1
|
Kisgeropoulos EC, Ratzloff MW, Stroeva-Dahl EM, Hasan S, Varghese F, Artz JH, Peters JW, Mulder DW, King PW. H-cluster Intermediates and Catalytic Properties of Clostridium pasteurianum [FeFe]-Hydrogenase III. Biochemistry 2025. [PMID: 40358972 DOI: 10.1021/acs.biochem.5c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
[FeFe]-Hydrogenases are structurally diverse enzymes that catalyze reversible H2 activation at a catalytic cofactor or H-cluster. The H-cluster is a [4Fe-4S] cubane linked by a cysteine thiolate to a diiron subsite containing unique CO, CN-, and dithiomethylamine ligands. The established H-cluster resting state of [4Fe-4S]2+-[FeII-FeI], or Hox, functions in H2 binding and oxidation, or by proton-coupled reduction initiates H2 evolution. In contrast, in Clostridium pasteurianum [FeFe]-hydrogenase III (CpIII) the resting state of the H-cluster is fully oxidized, [4Fe-4S]2+-[FeII-FeII], or Hox+1. To begin to understand if Hox+1 has a role in the mechanism of CpIII, we determined the spectroscopic and redox properties of CpIII H-cluster states under catalytic conditions. CpIII poised in Hox+1 and either equilibrated under 1 atm of H2 or reduced with sodium dithionite, resulted in a mixture of reduced states including Hox (Em8 = -407 mV), Htrans-like [4Fe-4S]+-[FeII-FeII] (Em8 = -418 mV), Hred [4Fe-4S]+-[FeII-FeI], and HredH+ [4Fe-4S]2+-[FeI-FeI] (Em8 = -455-480 mV). Under H2 the population of the Htrans-like state was >20-fold higher than Hox, implicating a role in CpIII catalysis. Unlike other enzymes, there was no spectral evidence of fully reduced states, such as HsredH+ ([4Fe-4S]+-[FeI-FeI]) or Hhyd ([4Fe-4S]+-[FeII-FeII]-H-). Thus, while the H-cluster states of CpIII encompass most of the catalytic intermediates, it is either unable to form HsredH+ and Hhyd, or these states are highly destabilized in CpIII. Thus, these results demonstrate that catalytic intermediates of reduced CpIII differ from the typical intermediates of other catalytic [FeFe]-hydrogenases and may explain the catalytic preference for H2 production.
Collapse
Affiliation(s)
- Effie C Kisgeropoulos
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael W Ratzloff
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | | | - Sarah Hasan
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Febin Varghese
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Jacob H Artz
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - John W Peters
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
2
|
Wang H, Pelmenschikov V, Yoda Y, Cramer SP. NRVS of FeS cluster proteins & models - A bestiary of nifty normal modes. J Inorg Biochem 2025; 270:112935. [PMID: 40424687 DOI: 10.1016/j.jinorgbio.2025.112935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025]
Abstract
Iron‑sulfur clusters are the primordial prosthetic groups for living systems, and they have even been proposed as partly responsible for the origin of life. They play a role in essential biological processes such as electron transfer, enzyme catalysis, DNA replication and repair, small molecule sensing, iron homeostasis, apoptosis, and human health and disease. They have frequently been studied by resonance Raman, electron paramagnetic resonance, and Mössbauer spectroscopies. Over the past two decades, we have used a synchrotron method called Nuclear Resonance Vibrational Spectroscopy (NRVS) to examine the vibrational dynamics of a wide variety of FeS clusters in model systems and native proteins, ranging in complexity from single Fe sites in small rubredoxins to the [7Fe-9S-C-Mo-R-homocitrate] cluster in nitrogenases.
Collapse
Affiliation(s)
| | | | - Yoshitaka Yoda
- Precision Spectroscopy Division, SPring-8/JASRI, Sayo, Hyogo 679-5198, Japan
| | | |
Collapse
|
3
|
Saxena P, Samanta D, Thakur P, Goh KM, Subramaniam M, Peyton BM, Fields M, Sani RK. pH-dependent genotypic and phenotypic variability in Oleidesulfovibrio alaskensis G20. Appl Environ Microbiol 2025; 91:e0256524. [PMID: 40135858 PMCID: PMC12016547 DOI: 10.1128/aem.02565-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Sulfate-reducing bacteria (SRB) exhibit versatile metabolic adaptability with significant flexibility influenced by pH fluctuations, which play a critical role in biogeochemical cycles. In this study, we used a model SRB, Oleidesulfovibrio alaskensis G20, to determine the temporal effects of pH variations (pH 6, 7, and 8) on both growth dynamics and metabolic gene expressions. The specific growth rate at pH 6 (0.014 h-1) closely matched that at pH 7 (0.016 h-1), while pH 8 exhibited a lower growth rate (0.010 h-1). Lactate consumption peaked at pH 7 (0.35 mM lactate.h-1) and declined at pH 8 (0.09 mM lactate.h-1). Significant hydrogen production was evident under both acidic and alkaline conditions. Gene expression studies revealed that ATPases function as proton pumps, while hydrogenases mediate reversible proton-to-hydrogen conversion. Sulfate and energy metabolism act as electron acceptors and donors, while amino acid synthesis regulates basic and acidic amino acids to mitigate pH stress. Downregulation of FtsZ at pH 6 suggests impaired division, correlating with slightly longer lengths (~2 µm), while upregulation of divisome proteins at pH 8 suggests efficient division processes, aligning with shorter lengths (~1.8 µm). This study will facilitate the employment of O. alaskensis G20 in extreme pH environments, enhancing its effectiveness in optimizing bioremediation and anaerobic digestion processes. IMPORTANCE Sulfate-reducing bacteria (SRB) play essential roles in global sulfur and carbon cycling and are critical for bioremediation and anaerobic digestion processes. However, detailed studies on the genotypic and phenotypic responses of SRB under varying pH conditions are limited. This study addresses this gap by examining the pH-dependent genetic and metabolic adaptations of Oleidesulfovibrio alaskensis G20, revealing key mechanisms regulating hydrogenase and ATPase activities, cell division, and extracellular polymeric substance formation. These findings provide new insights into how SRB maintains pH homeostasis, showcasing their ability to survive and function in both acidic and alkaline environments. Furthermore, this study reveals critical genetic and phenotypic characteristics that will directly aid to engineer industrial effluent management systems, bioremediation, and dissolved heavy metal recovery. By elucidating the dynamic response of O. alaskensis G20 to varied pH environments, the research provides a foundation for enhancing the resilience and performance of SRB-based systems, paving the way for improved environmental and industrial applications.
Collapse
Affiliation(s)
- Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data-Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data-Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Mahadevan Subramaniam
- Computer Science, College of Information Science and Technology, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Brent M. Peyton
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Matthew Fields
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data-Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| |
Collapse
|
4
|
Vecchini Santaella NA, Stams AJM, Sousa DZ. Methanol and Carbon Monoxide Metabolism of the Thermophile Moorella caeni. Environ Microbiol 2025; 27:e70096. [PMID: 40228503 PMCID: PMC11996240 DOI: 10.1111/1462-2920.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025]
Abstract
Moorella species are thermophilic acetogens that primarily produce acetate from one-carbon (C1) compounds including CO, CO2 (+H2), methanol and formate. Notably, Moorella caeni DSM 21394T displays a hydrogenogenic metabolism on CO and an acetogenic metabolism on methanol. Furthermore, M. caeni is unable to use CO2 (+H2) and grows only on formate in the presence of a methanogen or when thiosulfate is added as an electron acceptor. Presently, all theoretical frameworks for C1 metabolism in Moorella species are derived from experimental and genomic analyses of Moorella thermoacetica, which exhibits an acetogenic metabolism with all C1 substrates. In this study, we applied a transcriptomics approach to elucidate the mechanisms underlying the C1 metabolism of Moorella caeni during growth on methanol and CO. Our results indicate that respiratory Complex 1, a proton-translocating (ubi)quinone oxidoreductase, is the primary respiratory enzyme in methanol-grown cells of M. caeni. Conversely, in CO-grown cells, an energy-conserving hydrogenase complex (Ech) appears to be the primary respiratory complex, alongside respiratory Complex 1. This study provides insight into the C1 metabolism of M. caeni and reveals variations in gene syntenies related to C1 metabolism among the Moorella genus.
