1
|
Dabsan S, Zur G, Abu-Freha N, Sofer S, Grossman-Haham I, Gilad A, Igbaria A. Cytosolic and endoplasmic reticulum chaperones inhibit wt-p53 to increase cancer cells' survival by refluxing ER-proteins to the cytosol. eLife 2025; 14:e102658. [PMID: 40202782 PMCID: PMC11981610 DOI: 10.7554/elife.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025] Open
Abstract
The endoplasmic reticulum (ER) is an essential sensing organelle responsible for the folding and secretion of almost one-third of eukaryotic cells' total proteins. However, environmental, chemical, and genetic insults often lead to protein misfolding in the ER, accumulating misfolded proteins, and causing ER stress. To solve this, several mechanisms were reported to relieve ER stress by decreasing the ER protein load. Recently, we reported a novel ER surveillance mechanism by which proteins from the secretory pathway are refluxed to the cytosol to relieve the ER of its content. The refluxed proteins gain new prosurvival functions in cancer cells, thereby increasing cancer cell fitness. We termed this phenomenon ER to CYtosol Signaling (or 'ERCYS'). Here, we found that in mammalian cells, ERCYS is regulated by DNAJB12, DNAJB14, and the HSC70 cochaperone SGTA. Mechanistically, DNAJB12 and DNAJB14 bind HSC70 and SGTA - through their cytosolically localized J-domains to facilitate ER-protein reflux. DNAJB12 is necessary and sufficient to drive this phenomenon to increase AGR2 reflux and inhibit wt-p53 during ER stress. Mutations in DNAJB12/14 J-domain prevent the inhibitory interaction between AGR2-wt-p53. Thus, targeting the DNAJB12/14-HSC70/SGTA axis is a promising strategy to inhibit ERCYS and impair cancer cell fitness.
Collapse
Affiliation(s)
- Salam Dabsan
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Gali Zur
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Naim Abu-Freha
- Institute of Gastroenterology and Liver Diseases, Soroka Medical Center, Faculty of Health Sciences, Ben Gurion University of the NegevBeer ShevaIsrael
| | - Shahar Sofer
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Iris Grossman-Haham
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Ayelet Gilad
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Aeid Igbaria
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
2
|
Yamamoto Y, Sakisaka T. ADP ribosylation factor-like GTPase 6-interacting protein 5 (Arl6IP5) is an ER membrane-shaping protein that modulates ER-phagy. J Biol Chem 2025; 301:108493. [PMID: 40209949 DOI: 10.1016/j.jbc.2025.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
The endoplasmic reticulum (ER) is the membrane-bound organelle characterized by the reticular network of tubules. It is well established that the ER tubules are shaped by ER membrane proteins containing the conserved reticulon-homology domain (RHD). Membrane shaping by the RHD-containing proteins is also involved in the regulation of ER-phagy, selective autophagy of the ER. However, it remains unclear whether there exists ER membrane-shaping proteins other than the RHD-containing proteins. In this study, we characterize Arl6IP5, an ER membrane protein containing the conserved PRA1 domain, as an ER membrane-shaping protein. Upon overexpression, Arl6IP5 induces the extensive network of the ER tubules and constricts the ER membrane as judged by exclusion of a luminal ER enzyme from the ER tubules. The membrane constriction by Arl6IP5 allows the cells to maintain the tubular ER network in the absence of microtubules. siRNA-mediated knockdown of Arl6IP5 impairs the ER morphology, and the phenotype of the Arl6IP5 knockdown cells is rescued by exogenous expression of Arl6IP1, an RHD-containing protein. Furthermore, exogenous expression of Arl6IP5 rescues the phenotype of Arl6IP1 knockdown cells, and the PRA1 domain is sufficient to rescue it. Upon disruption of the possible short hairpin structures of the PRA1 domain, Arl6IP5 abolishes membrane constriction. The siRNA-mediated knockdown of Arl6IP5 impairs flux of the ER-phagy mediated by FAM134B. These results indicate that Arl6IP5 acts as an ER membrane-shaping protein involved in the regulation of ER-phagy, implying that the PRA1 domain may serve as a general membrane-shaping unit other than the RHD.
Collapse
Affiliation(s)
- Yasunori Yamamoto
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan.
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Falahati H, Wu Y, Fang M, De Camilli P. Ectopic reconstitution of a spine-apparatus-like structure provides insight into mechanisms underlying its formation. Curr Biol 2025; 35:265-276.e4. [PMID: 39626668 PMCID: PMC11753949 DOI: 10.1016/j.cub.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024]
Abstract
The endoplasmic reticulum (ER) is a continuous cellular endomembrane network that displays focal specializations. Most notable examples of such specializations include the spine apparatus of neuronal dendrites and the cisternal organelle of axonal initial segments. Both organelles exhibit stacks of smooth ER sheets with a narrow lumen, interconnected by a dense protein matrix. The actin-binding protein synaptopodin is required for their formation, but the underlying mechanisms remain unknown. Here, we report that the spine apparatus and synaptopodin are conserved from flies to mammals and that a highly conserved region of this protein is necessary, but not sufficient, for its association with ER. We reveal a dual role of synaptopodin in generating actin bundles and in linking them to the ER. Expression of a synaptopodin construct constitutively anchored to the ER in non-neuronal cells is sufficient to generate stacked ER cisterns resembling the spine apparatus. Cisterns within these stacks are molecularly distinct from the surrounding ER and are connected to each other by an actin-based matrix that contains proteins also found at the spine apparatus of neuronal spines. Our findings shed light on mechanisms governing the biogenesis of this peculiar structure and represent a step toward understanding the elusive properties of this organelle.
Collapse
Affiliation(s)
- Hanieh Falahati
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yumei Wu
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mumu Fang
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA
| | - Pietro De Camilli
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
4
|
Amarakoon D, Lee WJ, Peng J, Lee SH. Identification of Translocon-associated Protein Delta as An Oncogene in Human Colorectal Cancer Cells. J Cancer Prev 2024; 29:175-184. [PMID: 39790222 PMCID: PMC11706732 DOI: 10.15430/jcp.24.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 01/12/2025] Open
Abstract
Identifying the roles of genes in cancer is critical in discovering potential genetic therapies for cancer care. Translocon-associated protein delta (TRAPδ), also known as signal sequence receptor 4 (SSR4), is a constituent unit in the TRAP/SSR complex that resides in the endoplasmic reticulum and plays a key role in transporting newly synthesized proteins into the endoplasmic reticulumn. However, its biological role in disease development remains unknown to date. This is the first study to identify the role of TRAPδ/SSR4 in colorectal cancer cells in vitro. Upon successful transient knockdown of TRAPδ/SSR4, we observed significant reduction of cell viability in all colorectal cancer cell lines tested. Both HCT 116 and SW480 cell lines were significantly arrested at S and G1 phases, while DLD-1 cells were significantly apoptotic. Moreover, TRAPδ/SSR4 stable knockdown HCT 116 and SW480 cells showed significantly lower viability, anchorage-independent growth, and increased S and G1 phase arrests. Overall, we conclude TRAPδ/SSR4 is a potential oncogene in human colorectal cancer cells.
Collapse
Affiliation(s)
- Darshika Amarakoon
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Wu-Joo Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Jing Peng
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| |
Collapse
|
5
|
Devakinandan GVS, Terasaki M, Dani A. Single-cell transcriptomics of vomeronasal neuroepithelium reveals a differential endoplasmic reticulum environment amongst neuronal subtypes. eLife 2024; 13:RP98250. [PMID: 39670989 PMCID: PMC11643622 DOI: 10.7554/elife.98250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium. Our analysis reveals diverse cell types with gene expression patterns specific to each, which we made available as a searchable web resource accessed from https://www.scvnoexplorer.com. Pseudo-time developmental analysis indicates that neurons originating from common progenitors diverge in their gene expression during maturation with transient and persistent transcription factor expression at critical branch points. Comparative analysis across two of the major neuronal subtypes that express divergent GPCR families and the G-protein subunits Gnai2 or Gnao1, reveals significantly higher expression of endoplasmic reticulum (ER) associated genes within Gnao1 neurons. In addition, differences in ER content and prevalence of cubic membrane ER ultrastructure revealed by electron microscopy, indicate fundamental differences in ER function.
Collapse
Affiliation(s)
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health CenterFarmingtonUnited States
| | - Adish Dani
- Tata Institute of Fundamental ResearchHyderabadIndia
| |
Collapse
|
6
|
Teixeira V, Singh K, Gama JB, Celestino R, Carvalho AX, Pereira P, Abreu CM, Dantas TJ, Carter AP, Gassmann R. CDR2 is a dynein adaptor recruited by kinectin to regulate ER sheet organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622207. [PMID: 39574738 PMCID: PMC11580933 DOI: 10.1101/2024.11.06.622207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The endoplasmic reticulum (ER) relies on the microtubule cytoskeleton for distribution and remodelling of its extended membrane network, but how microtubule-based motors contribute to ER organization remains unclear. Using biochemical and cell-based assays, we identify cerebellar degeneration-related protein 2 (CDR2) and its paralog CDR2-like (CDR2L), onconeural antigens with poorly understood functions, as ER adaptors for cytoplasmic dynein-1 (dynein). We demonstrate that CDR2 is recruited by the integral ER membrane protein kinectin (KTN1) and that double knockout of CDR2 and CDR2L enhances KTN1-dependent ER sheet stacking, reversal of which by exogenous CDR2 requires its dynein-binding CC1 box motif. Exogenous CDR2 expression additionally promotes CC1 box-dependent clustering of ER sheets near centrosomes. CDR2 competes with the eEF1Bβ subunit of translation elongation factor 1 for binding to KTN1, and eEF1Bβ knockdown increases endogenous CDR2 levels on ER sheets, inducing their centrosome-proximal clustering. Our study describes a novel molecular pathway that implicates dynein in ER sheet organization and may be involved in the pathogenesis of paraneoplastic cerebellar degeneration.
