hepatocytes and protects hepatocytes from chemically-induced injury. Our previous studies showed that HPS stimulates proliferation of hepatocytes in an ERK pathway-dependent manner. However, the molecular mechanism of HPS-induced activation of the ERK pathway remains unclear. In this study, we found that HPS induced the phosphorylation of the epidermal growth factor receptor (EGFR) in the human L02 hepatocyte cell line, and this event was concomitant with the activation of the non-receptor tyrosine kinase Src. Specific inhibition of EGFR kinase activity by gefitinib or down-regulation of EGFR by specific EGFR siRNAs prevented HPS-induced activation of the ERK pathway and proliferation of L02 cells. Furthermore, inhibition of Src activity significantly blocked HPS-induced activation of the EGFR, which was suggestive of a ligand-independent transactivation mechanism of EGFR itself as well as ERK phosphorylation and proliferation of L02 cells. These results indicate that EGFR plays an important role in the mitogenic signaling induced by HPS in L02 cell lines and may further stimulate research on the role of HPS in hepatocytes within biological processes in human health and disease.
Collapse
Affiliation(s)
- Ming Gao
- Tianjin University, Department of Pharmaceutical Engineering, Tianjin 300072, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yi-Qun Zhan
- Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China
| | - Miao Yu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China
| | - Chang-Yan Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China
| | - Jian-Hong Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China
| | - Xiao-Hui Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China
| | - Zhi-Qiang Ge
- Tianjin University, Department of Pharmaceutical Engineering, Tianjin 300072, China
| | - Xiao-Ming Yang
- Tianjin University, Department of Pharmaceutical Engineering, Tianjin 300072, China; Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China.
| |
Collapse
|
28
|
Lin CC, Hsieh HL, Chi PL, Yang CC, Hsiao LD, Yang CM. Upregulation of COX-2/PGE2 by ET-1 mediated through Ca2+-dependent signals in mouse brain microvascular endothelial cells. Mol Neurobiol 2013; 49:1256-69. [PMID: 24287977 DOI: 10.1007/s12035-013-8597-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/15/2013] [Indexed: 12/14/2022]
Abstract
Endothelin-1 (ET-1), a proinflammatory mediator, is elevated in the regions of several brain inflammatory disorders, implying that ET-1 may contribute to inflammatory responses. The deleterious effects of ET-1 on brain endothelial cells may aggravate brain inflammation mediated through the upregulation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) system. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in mouse brain microvascular endothelial cells (bEnd.3 cells) remain unclear. Herein, we investigated the effects of Ca2+-dependent protein kinases on ET-1-induced COX-2 expression and PGE2 release in bEnd.3 cells. The data obtained with Western blotting, reverse transcription PCR, and intracellular Ca2+ analyses showed that ET-1-induced COX-2 expression was mediated through phosphatidylinositol-phospholipase C (PI-PLC) and phosphatidylcholine-phospholipase C (PC-PLC)/Ca2+-dependent activation of protein kinase C-alpha (PKC-α) and calmodulin kinase II (CaMKII) cascades. Next, we demonstrated that ET-1 stimulated intracellular Ca2+ increase, phoshorylation of PKC-α, CaMKII, and mitogen-activated protein kinases (MAPKs) (ERK1/2, p38 MAPK, and JNK1/2) and then activated the activating transcription factor 2 (ATF2)/activator protein 1 (AP-1) via Gq/i protein-coupled ETB receptors. Moreover, the data of chromatin immunoprecipitation and promoter reporter assay demonstrated that the activated ATF2/AP-1 and p300 bound to its corresponding binding sites within COX-2 promoter, thereby turning on COX-2 gene transcription. Finally, upregulation of COX-2 by ET-1 promoted PGE2 biosynthesis and release in these cells. Taken together, these results demonstrate that in bEnd.3 cells, Ca2+-dependent PKC-α and CaMKII linking to MAPKs, ATF2/AP-1, and p300 cascade is essential for ET-1-induced COX-2 upregulation. Understanding the mechanisms of COX-2/PGE2 system upregulated by ET-1 on brain microvascular endothelial cells may provide rational therapeutic interventions for brain injury and inflammatory diseases.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Yu HS, Lin TH, Tang CH. Involvement of intercellular adhesion molecule-1 up-regulation in bradykinin promotes cell motility in human prostate cancers. Int J Mol Sci 2013; 14:13329-45. [PMID: 23803661 PMCID: PMC3742189 DOI: 10.3390/ijms140713329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and shows a predilection for metastasis to distant organs. Bradykinin (BK) is an inflammatory mediator and has recently been shown to mediate tumor growth and metastasis. The adhesion molecule intercellular adhesion molecule-1 (ICAM-1) plays a critical role during tumor metastasis. The aim of this study was to examine whether BK promotes prostate cancer cell migration via ICAM-1 expression. The motility of cancer cells was increased following BK treatment. Stimulation of prostate cancer cells with BK induced mRNA and protein expression of ICAM-1. Transfection of cells with ICAM-1 small interfering RNA reduced BK-increased cell migration. Pretreatment of prostate cancer cells with B2 receptor, phosphatidylinositol 3-kinase (PI3K), Akt, and activator protein 1 (AP-1) inhibitors or mutants abolished BK-promoted migration and ICAM-1 expression. In addition, treatment with a B2 receptor, PI3K, or Akt inhibitor also reduced BK-mediated AP-1 activation. Our results indicate that BK enhances the migration of prostate cancer cells by increasing ICAM-1 expression through a signal transduction pathway that involves the B2 receptor, PI3K, Akt, and AP-1. Thus, BK represents a promising new target for treating prostate cancer metastasis.