Collapse
Affiliation(s)
| | - Alfons J. M. Stams
- Laboratory of MicrobiologyWageningen University & ResearchWageningenthe Netherlands
| | - Diana Z. Sousa
- Laboratory of MicrobiologyWageningen University & ResearchWageningenthe Netherlands
| |
Collapse
|
5
|
Muñoz‐Duarte L, Chakraborty S, Grøn LV, Bambace MF, Catalano J, Philips J. H 2 Consumption by Various Acetogenic Bacteria Follows First-Order Kinetics up to H 2 Saturation. Biotechnol Bioeng 2025; 122:804-816. [PMID: 39731287 PMCID: PMC11895420 DOI: 10.1002/bit.28904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
Acetogenic bacteria play an important role in various biotechnological processes, because of their chemolithoautotrophic metabolism converting carbon dioxide with molecular hydrogen (H2) as electron donor into acetate. As the main factor limiting acetogenesis is often H2, insights into the H2 consumption kinetics of acetogens are required to assess their potential in biotechnological processes. In this study, initial H2 consumption rates at a range of different initial H2 concentrations were measured for three different acetogens. Interestingly, for all three strains, H2 consumption was found to follow first-order kinetics, i.e. the H2 consumption rate increased linearly with the dissolved H2 concentration, up to almost saturated H2 levels (600 µM). This is in contrast with Monod kinetics and low half-saturation concentrations, which have commonly been assumed for acetogens. The obtained biomass specific first-order rate coefficients (k1 X) were further validated by comparison with values obtained by fitting first-order kinetics on previous time-course experimental results. The latter method was also used to determine the k1 X value of five additional acetogens strains. Biomass specific first-order rate coefficients were found to vary up to six-fold, with the highest k1 X for Acetobacterium wieringae and the lowest for Sporomusa sphaeroides. Overall, our results demonstrate the importance of the dissolved H2 concentration to understand the rate of acetogenesis in biotechnological systems.
Collapse
Affiliation(s)
- Laura Muñoz‐Duarte
- Department of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| | - Susmit Chakraborty
- Department of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| | - Louise Vinther Grøn
- Department of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| | | | - Jacopo Catalano
- Department of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| | - Jo Philips
- Department of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| |
Collapse
|
6
|
Atencio B, Malavin S, Rubin-Blum M, Ram R, Adar E, Ronen Z. Site-specific incubations reveal biofilm diversity and functional adaptations in deep, ancient desert aquifers. Front Microbiol 2025; 16:1533115. [PMID: 40190731 PMCID: PMC11968702 DOI: 10.3389/fmicb.2025.1533115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Deep pristine aquifers are ecological hotspots with diverse microbial life, where microorganisms exist either attached (sessile) to solid substrates or suspended in groundwater (planktonic). Characterizing the attached microbial communities is of paramount importance, especially in the context of biofouling. However, obtaining samples of attached microbes that thrive under natural (undisturbed) conditions is challenging. Our study addresses this by retrieving sessile microbes on-site. We installed columns filled with site-specific rock cuttings at the wellhead, allowing fresh groundwater to flow continuously for approximately 60 days. We hypothesized that the attached microbial communities would differ structurally from planktonic microbes due to the aquifer's lithological and mineralogical composition. This study involved an exploratory examination of the microbial communities in different aquifers with distinct mineralogies, including quartzitic sandstone, calcareous, chert, and highly heterogeneous (clastic) aquifers in Israel's Negev Desert. Metagenomic analysis revealed both shared and distinct microbial communities among attached and planktonic forms in the various environments, likely shaped by the aquifers' physical, lithological, and mineralogical properties. A wealth of carbon-fixation pathways and energy-conservation strategies in the attached microbiome provide evidence for the potential productivity of these biofilms. We identified widespread genetic potential for biofilm formation (e.g., via pili, flagella, and extracellular polymeric substance production) and the interactome (e.g., quorum-sensing genes). Our assessment of these functions provides a genomic framework for groundwater management and biofouling treatment.
Collapse
Affiliation(s)
- Betzabe Atencio
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Stas Malavin
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
- Department of Marine Biology, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Maxim Rubin-Blum
- Department of Marine Biology, Israel Oceanographic and Limnological Research, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Roi Ram
- Geological Survey of Israel, Jerusalem, Israel
- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
| | - Eilon Adar
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| |
Collapse
|
7
|
Taylor J, Mulder DW, Corrigan PS, Ratzloff MW, Irizarry Gonzalez N, Lubner CE, King PW, Silakov A. A [FeFe] Hydrogenase-Rubrerythrin Chimeric Enzyme Functions to Couple H 2 Oxidation to Reduction of H 2O 2 in the Foodborne Pathogen Clostridium perfringens. J Am Chem Soc 2025; 147:9764-9773. [PMID: 40048633 PMCID: PMC11926857 DOI: 10.1021/jacs.4c18425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
[FeFe] hydrogenases are a diverse class of H2-activating enzymes with a wide range of utilities in nature. As H2 is a promising renewable energy carrier, exploration of the increasingly realized functional diversity of [FeFe] hydrogenases is instrumental for understanding how these remarkable enzymes can benefit society and inspire new technologies. In this work, we uncover the properties of a highly unusual natural chimera composed of a [FeFe] hydrogenase and rubrerythrin as a single polypeptide. The unique combination of [FeFe] hydrogenase with rubrerythrin, an enzyme that functions in H2O2 detoxification, raises the question of whether catalytic reactions, such as H2 oxidation and H2O2 reduction, are functionally linked. Herein, we express and purify a representative chimera from Clostridium perfringens (termed CperHydR) and apply various electrochemical and spectroscopic approaches to determine its activity and confirm the presence of each of the proposed metallocofactors. The cumulative data demonstrate that the enzyme contains a surprising array of metallocofactors: the catalytic site of [FeFe] hydrogenase termed the H-cluster, two [4Fe-4S] clusters, two rubredoxin Fe(Cys)4 centers, and a hemerythrin-like diiron site. The absence of an H2-evolution current in protein film voltammetry highlights an exceptional bias of this enzyme toward H2 oxidation to the greatest extent that has been observed for a [FeFe] hydrogenase. Here, we demonstrate that CperHydR uses H2, catalytically split by the hydrogenase domain, to reduce H2O2 by the diiron site. Structural modeling suggests a homodimeric nature of the protein. Overall, this study demonstrates that CperHydR is an H2-dependent H2O2 reductase. Equipped with this information, we discuss the possible role of this enzyme as a part of the oxygen-stress response system, proposing that CperHydR constitutes a new pathway for H2O2 mitigation.
Collapse
Affiliation(s)
- Jesse Taylor
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David W. Mulder
- Biosciences
Center, National Renewable Energy Lab, Golden, Colorado 80401, United States
| | - Patrick S. Corrigan
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael W. Ratzloff
- Biosciences
Center, National Renewable Energy Lab, Golden, Colorado 80401, United States
| | - Natalia Irizarry Gonzalez
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carolyn E. Lubner
- Biosciences
Center, National Renewable Energy Lab, Golden, Colorado 80401, United States
| | - Paul W. King
- Biosciences
Center, National Renewable Energy Lab, Golden, Colorado 80401, United States
| | - Alexey Silakov
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Chen GS, Liu C, Yang XJ, Zhan ZH, Wang TS, Zhang HX. Effect of proton sources on the electrocatalytic hydrogen evolution reaction mediated by a copper complex of bistriazolylpyridine. Dalton Trans 2025; 54:4761-4771. [PMID: 39976300 DOI: 10.1039/d4dt02856b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The widespread utilization of hydrogen fuel is one of the important strategies to fix the issues of energy shortage. It is thereby vital to develop robust, low-cost efficient catalysts for the hydrogen evolution reaction (HER). In this work, a new bistriazolylpyridine dimethyl-2,2'-(pyridine-2,6-diyl bis(1H-1,2,3-triazole-4,1-diyl))diacetate (dbes) and its copper complex [Cu(dbes)2](ClO4)2 (Cudbes) were prepared. The electrocatalytic activity of Cudbes toward the HER was studied in CH3CN solution using acetic acid (AcOH), trifluoroacetic acid (TFA), and p-toluene sulfonic acid (TsOH) as proton sources. In the presence of AcOH, TFA, and TsOH, the overpotentials for the HER mediated by Cudbes were 550 mV, 525 mV, and 520 mV, respectively. The faradaic efficiency was above 98%. The rate constant for the HER (kobs) was 1377 s-1 with AcOH, much higher than those with TFA (535 s-1) and TsOH (519 s-1). The acids profoundly affected the reaction pathways of the HER mediated by Cudbes. The catalytic HER mediated by Cudbes with AcOH followed the EECC or EEECC pathway. By contrast, in the presence of TFA or TsOH, the catalytic HER followed the CEEC or CECE pathway. The catalytic reactions invoked the proton-coupled electron transfer step and the proton relay on the triazolyl moiety of dbes. This work demonstrates that bistriazolylpyridines are good organic scaffolds to build transition metal complexes that are promising catalyst candidates for the HER and gives some new insights into the catalytic HER mediated by copper complexes using different proton sources.
Collapse
Affiliation(s)
- Gui-Shan Chen
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning 530004, Guangxi, China.
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning 530004, Guangxi, China.
| | - Xing-Jin Yang
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning 530004, Guangxi, China.
| | - Zhi-Hao Zhan
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning 530004, Guangxi, China.
| | - Tian-Shun Wang
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning 530004, Guangxi, China.