Collapse
Affiliation(s)
- Vanessa Teixeira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Kashish Singh
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - José B. Gama
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Ricardo Celestino
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Ana Xavier Carvalho
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Paulo Pereira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Carla M.C. Abreu
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Tiago J. Dantas
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | | | - Reto Gassmann
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| |
Collapse
|
7
|
Baker C, Willis A, Milestone W, Baker M, Garner AL, Joshi RP. Numerical assessments of geometry, proximity and multi-electrode effects on electroporation in mitochondria and the endoplasmic reticulum to nanosecond electric pulses. Sci Rep 2024; 14:23854. [PMID: 39394381 PMCID: PMC11470013 DOI: 10.1038/s41598-024-74659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
Most simulations of electric field driven bioeffects have considered spherical cellular geometries or probed symmetrical structures for simplicity. This work assesses cellular transmembrane potential build-up and electroporation in a Jurkat cell that includes the endoplasmic reticulum (ER) and mitochondria, both of which have complex shapes, in response to external nanosecond electric pulses. The simulations are based on a time-domain nodal analysis that incorporates membrane poration utilizing the Smoluchowski model with angular-dependent changes in membrane conductivity. Consistent with prior experimental reports, the simulations show that the ER requires the largest electric field for electroporation, while the inner mitochondrial membrane (IMM) is the easiest membrane to porate. Our results suggest that the experimentally observed increase in intracellular calcium could be due to a calcium induced calcium release (CICR) process that is initiated by outer cell membrane breakdown. Repeated pulsing and/or using multiple electrodes are shown to create a stronger poration. The role of mutual coupling, screening, and proximity effects in bringing about electric field modifications is also probed. Finally, while including greater geometric details might refine predictions, the qualitative trends are expected to remain.
Collapse
Affiliation(s)
- C Baker
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - A Willis
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
- Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - W Milestone
- Nanohmics, Inc, 6201 E Oltorf St, Austin, TX, 78717, USA
| | - M Baker
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - A L Garner
- School of Nuclear Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Elmore Family School of Electrical and Computer Engineering, West Lafayette, IN, 47907, USA
| | - R P Joshi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
8
|
Chen S, Sun Y, Qin Y, Yang L, Hao Z, Xu Z, Björklund M, Liu W, Hong Z. Dynamic interaction of REEP5-MFN1/2 enables mitochondrial hitchhiking on tubular ER. J Cell Biol 2024; 223:e202304031. [PMID: 39133213 PMCID: PMC11318672 DOI: 10.1083/jcb.202304031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 02/15/2024] [Accepted: 06/12/2024] [Indexed: 08/13/2024] Open
Abstract
Mitochondrial functions can be regulated by membrane contact sites with the endoplasmic reticulum (ER). These mitochondria-ER contact sites (MERCs) are functionally heterogeneous and maintained by various tethers. Here, we found that REEP5, an ER tubule-shaping protein, interacts with Mitofusins 1/2 to mediate mitochondrial distribution throughout the cytosol by a new transport mechanism, mitochondrial "hitchhiking" with tubular ER on microtubules. REEP5 depletion led to reduced tethering and increased perinuclear localization of mitochondria. Conversely, increasing REEP5 expression facilitated mitochondrial distribution throughout the cytoplasm. Rapamycin-induced irreversible REEP5-MFN1/2 interaction led to mitochondrial hyperfusion, implying that the dynamic release of mitochondria from tethering is necessary for normal mitochondrial distribution and dynamics. Functionally, disruption of MFN2-REEP5 interaction dynamics by forced dimerization or silencing REEP5 modulated the production of mitochondrial reactive oxygen species (ROS). Overall, our results indicate that dynamic REEP5-MFN1/2 interaction mediates cytosolic distribution and connectivity of the mitochondrial network by "hitchhiking" and this process regulates mitochondrial ROS, which is vital for multiple physiological functions.
Collapse
Affiliation(s)
- Shue Chen
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
- Centre for Cellular Biology and Signaling, Zhejiang University-University of Edinburgh Institute, Haining, China
- Nuclear Organization and Gene Expression Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yang Sun
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
- Centre for Cellular Biology and Signaling, Zhejiang University-University of Edinburgh Institute, Haining, China
| | - Yuling Qin
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
- Centre for Cellular Biology and Signaling, Zhejiang University-University of Edinburgh Institute, Haining, China
| | - Lan Yang
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
- Centre for Cellular Biology and Signaling, Zhejiang University-University of Edinburgh Institute, Haining, China
| | - Zhenhua Hao
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhihao Xu
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
- Centre for Cellular Biology and Signaling, Zhejiang University-University of Edinburgh Institute, Haining, China
| | - Mikael Björklund
- Centre for Cellular Biology and Signaling, Zhejiang University-University of Edinburgh Institute, Haining, China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Wei Liu
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Zhi Hong
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
- Centre for Cellular Biology and Signaling, Zhejiang University-University of Edinburgh Institute, Haining, China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Raby A, Missiroli S, Sanatine P, Langui D, Pansiot J, Beaude N, Vezzana L, Saleh R, Marinello M, Laforge M, Pinton P, Buj-Bello A, Burgo A. Spastin regulates ER-mitochondrial contact sites and mitochondrial homeostasis. iScience 2024; 27:110683. [PMID: 39252960 PMCID: PMC11382127 DOI: 10.1016/j.isci.2024.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) emerged to play critical roles in numerous cellular processes, and their dysregulation has been associated to neurodegenerative disorders. Mutations in the SPG4 gene coding for spastin are among the main causes of hereditary spastic paraplegia (HSP). Spastin binds and severs microtubules, and the long isoform of this protein, namely M1, spans the outer leaflet of ER membrane where it interacts with other ER-HSP proteins. Here, we showed that overexpressed M1 spastin localizes in ER-mitochondria intersections and that endogenous spastin accumulates in MERCs. We demonstrated in different cellular models that downregulation of spastin enhances the number of MERCs, alters mitochondrial morphology, and impairs ER and mitochondrial calcium homeostasis. These effects are associated with reduced mitochondrial membrane potential, oxygen species levels, and oxidative metabolism. These findings extend our knowledge on the role of spastin in the ER and suggest MERCs deregulation as potential causes of SPG4-HSP disease.
Collapse
Affiliation(s)
- Amelie Raby
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | | | - Dominique Langui
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Julien Pansiot
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Nissai Beaude
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Lucie Vezzana
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Rachelle Saleh
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Martina Marinello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Mireille Laforge
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Ana Buj-Bello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Andrea Burgo
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| |
Collapse
|
10
|
Song Y, Zhao Z, Xu L, Huang P, Gao J, Li J, Wang X, Zhou Y, Wang J, Zhao W, Wang L, Zheng C, Gao B, Jiang L, Liu K, Guo Y, Yao X, Duan L. Using an ER-specific optogenetic mechanostimulator to understand the mechanosensitivity of the endoplasmic reticulum. Dev Cell 2024; 59:1396-1409.e5. [PMID: 38569547 DOI: 10.1016/j.devcel.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The ability of cells to perceive and respond to mechanical cues is essential for numerous biological activities. Emerging evidence indicates important contributions of organelles to cellular mechanosensitivity and mechanotransduction. However, whether and how the endoplasmic reticulum (ER) senses and reacts to mechanical forces remains elusive. To fill the knowledge gap, after developing a light-inducible ER-specific mechanostimulator (LIMER), we identify that mechanostimulation of ER elicits a transient, rapid efflux of Ca2+ from ER in monkey kidney COS-7 cells, which is dependent on the cation channels transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and polycystin-2 (PKD2) in an additive manner. This ER Ca2+ release can be repeatedly stimulated and tuned by varying the intensity and duration of force application. Moreover, ER-specific mechanostimulation inhibits ER-to-Golgi trafficking. Sustained mechanostimuli increase the levels of binding-immunoglobulin protein (BiP) expression and phosphorylated eIF2α, two markers for ER stress. Our results provide direct evidence for ER mechanosensitivity and tight mechanoregulation of ER functions, placing ER as an important player on the intricate map of cellular mechanotransduction.
Collapse
Affiliation(s)
- Yutong Song
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Zhihao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Linyu Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Peiyuan Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Jingxuan Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Xuejie Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Yiren Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Jinhui Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaogu Zheng
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR 999077, China
| | - Bo Gao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Kai Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Yusong Guo
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China.
| |
Collapse
|
11
|
Falahati H, Wu Y, De Camilli P. Ectopic Reconstitution of a Spine-Apparatus Like Structure Provides Insight into Mechanisms Underlying Its Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589782. [PMID: 38659799 PMCID: PMC11042382 DOI: 10.1101/2024.04.16.589782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The endoplasmic reticulum (ER) is a continuous cellular endomembrane network that displays focal specializations. Most notable examples of such specializations include the spine apparatus of neuronal dendrites, and the cisternal organelle of axonal initial segments. Both organelles exhibit stacks of smooth ER sheets with a narrow lumen and interconnected by a dense protein matrix. The actin-binding protein synaptopodin is required for their formation. Here, we report that expression in non-neuronal cells of a synaptopodin construct targeted to the ER is sufficient to generate stacked ER cisterns resembling the spine apparatus with molecular properties distinct from the surrounding ER. Cisterns within these stacks are connected to each other by an actin-based matrix that contains proteins also found at the spine apparatus of neuronal spines. These findings reveal a critical role of a synaptopodin-dependent actin matrix in generating cisternal stacks. These ectopically generated structures provide insight into spine apparatus morphogenesis.
Collapse
Affiliation(s)
- Hanieh Falahati
- HHMI; Departments of Neuroscience and Cell Biology; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, 100 College Street, New Haven, 06511, CT, USA
| | - Yumei Wu
- HHMI; Departments of Neuroscience and Cell Biology; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, 100 College Street, New Haven, 06511, CT, USA
| | - Pietro De Camilli
- HHMI; Departments of Neuroscience and Cell Biology; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, 100 College Street, New Haven, 06511, CT, USA
| |
Collapse
|
12
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Fuentes LA, Marin Z, Tyson J, Baddeley D, Bewersdorf J. The nanoscale organization of reticulon 4 shapes local endoplasmic reticulum structure in situ. J Cell Biol 2023; 222:e202301112. [PMID: 37516910 PMCID: PMC10373298 DOI: 10.1083/jcb.202301112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023] Open
Abstract
The endoplasmic reticulum's (ER's) structure is directly linked to the many functions of the ER, but its formation is not fully understood. We investigate how the ER-membrane curving protein reticulon 4 (Rtn4) localizes to and organizes in the membrane and how that affects the local ER structure. We show a strong correlation between the local Rtn4 density and the local ER membrane curvature. Our data further reveal that the typical ER tubule possesses an elliptical cross-section with Rtn4 enriched at either end of the major axis. Rtn4 oligomers are linear shaped, contain about five copies of the protein, and preferentially orient parallel to the tubule axis. Our observations support a mechanism in which oligomerization leads to an increase of the local Rtn4 concentration with each molecule, increasing membrane curvature through a hairpin wedging mechanism. This quantitative analysis of Rtn4 and its effects on the ER membrane result in a new model of tubule shape as it relates to Rtn4.