Collapse
Affiliation(s)
- Hsin-Shan Yu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan; E-Mail:
| | - Tien-Huang Lin
- Department of Urology, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung 42743, Taiwan; E-Mail:
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan; E-Mail:
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-2205-2121 (ext. 7726); Fax: +886-4-2233-3641
| |
Collapse
|
30
|
Waitkus MS, Chandrasekharan UM, Willard B, Haque SJ, DiCorleto PE. STAT3-mediated coincidence detection regulates noncanonical immediate early gene induction. J Biol Chem 2013; 288:11988-2003. [PMID: 23504318 DOI: 10.1074/jbc.m112.428516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signaling pathways interact with one another to form dynamic networks in which the cellular response to one stimulus may depend on the presence, intensity, timing, or localization of other signals. In rare cases, two stimuli may be simultaneously required for cells to elicit a significant biological output. This phenomenon, generally termed "coincidence detection," requires a downstream signaling node that functions as a Boolean AND gate to restrict biological output from a network unless multiple stimuli are received within a specific window of time. Simultaneous activation of the EGF receptor (EGFR) and a thrombin receptor (protease-activated receptor-1, PAR-1) increases the expression of multiple immediate early genes (IEGs) associated with growth and angiogenesis. Using a bioinformatic comparison of IEG promoter regions, we identified STAT3 as a critical transcription factor for the detection of coincident EGFR/PAR-1 activation. EGFR activation induces classical STAT3 Tyr(705) phosphorylation but also initiates an inhibitory signal through the PI3K-AKT signaling axis that prevents STAT3 Ser(727) phosphorylation. Coincident PAR-1 signaling resolves these conflicting EGF-activated pathways by blocking AKT activation and permitting GSK-3α/β-dependent STAT3 Ser(727) phosphorylation and STAT3-dependent gene expression. Functionally, combinatorial EGFR/PAR-1 signaling suppresses EGF-induced proliferation and thrombin-induced leukocyte adhesion and triggers a STAT3-dependent increase in endothelial cell migration. This study reveals a novel signaling role for STAT3 in which the simultaneous presence of extracellular EGF and thrombin is detected at the level of STAT3 post-translational modifications. Collectively, our results describe a novel regulatory mechanism in which combinatorial EGFR/PAR-1 signaling regulates STAT3-dependent IEG induction and endothelial cell migration.
Collapse
Affiliation(s)
- Matthew S Waitkus
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
31
|
Chi PL, Luo SF, Hsieh HL, Lee IT, Hsiao LD, Chen YL, Yang CM. Cytosolic phospholipase A2 induction and prostaglandin E2 release by interleukin-1β via the myeloid differentiation factor 88-dependent pathway and cooperation of p300, Akt, and NF-κB activity in human rheumatoid arthritis synovial fibroblasts. ACTA ACUST UNITED AC 2013; 63:2905-17. [PMID: 21702012 DOI: 10.1002/art.30504] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cytosolic phospholipase A2 (cPLA2) is a rate-limiting enzyme that plays a critical role in the biosynthesis of eicosanoids. The aim of this study was to investigate the mechanisms underlying interleukin-1β (IL-1β)-induced cPLA2 expression in human rheumatoid arthritis synovial fibroblasts (RASFs). METHODS Synovial tissue was obtained from patients with RA who were undergoing joint replacement surgery. In a mouse model of IL-1β-mediated inflammatory arthritis, neutrophil infiltration, bone erosion, and cPLA2 expression in ankle synovium were analyzed by immunohistochemistry. IL-1β-induced cPLA2 expression was determined by Western blotting, real-time polymerase chain reaction, and gene promoter assay using pharmacologic inhibitors and transfection with short hairpin RNAs or small interfering RNAs. The recruitment of NF-κB and p300 to the cPLA2 promoter was determined by chromatin immunoprecipitation assay. Prostaglandin E2 (PGE2) biosynthesis was evaluated by enzyme-linked immunosorbent assay. RESULTS IL-1β-induced cPLA2 expression and PGE2 release were mediated through a myeloid differentiation factor 88 (MyD88)/c-Src-dependent matrix metalloproteinase (MMP)/heparin-binding epidermal growth factor (HB-EGF) cascade linking to transactivation of the EGF receptor (EGFR)/phosphatidylinositol 3-kinase (PI 3-kinase)/Akt, p300, and NF-κB p65 pathways. IL-1β also stimulated Akt phosphorylation and nuclear translocation. Activation of Akt eventually led to the acetylation of histone residues by phosphorylation and recruitment of p300 and enhanced its histone acetyltransferase activity on the NF-κB elements of the cPLA2 promoter. IL-1β-induced NF-κB transcriptional activity was mediated through a PI 3-kinase/Akt-dependent cascade. Up-regulation of cPLA2 by IL-1β increased PGE(2) biosynthesis in RASFs. CONCLUSION IL-1β-induced cPLA2 expression is mediated through activation of the MyD88/c-Src, MMP/HB-EGF, EGFR/PI 3-kinase/Akt, p300, and NF-κB pathways. These results provide insights into the mechanisms underlying IL-1β-enhanced joint inflammatory responses in RA and may inspire new targeted therapeutic approaches.