- Research Institute of Agro-Products Quality Safety and Testing Technology, Guangxi Academy of Agriculture Science, Nanning 530007, Guangxi, China
| | - Hua-Xin Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning 530004, Guangxi, China.
| |
Collapse
|
9
|
Pawlowski K, Wibberg D, Mehrabi S, Obaid NB, Patyi A, Berckx F, Nguyen H, Hagen M, Lundin D, Brachmann A, Blom J, Herrera-Belaroussi A, Abrouk D, Pujic P, Hahlin AS, Kalinowski J, Normand P, Sellstedt A. Frankia [NiFe] uptake hydrogenases and genome reduction: different lineages of loss. FEMS Microbiol Ecol 2024; 100:fiae147. [PMID: 39479807 DOI: 10.1093/femsec/fiae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 12/18/2024] Open
Abstract
Uptake hydrogenase (Hup) recycles H2 formed by nitrogenase during nitrogen fixation, thereby preserving energy. Among root nodule bacteria, most rhizobial strains examined are Hup-, while only one Hup- Frankia inoculum had been identified. Previous analyses had led to the identification of two different [NiFe] hydrogenase syntons. We analysed the distribution of different types of [NiFe] hydrogenase in the genomes of different Frankia species. Our results show that Frankia strains can contain four different [NiFe] hydrogenase syntons representing groups 1f, 1h, 2a, and 3b according to Søndergaard, Pedersen, and Greening (HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 2016;6:34212. https://doi.org/10.1038/srep34212.); no more than three types were found in any individual genome. The phylogeny of the structural proteins of groups 1f, 1h, and 2a follows Frankia phylogeny; the phylogeny of the accessory proteins does not consistently. An analysis of different [NiFe] hydrogenase types in Actinomycetia shows that under the most parsimonious assumption, all four types were present in the ancestral Frankia strain. Based on Hup activities analysed and the losses of syntons in different lineages of genome reduction, we can conclude that groups 1f and 2a are involved in recycling H2 formed by nitrogenase while group 1 h and group 3b are not.
Collapse
Affiliation(s)
- Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany
| | - Sara Mehrabi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Nadia Binte Obaid
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - András Patyi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Fede Berckx
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Han Nguyen
- Department of Plant Physiology, UPSC, Umeå University, 90187 Umeå, Sweden
| | - Michelle Hagen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Daniel Lundin
- Department of Biology and Environmental Science, Linnaeus University, 39182 Kalmar, Sweden
| | - Andreas Brachmann
- Biocenter of the LMU Munich, Genetics Section, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig Universität Giessen, 35392 Giessen, Germany
| | - Aude Herrera-Belaroussi
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Danis Abrouk
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Petar Pujic
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Ann-Sofi Hahlin
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany
| | - Philippe Normand
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Anita Sellstedt
- Department of Plant Physiology, UPSC, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
10
|
Nou NO, Covington JK, Lai D, Mayali X, Seymour CO, Johnston J, Jiao JY, Buessecker S, Mosier D, Muok AR, Torosian N, Cook AM, Briegel A, Woyke T, Eloe-Fadrosh E, Shapiro N, Bryan SG, Sleezer S, Dimapilis J, Gonzalez C, Gonzalez L, Noriega M, Hess M, Carlson RP, Liu L, Li MM, Lian ZH, Zhu S, Liu F, Sun X, Gao B, Mewalal R, Harmon-Smith M, Blaby IK, Cheng JF, Weber PK, Grigorean G, Li WJ, Dekas AE, Pett-Ridge J, Dodsworth JA, Palmer M, Hedlund BP. Genome-guided isolation of the hyperthermophilic aerobe Fervidibacter sacchari reveals conserved polysaccharide metabolism in the Armatimonadota. Nat Commun 2024; 15:9534. [PMID: 39496591 PMCID: PMC11535203 DOI: 10.1038/s41467-024-53784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Few aerobic hyperthermophilic microorganisms degrade polysaccharides. Here, we describe the genome-enabled enrichment and optical tweezer-based isolation of an aerobic polysaccharide-degrading hyperthermophile, Fervidibacter sacchari, previously ascribed to candidate phylum Fervidibacteria. F. sacchari uses polysaccharides and monosaccharides for growth at 65-87.5 °C and expresses 191 carbohydrate-active enzymes (CAZymes) according to RNA-Seq and proteomics, including 31 with unusual glycoside hydrolase domains (GH109, GH177, GH179). Fluorescence in-situ hybridization and nanoscale secondary ion mass spectrometry confirmed rapid assimilation of 13C-starch in spring sediments. Purified GHs were optimally active at 80-100 °C on ten different polysaccharides. Finally, we propose reassigning Fervidibacteria as a class within phylum Armatimonadota, along with 18 other species, and show that a high number and diversity of CAZymes is a hallmark of the phylum, in both aerobic and anaerobic lineages. Our study establishes Fervidibacteria as hyperthermophilic polysaccharide degraders in terrestrial geothermal springs and suggests a broad role for Armatimonadota in polysaccharide catabolism.
Collapse
Affiliation(s)
- Nancy O Nou
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | | | - Dengxun Lai
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Juliet Johnston
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Damon Mosier
- Department of Biology, California State University, San Bernardino, CA, USA
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Alise R Muok
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands
| | - Nicole Torosian
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Allison M Cook
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Ariane Briegel
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA
| | - Emiley Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nicole Shapiro
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Scott G Bryan
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Savannah Sleezer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Joshua Dimapilis
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Cristina Gonzalez
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Lizett Gonzalez
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Marlene Noriega
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Matthias Hess
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Ross P Carlson
- Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Siqi Zhu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Fan Liu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Xian Sun
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Ritesh Mewalal
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Miranda Harmon-Smith
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ian K Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
11
|
Blahut MR, Dawson ME, Kisgeropoulos EC, Ledinina AE, Mulder DW, King PW. Functional roles of the [2Fe-2S] clusters in Synechocystis PCC 6803 Hox [NiFe]-hydrogenase reactivity with ferredoxins. J Biol Chem 2024; 300:107936. [PMID: 39476964 DOI: 10.1016/j.jbc.2024.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 12/01/2024] Open
Abstract
The HoxEFUYH complex of Synechocystis PCC 6803 (S. 6803) consists of a HoxEFU ferredoxin:NAD(P)H oxidoreductase subcomplex and a HoxYH [NiFe]-hydrogenase subcomplex that catalyzes reversible H2 oxidation. Prior studies have suggested that the presence of HoxE is required for reactivity with ferredoxin; however, it is unknown how HoxE is functionally integrated into the electron transfer network of the HoxEFU:ferredoxin complex. Deciphering electron transfer pathways is challenged by the rich iron-sulfur cluster content of HoxEFU, which includes a [2Fe-2S] cluster in each subunit, along with multiple [4Fe-4S] clusters and a flavin cofactor. To resolve the role of HoxE, we determined the biophysical and thermodynamic properties of each [2Fe-2S] cluster in HoxEFU using steady-state and potentiometric EPR analysis in combination with square wave voltammetry (SWV). The temperature-dependence of the EPR signal for HoxE confirmed the coordination of a single [2Fe-2S] cluster that was shown by SWV to have an Em = -424 mV (versus SHE). Strikingly, when the Em of the HoxE [2Fe-2S] cluster was analyzed in HoxEFU titrations, it was shifted by >100 mV to an Em < -525 mV (versus SHE). EPR titrations of HoxEFU gave an Em value for the [2Fe-2S] cluster of HoxF, Em = -419 mV and HoxU, Em = -349 mV. These values were used to re-analyze the diaphorase kinetics in reactions performed with ferredoxins with varying Em's. The results are formulated into a model of HoxEFU:ferredoxin reactivity and the role of HoxE in mediating electron transfer within the HoxEFU:ferredoxin complex.
Collapse
Affiliation(s)
- Matthew R Blahut
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA
| | - Michael E Dawson
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA
| | | | | | - David W Mulder
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA
| | - Paul W King
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA.
| |
Collapse
|
12
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
13
|
Zheng X, Huang L. Diverse non-canonical electron bifurcating [FeFe]-hydrogenases of separate evolutionary origins in Hydrogenedentota. mSystems 2024; 9:e0099924. [PMID: 39189956 PMCID: PMC11406978 DOI: 10.1128/msystems.00999-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Hydrogenedentota, a globally distributed bacterial phylum-level lineage, is poorly understood. Here, we established a comprehensive genomic catalog of Hydrogenedentota, including a total of seven clades (or families) with 179 genomes, and explored the metabolic potential and evolutionary history of these organisms. We show that a single genome, especially those belonging to Clade 6, often encodes multiple hydrogenases with genomes in Clade 2, which rarely encode hydrogenases being the exception. Notably, most members of Hydrogenedentota contain a group A3 [FeFe]-hydrogenase (BfuABC) with a non-canonical electron bifurcation mechanism, in addition to substrate-level phosphorylation and electron transport-linked phosphorylation pathways, in energy conservation. Furthermore, we show that BfuABC from Hydrogenedentota fall into five sub-types. Phylogenetic analysis reveals five independent routes for the evolution of BfuABC homologs in Hydrogenedentota. We speculate that the five sub-types of BfuABC might be acquired from Bacillota (synonym Firmicutes) through separate horizontal gene transfer events. These data shed light on the diversity and evolution of bifurcating [FeFe]-hydrogenases and provide insight into the strategy of Hydrogenedentota to adapt to survival in various habitats. IMPORTANCE The phylum Hydrogenedentota is widely distributed in various environments. However, their physiology, ecology, and evolutionary history remain unknown, primarily due to the limited availability of the genomes and the lack of cultured representatives of the phylum. Our results have increased the knowledge of the genetic and metabolic diversity of these organisms and shed light on their diverse energy conservation strategies, especially those involving electron bifurcation with a non-canonical mechanism, which are likely responsible for their wide distribution. Besides, the organization and phylogenetic relationships of gene clusters coding for BfuABC in Hydrogenedentota provide valuable clues to the evolutionary history of group A3 electron bifurcating [FeFe]-hydrogenases.