Collapse
Affiliation(s)
- Lukas A. Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zach Marin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jonathan Tyson
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - David Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| |
Collapse
|
14
|
Cremer T, Voortman LM, Bos E, Jongsma MLM, ter Haar LR, Akkermans JJLL, Talavera Ormeño CMP, Wijdeven RHM, de Vries J, Kim RQ, Janssen GMC, van Veelen PA, Koning RI, Neefjes J, Berlin I. RNF26 binds perinuclear vimentin filaments to integrate ER and endolysosomal responses to proteotoxic stress. EMBO J 2023; 42:e111252. [PMID: 37519262 PMCID: PMC10505911 DOI: 10.15252/embj.2022111252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Proteotoxic stress causes profound endoplasmic reticulum (ER) membrane remodeling into a perinuclear quality control compartment (ERQC) for the degradation of misfolded proteins. Subsequent return to homeostasis involves clearance of the ERQC by endolysosomes. However, the factors that control perinuclear ER integrity and dynamics remain unclear. Here, we identify vimentin intermediate filaments as perinuclear anchors for the ER and endolysosomes. We show that perinuclear vimentin filaments engage the ER-embedded RING finger protein 26 (RNF26) at the C-terminus of its RING domain. This restricts RNF26 to perinuclear ER subdomains and enables the corresponding spatial retention of endolysosomes through RNF26-mediated membrane contact sites (MCS). We find that both RNF26 and vimentin are required for the perinuclear coalescence of the ERQC and its juxtaposition with proteolytic compartments, which facilitates efficient recovery from ER stress via the Sec62-mediated ER-phagy pathway. Collectively, our findings reveal a scaffolding mechanism that underpins the spatiotemporal integration of organelles during cellular proteostasis.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik Bos
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Marlieke LM Jongsma
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Laurens R ter Haar
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jimmy JLL Akkermans
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Cami MP Talavera Ormeño
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Ruud HM Wijdeven
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jelle de Vries
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Robbert Q Kim
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - George MC Janssen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter A van Veelen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Roman I Koning
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
15
|
Marin Z, Fuentes LA, Bewersdorf J, Baddeley D. Extracting nanoscale membrane morphology from single-molecule localizations. Biophys J 2023; 122:3022-3030. [PMID: 37355772 PMCID: PMC10432223 DOI: 10.1016/j.bpj.2023.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Membrane surface reconstruction at the nanometer scale is required for understanding mechanisms of subcellular shape change. This historically has been the domain of electron microscopy, but extraction of surfaces from specific labels is a difficult task in this imaging modality. Existing methods for extracting surfaces from fluorescence microscopy have poor resolution or require high-quality super-resolution data that are manually cleaned and curated. Here, we present NanoWrap, a new method for extracting surfaces from generalized single-molecule localization microscopy data. This makes it possible to study the shape of specifically labeled membranous structures inside cells. We validate NanoWrap using simulations and demonstrate its reconstruction capabilities on single-molecule localization microscopy data of the endoplasmic reticulum and mitochondria. NanoWrap is implemented in the open-source Python Microscopy Environment.
Collapse
Affiliation(s)
- Zach Marin
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Lukas A Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Physics, Yale University, New Haven, Connecticut
| | - David Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
16
|
Zhou J, Shi Q, Ge YY, He W, Hu X, Xia W, Yan R. Reticulons 1 and 3 are essential for axonal growth and synaptic maintenance associated with intellectual development. Hum Mol Genet 2023; 32:2587-2599. [PMID: 37228035 PMCID: PMC10407710 DOI: 10.1093/hmg/ddad085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
Reticulon (RTN) proteins are a family of proteins biochemically identified for shaping tubular endoplasmic reticulum, a subcellular structure important for vesicular transport and cell-to-cell communication. In our recent study of mice with knockout of both reticulon 1 (Rtn1) and Rtn3, we discovered that Rtn1-/-;Rtn3-/- (brief as R1R3dKO) mice exhibited neonatal lethality, despite the fact that mice deficient in either RTN1 or RTN3 alone exhibit no discernible phenotypes. This has been the first case to find early lethality in animals with deletion of partial members of RTN proteins. The complete penetrance for neonatal lethality can be attributed to multiple defects including the impaired neuromuscular junction found in the diaphragm. We also observed significantly impaired axonal growth in a regional-specific manner, detected by immunohistochemical staining with antibodies to neurofilament light chain and neurofilament medium chain. Ultrastructural examination by electron microscopy revealed a significant reduction in synaptic active zone length in the hippocampus. Mechanistic exploration by unbiased proteomic assays revealed reduction of proteins such as FMR1, Staufen2, Cyfip1, Cullin-4B and PDE2a, which are known components in the fragile X mental retardation pathway. Together, our results reveal that RTN1 and RTN3 are required to orchestrate neurofilament organization and intact synaptic structure of the central nervous system.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
- Department of Neuroscience, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Qi Shi
- Department of Neuroscience, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Ying Y Ge
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
- Department of Neuroscience, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Wanxia He
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
- Department of Neuroscience, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
- Department of Neuroscience, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Weiming Xia
- Pharmacology & Experimental Therapeutics, Boston University, 72 E Concord St, Boston, MA 02118, USA
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA 01730, USA
- Biological Sciences, Kennedy College of Science, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
- Department of Neuroscience, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
17
|
Lipowsky R, Pramanik S, Benk AS, Tarnawski M, Spatz JP, Dimova R. Elucidating the Morphology of the Endoplasmic Reticulum: Puzzles and Perspectives. ACS NANO 2023. [PMID: 37377213 DOI: 10.1021/acsnano.3c01338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Artificial or synthetic organelles are a key challenge for bottom-up synthetic biology. So far, synthetic organelles have typically been based on spherical membrane compartments, used to spatially confine selected chemical reactions. In vivo, these compartments are often far from being spherical and can exhibit rather complex architectures. A particularly fascinating example is provided by the endoplasmic reticulum (ER), which extends throughout the whole cell by forming a continuous network of membrane nanotubes connected by three-way junctions. The nanotubes have a typical diameter of between 50 and 100 nm. In spite of much experimental progress, several fundamental aspects of the ER morphology remain elusive. A long-standing puzzle is the straight appearance of the tubules in the light microscope, which form irregular polygons with contact angles close to 120°. Another puzzling aspect is the nanoscopic shapes of the tubules and junctions, for which very different images have been obtained by electron microcopy and structured illumination microscopy. Furthermore, both the formation and maintenance of the reticular networks require GTP and GTP-hydrolyzing membrane proteins. In fact, the networks are destroyed by the fragmentation of nanotubes when the supply of GTP is interrupted. Here, it is argued that all of these puzzling observations are intimately related to each other and to the dimerization of two membrane proteins anchored to the same membrane. So far, the functional significance of this dimerization process remained elusive and, thus, seemed to waste a lot of GTP. However, this process can generate an effective membrane tension that stabilizes the irregular polygonal geometry of the reticular networks and prevents the fragmentation of their tubules, thereby maintaining the integrity of the ER. By incorporating the GTP-hydrolyzing membrane proteins into giant unilamellar vesicles, the effective membrane tension will become accessible to systematic experimental studies.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Shreya Pramanik
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Amelie S Benk
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | | | - Joachim P Spatz
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
18
|
Yuan Y, Guo Y, Guo ZW, Hao HF, Jiao YN, Deng XX, Han SY. Marsdenia tenacissima extract induces endoplasmic reticulum stress-associated immunogenic cell death in non-small cell lung cancer cells through targeting AXL. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116620. [PMID: 37207882 DOI: 10.1016/j.jep.2023.116620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marsdenia Tenacissima (Roxb.) Wight et Arn. is a traditional Chinese medicine. Its standardized extract (MTE), with the trade name Xiao-Ai-Ping injection, is widely used for cancer treatment. The pharmacological effects of MTE-inducing cancer cell death have been primarily explored. However, whether MTE triggers tumor endoplasmic reticulum stress (ERS)-associated immunogenic cell death (ICD) is unknown. AIM OF THE STUDY To determine the potential role of endoplasmic reticulum stress in the anti-cancer effects of MTE, and uncover the possible mechanisms of endoplasmic reticulum stress-associated immunogenic cell death induced by MTE. MATERIAL AND METHODS The anti-tumor effects of MTE on non-small cell lung cancer (NSCLC) were examined through CCK-8 and wound healing assay. Network pharmacology analysis and RNA-sequencing (RNA seq) were performed to confirm the biological changes of NSCLCs after MTE treatment. Western blot, qRT-PCR, reactive oxygen species (ROS) assay, and mitochondrial membrane potential (MMP) assay were used to explore the occurrence of endoplasmic reticulum stress. Immunogenic cell death-related markers were tested by ELISA and ATP release assay. Salubrinal was used to inhibit the endoplasmic reticulum stress response. SiRNA and bemcentinib (R428) were used to impede the function of AXL. AXL phosphorylation was regained by recombinant human Gas6 protein (rhGas6). The effects of MTE on endoplasmic reticulum stress and immunogenic cell death response were also proved in vivo. The AXL inhibiting compound in MTE was explored by molecular docking and confirmed by Western blot. RESULTS MTE inhibited cell viability and migration of PC-9 and H1975 cells. Enrichment analysis identified that differential genes after MTE treatment were significantly enriched in endoplasmic reticulum stress-related biological processes. MTE decreased mitochondrial membrane potential (MMP) and increased ROS production. Meanwhile, endoplasmic reticulum stress-related proteins (ATF6, GRP-78, ATF4, XBP1s, and CHOP) and immunogenic cell death-related markers (ATP, HMGB1) were upregulated, and the AXL phosphorylation level was suppressed after MTE treatment. However, when salubrinal (an endoplasmic reticulum stress inhibitor) and MTE were co-treated cells, the inhibitory effects of MTE on PC-9 and H1975 cells were impaired. Importantly, inhibition of AXL expression or activity also promotes the expression of endoplasmic reticulum stress and immunogenic cell death-related markers. Mechanistically, MTE induced endoplasmic reticulum stress and immunogenic cell death by suppressing AXL activity, and these effects were attenuated when AXL activity recovered. Moreover, MTE significantly increased the expression of endoplasmic reticulum stress-related markers in LLC tumor-bearing mouse tumor tissues and plasma levels of ATP and HMGB1. Molecular docking illustrated that kaempferol has the strongest binding energy with AXL and suppresses AXL phosphorylation. CONCLUSION MTE induces endoplasmic reticulum stress-associated immunogenic cell death in NSCLC cells. The anti-tumor effects of MTE are dependent upon endoplasmic reticulum stress. MTE triggers endoplasmic reticulum stress-associated immunogenic cell death by inhibiting AXL activity. Kaempferol is an active component that inhibits AXL activity in MTE. The present research revealed the role of AXL in regulating endoplasmic reticulum stress and enriched the anti-tumor mechanisms of MTE. Moreover, kaempferol may be considered a novel AXL inhibitor.