Collapse
Affiliation(s)
- Pei-Ling Chi
- Department of Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
32
|
Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, Yang CM. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-κB pathway in mouse brain microvascular endothelial cells. Cell Commun Signal 2013; 11:8. [PMID: 23343326 PMCID: PMC3560266 DOI: 10.1186/1478-811x-11-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/18/2013] [Indexed: 12/17/2022] Open
Abstract
Background Endothelin-1 (ET-1) is a proinflammatory mediator and elevated in the regions of several brain injury and inflammatory diseases. The deleterious effects of ET-1 on endothelial cells may aggravate brain inflammation mediated through the regulation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) system in various cell types. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in brain microvascular endothelial cells remain unclear. Herein we investigated the effects of ET-1 in COX-2 regulation in mouse brain microvascular endothelial (bEnd.3) cells. Results The data obtained with Western blotting, RT-PCR, and immunofluorescent staining analyses showed that ET-1-induced COX-2 expression was mediated through an ETB-dependent transcriptional activation. Engagement of Gi- and Gq-protein-coupled ETB receptors by ET-1 led to phosphorylation of ERK1/2, p38 MAPK, and JNK1/2 and then activated transcription factor NF-κB. Moreover, the data of chromatin immunoprecipitation (ChIP) and promoter reporter assay demonstrated that the activated NF-κB was translocated into nucleus and bound to its corresponding binding sites in COX-2 promoter, thereby turning on COX-2 gene transcription. Finally, up-regulation of COX-2 by ET-1 promoted PGE2 release in these cells. Conclusions These results suggested that in mouse bEnd.3 cells, activation of NF-κB by ETB-dependent MAPK cascades is essential for ET-1-induced up-regulation of COX-2/PGE2 system. Understanding the mechanisms of COX-2 expression and PGE2 release regulated by ET-1/ETB system on brain microvascular endothelial cells may provide rationally therapeutic interventions for brain injury or inflammatory diseases.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
33
|
Yu HS, Lin TH, Tang CH. Bradykinin enhances cell migration in human prostate cancer cells through B2 receptor/PKCδ/c-Src dependent signaling pathway. Prostate 2013; 73:89-100. [PMID: 22653778 DOI: 10.1002/pros.22544] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/14/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prostate cancer is the most commonly diagnosed malignancy in men and shows a predilection for metastasis to the bone. Bradykinin (BK) is an inflammatory mediator, and shows elevated levels in regions of severe injury and inflammatory diseases. The aim of this study was to investigate whether Bradykinin is associated with migration of prostate cancer cells. METHODS Cancer cells migration activity was examined using the Transwell assay. The c-Src and PKCδ phosphorylation was examined by using Western blot method. The qPCR was used to examine the mRNA expression of metalloproteinase. A transient transfection protocol was used to examine NF-κB activity. RESULTS We found that bradykinin increased the chemomigration and the expression of MMP-9 of human prostate cancer cells. Bradykinin-mediated chemomigration and metalloproteinase expression was attenuated by PKCδ inhibitor (rottlerin), PKCδ siRNA, c-Src inhibitor (PP2) and c-Src mutant. Activations of PKCδ, c-Src and NF-κB pathways after bradykinin treatment was demonstrated, and bradykinin-induced expression of metalloproteinase and chemomigration activity was inhibited by the specific inhibitor and mutant of PKCδ, c-Src, and NF-κB cascades. CONCLUSIONS This study showed for the first time that the bradykinin mediates migration of human prostate cancer cells. One of the mechanisms underlying bradykinin directed migration was transcriptional up-regulation of MMP-9 and activation of B2 receptor, PKCδ, c-Src, and NF-κB pathways.
Collapse
Affiliation(s)
- Hsin-Shan Yu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | | |
Collapse
|
34
|
Lin YM, Hsu CJ, Liao YY, Chou MC, Tang CH. The CCL2/CCR2 axis enhances vascular cell adhesion molecule-1 expression in human synovial fibroblasts. PLoS One 2012. [PMID: 23185512 PMCID: PMC3503714 DOI: 10.1371/journal.pone.0049999] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1), belongs to the CC chemokine family that is associated with the disease status and outcomes of osteoarthritis (OA). Here, we investigated the intracellular signaling pathways involved in CCL2-induced vascular cell adhesion molecule-1 (VCAM-1) expression in human OA synovial fibroblasts (OASFs). Methodology/Principal Findings Stimulation of OASFs with CCL2 induced VCAM-1 expression. CCL2-mediated VCAM-1 expression was attenuated by CCR2 inhibitor (RS102895), PKCδ inhibitor (rottlerin), p38MAPK inhibitor (SB203580), and AP-1 inhibitors (curcumin and tanshinone IIA). Stimulation of cells with CCL2 increased PKCδ and p38MAPK activation. Treatment of OASFs with CCL2 also increased the c-Jun phosphorylation and c-Jun binding to the AP-1 element on the VCAM-1 promoter. Moreover, CCL2-mediated CCR2, PKCδ, p38MAPK, and AP-1 pathway promoted the adhesion of monocytes to the OASFs monolayer. Conclusions/Significance Our results suggest that CCL2 increases VCAM-1 expression in human OASFs via the CCR2, PKCδ, p38MAPK, c-Jun, and AP-1 signaling pathway. The CCL2-induced VCAM-1 expression promoted monocytes adhesion to human OASFs.
Collapse
Affiliation(s)
- Yu-Min Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopaedics, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Ya Liao
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- * E-mail: (CHT); (MCC)
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- * E-mail: (CHT); (MCC)
| |
Collapse
|
35
|
Huang CY, Chen SY, Tsai HC, Hsu HC, Tang CH. Thrombin induces epidermal growth factor receptor transactivation and CCL2 expression in human osteoblasts. ACTA ACUST UNITED AC 2012; 64:3344-54. [DOI: 10.1002/art.34557] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Abstract
Rottlerin and curcumin are natural plant polyphenols with a long tradition in folk medicine. Over the past two decades, curcumin has been extensively investigated, while rottlerin has received much less attention, in part, as a consequence of its reputation as a selective PKCδ inhibitor. A comparative analysis of genomic, proteomic, and cell signaling studies revealed that rottlerin and curcumin share a number of targets and have overlapping effects on many biological processes. Both molecules, indeed, modulate the activity and/or expression of several enzymes (PKCδ, heme oxygenase, DNA methyltransferase, cyclooxygenase, lipoxygenase) and transcription factors (NF-κB, STAT), and prevent aggregation of different amyloid precursors (α-synuclein, amyloid Aβ, prion proteins, lysozyme), thereby exhibiting convergent antioxidant, anti-inflammatory, and antiamyloid actions. Like curcumin, rottlerin could be a promising candidate in the fight against a variety of human diseases.