Collapse
Affiliation(s)
- Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Wang L, Cheng X, Guo Y, Cao J, Sun M, Hwang JS, Liu R, Fang J. Novel isolates of hydrogen-oxidizing chemolithoautotrophic Sulfurospirillum provide insight to the functions and adaptation mechanisms of Campylobacteria in shallow-water hydrothermal vents. mSystems 2024; 9:e0014824. [PMID: 39166872 PMCID: PMC11406935 DOI: 10.1128/msystems.00148-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Enhancing the availability of representative isolates from hydrothermal vents (HTVs) is imperative for comprehending the microbial processes that propel the vent ecosystem. In recent years, Campylobacteria have emerged as the predominant and ubiquitous taxon across both shallow and deep-sea vent systems. Nevertheless, only a few isolates have been cultured, primarily originating from deep-sea HTVs. Presently, no cultivable isolates of Campylobacteria are accessible in shallow water vent systems (<200 m), which exhibit markedly distinct environmental conditions from their deep-sea counterparts. In this study, we enriched a novel isolate (genus Sulfurospirillum, Campylobacteria) from shallow-water HTVs of Kueishan Island. Genomic and physiological analysis revealed that this novel Campylobacteria species grows on a variety of substrate and carbon/energy sources. The pan-genome and phenotypic comparisons with 12 previously isolated Sulfurospirillum species from different environments supported the identification of functional features in Sulfurospirillum genomes crucial for adaptation to vent environments, such as sulfur oxidation, carbon fixation, biofilm formation, and benzoate/toluene degradation, as well as diverse genes related with signal transportation. To conclude, the metabolic characteristics of this novel Campylobacteria augment our understanding of Campylobacteria spanning from deep-sea to shallow-water vent systems.IMPORTANCECampylobacteria emerge as the dominant and ubiquitous taxa within vent systems, playing important roles in the vent ecosystems. However, isolated representatives of Campylobacteria have been mainly from the deep-sea hydrothermal fields, leaving a significant knowledge gap regarding the functions, activities, and adaptation strategies of the vent microorganisms in shallow-water hydrothermal vents (HTVs). This study bridges this gap by providing insights into the phenomics and genomic diversity of genus Sulfurospirillum (order Campylobacterales, class Campylobacteria) based on data derived from a novel isolate obtained from shallow-water HTVs. Our mesophilic isolate of Sulfurospirillum not only augments the genus diversity of Campylobacteria pure cultures derived from vent systems but also serves as the inaugural reference isolate for Campylobacteria in shallow-water environments.
Collapse
Affiliation(s)
- Li Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Xinyi Cheng
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yizhe Guo
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Junwei Cao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Mingye Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Rulong Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Rumbaugh TD, Gorka MJ, Baker CS, Golbeck JH, Silakov A. Light-induced H 2 generation in a photosystem I-O 2-tolerant [FeFe] hydrogenase nanoconstruct. Proc Natl Acad Sci U S A 2024; 121:e2400267121. [PMID: 39136990 PMCID: PMC11348241 DOI: 10.1073/pnas.2400267121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/29/2024] [Indexed: 08/15/2024] Open
Abstract
The fusion of hydrogenases and photosynthetic reaction centers (RCs) has proven to be a promising strategy for the production of sustainable biofuels. Type I (iron-sulfur-containing) RCs, acting as photosensitizers, are capable of promoting electrons to a redox state that can be exploited by hydrogenases for the reduction of protons to dihydrogen (H2). While both [FeFe] and [NiFe] hydrogenases have been used successfully, they tend to be limited due to either O2 sensitivity, binding specificity, or H2 production rates. In this study, we fuse a peripheral (stromal) subunit of Photosystem I (PS I), PsaE, to an O2-tolerant [FeFe] hydrogenase from Clostridium beijerinckii using a flexible [GGS]4 linker group (CbHydA1-PsaE). We demonstrate that the CbHydA1 chimera can be synthetically activated in vitro to show bidirectional activity and that it can be quantitatively bound to a PS I variant lacking the PsaE subunit. When illuminated in an anaerobic environment, the nanoconstruct generates H2 at a rate of 84.9 ± 3.1 µmol H2 mgchl-1 h-1. Further, when prepared and illuminated in the presence of O2, the nanoconstruct retains the ability to generate H2, though at a diminished rate of 2.2 ± 0.5 µmol H2 mgchl-1 h-1. This demonstrates not only that PsaE is a promising scaffold for PS I-based nanoconstructs, but the use of an O2-tolerant [FeFe] hydrogenase opens the possibility for an in vivo H2 generating system that can function in the presence of O2.
Collapse
Affiliation(s)
- Tristen D Rumbaugh
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Michael J Gorka
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Carol S Baker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - John H Golbeck
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
16
|
Gong X, Xu L, Langwig MV, Chen Z, Huang S, Zhao D, Su L, Zhang Y, Francis CA, Liu J, Li J, Baker BJ. Globally distributed marine Gemmatimonadota have unique genomic potentials. MICROBIOME 2024; 12:149. [PMID: 39123272 PMCID: PMC11316326 DOI: 10.1186/s40168-024-01871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Gemmatimonadota bacteria are widely distributed in nature, but their metabolic potential and ecological roles in marine environments are poorly understood. RESULTS Here, we obtained 495 metagenome-assembled genomes (MAGs), and associated viruses, from coastal to deep-sea sediments around the world. We used this expanded genomic catalog to compare the protein composition and update the phylogeny of these bacteria. The marine Gemmatimonadota are phylogenetically different from those previously reported from terrestrial environments. Functional analyses of these genomes revealed these marine genotypes are capable of degradation of complex organic carbon, denitrification, sulfate reduction, and oxidizing sulfide and sulfite. Interestingly, there is widespread genetic potential for secondary metabolite biosynthesis across Gemmatimonadota, which may represent an unexplored source of novel natural products. Furthermore, viruses associated with Gemmatimonadota have the potential to "hijack" and manipulate host metabolism, including the assembly of the lipopolysaccharide in their hosts. CONCLUSIONS This expanded genomic diversity advances our understanding of these globally distributed bacteria across a variety of ecosystems and reveals genetic distinctions between those in terrestrial and marine communities. Video Abstract.
Collapse
Affiliation(s)
- Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong, China.
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
| | - Le Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Marguerite V Langwig
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Shujie Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Duo Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Yan Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Christopher A Francis
- Departments of Earth System Science & Oceans, Stanford University, Stanford, CA, 94305, USA
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China.
| | - Brett J Baker
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
17
|
Hiralal A, Geelhoed JS, Neukirchen S, Meysman FJR. Comparative genomic analysis of nickel homeostasis in cable bacteria. BMC Genomics 2024; 25:692. [PMID: 39009997 PMCID: PMC11247825 DOI: 10.1186/s12864-024-10594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Cable bacteria are filamentous members of the Desulfobulbaceae family that are capable of performing centimetre‑scale electron transport in marine and freshwater sediments. This long‑distance electron transport is mediated by a network of parallel conductive fibres embedded in the cell envelope. This fibre network efficiently transports electrical currents along the entire length of the centimetre‑long filament. Recent analyses show that these fibres consist of metalloproteins that harbour a novel nickel‑containing cofactor, which indicates that cable bacteria have evolved a unique form of biological electron transport. This nickel‑dependent conduction mechanism suggests that cable bacteria are strongly dependent on nickel as a biosynthetic resource. Here, we performed a comprehensive comparative genomic analysis of the genes linked to nickel homeostasis. We compared the genome‑encoded adaptation to nickel of cable bacteria to related members of the Desulfobulbaceae family and other members of the Desulfobulbales order. RESULTS Presently, four closed genomes are available for the monophyletic cable bacteria clade that consists of the genera Candidatus Electrothrix and Candidatus Electronema. To increase the phylogenomic coverage, we additionally generated two closed genomes of cable bacteria: Candidatus Electrothrix gigas strain HY10‑6 and Candidatus Electrothrix antwerpensis strain GW3‑4, which are the first closed genomes of their respective species. Nickel homeostasis genes were identified in a database of 38 cable bacteria genomes (including 6 closed genomes). Gene prevalence was compared to 19 genomes of related strains, residing within the Desulfobulbales order but outside of the cable bacteria clade, revealing several genome‑encoded adaptations to nickel homeostasis in cable bacteria. Phylogenetic analysis indicates that nickel importers, nickel‑binding enzymes and nickel chaperones of cable bacteria are affiliated to organisms outside the Desulfobulbaceae family, with several proteins showing affiliation to organisms outside of the Desulfobacterota phylum. Conspicuously, cable bacteria encode a unique periplasmic nickel export protein RcnA, which possesses a putative cytoplasmic histidine‑rich loop that has been largely expanded compared to RcnA homologs in other organisms. CONCLUSION Cable bacteria genomes show a clear genetic adaptation for nickel utilization when compared to closely related genera. This fully aligns with the nickel‑dependent conduction mechanism that is uniquely found in cable bacteria.