Collapse
Affiliation(s)
- Yuan Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China.
| | - Yang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Zheng-Wang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Xin-Xin Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China.
| |
Collapse
|
19
|
He R, Li Y, Bernards MA, Wang A. Manipulation of the Cellular Membrane-Cytoskeleton Network for RNA Virus Replication and Movement in Plants. Viruses 2023; 15:744. [PMID: 36992453 PMCID: PMC10056259 DOI: 10.3390/v15030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Viruses infect all cellular life forms and cause various diseases and significant economic losses worldwide. The majority of viruses are positive-sense RNA viruses. A common feature of infection by diverse RNA viruses is to induce the formation of altered membrane structures in infected host cells. Indeed, upon entry into host cells, plant-infecting RNA viruses target preferred organelles of the cellular endomembrane system and remodel organellar membranes to form organelle-like structures for virus genome replication, termed as the viral replication organelle (VRO) or the viral replication complex (VRC). Different viruses may recruit different host factors for membrane modifications. These membrane-enclosed virus-induced replication factories provide an optimum, protective microenvironment to concentrate viral and host components for robust viral replication. Although different viruses prefer specific organelles to build VROs, at least some of them have the ability to exploit alternative organellar membranes for replication. Besides being responsible for viral replication, VROs of some viruses can be mobile to reach plasmodesmata (PD) via the endomembrane system, as well as the cytoskeleton machinery. Viral movement protein (MP) and/or MP-associated viral movement complexes also exploit the endomembrane-cytoskeleton network for trafficking to PD where progeny viruses pass through the cell-wall barrier to enter neighboring cells.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| |
Collapse
|
20
|
Marin Z, Fuentes LA, Bewersdorf J, Baddeley D. Extracting nanoscale membrane morphology from single-molecule localizations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525798. [PMID: 36945449 PMCID: PMC10028748 DOI: 10.1101/2023.01.26.525798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Membrane surface reconstruction at the nanometer scale is required for understanding mechanisms of subcellular shape change. This historically has been the domain of electron microscopy, but extraction of surfaces from specific labels is a difficult task in this imaging modality. Existing methods for extracting surfaces from fluorescence microscopy have poor resolution or require high-quality super-resolution data that is manually cleaned and curated. Here we present a new method for extracting surfaces from generalized single-molecule localization microscopy (SMLM) data. This makes it possible to study the shape of specifically-labelled membraneous structures inside of cells. We validate our method using simulations and demonstrate its reconstruction capabilities on SMLM data of the endoplasmic reticulum and mitochondria. Our method is implemented in the open-source Python Microscopy Environment. SIGNIFICANCE We introduce a novel tool for reconstruction of subcellular membrane surfaces from single-molecule localization microscopy data and use it to visualize and quantify local shape and membrane-membrane interactions. We benchmark its performance on simulated data and demonstrate its fidelity to experimental data.
Collapse
|
21
|
Dorighello G, McPhee M, Halliday K, Dellaire G, Ridgway N. Differential contributions of phosphotransferases CEPT1 and CHPT1 to phosphatidylcholine homeostasis and lipid droplet biogenesis. J Biol Chem 2023; 299:104578. [PMID: 36871755 PMCID: PMC10166788 DOI: 10.1016/j.jbc.2023.104578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The CDP-choline (Kennedy) pathway culminates with the synthesis of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by choline/ethanolamine phosphotransferase 1 (CEPT1) in the endoplasmic reticulum (ER), and PC synthesis by choline phosphotransferase 1 (CHPT1) in the Golgi apparatus. Whether the PC and PE synthesized by CEPT1 and CHPT1 in the ER and Golgi apparatus has different cellular functions has not been formally addressed. Here we used CRISPR editing to generate CEPT1-and CHPT1-knockout (KO) U2OS cells to assess the differential contribution of the enzymes to feed-back regulation of nuclear CTP:phosphocholine cytidylyltransferase (CCT)α, the rate-limiting enzyme in PC synthesis, and lipid droplet (LD) biogenesis. We found that CEPT1-KO cells had a 50% and 80% reduction in PC and PE synthesis, respectively, while PC synthesis in CHPT1-KO cells was also reduced by 50%. CEPT1 knockout caused the post-transcriptional induction of CCTα protein expression as well as its dephosphorylation and constitutive localization on the inner nuclear membrane and nucleoplasmic reticulum. This activated CCTα phenotype was prevented by incubating CEPT1-KO cells with PC liposomes to restore end-product inhibition. Additionally, we determined that CEPT1 was in close proximity to cytoplasmic LDs, and CEPT1 knockout resulted in the accumulation of small cytoplasmic LDs, as well as increased nuclear LDs enriched in CCTα. In contrast, CHPT1 knockout had no effect on CCTα regulation or LD biogenesis. Thus, CEPT1 and CHPT1 contribute equally to PC synthesis; however, only PC synthesized by CEPT1 in the ER regulates CCTα and the biogenesis of cytoplasmic and nuclear LDs.
Collapse
Affiliation(s)
- Gabriel Dorighello
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - Michael McPhee
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - Katie Halliday
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - Graham Dellaire
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2; Depts of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - NealeD Ridgway
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2.
| |
Collapse
|
22
|
Arruda AP, Parlakgül G. Endoplasmic Reticulum Architecture and Inter-Organelle Communication in Metabolic Health and Disease. Cold Spring Harb Perspect Biol 2023; 15:a041261. [PMID: 35940911 PMCID: PMC9899651 DOI: 10.1101/cshperspect.a041261] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is a key organelle involved in the regulation of lipid and glucose metabolism, proteostasis, Ca2+ signaling, and detoxification. The structural organization of the ER is very dynamic and complex, with distinct subdomains such as the nuclear envelope and the peripheral ER organized into ER sheets and tubules. ER also forms physical contact sites with all other cellular organelles and with the plasma membrane. Both form and function of the ER are highly adaptive, with a potent capacity to respond to transient changes in environmental cues such as nutritional fluctuations. However, under obesity-induced chronic stress, the ER fails to adapt, leading to ER dysfunction and the development of metabolic pathologies such as insulin resistance and fatty liver disease. Here, we discuss how the remodeling of ER structure and contact sites with other organelles results in diversification of metabolic function and how perturbations to this structural flexibility by chronic overnutrition contribute to ER dysfunction and metabolic pathologies in obesity.
Collapse
Affiliation(s)
- Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Güneş Parlakgül
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
23
|
Fuentes LA, Marin Z, Tyson J, Baddeley D, Bewersdorf J. The nanoscale organization of reticulon 4 shapes local endoplasmic reticulum structure in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525608. [PMID: 36747764 PMCID: PMC9900957 DOI: 10.1101/2023.01.26.525608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
UNLABELLED The endoplasmic reticulum’s (ER) structure is directly linked to the many functions of the ER but its formation is not fully understood. We investigate how the ER-membrane curving protein reticulon 4 (Rtn4) localizes to and organizes in the membrane and how that affects local ER structure. We show a strong correlation between the local Rtn4 density and the local ER membrane curvature. Our data further reveal that the typical ER tubule possesses an elliptical cross-section with Rtn4 enriched at either end of the major axis. Rtn4 oligomers are linear-shaped, contain about five copies of the protein, and preferentially orient parallel to the tubule axis. Our observations support a mechanism in which oligomerization leads to an increase of the local Rtn4 concentration with each molecule increasing membrane curvature through a hairpin wedging mechanism. This quantitative analysis of Rtn4 and its effects on the ER membrane result in a new model of tubule shape as it relates to Rtn4. SUMMARY Rtn4 forms linear-shaped oligomers that contain an average of five Rtn4 proteins, localize to the sides of elliptical tubules, prefer orientations near parallel to the tubule axis, and increase local curvature of the ER membrane by increasing local Rtn4 density.
Collapse
Affiliation(s)
- Lukas A. Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zach Marin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jonathan Tyson
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - David Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| |
Collapse
|
24
|
Sandoz PA, Denhardt-Eriksson RA, Abrami L, Abriata LA, Spreemann G, Maclachlan C, Ho S, Kunz B, Hess K, Knott G, S Mesquita F, Hatzimanikatis V, van der Goot FG. Dynamics of CLIMP-63 S-acylation control ER morphology. Nat Commun 2023; 14:264. [PMID: 36650170 PMCID: PMC9844198 DOI: 10.1038/s41467-023-35921-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
The complex architecture of the endoplasmic reticulum (ER) comprises distinct dynamic features, many at the nanoscale, that enable the coexistence of the nuclear envelope, regions of dense sheets and a branched tubular network that spans the cytoplasm. A key player in the formation of ER sheets is cytoskeleton-linking membrane protein 63 (CLIMP-63). The mechanisms by which CLIMP-63 coordinates ER structure remain elusive. Here, we address the impact of S-acylation, a reversible post-translational lipid modification, on CLIMP-63 cellular distribution and function. Combining native mass-spectrometry, with kinetic analysis of acylation and deacylation, and data-driven mathematical modelling, we obtain in-depth understanding of the CLIMP-63 life cycle. In the ER, it assembles into trimeric units. These occasionally exit the ER to reach the plasma membrane. However, the majority undergoes S-acylation by ZDHHC6 in the ER where they further assemble into highly stable super-complexes. Using super-resolution microscopy and focused ion beam electron microscopy, we show that CLIMP-63 acylation-deacylation controls the abundance and fenestration of ER sheets. Overall, this study uncovers a dynamic lipid post-translational regulation of ER architecture.