Collapse
Affiliation(s)
- Emanuela Maioli
- Department of Physiology, University of Siena, Siena, Italy.
| | | | | |
Collapse
|
37
|
Chen YJ, Tsai RK, Wu WC, He MS, Kao YH, Wu WS. Enhanced PKCδ and ERK signaling mediate cell migration of retinal pigment epithelial cells synergistically induced by HGF and EGF. PLoS One 2012; 7:e44937. [PMID: 23028692 PMCID: PMC3447816 DOI: 10.1371/journal.pone.0044937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/10/2012] [Indexed: 12/04/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR) are characterized by the development of epi-retinal membranes which may exert a tractional force on retina. A lot of inflammatory growth factors may disturb the local ocular cells such as retinal pigment epithelial (RPE) cells, causing them to migrate and proliferate in the vitreous cavity and ultimately forming the PVR membrane. In this study, the signal pathways mediating cell migration of RPE induced by growth factors were investigated. Hepatocyte growth factor (HGF), epidermal growth factor (EGF) or heparin-binding epidermal growth factor (HB-EGF) induced a greater extent of migration of RPE50 and ARPE19 cells, compared with other growth factors. According to inhibitor studies, migration of RPE cells induced by each growth factor was mediated by protein kinase C (PKC) and ERK (MAPK). Moreover, HGF coupled with EGF or HB-EGF had synergistic effects on cell migration and enhanced activation of PKC and ERK, which were attributed to cross activation of growth factor receptors by heterogeneous ligands. Furthermore, using the shRNA technique, PKCδ was found to be the most important PKC isozyme involved. Finally, vitreous fluids from PVR and PDR patients with high concentration of HGF may induce RPE cell migration in PKCδ- and ERK- dependent manner. In conclusion, migration of RPE cells can be synergistically induced by HGF coupled with HB-EGF or EGF, which were mediated by enhanced PKCδ activation and ERK phosphorylation.
Collapse
Affiliation(s)
- Yu Jung Chen
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Rong Kung Tsai
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan
| | - Wen Chen Wu
- Department of Ophthalmology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming Shan He
- Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-DA Hospital, I-Shou University College, Kaohsiung, Taiwan
| | - Wen Sheng Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
38
|
Martín R, Cordova C, Nieto ML. Secreted phospholipase A2-IIA-induced a phenotype of activated microglia in BV-2 cells requires epidermal growth factor receptor transactivation and proHB-EGF shedding. J Neuroinflammation 2012; 9:154. [PMID: 22747893 PMCID: PMC3488565 DOI: 10.1186/1742-2094-9-154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 06/04/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Activation of microglia, the primary component of the innate immune response in the brain, is a hallmark of neuroinflammation in neurodegenerative disorders, including Alzheimer's disease (AD) and other pathological conditions such as stroke or CNS infection. In response to a variety of insults, microglial cells produce high levels of inflammatory cytokines that are often involved in neuronal injury, and play an important role in the recognition, engulfment, and clearance of apoptotic cells and/or invading microbes. Secreted phospholipase A2-IIA (sPLA2-IIA), an enzyme that interacts with cells involved in the systemic immune/inflammatory response, has been found up-regulated in the cerebrospinal fluid and brain of AD patients. However, despite several approaches, its functions in mediating CNS inflammation remain unknown. In the present study, the role of sPLA2-IIA was examined by investigating its direct effects on microglial cells. METHODS Primary and immortalized microglial cells were stimulated by sPLA2-IIA in order to characterize the cytokine-like actions of the phospholipase. The hallmarks of activated microglia analyzed include: mitogenic response, phagocytic capabilities and induction of inflammatory mediators. In addition, we studied several of the potential molecular mechanisms involved in those events. RESULTS The direct exposure of microglial cells to sPLA2-IIA stimulated, in a time- and dose-dependent manner, their phagocytic and proliferative capabilities. sPLA2-IIA also triggered the synthesis of the inflammatory proteins COX-2 and TNFα. In addition, EGFR phosphorylation and shedding of the membrane-anchored heparin-binding EGF-like growth factor (pro-HB-EGF) ectodomain, as well as a rapid activation/phosphorylation of the classical survival proteins ERK, P70S6K and rS6 were induced upon sPLA2-IIA treatment. We further demonstrated that the presence of an EGFR inhibitor (AG1478), a matrix metalloproteinase inhibitor (GM6001), an ADAM inhibitor (TAPI-1), and a HB-EGF neutralizing antibody abrogated the phenotype of activated microglia induced by the sPLA2-IIA. CONCLUSION These results support the hypothesis that sPLA2-IIA may act as a potent modulator of microglial functions through its ability to induce EGFR transactivation and HB-EGF release. Accordingly, pharmacological modulation of EGFR might be a useful tool for treating neuroinflammatory diseases characterized by sPLA2-IIA accumulation.