Collapse
Affiliation(s)
- Anwar Hiralal
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | | | - Sinje Neukirchen
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | - Filip J R Meysman
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium.
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
18
|
Shoemaker A, Maritan A, Cosar S, Nupp S, Menchaca A, Jackson T, Dang A, Baxter BK, Colman DR, Dunham EC, Boyd ES. Wood-Ljungdahl pathway encoding anaerobes facilitate low-cost primary production in hypersaline sediments at Great Salt Lake, Utah. FEMS Microbiol Ecol 2024; 100:fiae105. [PMID: 39054286 PMCID: PMC11287216 DOI: 10.1093/femsec/fiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
Little is known of primary production in dark hypersaline ecosystems despite the prevalence of such environments on Earth today and throughout its geologic history. Here, we generated and analyzed metagenome-assembled genomes (MAGs) organized as operational taxonomic units (OTUs) from three depth intervals along a 30-cm sediment core from the north arm of Great Salt Lake, Utah. The sediments and associated porewaters were saturated with NaCl, exhibited redox gradients with depth, and harbored nitrogen-depleted organic carbon. Metabolic predictions of MAGs representing 36 total OTUs recovered from the core indicated that communities transitioned from aerobic and heterotrophic at the surface to anaerobic and autotrophic at depth. Dark CO2 fixation was detected in sediments and the primary mode of autotrophy was predicted to be via the Wood-Ljungdahl pathway. This included novel hydrogenotrophic acetogens affiliated with the bacterial class Candidatus Bipolaricaulia. Minor populations were dependent on the Calvin cycle and the reverse tricarboxylic acid cycle, including in a novel Thermoplasmatota MAG. These results are interpreted to reflect the favorability of and selectability for populations that operate the lowest energy requiring CO2-fixation pathway known, the Wood-Ljungdahl pathway, in anoxic and hypersaline conditions that together impart a higher energy demand on cells.
Collapse
Affiliation(s)
- Anna Shoemaker
- Department of Earth Sciences, Montana State University, P.O. Box 173480, Bozeman, MT 59717, United States
| | - Andrew Maritan
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Su Cosar
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Sylvia Nupp
- Department of Chemistry and Biochemistry, Montana State University, P.O. Box 173400, Bozeman, MT 59717, United States
| | - Ana Menchaca
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Thomas Jackson
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Aria Dang
- Department of Chemistry and Biochemistry, Montana State University, P.O. Box 173400, Bozeman, MT 59717, United States
| | - Bonnie K Baxter
- Great Salt Lake Institute, Westminster University, 1840 South 1300 East, Salt Lake City, UT 84105, United States
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Eric C Dunham
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| |
Collapse
|
19
|
Greening C, Cabotaje PR, Valentin Alvarado LE, Leung PM, Land H, Rodrigues-Oliveira T, Ponce-Toledo RI, Senger M, Klamke MA, Milton M, Lappan R, Mullen S, West-Roberts J, Mao J, Song J, Schoelmerich M, Stairs CW, Schleper C, Grinter R, Spang A, Banfield JF, Berggren G. Minimal and hybrid hydrogenases are active from archaea. Cell 2024; 187:3357-3372.e19. [PMID: 38866018 PMCID: PMC11216029 DOI: 10.1016/j.cell.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 04/12/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia.
| | - Princess R Cabotaje
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Luis E Valentin Alvarado
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Pok Man Leung
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia
| | - Henrik Land
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Thiago Rodrigues-Oliveira
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rafael I Ponce-Toledo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Moritz Senger
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Max A Klamke
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Milton
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rachael Lappan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia
| | - Susan Mullen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Jacob West-Roberts
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Jie Mao
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marie Schoelmerich
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | | | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, the Netherlands; Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Jillian F Banfield
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA.
| | - Gustav Berggren
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Jiang J, Guo T, Wang J, Sun A, Chen X, Xu X, Dai S, Qin Z. A novel microbial community restructuring strategy for enhanced hydrogen production using multiple pretreatments and CSTR operation. ENVIRONMENTAL RESEARCH 2024; 251:118725. [PMID: 38518915 DOI: 10.1016/j.envres.2024.118725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
To achieve rapid enrichment of the targeted hydrogen-producing bacterial population and reconstruction of the microbial community in the biological hydrogen-producing reactor, the activated sludge underwent multiple pretreatments using micro-aeration, alkaline treatment, and heat treatment. The activated sludge obtained from the multiple pretreatments was inoculated into the continuous stirred tank reactor (CSTR) for continuous operations. The community structure alteration and hydrogen-producing capability of the activated sludge were analyzed throughout the operation of the reactor. We found that the primary phyla in the activated sludge population shifted to Proteobacteria, Firmicutes, and Bacteroidetes, which collectively accounted for 96.69% after undergoing several pretreatments. This suggests that the multiple pretreatments facilitated in achieving the selective enrichment of the fermentation hydrogen-producing microorganisms in the activated sludge. The CSTR start-up and continuous operation of the biological hydrogen production reactor resulted in the reactor entering a highly efficient hydrogen production stage at influent COD concentrations of 4000 mg/L and 5000 mg/L, with the highest hydrogen production rate reaching 8.19 L/d and 9.33 L/d, respectively. The main genus present during the efficient hydrogen production stage in the reactor was Ethanoligenens, accounting for up to 33% of the total population. Ethanoligenens exhibited autoaggregation capabilities and a superior capacity for hydrogen production, leading to its prevalence in the reactor and contribution to efficient hydrogen production. During high-efficiency hydrogen production, flora associated with hydrogen production exhibited up to 46.95% total relative abundance. In addition, redundancy analysis (RDA) indicated that effluent pH and COD influenced the distribution of the primary hydrogen-producing bacteria, including Ethanoligenens, Raoultella, and Pectinatus, as well as other low abundant hydrogen-producing bacteria in the activated sludge. The data indicates that the multiple pretreatments and reactor's operation has successfully enriched the hydrogen-producing genera and changed the community structure of microbial hydrogen production.
Collapse
Affiliation(s)
- Jishan Jiang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tielan Guo
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jingyuan Wang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ao Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xingping Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoxiao Xu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
21
|
Shomar H, Bokinsky G. Harnessing iron‑sulfur enzymes for synthetic biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119718. [PMID: 38574823 DOI: 10.1016/j.bbamcr.2024.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Reactions catalysed by iron-sulfur (Fe-S) enzymes appear in a variety of biosynthetic pathways that produce valuable natural products. Harnessing these biosynthetic pathways by expression in microbial cell factories grown on an industrial scale would yield enormous economic and environmental benefits. However, Fe-S enzymes often become bottlenecks that limits the productivity of engineered pathways. As a consequence, achieving the production metrics required for industrial application remains a distant goal for Fe-S enzyme-dependent pathways. Here, we identify and review three core challenges in harnessing Fe-S enzyme activity, which all stem from the properties of Fe-S clusters: 1) limited Fe-S cluster supply within the host cell, 2) Fe-S cluster instability, and 3) lack of specialized reducing cofactor proteins often required for Fe-S enzyme activity, such as enzyme-specific flavodoxins and ferredoxins. We highlight successful methods developed for a variety of Fe-S enzymes and electron carriers for overcoming these difficulties. We use heterologous nitrogenase expression as a grand case study demonstrating how each of these challenges can be addressed. We predict that recent breakthroughs in protein structure prediction and design will prove well-suited to addressing each of these challenges. A reliable toolkit for harnessing Fe-S enzymes in engineered metabolic pathways will accelerate the development of industry-ready Fe-S enzyme-dependent biosynthesis pathways.