Collapse
Affiliation(s)
- Patrick A Sandoz
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | - Laurence Abrami
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Luciano A Abriata
- Laboratory for Biomolecular Modelling, Institute of Bioengineering, EPFL and Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Protein Production and Structure Core Facility, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | | | - Sylvia Ho
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Béatrice Kunz
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Kathryn Hess
- Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Graham Knott
- BioEM Facility, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | | | | |
Collapse
|
25
|
Araújo M, Tavares A, Vieira DV, Telley IA, Oliveira RA. Endoplasmic reticulum membranes are continuously required to maintain mitotic spindle size and forces. Life Sci Alliance 2023; 6:e202201540. [PMID: 36379670 PMCID: PMC9671068 DOI: 10.26508/lsa.202201540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Membrane organelle function, localization, and proper partitioning upon cell division depend on interactions with the cytoskeleton. Whether membrane organelles also impact the function of cytoskeletal elements remains less clear. Here, we show that acute disruption of the ER around spindle poles affects mitotic spindle size and function in Drosophila syncytial embryos. Acute ER disruption was achieved through the inhibition of ER membrane fusion by the dominant-negative cytoplasmic domain of atlastin. We reveal that when centrosome-proximal ER membranes are disrupted, specifically at metaphase, mitotic spindles become smaller, despite no significant changes in microtubule dynamics. These smaller spindles are still able to mediate sister chromatid separation, yet with decreased velocity. Furthermore, by inducing mitotic exit, we found that nuclear separation and distribution are affected by ER disruption. Our results suggest that ER integrity around spindle poles is crucial for the maintenance of mitotic spindle shape and pulling forces. In addition, ER integrity also ensures nuclear spacing during syncytial divisions.
Collapse
Affiliation(s)
| | | | | | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Raquel A Oliveira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Lisbon, Portugal
| |
Collapse
|
26
|
Suhda S, Yamamoto Y, Wisesa S, Sada R, Sakisaka T. The 14-3-3γ isoform binds to and regulates the localization of endoplasmic reticulum (ER) membrane protein TMCC3 for the reticular network of the ER. J Biol Chem 2022; 299:102813. [PMID: 36549645 PMCID: PMC9860497 DOI: 10.1016/j.jbc.2022.102813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The reticular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions and undergoes constant remodeling through formation and loss of the three-way junctions. Transmembrane and coiled-coil domain family 3 (TMCC3), an ER membrane protein localizing at three-way junctions, has been shown to positively regulate formation of the reticular ER network. However, elements that negatively regulate TMCC3 localization have not been characterized. In this study, we report that 14-3-3γ, a phospho-serine/phospho-threonine-binding protein involved in various signal transduction pathways, is a negative regulator of TMCC3. We demonstrate that overexpression of 14-3-3γ reduced localization of TMCC3 to three-way junctions and decreased the number of three-way junctions. TMCC3 bound to 14-3-3γ through the N terminus and had deduced 14-3-3 binding motifs. Additionally, we determined that a TMCC3 mutant substituting alanine for serine to be phosphorylated in the binding motif reduced binding to 14-3-3γ. The TMCC3 mutant was more prone than wildtype TMCC3 to localize at three-way junctions in the cells overexpressing 14-3-3γ. Furthermore, the TMCC3 mutant rescued the ER sheet expansion caused by TMCC3 knockdown less than wild-type TMCC3. Taken together, these results indicate that 14-3-3γ binding negatively regulates localization of TMCC3 to the three-way junctions for the proper reticular ER network, implying that the negative regulation of TMCC3 by 14-3-3γ would underlie remodeling of the reticular network of the ER.
Collapse
Affiliation(s)
- Saihas Suhda
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Yasunori Yamamoto
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Sindhu Wisesa
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Risa Sada
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan.
| |
Collapse
|
27
|
Kontou A, Herman EK, Field MC, Dacks JB, Koumandou VL. Evolution of factors shaping the endoplasmic reticulum. Traffic 2022; 23:462-473. [PMID: 36040076 PMCID: PMC9804665 DOI: 10.1111/tra.12863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/30/2022] [Accepted: 07/24/2022] [Indexed: 01/09/2023]
Abstract
Endomembrane system compartments are significant elements in virtually all eukaryotic cells, supporting functions including protein synthesis, post-translational modifications and protein/lipid targeting. In terms of membrane area the endoplasmic reticulum (ER) is the largest intracellular organelle, but the origins of proteins defining the organelle and the nature of lineage-specific modifications remain poorly studied. To understand the evolution of factors mediating ER morphology and function we report a comparative genomics analysis of experimentally characterized ER-associated proteins involved in maintaining ER structure. We find that reticulons, REEPs, atlastins, Ufe1p, Use1p, Dsl1p, TBC1D20, Yip3p and VAPs are highly conserved, suggesting an origin at least as early as the last eukaryotic common ancestor (LECA), although many of these proteins possess additional non-ER functions in modern eukaryotes. Secondary losses are common in individual species and in certain lineages, for example lunapark is missing from the Stramenopiles and the Alveolata. Lineage-specific innovations include protrudin, Caspr1, Arl6IP1, p180, NogoR, kinectin and CLIMP-63, which are restricted to the Opisthokonta. Hence, much of the machinery required to build and maintain the ER predates the LECA, but alternative strategies for the maintenance and elaboration of ER shape and function are present in modern eukaryotes. Moreover, experimental investigations for ER maintenance factors in diverse eukaryotes are expected to uncover novel mechanisms.
Collapse
Affiliation(s)
- Aspasia Kontou
- Genetics Laboratory, Department of BiotechnologyAgricultural University of AthensAthensGreece
| | - Emily K. Herman
- Division of Infectious Diseases, Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada,Present address:
Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Mark C. Field
- School of Life SciencesUniversity of DundeeDundeeUK,Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada,Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic,Centre for Life's Origin and Evolution, Department of Genetics, Evolution and EnvironmentUniversity College of LondonLondonUK
| | - V. Lila Koumandou
- Genetics Laboratory, Department of BiotechnologyAgricultural University of AthensAthensGreece
| |
Collapse
|
28
|
Zhu PP, Hung HF, Batchenkova N, Nixon-Abell J, Henderson J, Zheng P, Renvoisé B, Pang S, Xu CS, Saalfeld S, Funke J, Xie Y, Svara F, Hess HF, Blackstone C. Transverse endoplasmic reticulum expansion in hereditary spastic paraplegia corticospinal axons. Hum Mol Genet 2022; 31:2779-2795. [PMID: 35348668 PMCID: PMC9402237 DOI: 10.1093/hmg/ddac072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 08/12/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) comprise a large group of inherited neurologic disorders affecting the longest corticospinal axons (SPG1-86 plus others), with shared manifestations of lower extremity spasticity and gait impairment. Common autosomal dominant HSPs are caused by mutations in genes encoding the microtubule-severing ATPase spastin (SPAST; SPG4), the membrane-bound GTPase atlastin-1 (ATL1; SPG3A) and the reticulon-like, microtubule-binding protein REEP1 (REEP1; SPG31). These proteins bind one another and function in shaping the tubular endoplasmic reticulum (ER) network. Typically, mouse models of HSPs have mild, later onset phenotypes, possibly reflecting far shorter lengths of their corticospinal axons relative to humans. Here, we have generated a robust, double mutant mouse model of HSP in which atlastin-1 is genetically modified with a K80A knock-in (KI) missense change that abolishes its GTPase activity, whereas its binding partner Reep1 is knocked out. Atl1KI/KI/Reep1-/- mice exhibit early onset and rapidly progressive declines in several motor function tests. Also, ER in mutant corticospinal axons dramatically expands transversely and periodically in a mutation dosage-dependent manner to create a ladder-like appearance, on the basis of reconstructions of focused ion beam-scanning electron microscopy datasets using machine learning-based auto-segmentation. In lockstep with changes in ER morphology, axonal mitochondria are fragmented and proportions of hypophosphorylated neurofilament H and M subunits are dramatically increased in Atl1KI/KI/Reep1-/- spinal cord. Co-occurrence of these findings links ER morphology changes to alterations in mitochondrial morphology and cytoskeletal organization. Atl1KI/KI/Reep1-/- mice represent an early onset rodent HSP model with robust behavioral and cellular readouts for testing novel therapies.
Collapse
Affiliation(s)
- Peng-Peng Zhu
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui-Fang Hung
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Natalia Batchenkova
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathon Nixon-Abell
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
- Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK
| | - James Henderson
- Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK
| | - Pengli Zheng
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Benoit Renvoisé
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Song Pang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - C Shan Xu
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Stephan Saalfeld
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Jan Funke
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Yuxiang Xie
- Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fabian Svara
- ariadne.ai ag, CH-6033 Buchrain, Switzerland
- Research Center Caesar, D-53175 Bonn, Germany
| | - Harald F Hess
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
29
|
Abstract
The endoplasmic reticulum (ER) is one of the most structurally visible and functionally important organelles in the cell. Utilizing superresolution microscopy, we here unveil that in the mammalian cell, the peripheral ER adopts two distinct, well-defined tubule forms of contrasting structures, molecular signatures, and functions, with one of the two curiously being ribbon-like, ultranarrow sheets of fixed widths. With fast multicolor microscopy, we further show how the two tubule forms dynamically interconvert while differentially accommodating proteins in the living cell. The endoplasmic reticulum (ER) is a versatile organelle with diverse functions. Through superresolution microscopy, we show that the peripheral ER in the mammalian cell adopts two distinct forms of tubules. Whereas an ultrathin form, R1, is consistently covered by ER-membrane curvature-promoting proteins, for example, Rtn4 in the native cell, in the second form, R2, Rtn4 and analogs are arranged into two parallel lines at a conserved separation of ∼105 nm over long ranges. The two tubule forms together account for ∼90% of the total tubule length in the cell, with either one being dominant in different cell types. The R1–R2 dichotomy and the final tubule geometry are both coregulated by Rtn4 (and analogs) and the ER sheet–maintaining protein Climp63, which, respectively, define the edge curvature and lumen height of the R2 tubules to generate a ribbon-like structure of well-defined width. Accordingly, the R2 tubule width correlates positively with the Climp63 intraluminal size. The R1 and R2 tubules undergo active remodeling at the second/subsecond timescales as they differently accommodate proteins, with the former effectively excluding ER-luminal proteins and ER-membrane proteins with large intraluminal domains. We thus uncover a dynamic structural dichotomy for ER tubules with intriguing functional implications.