Collapse
Affiliation(s)
- Rubén Martín
- Instituto de Biología y Genetica Molecular (IBGM), CSIC-UVa, Valladolid, Spain
- ICICOR, Hospital Clínico, Valladolid, Spain
| | - Claudia Cordova
- Instituto de Biología y Genetica Molecular (IBGM), CSIC-UVa, Valladolid, Spain
| | - Maria L Nieto
- Instituto de Biología y Genetica Molecular (IBGM), CSIC-UVa, Valladolid, Spain
| |
Collapse
|
39
|
Hsieh HL, Lin CC, Chan HJ, Yang CM, Yang CM. c-Src-dependent EGF receptor transactivation contributes to ET-1-induced COX-2 expression in brain microvascular endothelial cells. J Neuroinflammation 2012; 9:152. [PMID: 22747786 PMCID: PMC3410791 DOI: 10.1186/1742-2094-9-152] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/02/2012] [Indexed: 02/02/2023] Open
Abstract
Background Endothelin-1 (ET-1) is elevated and participates in the regulation of several brain inflammatory disorders. The deleterious effects of ET-1 on endothelial cells may aggravate brain inflammation mediated through the upregulation of cyclooxygenase-2 (COX-2) gene expression. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in brain microvascular endothelial cells remain unclear. Objective The goal of this study was to examine whether ET-1-induced COX-2 expression and prostaglandin E2 (PGE2) release were mediated through a c-Src-dependent transactivation of epidermal growth factor receptor (EGFR) pathway in brain microvascular endothelial cells (bEnd.3 cells). Methods The expression of COX-2 induced by ET-1 was evaluated by Western blotting and RT-PCR analysis. The COX-2 regulatory signaling pathways were investigated by pretreatment with pharmacological inhibitors, short hairpin RNA (shRNA) or small interfering RNA (siRNA) transfection, chromatin immunoprecipitation (ChIP), and promoter activity reporter assays. Finally, we determined the PGE2 level as a marker of functional activity of COX-2 expression. Results First, the data showed that ET-1-induced COX-2 expression was mediated through a c-Src-dependent transactivation of EGFR/PI3K/Akt cascade. Next, we demonstrated that ET-1 stimulated activation (phosphorylation) of c-Src/EGFR/Akt/MAPKs (ERK1/2, p38 MAPK, and JNK1/2) and then activated the c-Jun/activator protein 1 (AP-1) via Gq/i protein-coupled ETB receptors. The activated c-Jun/AP-1 bound to its corresponding binding sites within COX-2 promoter, thereby turning on COX-2 gene transcription. Ultimately, upregulation of COX-2 by ET-1 promoted PGE2 biosynthesis and release in bEnd.3 cells. Conclusions These results demonstrate that in bEnd.3 cells, c-Src-dependent transactivation of EGFR/PI3K/Akt and MAPKs linking to c-Jun/AP-1 cascade is essential for ET-1-induced COX-2 upregulation. Understanding the mechanisms of COX-2 expression and PGE2 release regulated by ET-1/ETB system on brain microvascular endothelial cells may provide rational therapeutic interventions for brain injury and inflammatory diseases.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Liu JF, Hou SM, Tsai CH, Huang CY, Yang WH, Tang CH. Thrombin induces heme oxygenase-1 expression in human synovial fibroblasts through protease-activated receptor signaling pathways. Arthritis Res Ther 2012; 14:R91. [PMID: 22541814 PMCID: PMC3446465 DOI: 10.1186/ar3815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/15/2012] [Accepted: 04/27/2012] [Indexed: 12/16/2022] Open
Abstract
Introduction Thrombin is a key factor in the stimulation of fibrin deposition, angiogenesis, and proinflammatory processes. Abnormalities in these processes are primary features of osteoarthritis (OA). Heme oxygenase (HO)-1 is a stress-inducible rate-limiting enzyme in heme degradation that confers cytoprotection against oxidative injury. Here, we investigated the intracellular signaling pathways involved in thrombin-induced HO-1 expression in human synovial fibroblasts (SFs). Methods Thrombin-mediated HO-1 expression was assessed with quantitative real-time (q)PCR. The mechanisms of action of thrombin in different signaling pathways were studied by using Western blotting. Knockdown of protease-activated receptor (PAR) proteins was achieved by transfection with siRNA. Chromatin immunoprecipitation assays were used to study in vivo binding of Nrf2 to the HO-1 promoter. Transient transfection was used to examine HO-1 activity. Results Osteoarthritis synovial fibroblasts (OASFs) showed significant expression of thrombin, and expression was higher than in normal SFs. OASFs stimulation with thrombin induced concentration- and time-dependent increases in HO-1 expression. Pharmacologic inhibitors or activators and genetic inhibition by siRNA of protease-activated receptors (PARs) revealed that the PAR1 and PAR3 receptors, but not the PAR4 receptor, are involved in thrombin-mediated upregulation of HO-1. Thrombin-mediated HO-1 expression was attenuated by thrombin inhibitor (PPACK), PKCδ inhibitor (rottlerin), or c-Src inhibitor (PP2). Stimulation of cells with thrombin increased PKCδ, c-Src, and Nrf2 activation. Conclusion Our results suggest that the interaction between thrombin and PAR1/PAR3 increases HO-1 expression in human synovial fibroblasts through the PKCδ, c-Src, and Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, 95 Wen Chang Road, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
41
|