Collapse
Affiliation(s)
- Helena Shomar
- Institut Pasteur, université Paris Cité, Inserm U1284, Diversité moléculaire des microbes (Molecular Diversity of Microbes lab), 75015 Paris, France
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
22
|
Kisgeropoulos EC, Artz JH, Blahut M, Peters JW, King PW, Mulder DW. Properties of the iron-sulfur cluster electron transfer relay in an [FeFe]-hydrogenase that is tuned for H 2 oxidation catalysis. J Biol Chem 2024; 300:107292. [PMID: 38636659 PMCID: PMC11126806 DOI: 10.1016/j.jbc.2024.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
[FeFe]-hydrogenases catalyze the reversible oxidation of H2 from electrons and protons at an organometallic active site cofactor named the H-cluster. In addition to the H-cluster, most [FeFe]-hydrogenases possess accessory FeS cluster (F-cluster) relays that function in mediating electron transfer with catalysis. There is significant variation in the structural properties of F-cluster relays among the [FeFe]-hydrogenases; however, it is unknown how this variation relates to the electronic and thermodynamic properties, and thus the electron transfer properties, of enzymes. Clostridium pasteurianum [FeFe]-hydrogenase II (CpII) exhibits a large catalytic bias for H2 oxidation (compared to H2 production), making it a notable system for examining if F-cluster properties contribute to the overall function and efficiency of the enzyme. By applying a combination of multifrequency and potentiometric electron paramagnetic resonance, we resolved two electron paramagnetic resonance signals with distinct power- and temperature-dependent properties at g = 2.058 1.931 1.891 (F2.058) and g = 2.061 1.920 1.887 (F2.061), with assigned midpoint potentials of -140 ± 18 mV and -406 ± 12 mV versus normal hydrogen electrode, respectively. Spectral analysis revealed features consistent with spin-spin coupling between the two [4Fe-4S] F-clusters, and possible functional models are discussed that account for the contribution of coupling to the electron transfer landscape. The results signify the interplay of electronic coupling and free energy properties and parameters of the FeS clusters to the electron transfer mechanism through the relay and provide new insight as to how relays functionally complement the catalytic directionality of active sites to achieve highly efficient catalysis.
Collapse
Affiliation(s)
| | - Jacob H Artz
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Matthew Blahut
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - John W Peters
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma, USA
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA; Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado Boulder, Boulder, Colorado, USA
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.
| |
Collapse
|
23
|
Sonea A, Warren JJ. Assembling the pieces to improve catalysis. Nat Chem 2024; 16:678-679. [PMID: 38641679 DOI: 10.1038/s41557-024-01513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Affiliation(s)
- Ana Sonea
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
24
|
Edenharter K, Jaworek MW, Engelbrecht V, Winter R, Happe T. H 2 production under stress: [FeFe]‑hydrogenases reveal strong stability in high pressure environments. Biophys Chem 2024; 308:107217. [PMID: 38490110 DOI: 10.1016/j.bpc.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Hydrogenases are a diverse group of metalloenzymes that catalyze the conversion of H2 into protons and electrons and the reverse reaction. A subgroup is formed by the [FeFe]‑hydrogenases, which are the most efficient enzymes of microbes for catalytic H2 conversion. We have determined the stability and activity of two [FeFe]‑hydrogenases under high temperature and pressure conditions employing FTIR spectroscopy and the high-pressure stopped-flow methodology in combination with fast UV/Vis detection. Our data show high temperature stability and an increase in activity up to the unfolding temperatures of the enzymes. Remarkably, both enzymes reveal a very high pressure stability of their structure, even up to pressures of several kbars. Their high pressure-stability enables high enzymatic activity up to 2 kbar, which largely exceeds the pressure limit encountered by organisms in the deep sea and sub-seafloor on Earth.
Collapse
Affiliation(s)
- Kristina Edenharter
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Michel W Jaworek
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Vera Engelbrecht
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| | - Thomas Happe
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
25
|
Fasano A, Fourmond V, Léger C. Outer-sphere effects on the O 2 sensitivity, catalytic bias and catalytic reversibility of hydrogenases. Chem Sci 2024; 15:5418-5433. [PMID: 38638217 PMCID: PMC11023054 DOI: 10.1039/d4sc00691g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The comparison of homologous metalloenzymes, in which the same inorganic active site is surrounded by a variable protein matrix, has demonstrated that residues that are remote from the active site may have a great influence on catalytic properties. In this review, we summarise recent findings on the diverse molecular mechanisms by which the protein matrix may define the oxygen tolerance, catalytic directionality and catalytic reversibility of hydrogenases, enzymes that catalyse the oxidation and evolution of H2. These mechanisms involve residues in the second coordination sphere of the active site metal ion, more distant residues affecting protein flexibility through their side chains, residues lining the gas channel and even accessory subunits. Such long-distance effects, which contribute to making enzymes efficient, robust and different from one another, are a source of wonder for biochemists and a challenge for synthetic bioinorganic chemists.
Collapse
Affiliation(s)
- Andrea Fasano
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281 Marseille France
| | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281 Marseille France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281 Marseille France
| |
Collapse
|
26
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
27
|
Zhou W, Zhang J, Chen W, Miao C. Prospects of molecular hydrogen in cancer prevention and treatment. J Cancer Res Clin Oncol 2024; 150:170. [PMID: 38555538 PMCID: PMC10982102 DOI: 10.1007/s00432-024-05685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Gas signaling molecules, including carbon monoxide (CO), nitric oxide (NO), and hydrogen sulfide (H2S), have been shown to have cancer therapeutic potential, pointing to a new direction for cancer treatment. In recent years, a series of studies have confirmed that hydrogen (H2), a weakly reductive gas, also has therapeutic effects on various cancers and can mitigate oxidative stress caused by radiation and chemotherapy, reducing tissue damage and immunosuppression to improve prognosis. Meanwhile, H2 also has immunomodulatory effects, inhibiting T cell exhaustion and enhancing T cell anti-tumor function. It is worth noting that human intestinal flora can produce large amounts of H2 daily, which becomes a natural barrier to maintaining the body's resistance to diseases such as tumors. Although the potential anti-tumor mechanisms of H2 are still to be investigated, previous studies have shown that H2 can selectively scavenge highly toxic reactive oxygen species (ROS) and inhibit various ROS-dependent signaling pathways in cancer cells, thus inhibiting cancer cell proliferation and metastasis. The ROS scavenging ability of H2 may also be the underlying mechanism of its immunomodulatory function. In this paper, we review the significance of H2 produced by intestinal flora on the immune homeostasis of the body, the role of H2 in cancer therapy and the underlying mechanisms, and the specific application of H2 to provide new ideas for the comprehensive treatment of cancer patients.
Collapse
Affiliation(s)
- Wenchang Zhou
- Department of Anesthesiology; Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology; Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology; Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology; Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
28
|
Brabender M, Henriques Pereira DP, Mrnjavac N, Schlikker ML, Kimura ZI, Sucharitakul J, Kleinermanns K, Tüysüz H, Buckel W, Preiner M, Martin WF. Ferredoxin reduction by hydrogen with iron functions as an evolutionary precursor of flavin-based electron bifurcation. Proc Natl Acad Sci U S A 2024; 121:e2318969121. [PMID: 38513105 PMCID: PMC7615787 DOI: 10.1073/pnas.2318969121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Autotrophic theories for the origin of metabolism posit that the first cells satisfied their carbon needs from CO2 and were chemolithoautotrophs that obtained their energy and electrons from H2. The acetyl-CoA pathway of CO2 fixation is central to that view because of its antiquity: Among known CO2 fixing pathways it is the only one that is i) exergonic, ii) occurs in both bacteria and archaea, and iii) can be functionally replaced in full by single transition metal catalysts in vitro. In order to operate in cells at a pH close to 7, however, the acetyl-CoA pathway requires complex multi-enzyme systems capable of flavin-based electron bifurcation that reduce low potential ferredoxin-the physiological donor of electrons in the acetyl-CoA pathway-with electrons from H2. How can the acetyl-CoA pathway be primordial if it requires flavin-based electron bifurcation? Here, we show that native iron (Fe0), but not Ni0, Co0, Mo0, NiFe, Ni2Fe, Ni3Fe, or Fe3O4, promotes the H2-dependent reduction of aqueous Clostridium pasteurianum ferredoxin at pH 8.5 or higher within a few hours at 40 °C, providing the physiological function of flavin-based electron bifurcation, but without the help of enzymes or organic redox cofactors. H2-dependent ferredoxin reduction by iron ties primordial ferredoxin reduction and early metabolic evolution to a chemical process in the Earth's crust promoted by solid-state iron, a metal that is still deposited in serpentinizing hydrothermal vents today.