Collapse
|
30
|
A role for endoplasmic reticulum dynamics in the cellular distribution of microtubules. Proc Natl Acad Sci U S A 2022; 119:e2104309119. [PMID: 35377783 PMCID: PMC9169640 DOI: 10.1073/pnas.2104309119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The endoplasmic reticulum (ER) and the microtubule (MT) cytoskeleton form a coextensive, dynamic system that pervades eukaryotic cells. The shape of the ER is generated by a set of evolutionarily conserved membrane proteins that are able to control ER morphology and dynamics independently of MTs. Here we uncover that the molecular machinery that determines ER network dynamics can influence the subcellular distribution of MTs. We show that active control of local ER tubule junction density by ER tethering and fusion is important for the spatial organization of the combined ER–MT system. Our work suggests that cells might alter ER junction dynamics to drive formation of MT bundles, which are important structures, e.g., in migrating cells or in neuronal axons. The dynamic distribution of the microtubule (MT) cytoskeleton is crucial for the shape, motility, and internal organization of eukaryotic cells. However, the basic principles that control the subcellular position of MTs in mammalian interphase cells remain largely unknown. Here we show by a combination of microscopy and computational modeling that the dynamics of the endoplasmic reticulum (ER) plays an important role in distributing MTs in the cell. Specifically, our physics-based model of the ER–MT system reveals that spatial inhomogeneity in the density of ER tubule junctions results in an overall contractile force that acts on MTs and influences their distribution. At steady state, cells rapidly compensate for local variability of ER junction density by dynamic formation, release, and movement of ER junctions across the ER. Perturbation of ER junction tethering and fusion by depleting the ER fusogens called atlastins disrupts the dynamics of junction equilibration, rendering the ER–MT system unstable and causing the formation of MT bundles. Our study points to a mechanical role of ER dynamics in cellular organization and suggests a mechanism by which cells might dynamically regulate MT distribution in, e.g., motile cells or in the formation and maintenance of neuronal axons.
Collapse
|
31
|
Fishburn AT, Pham OH, Kenaston MW, Beesabathuni NS, Shah PS. Let's Get Physical: Flavivirus-Host Protein-Protein Interactions in Replication and Pathogenesis. Front Microbiol 2022; 13:847588. [PMID: 35308381 PMCID: PMC8928165 DOI: 10.3389/fmicb.2022.847588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Flaviviruses comprise a genus of viruses that pose a significant burden on human health worldwide. Transmission by both mosquito and tick vectors, and broad host tropism contribute to the presence of flaviviruses globally. Like all viruses, they require utilization of host molecular machinery to facilitate their replication through physical interactions. Their RNA genomes are translated using host ribosomes, synthesizing viral proteins that cooperate with each other and host proteins to reshape the host cell into a factory for virus replication. Thus, dissecting the physical interactions between viral proteins and their host protein targets is essential in our comprehension of how flaviviruses replicate and how they alter host cell behavior. Beyond replication, even single interactions can contribute to immune evasion and pathogenesis, providing potential avenues for therapeutic intervention. Here, we review protein interactions between flavivirus and host proteins that contribute to virus replication, immune evasion, and disease.
Collapse
Affiliation(s)
- Adam T Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Oanh H Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Matthew W Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Nitin S Beesabathuni
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Priya S Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Parlakgül G, Arruda AP, Pang S, Cagampan E, Min N, Güney E, Lee GY, Inouye K, Hess HF, Xu CS, Hotamışlıgil GS. Regulation of liver subcellular architecture controls metabolic homeostasis. Nature 2022; 603:736-742. [PMID: 35264794 DOI: 10.1038/s41586-022-04488-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/31/2022] [Indexed: 12/28/2022]
Abstract
Cells display complex intracellular organization by compartmentalization of metabolic processes into organelles, yet the resolution of these structures in the native tissue context and their functional consequences are not well understood. Here we resolved the three-dimensional structural organization of organelles in large (more than 2.8 × 105 µm3) volumes of intact liver tissue (15 partial or full hepatocytes per condition) at high resolution (8 nm isotropic pixel size) using enhanced focused ion beam scanning electron microscopy1,2 imaging followed by deep-learning-based automated image segmentation and 3D reconstruction. We also performed a comparative analysis of subcellular structures in liver tissue of lean and obese mice and found substantial alterations, particularly in hepatic endoplasmic reticulum (ER), which undergoes massive structural reorganization characterized by marked disorganization of stacks of ER sheets3 and predominance of ER tubules. Finally, we demonstrated the functional importance of these structural changes by monitoring the effects of experimental recovery of the subcellular organization on cellular and systemic metabolism. We conclude that the hepatic subcellular organization of the ER architecture are highly dynamic, integrated with the metabolic state and critical for adaptive homeostasis and tissue health.
Collapse
Affiliation(s)
- Güneş Parlakgül
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ana Paula Arruda
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, CA, USA
| | - Song Pang
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Erika Cagampan
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nina Min
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ekin Güney
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Grace Yankun Lee
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen Inouye
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - C Shan Xu
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Gökhan S Hotamışlıgil
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
33
|
Haimov E, Urbakh M, Kozlov MM. Negative tension controls stability and structure of intermediate filament networks. Sci Rep 2022; 12:16. [PMID: 34996899 PMCID: PMC8741771 DOI: 10.1038/s41598-021-02536-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Networks, whose junctions are free to move along the edges, such as two-dimensional soap froths and membrane tubular networks of endoplasmic reticulum are intrinsically unstable. This instability is a result of a positive tension applied to the network elements. A paradigm of networks exhibiting stable polygonal configurations in spite of the junction mobility, are networks formed by bundles of Keratin Intermediate Filaments (KIFs) in live cells. A unique feature of KIF networks is a, hypothetically, negative tension generated in the network bundles due to an exchange of material between the network and an effective reservoir of unbundled filaments. Here we analyze the structure and stability of two-dimensional networks with mobile three-way junctions subject to negative tension. First, we analytically examine a simplified case of hexagonal networks with symmetric junctions and demonstrate that, indeed, a negative tension is mandatory for the network stability. Another factor contributing to the network stability is the junction elastic resistance to deviations from the symmetric state. We derive an equation for the optimal density of such networks resulting from an interplay between the tension and the junction energy. We describe a configurational degeneration of the optimal energy state of the network. Further, we analyze by numerical simulations the energy of randomly generated networks with, generally, asymmetric junctions, and demonstrate that the global minimum of the network energy corresponds to the irregular configurations.
Collapse
Affiliation(s)
- Ehud Haimov
- School of Physics and Astronomy, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Michael Urbakh
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| |
Collapse
|
34
|
ER proteins decipher the tubulin code to regulate organelle distribution. Nature 2021; 601:132-138. [PMID: 34912111 PMCID: PMC8732269 DOI: 10.1038/s41586-021-04204-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022]
Abstract
Organelles move along differentially modified microtubules to establish and maintain their proper distributions and functions1,2. However, how cells interpret these post-translational microtubule modification codes to selectively regulate organelle positioning remains largely unknown. The endoplasmic reticulum (ER) is an interconnected network of diverse morphologies that extends promiscuously throughout the cytoplasm3, forming abundant contacts with other organelles4. Dysregulation of endoplasmic reticulum morphology is tightly linked to neurologic disorders and cancer5,6. Here we demonstrate that three membrane-bound endoplasmic reticulum proteins preferentially interact with different microtubule populations, with CLIMP63 binding centrosome microtubules, kinectin (KTN1) binding perinuclear polyglutamylated microtubules, and p180 binding glutamylated microtubules. Knockout of these proteins or manipulation of microtubule populations and glutamylation status results in marked changes in endoplasmic reticulum positioning, leading to similar redistributions of other organelles. During nutrient starvation, cells modulate CLIMP63 protein levels and p180-microtubule binding to bidirectionally move endoplasmic reticulum and lysosomes for proper autophagic responses.
Collapse
|
35
|
Whole-cell organelle segmentation in volume electron microscopy. Nature 2021; 599:141-146. [PMID: 34616042 DOI: 10.1038/s41586-021-03977-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
Cells contain hundreds of organelles and macromolecular assemblies. Obtaining a complete understanding of their intricate organization requires the nanometre-level, three-dimensional reconstruction of whole cells, which is only feasible with robust and scalable automatic methods. Here, to support the development of such methods, we annotated up to 35 different cellular organelle classes-ranging from endoplasmic reticulum to microtubules to ribosomes-in diverse sample volumes from multiple cell types imaged at a near-isotropic resolution of 4 nm per voxel with focused ion beam scanning electron microscopy (FIB-SEM)1. We trained deep learning architectures to segment these structures in 4 nm and 8 nm per voxel FIB-SEM volumes, validated their performance and showed that automatic reconstructions can be used to directly quantify previously inaccessible metrics including spatial interactions between cellular components. We also show that such reconstructions can be used to automatically register light and electron microscopy images for correlative studies. We have created an open data and open-source web repository, 'OpenOrganelle', to share the data, computer code and trained models, which will enable scientists everywhere to query and further improve automatic reconstruction of these datasets.
Collapse
|
36
|
Garcia-Pardo ME, Simpson JC, O'Sullivan NC. A novel automated image analysis pipeline for quantifying morphological changes to the endoplasmic reticulum in cultured human cells. BMC Bioinformatics 2021; 22:427. [PMID: 34496765 PMCID: PMC8425006 DOI: 10.1186/s12859-021-04334-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background In mammalian cells the endoplasmic reticulum (ER) comprises a highly complex reticular morphology that is spread throughout the cytoplasm. This organelle is of particular interest to biologists, as its dysfunction is associated with numerous diseases, which often manifest themselves as changes to the structure and organisation of the reticular network. Due to its complex morphology, image analysis methods to quantitatively describe this organelle, and importantly any changes to it, are lacking. Results In this work we detail a methodological approach that utilises automated high-content screening microscopy to capture images of cells fluorescently-labelled for various ER markers, followed by their quantitative analysis. We propose that two key metrics, namely the area of dense ER and the area of polygonal regions in between the reticular elements, together provide a basis for measuring the quantities of rough and smooth ER, respectively. We demonstrate that a number of different pharmacological perturbations to the ER can be quantitatively measured and compared in our automated image analysis pipeline. Furthermore, we show that this method can be implemented in both commercial and open-access image analysis software with comparable results. Conclusions We propose that this method has the potential to be applied in the context of large-scale genetic and chemical perturbations to assess the organisation of the ER in adherent cell cultures. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04334-x.
Collapse
Affiliation(s)
- M Elena Garcia-Pardo
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Jeremy C Simpson
- Cell Screening Laboratory, UCD School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
37
|
Wunderley L, Zhang L, Yarwood R, Qin W, Lowe M, Woodman P. Endosomal recycling tubule scission and integrin recycling involve the membrane curvature-supporting protein LITAF. J Cell Sci 2021; 134:jcs258549. [PMID: 34342350 PMCID: PMC8353527 DOI: 10.1242/jcs.258549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022] Open
Abstract
Recycling to the cell surface requires the scission of tubular membrane intermediates emanating from endosomes. Here, we identify the monotopic membrane protein LPS-induced TNF-activating factor (LITAF) and the related protein cell death involved p53 target 1 (CDIP1) as novel membrane curvature proteins that contribute to recycling tubule scission. Recombinant LITAF supports high membrane curvature, shown by its ability to reduce proteoliposome size. The membrane domains of LITAF and CDIP1 partition strongly into ∼50 nm diameter tubules labelled with the recycling markers Pacsin2, ARF6 and SNX1, and the recycling cargoes MHC class I and CD59. Partitioning of LITAF into tubules is impaired by mutations linked to Charcot Marie Tooth disease type 1C. Meanwhile, co-depletion of LITAF and CDIP1 results in the expansion of tubular recycling compartments and stabilised Rab11 tubules, pointing to a function for LITAF and CDIP1 in membrane scission. Consistent with this, co-depletion of LITAF and CDIP1 impairs integrin recycling and cell migration.