Lin CC, Lin WN, Cheng SE, Tung WH, Wang HH, Yang CM. Transactivation of EGFR/PI3K/Akt involved in ATP-induced inflammatory protein expression and cell motility. J Cell Physiol 2012; 227:1628-38. [PMID: 21678415 DOI: 10.1002/jcp.22880] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phenotype transition of vascular smooth muscle cells (VSMCs) is important in vascular diseases, such as atherosclerosis and restenosis. Once released, ATP may promote activation of VSMCs by stimulating cyclooxygenase-2 (COX-2), cytosolic phospholipase A(2) (cPLA(2)) expression and prostaglandin (PG)E(2) synthesis via activation of MAPKs and NF-κB. However, whether alternative signaling pathways participated in regulating COX-2 and cPLA(2) expression associated with cell migration were investigated in rat VSMCs. Western blot analysis, RT-PCR, promoter assay and PGE(2) ELISA were used to determine expression of COX-2, cPLA(2) and PGE(2). Specific inhibitors and siRNAs against various protein kinases or transcription factors were used to investigate the related signaling components in inflammatory protein induction by ATPγS. We found that ATPγS-induced COX-2 and cPLA(2) expression and PGE(2) release was attenuated by the pharmacological inhibitors or transfection with siRNA against PKCδ, c-Src, EGFR, PI3-K, Akt, p44/p42 MAPK or Elk-1. Moreover, ATPγS-stimulated phosphorylation of PKCδ, c-Src, EGFR, Akt, p42/p44 MAPK and Elk-1, suggesting the participation of PKCδ/c-Src/EGFR/PI3-K/Akt/p42/p44 MAPK cascade in mediating Elk-1 activities in VSMCs. In addition, migration assay revealed that ATPγS promoted cell mobility through up-regulation of COX-2 and cPLA(2) expression and PGE(2) release, which was attenuated by pretreatment with PGE(2) receptor antagonists. Taken together, these data showed that ATPγS up-regulated the expression of COX-2 and cPLA(2) through transactivation of PKCδ/c-Src/EGFR/PI3K/Akt/Elk-1 pathway. Newly synthesized PGE(2) acted on its receptors to promote cell motility of ATPγS-stimulated VSMCs.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Chen CJ, Ou YC, Chang CY, Pan HC, Lin SY, Liao SL, Raung SL, Chen SY, Chang CJ. Src signaling involvement in Japanese encephalitis virus-induced cytokine production in microglia. Neurochem Int 2011; 58:924-933. [PMID: 21354239 DOI: 10.1016/j.neuint.2011.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 01/23/2023]
Abstract
Numerous studies have demonstrated that the disease pathogenesis of Japanese encephalitis involves cytokine-mediated bystander damage. The mechanisms involved in the regulation of Japanese encephalitis virus (JEV)-induced cytokine expression are not well defined but rely mainly on the tight regulation of transcription factor NF-κB. The Src-family tyrosine kinases participate in diversity of cellular signaling and have been demonstrated in JEV-infected cells. A direct link leading from Src activation to NF-κB activation in JEV-induced cytokine expression is incompletely understood. Here, we report that Src-related Ras/Raf/extracellular signal-regulated kinase (ERK) cascades participate in NF-κB activation and consequent tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) expression in JEV-infected microglia. Central microglia were capable of producing TNF-α and IL-1β after JEV infection. However, JEV infection had a negligible effect on triggering TNF-α and IL-1β production by neurons and astrocytes. The expression of TNF-α and IL-1β caused by JEV was accompanied by increased Src phosphorylation, Ras membrane association, Raf serine-338 as well as tyrosine-340 phosphorylation, ERK phosphorylation, NF-κB DNA binding activity, and decreased Raf serine-259 phosphorylation. Pharmacological studies revealed that the integrity of lipid raft and the activation of Src, Ras, Raf, ERK, and NF-κB all contributed to JEV-induced TNF-α and IL-1β expression. Pharmacological and biochemical studies further suggested that Src, upon activation, might transmit signals to the Raf/ERK cascades via Ras-dependent and -independent mechanisms that in turn might lead to NF-κB activation. Overall, our results show that the lipid raft might play a role in mediating JEV-initiated Src/Ras/Raf/ERK/NF-κB signaling and TNF-α/IL-1β expression in microglia.
Collapse
Affiliation(s)
- Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Schreier B, Döhler M, Rabe S, Schneider B, Schwerdt G, Ruhs S, Sibilia M, Gotthardt M, Gekle M, Grossmann C. Consequences of epidermal growth factor receptor (ErbB1) loss for vascular smooth muscle cells from mice with targeted deletion of ErbB1. Arterioscler Thromb Vasc Biol 2011; 31:1643-52. [PMID: 21512163 DOI: 10.1161/atvbaha.111.223537] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Pathophysiological effects of the epidermal growth factor receptor (EGFR or ErbB1) include vascular remodeling. EGFR transactivation is proposed to contribute significantly to heterologous signaling and remodeling in vascular smooth muscle cells (VSMC). METHODS AND RESULTS We investigated the importance of EGFR in primary VSMC from aorta of mice with targeted deletion of the EGFR (EGFR(Δ/Δ VSMC)→VSMC(EGFR-/-) and EGFR(Δ/+ VSMC)→VSMC(EGFR+/-)) and the respective littermate controls (EGFR(+/+ VSMC)→VSMC(EGFR+/+)) with respect to survival, pentose phosphate pathway activity, matrix homeostasis, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and Ca(2+) homeostasis. In VSMC(EGFR-/-), epidermal growth factor-induced signaling was abolished; VSMC(EGFR+/-) showed an intermediate phenotype. EGFR deletion enhanced spontaneous cell death, reduced pentose phosphate pathway activity, disturbed cellular matrix homeostasis (collagen III and fibronectin), and abolished epidermal growth factor sensitivity. In VSMC(EGFR-/-) endothelin-1- or α(1)-adrenoceptor-induced ERK1/2 phosphorylation and the fraction of Ca(2+) responders were significantly reduced, whereas responsive cells showed a significantly stronger Ca(2+) signal. Oxidative stress (H(2)O(2)) induced ERK1/2 activation in VSMC(EGFR+/+) and VSMC(EGFR+/-) but not in VSMC(EGFR-/-). The Ca(2+) signal was enhanced in VSMC(EGFR-/-), similar to purinergic stimulation by ATP. CONCLUSIONS In conclusion, EGFR was found to be important for basal VSMC homeostasis and ERK1/2 activation by the tested G-protein-coupled receptors or radical stress. Ca(2+) signaling was modulated by EGFR differentially with respect to the fraction of responders and magnitude of the signal. Thus, EGFR seems to be Janus-faced for VSMC biology.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kitz K, Windischhofer W, Leis HJ, Huber E, Kollroser M, Malle E. 15-Deoxy-Δ12,14-prostaglandin J2 induces Cox-2 expression in human osteosarcoma cells through MAPK and EGFR activation involving reactive oxygen species. Free Radic Biol Med 2011; 50:854-65. [PMID: 21236332 DOI: 10.1016/j.freeradbiomed.2010.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/14/2010] [Accepted: 12/31/2010] [Indexed: 11/25/2022]