Collapse
Affiliation(s)
- Max Brabender
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Delfina P. Henriques Pereira
- Microcosm Earth Center, Research Group for Geochemical Protozymes, Max Planck Institute for Terrestrial Microbiology and Philipps University, Marburg35032, Germany
| | - Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Manon Laura Schlikker
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Zen-Ichiro Kimura
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
- Department of Civil and Environmental Engineering, National Institute of Technology, Kure College, Kure, Hiroshima737-8506, Japan
| | - Jeerus Sucharitakul
- Department of Biochemistry, Chulalongkorn University, Patumwan, Bangkok10330, Thailand
| | - Karl Kleinermanns
- Institute for Physical Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Harun Tüysüz
- Max Planck Institute for Coal Research, Department of Heterogeneous Catalysis, Mülheim an der Ruhr45470, Germany
| | - Wolfgang Buckel
- Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
- Laboratory for Microbiology, Department of Biology, Philipps University, Marburg35043, Germany
- Center for Synthetic Microbiology SYNMIKRO, Philipps University, Marburg35043, Germany
| | - Martina Preiner
- Microcosm Earth Center, Research Group for Geochemical Protozymes, Max Planck Institute for Terrestrial Microbiology and Philipps University, Marburg35032, Germany
| | - William F. Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| |
Collapse
|
29
|
Zhang IH, Borer B, Zhao R, Wilbert S, Newman DK, Babbin AR. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen-deficient zones with diverse metabolic potential. mBio 2024; 15:e0291823. [PMID: 38380943 PMCID: PMC10936187 DOI: 10.1128/mbio.02918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Archaea belonging to the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have been found in an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise a sizeable fraction of the archaeal community within marine oxygen-deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes (MAGs) belonging to the DPANN phyla Nanoarchaeota, Pacearchaeota, Woesearchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and the Arabian Sea. We find these archaea to be permanent, stable residents of all three major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25%-50% of archaea as estimated from read mapping to MAGs. ODZ DPANN appear to be capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs. IMPORTANCE Archaea from the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have diverse metabolic capabilities and participate in multiple biogeochemical cycles. While metagenomics and enrichments have revealed that many DPANN are characterized by ultrasmall genomes, few biosynthetic genes, and episymbiotic lifestyles, much remains unknown about their biology. We report 33 new DPANN metagenome-assembled genomes originating from the three global marine oxygen-deficient zones (ODZs), the first from these regions. We survey DPANN abundance and distribution within the ODZ water column, investigate their biosynthetic capabilities, and report potential roles in the cycling of organic carbon, methane, and nitrogen. We test the hypothesis that nitrous oxide reductases found within several ODZ DPANN genomes may enable ultrasmall episymbionts to serve as nitrous oxide consumers when attached to a host nitrous oxide producer. Our results indicate DPANN archaea as ubiquitous residents within the anoxic core of ODZs with the potential to produce or consume key compounds.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Steven Wilbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Hessler T, Harrison ST, Banfield JF, Huddy RJ. Harnessing Fermentation May Enhance the Performance of Biological Sulfate-Reducing Bioreactors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2830-2846. [PMID: 38301118 PMCID: PMC10867827 DOI: 10.1021/acs.est.3c04187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Biological sulfate reduction (BSR) represents a promising strategy for bioremediation of sulfate-rich waste streams, yet the impact of metabolic interactions on performance is largely unexplored. Here, genome-resolved metagenomics was used to characterize 17 microbial communities in reactors treating synthetic sulfate-contaminated solutions. Reactors were supplemented with lactate or acetate and a small amount of fermentable substrate. Of the 163 genomes representing all the abundant bacteria, 130 encode 321 NiFe and FeFe hydrogenases and all genomes of the 22 sulfate-reducing microorganisms (SRM) encode genes for H2 uptake. We observed lactate oxidation solely in the first packed bed reactor zone, with propionate and acetate oxidation in the middle and predominantly acetate oxidation in the effluent zone. The energetics of these reactions are very different, yet sulfate reduction kinetics were unaffected by the type of electron donor available. We hypothesize that the comparable rates, despite the typically slow growth of SRM on acetate, are a result of the consumption of H2 generated by fermentation. This is supported by the sustained performance of a predominantly acetate-supplemented stirred tank reactor dominated by diverse fermentative bacteria encoding FeFe hydrogenase genes and SRM capable of acetate and hydrogen consumption and CO2 assimilation. Thus, addition of fermentable substrates to stimulate syntrophic relationships may improve the performance of BSR reactors supplemented with inexpensive acetate.
Collapse
Affiliation(s)
- Tomas Hessler
- The
Center for Bioprocess Engineering Research, University of Cape Town, Cape Town 7700, South Africa
- Department
of Chemical Engineering, University of Cape
Town, Cape Town 7700, South Africa
- The
Innovative Genomics Institute at the University of California, Berkeley, California CA94720, United
States
- The
Department of Earth and Planetary Science, University of California, Berkeley, California CA94720, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California CA94720, United States
| | - Susan T.L. Harrison
- The
Center for Bioprocess Engineering Research, University of Cape Town, Cape Town 7700, South Africa
- Department
of Chemical Engineering, University of Cape
Town, Cape Town 7700, South Africa
- The Future
Water Institute, University of Cape Town, Cape Town 7700, South Africa
| | - Jillian F. Banfield
- The
Innovative Genomics Institute at the University of California, Berkeley, California CA94720, United
States
- The
Department of Earth and Planetary Science, University of California, Berkeley, California CA94720, United States
- The
Department of Environmental Science, Policy and Management, University of California, Berkeley, California CA94720, United States
| | - Robert J. Huddy
- The
Center for Bioprocess Engineering Research, University of Cape Town, Cape Town 7700, South Africa
- Department
of Chemical Engineering, University of Cape
Town, Cape Town 7700, South Africa
- The Future
Water Institute, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
31
|
Brocks C, Das CK, Duan J, Yadav S, Apfel UP, Ghosh S, Hofmann E, Winkler M, Engelbrecht V, Schäfer LV, Happe T. A Dynamic Water Channel Affects O 2 Stability in [FeFe]-Hydrogenases. CHEMSUSCHEM 2024; 17:e202301365. [PMID: 37830175 DOI: 10.1002/cssc.202301365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
[FeFe]-hydrogenases are capable of reducing protons at a high rate. However, molecular oxygen (O2 ) induces the degradation of their catalytic cofactor, the H-cluster, which consists of a cubane [4Fe4S] subcluster (4FeH ) and a unique diiron moiety (2FeH ). Previous attempts to prevent O2 -induced damage have focused on enhancing the protein's sieving effect for O2 by blocking the hydrophobic gas channels that connect the protein surface and the 2FeH . In this study, we aimed to block an O2 diffusion pathway and shield 4FeH instead. Molecular dynamics (MD) simulations identified a novel water channel (WH ) surrounding the H-cluster. As this hydrophilic path may be accessible for O2 molecules we applied site-directed mutagenesis targeting amino acids along WH in proximity to 4FeH to block O2 diffusion. Protein film electrochemistry experiments demonstrate increased O2 stabilities for variants G302S and S357T, and MD simulations based on high-resolution crystal structures confirmed an enhanced local sieving effect for O2 in the environment of the 4FeH in both cases. The results strongly suggest that, in wild type proteins, O2 diffuses from the 4FeH to the 2FeH . These results reveal new strategies for improving the O2 stability of [FeFe]-hydrogenases by focusing on the O2 diffusion network near the active site.
Collapse
Affiliation(s)
- Claudia Brocks
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Chandan K Das
- Faculty of Chemistry and Biochemistry, Center for Theoretical Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Shanika Yadav
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Subhasri Ghosh
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Eckhard Hofmann
- Faculty of Biology and Biotechnology, X-ray structure analysis of proteins, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Martin Winkler
- Electrobiotechnology, TUM Campus Straubing, Schulgasse 22, Straubing, 94315, Germany
| | - Vera Engelbrecht
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Lars V Schäfer
- Faculty of Chemistry and Biochemistry, Center for Theoretical Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| |
Collapse
|
32
|
Alavi G, Engelbrecht V, Hemschemeier A, Happe T. The Alga Uronema belkae Has Two Structural Types of [FeFe]-Hydrogenases with Different Biochemical Properties. Int J Mol Sci 2023; 24:17311. [PMID: 38139142 PMCID: PMC10744039 DOI: 10.3390/ijms242417311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Several species of microalgae can convert light energy into molecular hydrogen (H2) by employing enzymes of early phylogenetic origin, [FeFe]-hydrogenases, coupled to the photosynthetic electron transport chain. Bacterial [FeFe]-hydrogenases consist of a conserved domain that harbors the active site cofactor, the H-domain, and an additional domain that binds electron-conducting FeS clusters, the F-domain. In contrast, most algal hydrogenases characterized so far have a structurally reduced, so-termed M1-type architecture, which consists only of the H-domain that interacts directly with photosynthetic ferredoxin PetF as an electron donor. To date, only a few algal species are known to contain bacterial-type [FeFe]-hydrogenases, and no M1-type enzymes have been identified in these species. Here, we show that the chlorophycean alga Uronema belkae possesses both bacterial-type and algal-type [FeFe]-hydrogenases. Both hydrogenase genes are transcribed, and the cells produce H2 under hypoxic conditions. The biochemical analyses show that the two enzymes show features typical for each of the two [FeFe]-hydrogenase types. Most notable in the physiological context is that the bacterial-type hydrogenase does not interact with PetF proteins, suggesting that the two enzymes are integrated differently into the alga's metabolism.