Collapse
Affiliation(s)
| | | | | | | | | | - Philip Woodman
- Faculty of Biology Medicine and Health, Manchester Academic and Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
38
|
Sharoar MG, Zhou J, Benoit M, He W, Yan R. Dynactin 6 deficiency enhances aging-associated dystrophic neurite formation in mouse brains. Neurobiol Aging 2021; 107:21-29. [PMID: 34371284 DOI: 10.1016/j.neurobiolaging.2021.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022]
Abstract
Formation of Reticulon 3 (RTN3)-immunoreactive dystrophic neurites (RIDNs) occurs early during the growth of amyloid plaques in Alzheimer's disease (AD) brains. We have shown that RIDNs in AD and aging mouse brains are composed of abnormally clustered tubular endoplasmic reticulum (ER) and degenerating mitochondria. To understand RTN3-mediated abnormal tubular ER clustering, we aimed to identify proteins that interact with RTN3 and impact accumulation of tubular ER in RIDNs. We found that the N-terminal domain of RTN3, which is unique among RTN family members, specifically interacted with dynactin 6 (DCTN6), a protein involved in dynein-mediated retrograde transport of cargo vesicles. DCTN6 protein levels decrease with aging in the hippocampal regions of WT mice. We found that DCTN6 deficiency enhanced RTN3 protein levels, high molecular weight RTN3 levels, and hippocampus-specific RIDN formation in aging brains of transgenic mice overexpressing RTN3. Our results suggest that the DCTN6-RTN3 interaction mediates tubular ER trafficking in axons, and a DCTN6 deficiency in the hippocampus impairs axonal ER trafficking, leading to abnormal ER accumulation and RIDN formation in brains of aging mice.
Collapse
Affiliation(s)
- Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT., USA.
| | - John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, CT., USA; Molecular Medicine Graduate Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH., USA
| | - Marc Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT., USA
| | - Wanxia He
- Department of Neuroscience, University of Connecticut Health, Farmington, CT., USA; Molecular Medicine Graduate Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH., USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT., USA
| |
Collapse
|
39
|
Ci Y, Shi L. Compartmentalized replication organelle of flavivirus at the ER and the factors involved. Cell Mol Life Sci 2021; 78:4939-4954. [PMID: 33846827 PMCID: PMC8041242 DOI: 10.1007/s00018-021-03834-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Flaviviruses are positive-sense single-stranded RNA viruses that pose a considerable threat to human health. Flaviviruses replicate in compartmentalized replication organelles derived from the host endoplasmic reticulum (ER). The characteristic architecture of flavivirus replication organelles includes invaginated vesicle packets and convoluted membrane structures. Multiple factors, including both viral proteins and host factors, contribute to the biogenesis of the flavivirus replication organelle. Several viral nonstructural (NS) proteins with membrane activity induce ER rearrangement to build replication compartments, and other NS proteins constitute the replication complexes (RC) in the compartments. Host protein and lipid factors facilitate the formation of replication organelles. The lipid membrane, proteins and viral RNA together form the functional compartmentalized replication organelle, in which the flaviviruses efficiently synthesize viral RNA. Here, we reviewed recent advances in understanding the structure and biogenesis of flavivirus replication organelles, and we further discuss the function of virus NS proteins and related host factors as well as their roles in building the replication organelle.
Collapse
Affiliation(s)
- Yali Ci
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China. .,Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Lei Shi
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China. .,Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
40
|
Kumar D, Lak B, Suntio T, Vihinen H, Belevich I, Viita T, Xiaonan L, Vartiainen A, Vartiainen M, Varjosalo M, Jokitalo E. RTN4B interacting protein FAM134C promotes ER membrane curvature and has a functional role in autophagy. Mol Biol Cell 2021; 32:1158-1170. [PMID: 33826365 PMCID: PMC8351555 DOI: 10.1091/mbc.e20-06-0409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The endoplasmic reticulum (ER) is composed of a controlled ratio of sheets and tubules, which are maintained by several proteins with multiple functions. Reticulons (RTNs), especially RTN4, and DP1/Yop1p family members are known to induce ER membrane curvature. RTN4B is the main RTN4 isoform expressed in nonneuronal cells. In this study, we identified FAM134C as a RTN4B interacting protein in mammalian, nonneuronal cells. FAM134C localized specifically to the ER tubules and sheet edges. Ultrastructural analysis revealed that overexpression of FAM134C induced the formation of unbranched, long tubules or dense globular structures composed of heavily branched narrow tubules. In both cases, tubules were nonmotile. ER tubulation was dependent on the reticulon homology domain (RHD) close to the N-terminus. FAM134C plays a role in the autophagy pathway as its level elevated significantly upon amino acid starvation but not during ER stress. Moreover, FAM134C depletion reduced the number and size of autophagic structures and the amount of ER as a cargo within autophagic structures under starvation conditions. Dominant-negative expression of FAM134C forms with mutated RHD or LC3 interacting region also led to a reduced number of autophagic structures. Our results suggest that FAM134C provides a link between regulation of ER architecture and ER turnover by promoting ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes.
Collapse
Affiliation(s)
| | - Behnam Lak
- Cell and Tissue Dynamics Research Program
| | | | - Helena Vihinen
- Cell and Tissue Dynamics Research Program.,Electron Microscopy Unit, and
| | - Ilya Belevich
- Cell and Tissue Dynamics Research Program.,Electron Microscopy Unit, and
| | | | - Liu Xiaonan
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | | | - Markku Varjosalo
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Eija Jokitalo
- Cell and Tissue Dynamics Research Program.,Electron Microscopy Unit, and
| |
Collapse
|
41
|
Ryanodine receptor-mediated Ca 2+ release and atlastin-2 GTPase activity contribute to IP 3-induced dendritic Ca 2+ signals in primary hippocampal neurons. Cell Calcium 2021; 96:102399. [PMID: 33812310 DOI: 10.1016/j.ceca.2021.102399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
Neuronal Ca2+ signals are fundamental for synaptic transmission and activity-dependent changes in gene expression. Voltage-gated Ca2+ channels and N-methyl-d-aspartate receptors play major roles in mediating external Ca2+ entry during action potential firing and glutamatergic activity. Additionally, the inositol-1,4,5-trisphosphate receptor (IP3R) and the ryanodine receptor (RyR) channels expressed in the endoplasmic reticulum (ER) also contribute to the generation of Ca2+ signals in response to neuronal activity. The ER forms a network that pervades the entire neuronal volume, allowing intracellular Ca2+ release in dendrites, soma and presynaptic boutons. Despite its unique morphological features, the contributions of ER structure and of ER-shaping proteins such as atlastin - an ER enriched GTPase that mediates homotypic ER tubule fusion - to the generation of Ca2+ signals in dendrites remains unreported. Here, we investigated the contribution of RyR-mediated Ca2+ release to IP3-generated Ca2+ signals in dendrites of cultured hippocampal neurons. We also employed GTPase activity-deficient atlastin-2 (ATL2) mutants to evaluate the potential role of atlastin on Ca2+ signaling and ER-resident Ca2+ channel distribution. We found that pharmacological suppression of RyR channel activity increased the rising time and reduced the magnitude and propagation of IP3-induced Ca2+ signals. Additionally, ATL2 mutants induced specific ER morphological alterations, delayed the onset and increased the rising time of IP3-evoked Ca2+ signals, and caused RyR2 and IP3R1 aggregation and RyR2 redistribution. These results indicate that both RyR and ATL2 activity regulate IP3-induced Ca2+ signal dynamics through RyR-mediated Ca2+-induced Ca2+ release, ER shaping and RyR2 distribution.
Collapse
|
42
|
Spits M, Heesterbeek IT, Voortman LM, Akkermans JJ, Wijdeven RH, Cabukusta B, Neefjes J. Mobile late endosomes modulate peripheral endoplasmic reticulum network architecture. EMBO Rep 2021; 22:e50815. [PMID: 33554435 PMCID: PMC7926257 DOI: 10.15252/embr.202050815] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest organelle contacting virtually every other organelle for information exchange and control of processes such as transport, fusion, and fission. Here, we studied the role of the other organelles on ER network architecture in the cell periphery. We show that the co‐migration of the ER with other organelles, called ER hitchhiking facilitated by late endosomes and lysosomes is a major mechanism controlling ER network architecture. When hitchhiking occurs, emerging ER structures may fuse with the existing ER tubules to alter the local ER architecture. This couples late endosomal/lysosomal positioning and mobility to ER network architecture. Conditions restricting late endosomal movement—including cell starvation—or the depletion of tether proteins that link the ER to late endosomes reduce ER dynamics and limit the complexity of the peripheral ER network architecture. This indicates that among many factors, the ER is controlled by late endosomal movement resulting in an alteration of the ER network architecture.