Abstract
Prostaglandins (PGs), important modulators in bone biology, may also contribute to tumor formation and progression in human osteosarcoma. 15-Deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)), a metabolite of PGD(2) and PPARγ-ligand, exerts a panel of biological activities via receptor-dependent and -independent mechanisms. As inducible cyclooxygenase-2 (Cox-2) is a candidate inflammatory marker in human osteosarcoma and a rate-limiting enzyme in PG biosynthesis, this study aimed at investigating intracellular redox status and signaling cascades leading to Cox-2 induction in human MG-63 osteosarcoma cells. 15d-PGJ(2) induced the accumulation of reactive oxygen species (ROS) that in turn may lead to upregulation of Cox-2 via two different routes in a PPARγ-independent manner. First, phosphorylation of p38 MAPK directly enhances Cox-2 expression by promoting mRNA stability. Second, 15d-PGJ(2) induces activation of epidermal growth factor receptors and downstream activation of Cox-2 via phosphorylation of p42/44 MAPK. Glutathione precursor molecules reversed enhanced ROS levels and Cox-2 expression. Functional activity of Cox-2 expression was tested by measurement of PGE(2) and PGF(2α). The synthetic compound 9,10-dihydro-15d-PGJ(2) lacking the α,β-unsaturated carbonyl group in the cyclopentenone ring did not exhibit the cellular responses observed with 15d-PGJ(2). We conclude that the electrophilic carbon atom of 15d-PGJ(2) is responsible for alterations in intracellular redox status and Cox-2 expression.
Collapse
Affiliation(s)
- Kerstin Kitz
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, A-8036 Graz, Austria
| | | | | | | | | | | |
Collapse
|
45
|
Epstein-Barr virus LMP1 activates EGFR, STAT3, and ERK through effects on PKCdelta. J Virol 2011; 85:4399-408. [PMID: 21307189 DOI: 10.1128/jvi.01703-10] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that infects more than 90% of the world's adult population and is linked to multiple malignancies, including Burkitt lymphoma, Hodgkin disease, and nasopharyngeal carcinoma (NPC). The EBV oncoprotein LMP1 induces transcription of the epidermal growth factor receptor (EGFR), which is expressed at high levels in NPC. EGFR transcription is induced by LMP1 through a p50 NFκB1-Bcl-3 complex, and Bcl-3 is induced by LMP1-mediated activation of STAT3. This study reveals that LMP1, through its carboxyl-terminal activation domain 1 (LMP1-CTAR1), activates both STAT3 and EGFR in a serum-independent manner with constitutive serine phosphorylation of STAT3. Upon treatment with EGF, the LMP1-CTAR1-induced EGFR was additionally phosphorylated and STAT3 became phosphorylated on tyrosine, concomitant with upregulation of a subset of STAT3 target genes. The kinase responsible for LMP1-CTAR1-mediated serine phosphorylation of STAT3 was identified to be PKCδ using specific RNAi, a dominant negative PKCδ, and the PKCδ inhibitor rottlerin. Interestingly, inhibition of PKCδ also inhibited constitutive phosphorylation of EGFR and LMP1-CTAR1-induced phosphorylation of ERK. Inhibition of PKCδ blocked LMP1-CTAR1-mediated transformation of Rat-1 cells, likely through the inhibition of ERK activation. These findings indicate that LMP1 activates multiple distinct signaling pathways and suggest that PKCδ functions as a master regulator of EGFR, STAT3, and ERK activation by LMP1-CTAR1.
Collapse
|
46
|
Tang CH, Hsu CJ, Fong YC. The CCL5/CCR5 axis promotes interleukin-6 production in human synovial fibroblasts. ACTA ACUST UNITED AC 2010; 62:3615-24. [DOI: 10.1002/art.27755] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Chang WC, Chang CC, Wang YS, Wang YS, Weng WT, Yoshioka T, Juo SHH. Involvement of the epidermal growth factor receptor in Pb²+-induced activation of cPLA₂/COX-2 genes and PGE₂ production in vascular smooth muscle cells. Toxicology 2010; 279:45-53. [PMID: 20850495 DOI: 10.1016/j.tox.2010.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 01/18/2023]
Abstract
Lead (Pb²+) is one of the most common heavy metal pollutants, which can cause chronic cardiovascular diseases. To clarify the mechanism by which Pb²+ induces inflammatory reactions, we examined the expression of inflammatory genes including encoding cyclooxygenase-2 (COX-2), cytosolic phospholipase A₂ (cPLA₂), and their down stream product prostaglandin E₂ (PGE₂) in CRL1999 cells that is a vascular smooth muscle cell line from human aorta. The expression of COX-2/cPLA₂ genes and PGE₂ secretion was increased markedly after cells were exposed to 1 μM Pb²+. PD098059, a MEK inhibitor, suppressed Pb²+-mediated inflammatory reactions; this indicates the involvement of the phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). Furthermore, Pb²+-induced activation of the COX-2/cPLA₂ genes was inhibited by both epidermal growth factor receptor (EGFR) inhibitors (AG1478 and PD153035) and EGFR siRNA. Short-term stimulation with Pb²+ induced EGFR phosphorylation at the Tyr residue (position, 1173). Importantly, overexpression of EGFR resulted in a significant potentiation effect on Pb²+-induced gene expression. Taken together, our results indicate that 1 μM Pb²+ can induce PGE₂ secretion by upregulating the transcription of COX-2/cPLA₂ genes. EGFR is the key target in the plasma membrane responsible for transmitting Pb²+ signals in order to trigger downstream inflammatory cascades.