Collapse
Affiliation(s)
- Menno Spits
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Iris T Heesterbeek
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lennard M Voortman
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jimmy J Akkermans
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ruud H Wijdeven
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Birol Cabukusta
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jacques Neefjes
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
43
|
Cremer T, Neefjes J, Berlin I. The journey of Ca 2+ through the cell - pulsing through the network of ER membrane contact sites. J Cell Sci 2020; 133:133/24/jcs249136. [PMID: 33376155 DOI: 10.1242/jcs.249136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcium is the third most abundant metal on earth, and the fundaments of its homeostasis date back to pre-eukaryotic life forms. In higher organisms, Ca2+ serves as a cofactor for a wide array of (enzymatic) interactions in diverse cellular contexts and constitutes the most important signaling entity in excitable cells. To enable responsive behavior, cytosolic Ca2+ concentrations are kept low through sequestration into organellar stores, particularly the endoplasmic reticulum (ER), but also mitochondria and lysosomes. Specific triggers are then used to instigate a local release of Ca2+ on demand. Here, communication between organelles comes into play, which is accomplished through intimate yet dynamic contacts, termed membrane contact sites (MCSs). The field of MCS biology in relation to cellular Ca2+ homeostasis has exploded in recent years. Taking advantage of this new wealth of knowledge, in this Review, we invite the reader on a journey of Ca2+ flux through the ER and its associated MCSs. New mechanistic insights and technological advances inform the narrative on Ca2+ acquisition and mobilization at these sites of communication between organelles, and guide the discussion of their consequences for cellular physiology.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| |
Collapse
|
44
|
Koppers M, Özkan N, Farías GG. Complex Interactions Between Membrane-Bound Organelles, Biomolecular Condensates and the Cytoskeleton. Front Cell Dev Biol 2020; 8:618733. [PMID: 33409284 PMCID: PMC7779554 DOI: 10.3389/fcell.2020.618733] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane-bound and membraneless organelles/biomolecular condensates ensure compartmentalization into functionally distinct units enabling proper organization of cellular processes. Membrane-bound organelles form dynamic contacts with each other to enable the exchange of molecules and to regulate organelle division and positioning in coordination with the cytoskeleton. Crosstalk between the cytoskeleton and dynamic membrane-bound organelles has more recently also been found to regulate cytoskeletal organization. Interestingly, recent work has revealed that, in addition, the cytoskeleton and membrane-bound organelles interact with cytoplasmic biomolecular condensates. The extent and relevance of these complex interactions are just beginning to emerge but may be important for cytoskeletal organization and organelle transport and remodeling. In this review, we highlight these emerging functions and emphasize the complex interplay of the cytoskeleton with these organelles. The crosstalk between membrane-bound organelles, biomolecular condensates and the cytoskeleton in highly polarized cells such as neurons could play essential roles in neuronal development, function and maintenance.
Collapse
Affiliation(s)
| | | | - Ginny G. Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
45
|
Pelletier L, Petiot A, Brocard J, Giannesini B, Giovannini D, Sanchez C, Travard L, Chivet M, Beaufils M, Kutchukian C, Bendahan D, Metzger D, Franzini Armstrong C, Romero NB, Rendu J, Jacquemond V, Fauré J, Marty I. In vivo RyR1 reduction in muscle triggers a core-like myopathy. Acta Neuropathol Commun 2020; 8:192. [PMID: 33176865 PMCID: PMC7657350 DOI: 10.1186/s40478-020-01068-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in reduced amount, but the direct functional whole organism consequences of exclusive reduction in RyR1 amount have never been studied. We have developed and characterized a mouse model with inducible muscle specific RYR1 deletion. Tamoxifen-induced recombination in the RYR1 gene at adult age resulted in a progressive reduction in the protein amount reaching a stable level of 50% of the initial amount, and was associated with a progressive muscle weakness and atrophy. Measurement of calcium fluxes in isolated muscle fibers demonstrated a reduction in the amplitude of RyR1-related calcium release mirroring the reduction in the protein amount. Alterations in the muscle structure were observed, with fibers atrophy, abnormal mitochondria distribution and membrane remodeling. An increase in the expression level of many proteins was observed, as well as an inhibition of the autophagy process. This model demonstrates that RyR1 reduction is sufficient to recapitulate most features of Central Core Disease, and accordingly similar alterations were observed in muscle biopsies from Dusty Core Disease patients (a subtype of Central Core Disease), pointing to common pathophysiological mechanisms related to RyR1 reduction.
Collapse
|
46
|
Adachi Y, Kato T, Yamada T, Murata D, Arai K, Stahelin RV, Chan DC, Iijima M, Sesaki H. Drp1 Tubulates the ER in a GTPase-Independent Manner. Mol Cell 2020; 80:621-632.e6. [PMID: 33152269 DOI: 10.1016/j.molcel.2020.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023]
Abstract
Mitochondria are highly dynamic organelles that continuously grow, divide, and fuse. The division of mitochondria is crucial for human health. During mitochondrial division, the mechano-guanosine triphosphatase (GTPase) dynamin-related protein (Drp1) severs mitochondria at endoplasmic reticulum (ER)-mitochondria contact sites, where peripheral ER tubules interact with mitochondria. Here, we report that Drp1 directly shapes peripheral ER tubules in human and mouse cells. This ER-shaping activity is independent of GTP hydrolysis and located in a highly conserved peptide of 18 amino acids (termed D-octadecapeptide), which is predicted to form an amphipathic α helix. Synthetic D-octadecapeptide tubulates liposomes in vitro and the ER in cells. ER tubules formed by Drp1 promote mitochondrial division by facilitating ER-mitochondria interactions. Thus, Drp1 functions as a two-in-one protein during mitochondrial division, with ER tubulation and mechano-GTPase activities.
Collapse
Affiliation(s)
- Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenta Arai
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
47
|
Kriechbaumer V, Brandizzi F. The plant endoplasmic reticulum: an organized chaos of tubules and sheets with multiple functions. J Microsc 2020; 280:122-133. [PMID: 32426862 PMCID: PMC10895883 DOI: 10.1111/jmi.12909] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum is a fascinating organelle at the core of the secretory pathway. It is responsible for the synthesis of one third of the cellular proteome and, in plant cells, it produces receptors and transporters of hormones as well as the proteins responsible for the biosynthesis of critical components of a cellulosic cell wall. The endoplasmic reticulum structure resembles a spider-web network of interconnected tubules and cisternae that pervades the cell. The study of the dynamics and interaction of this organelles with other cellular structures such as the plasma membrane, the Golgi apparatus and the cytoskeleton, have been permitted by the implementation of fluorescent protein and advanced confocal imaging. In this review, we report on the findings that contributed towards the understanding of the endoplasmic reticulum morphology and function with the aid of fluorescent proteins, focusing on the contributions provided by pioneering work from the lab of the late Professor Chris Hawes.
Collapse
Affiliation(s)
- V Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - F Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
48
|
Reggio A, Buonomo V, Grumati P. Eating the unknown: Xenophagy and ER-phagy are cytoprotective defenses against pathogens. Exp Cell Res 2020; 396:112276. [PMID: 32918896 PMCID: PMC7480532 DOI: 10.1016/j.yexcr.2020.112276] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Autophagy is an evolutionary conserved catabolic process devoted to the removal of unnecessary and harmful cellular components. In its general form, autophagy governs cellular lifecycle through the formation of double membrane vesicles, termed autophagosomes, that enwrap and deliver unwanted intracellular components to lysosomes. In addition to this omniscient role, forms of selective autophagy, relying on specialized receptors for cargo recognition, exert fine-tuned control over cellular homeostasis. In this regard, xenophagy plays a pivotal role in restricting the replication of intracellular pathogens, thus acting as an ancient innate defense system against infections. Recently, selective autophagy of the endoplasmic reticulum (ER), more simply ER-phagy, has been uncovered as a critical mechanism governing ER network shape and function. Six ER-resident proteins have been characterized as ER-phagy receptors and their orchestrated function enables ER homeostasis and turnover overtime. Unfortunately, ER is also the preferred site for viral replication and several viruses hijack ER machinery for their needs. Thus, it is not surprising that some ER-phagy receptors can act to counteract viral replication and minimize the spread of infection throughout the organism. On the other hand, evolutionary pressure has armed pathogens with strategies to evade and subvert xenophagy and ER-phagy. Although ER-phagy biology is still in its infancy, the present review aims to summarize recent ER-phagy literature, with a special focus on its role in counteracting viral infections. Moreover, we aim to offer some hints for future targeted approaches to counteract host-pathogen interactions by modulating xenophagy and ER-phagy pathways.
Collapse
Affiliation(s)
- Alessio Reggio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy.
| |
Collapse
|
49
|
Niwa M. A cell cycle checkpoint for the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118825. [PMID: 32828757 DOI: 10.1016/j.bbamcr.2020.118825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
The generation of new cells is one of the most fundamental aspects of cell biology. Proper regulation of the cell cycle is critical for human health, as underscored by many diseases associated with errors in cell cycle regulation, including both cancer and hereditary diseases. A large body of work has identified regulatory mechanisms and checkpoints that ensure accurate and timely replication and segregation of chromosomal DNA. However, few studies have evaluated the extent to which similar checkpoints exist for the division of cytoplasmic components, including organelles. Such checkpoint mechanisms might be crucial for compartments that cannot be generated de novo, such as the endoplasmic reticulum (ER). In this review, we highlight recent work in the model organism Saccharomyces cerevisiae that led to the discovery of such a checkpoint that ensures that cells inherit functional ER into the daughter cell.
Collapse
Affiliation(s)
- Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, NSB#1, Rm 5328, 9500 Gilman Drive, La Jolla, CA 92093-0377, United States of America.
| |
Collapse
|
50
|
Christodoulou A, Maimaris G, Makrigiorgi A, Charidemou E, Lüchtenborg C, Ververis A, Georgiou R, Lederer CW, Haffner C, Brügger B, Santama N. TMEM147 interacts with lamin B receptor, regulates its localization and levels, and affects cholesterol homeostasis. J Cell Sci 2020; 133:jcs245357. [PMID: 32694168 DOI: 10.1242/jcs.245357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023] Open
Abstract
The structurally and functionally complex endoplasmic reticulum (ER) hosts critical processes including lipid synthesis. Here, we focus on the functional characterization of transmembrane protein TMEM147, and report that it localizes at the ER and nuclear envelope in HeLa cells. Silencing of TMEM147 drastically reduces the level of lamin B receptor (LBR) at the inner nuclear membrane and results in mistargeting of LBR to the ER. LBR possesses a modular structure and corresponding bifunctionality, acting in heterochromatin organization via its N-terminus and in cholesterol biosynthesis via its sterol-reductase C-terminal domain. We show that TMEM147 physically interacts with LBR, and that the C-terminus of LBR is essential for their functional interaction. We find that TMEM147 also physically interacts with the key sterol reductase DHCR7, which is involved in cholesterol biosynthesis. Similar to what was seen for LBR, TMEM147 downregulation results in a sharp decline of DHCR protein levels and co-ordinate transcriptional decreases of LBR and DHCR7 expression. Consistent with this, lipidomic analysis upon TMEM147 silencing identified changes in cellular cholesterol levels, cholesteryl ester levels and profile, and in cellular cholesterol uptake, raising the possibility that TMEM147 is an important new regulator of cholesterol homeostasis in cells.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Andri Christodoulou
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Giannis Maimaris
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Andri Makrigiorgi
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | | | - Antonis Ververis
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Renos Georgiou
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia and Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Christof Haffner
- Institute of Stroke and Dementia Research, University of Munich, 81377 Munich, Germany
| | - Britta Brügger
- Biochemistry Center (BZH), University of Heidelberg, 69120 Heidelberg, Germany
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| |
Collapse
|