Collapse
Affiliation(s)
- Wei-Chiao Chang
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Lo HM, Chen CL, Tsai YJ, Wu PH, Wu WB. Thrombin induces cyclooxygenase-2 expression and prostaglandin E2 release via PAR1 activation and ERK1/2- and p38 MAPK-dependent pathway in murine macrophages. J Cell Biochem 2010; 108:1143-52. [PMID: 19739103 DOI: 10.1002/jcb.22341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thrombin levels increase at sites of vascular injury and during acute coronary syndromes. It is also increased several fold by sepsis with a reciprocal decrease in the anti-thrombin III levels. In this study we investigate the effects of thrombin on the induction of cyclooxygenase-2 (COX-2) and prostaglandin (PG) production in macrophages. Thrombin-induced COX-2 protein and mRNA expression in RAW264.7 and primary cultured peritoneal macrophages. A serine proteinase, trypsin, also exerted a similar effect. The inducing effect by thrombin in macrophages was not affected by a lipopolysaccharide (LPS)-binding antibiotic, polymyxin B, excluding the possibility of LPS contamination. The increase of COX-2 expression by thrombin was functionally linked to release of PGE(2) and PGI(2) but not thromboxane A(2) into macrophage culture medium. Thrombin-induced COX-2 expression and PGE(2) production were significantly attenuated by PD98059 and SB202190 but not by SP600125, suggesting that ERK1/2 and p38 MAPK activation were involved in this process. This was supported by the observation that thrombin could directly activate ERK1/2 and p38 MAPK in macrophages. A further analysis indicated that the proteinase-activated receptor 1 (PAR1)-activating agonist induced effects similar to those induced by thrombin in macrophages and the PAR1 antagonist-SCH79797 could attenuate thrombin-induced COX-2 expression and PGE(2) release. Taken together, we provided evidence demonstrating that thrombin can induce COX-2 mRNA and protein expression and PGE(2) production in macrophages through PAR1 activation and ERK1/2 and p38 MAPK-dependent pathway. The results presented here may explain, at least in part, the possible contribution of thrombin and macrophages in these pathological conditions.
Collapse
Affiliation(s)
- Huey-Ming Lo
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
49
|
Yang SF, Chen MK, Hsieh YS, Chung TT, Hsieh YH, Lin CW, Su JL, Tsai MH, Tang CH. Prostaglandin E2/EP1 signaling pathway enhances intercellular adhesion molecule 1 (ICAM-1) expression and cell motility in oral cancer cells. J Biol Chem 2010; 285:29808-16. [PMID: 20647315 DOI: 10.1074/jbc.m110.108183] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma has a striking tendency to migrate and metastasize. Cyclooxygenase (COX)-2, the inducible isoform of prostaglandin (PG) synthase, has been implicated in tumor metastasis. However, the effects of COX-2 on human oral cancer cells are largely unknown. We found that overexpression of COX-2 or exogenous PGE(2) increased migration and intercellular adhesion molecule 1 (ICAM)-1 expression in human oral cancer cells. Using pharmacological inhibitors, activators, and genetic inhibition of EP receptors, we discovered that the EP1 receptor, but not other PGE receptors, is involved in PGE(2)-mediated cell migration and ICAM-1 expression. PGE(2)-mediated migration and ICAM-1 up-regulation were attenuated by inhibitors of protein kinase C (PKC)δ, and c-Src. Activation of the PKCδ, c-Src, and AP-1 signaling pathway occurred after PGE(2) treatment. PGE(2)-induced expression of ICAM-1 and migration activity were inhibited by a specific inhibitor, siRNA, and mutants of PKCδ, c-Src, and AP-1. In addition, migration-prone sublines demonstrated that cells with increased migration ability had higher expression of COX-2 and ICAM-1. Taken together, these results indicate that the PGE(2) and EP1 interaction enhanced migration of oral cancer cells through an increase in ICAM-1 production.
Collapse
Affiliation(s)
- Shun-Fa Yang
- From the Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Seo M, Juhnn YS. Gq protein mediates UVB-induced cyclooxygenase-2 expression by stimulating HB-EGF secretion from HaCaT human keratinocytes. Biochem Biophys Res Commun 2010; 393:190-5. [PMID: 20117092 DOI: 10.1016/j.bbrc.2010.01.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/20/2010] [Indexed: 12/19/2022]
Abstract
Ultraviolet (UV) radiation induces cyclooxygenase-2 expression to produce cellular responses including aging and carcinogenesis in skin. We hypothesised that heterotrimeric G proteins mediate UV-induced COX-2 expression by stimulating secretion of soluble HB-EGF (sHB-EGF). In this study, we aimed to elucidate the role and underlying mechanism of the alpha subunit of Gq protein (Galphaq) in UVB-induced HB-EGF secretion and COX-2 induction. We found that expression of constitutively active Galphaq (GalphaqQL) augmented UVB-induced HB-EGF secretion, which was abolished by knockdown of Galphaq with shRNA in HaCaT human keratinocytes. Galphaq was found to mediate the UVB-induced HB-EGF secretion by sequential activation of phospholipase C (PLC), protein kinase Cdelta (PKCdelta), and matrix metaloprotease-2 (MMP-2). Moreover, GalphaqQL mediated UVB-induced COX-2 expression in an HB-EGF-, EGFR-, and p38-dependent manner. From these results, we concluded that Galphaq mediates UV-induced COX-2 expression through activation of EGFR by HB-EGF, of which ectodomain shedding was stimulated through sequential activation of PLC, PKCdelta and MMP-2 in HaCaT cells.
Collapse
Affiliation(s)
- MiRan Seo
- Department of Biochemistry and Molecular Biology and Cancer Research Institute, Seoul National University College of Medicine, Republic of Korea
| | | |
Collapse
|