Collapse
Affiliation(s)
| | | | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (G.A.); (V.E.)
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (G.A.); (V.E.)
| |
Collapse
|
33
|
Mai J, Hu BB, Zhu MJ. Metabolic division of labor between Acetivibrio thermocellus DSM 1313 and Thermoanaerobacterium thermosaccharolyticum MJ1 enhanced hydrogen production from lignocellulose. BIORESOURCE TECHNOLOGY 2023; 390:129871. [PMID: 37838018 DOI: 10.1016/j.biortech.2023.129871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
In this consortium, DSM 1313 was responsible for degrading lignocellulose by cellulosome, while the highly efficient hydrogen-producing bacterium MJ1 consumed the sugar produced by DSM 1313 to grow and produce more hydrogen. The results showed that the maximum hydrogen production of 259.57 mL/g substrate was obtained at the inoculation ratio (OD600) of 2:1 (DSM 1313:MJ1) and substrate concentration of 10 g/L, 70.84 % higher than pure culture. Furthermore, MJ1 dominated the co-culture system by using various sugars resulting from the biodegradation of substrate, thereby relieving the inhibition of sugar on DSM 1313 and leading to more hydrogen production. In the co-culture system, the value of extracellular oxidation-reduction potential and the ratio of NAD+/NADH was lower than that of pure culture. Additionally, at the gene level, [NiFe]-hydrogenase and [FeFe]-hydrogenase related enzymes were significantly up-regulated, leading to a two-fold increase in hydrogenase activity of co-culture compared with pure culture.
Collapse
Affiliation(s)
- Jing Mai
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi 844006, China.
| |
Collapse
|
34
|
Greening C, Kropp A, Vincent K, Grinter R. Developing high-affinity, oxygen-insensitive [NiFe]-hydrogenases as biocatalysts for energy conversion. Biochem Soc Trans 2023; 51:1921-1933. [PMID: 37743798 PMCID: PMC10657181 DOI: 10.1042/bst20230120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
The splitting of hydrogen (H2) is an energy-yielding process, which is important for both biological systems and as a means of providing green energy. In biology, this reaction is mediated by enzymes called hydrogenases, which utilise complex nickel and iron cofactors to split H2 and transfer the resulting electrons to an electron-acceptor. These [NiFe]-hydrogenases have received considerable attention as catalysts in fuel cells, which utilise H2 to produce electrical current. [NiFe]-hydrogenases are a promising alternative to the platinum-based catalysts that currently predominate in fuel cells due to the abundance of nickel and iron, and the resistance of some family members to inhibition by gases, including carbon monoxide, which rapidly poison platinum-based catalysts. However, the majority of characterised [NiFe]-hydrogenases are inhibited by oxygen (O2), limiting their activity and stability. We recently reported the isolation and characterisation of the [NiFe]-hydrogenase Huc from Mycobacterium smegmatis, which is insensitive to inhibition by O2 and has an extremely high affinity, making it capable of oxidising H2 in air to below atmospheric concentrations. These properties make Huc a promising candidate for the development of enzyme-based fuel cells (EBFCs), which utilise H2 at low concentrations and in impure gas mixtures. In this review, we aim to provide context for the use of Huc for this purpose by discussing the advantages of [NiFe]-hydrogenases as catalysts and their deployment in fuel cells. We also address the challenges associated with using [NiFe]-hydrogenases for this purpose, and how these might be overcome to develop EBFCs that can be deployed at scale.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC 3800, Australia
| | - Ashleigh Kropp
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kylie Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford OX1 3QR, U.K
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Centre for Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| |
Collapse
|
35
|
Zhang IH, Borer B, Zhao R, Wilbert S, Newman DK, Babbin AR. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen deficient zones with diverse metabolic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564641. [PMID: 37961710 PMCID: PMC10634959 DOI: 10.1101/2023.10.30.564641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Archaea belonging to the DPANN superphylum have been found within an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise 15-26% of the archaeal community within marine oxygen deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes belonging to DPANN phyla Nanoarchaeota, Pacearchaeota, Woesarchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and Arabian Sea. We find these archaea to be permanent, stable residents of all 3 major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25-50% of archaea. ODZ DPANN appear capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Wilbert
- Divisions of Biology and Biological Engineering and Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Divisions of Biology and Biological Engineering and Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
36
|
Zhang Y, Wang P, Xue S, Woods T, Guo Y, Zampella G, Rauchfuss TB, Arrigoni F. Synthesis, Spectroscopy, and Structure of [FeRu(μ-dithiolate)(CN) 2(CO) 4] 2. Inorg Chem 2023; 62:16842-16853. [PMID: 37788376 DOI: 10.1021/acs.inorgchem.3c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The salt [K(18-crown-6)]2[Ru(CN)2(CO)3] ([K(18-crown-6)]2[1]) was generated by the reaction of Ru(C2H4)(CO)4 with [K(18-crown-6)]CN. An initial thermal reaction gives [Ru(CN)(CO)4]-, which, upon ultraviolet (UV) irradiation, reacts with a second equiv of CN-. Protonation of [1]2- gave [HRu(CN)2(CO)3]- ([H1]-), which was isolated as a single isomer with mutually trans cyanide ligands. The complex cis,cis,cis-[Ru(pdt)(CN)2(CO)2]2- ([2]2-) was prepared by the UV-induced reaction of [1]2- with propanedithiol (pdtH2). The corresponding iron complex cis,cis,cis-[Fe(pdt)(CN)2(CO)2]2- ([3]2-) was prepared similarly. The pdt complexes [2]2- and [3]2- were treated with Fe(benzylideneacetone)(CO)3 to give, respectively, [RuFe (μ-pdt)(CN)2(CO)4]2- ([5]2-) and [Fe2(μ-pdt)(CN)2(CO)4]2- ([4]2-). The pathway from [3]2- to Fe2 complex [4]2- implicates intermetallic migration of CN-. In contrast, the formation of [5]2- leaves the Ru(CN)2(CO) center intact, as confirmed by X-ray crystallography. The structure of [5]2- features a "rotated" square-pyramidal Fe(CO)2(μ-CO) site. NMR measurements indicate that the octahedral Ru site is stereochemically rigid, whereas the Fe site dynamically undergoes turnstile rotation. 57Fe Mössbauer spectral parameters are very similar for rotated [5]2- and unrotated Fe2 complex [4]2-, indicating the insensitivity of that technique to both the geometry and the oxidation state of the Fe site. According to cyclic voltammetry, [5]2- oxidizes at E1/2 ∼ -0.8 V vs Fc+/0. Electron paramagnetic resonance (EPR) measurements show that 1e- oxidation of [5]2- gives an S = 1/2 rhombic species, consistent with the formulation Ru(II)Fe(I), related to the Hox state of the [FeFe] hydrogenases. Density functional theory (DFT) studies reproduce the structure, 1H NMR shifts, and infrared (IR) spectra observed for [5]2-. Related homometallic complexes with both cyanides on a single metal are predicted to not adopt rotated structures. These data suggest that [5]2- is best described as Ru(II)Fe(0). This conclusion raises the possibility that for some reduced states of the [FeFe]-hydrogenases, the [2Fe]H site may be better described as Fe(II)Fe(0) than Fe(I)Fe(I).
Collapse
Affiliation(s)
- Yu Zhang
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Ping Wang
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Shan Xue
- Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Toby Woods
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126 Milan, Italy
| |
Collapse
|
37
|
Frielingsdorf S, Pinske C, Valetti F, Greening C. Editorial: Hydrogenase: structure, function, maturation, and application. Front Microbiol 2023; 14:1284540. [PMID: 37808289 PMCID: PMC10556730 DOI: 10.3389/fmicb.2023.1284540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Stefan Frielingsdorf
- Institute of Chemistry, Biophysical Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Constanze Pinske
- Institute for Biology, Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Francesca Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Chris Greening
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
38
|
Fasano A, Guendon C, Jacq-Bailly A, Kpebe A, Wozniak J, Baffert C, Barrio MD, Fourmond V, Brugna M, Léger C. A Chimeric NiFe Hydrogenase Heterodimer to Assess the Role of the Electron Transfer Chain in Tuning the Enzyme's Catalytic Bias and Oxygen Tolerance. J Am Chem Soc 2023; 145:20021-20030. [PMID: 37657413 DOI: 10.1021/jacs.3c06895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The observation that some homologous enzymes have the same active site but very different catalytic properties demonstrates the importance of long-range effects in enzyme catalysis, but these effects are often difficult to rationalize. The NiFe hydrogenases 1 and 2 (Hyd 1 and Hyd 2) from E. coli both consist of a large catalytic subunit that embeds the same dinuclear active site and a small electron-transfer subunit with a chain of three FeS clusters. Hyd 1 is mostly active in H2 oxidation and resistant to inhibitors, whereas Hyd 2 also catalyzes H2 production and is strongly inhibited by O2 and CO. Based on structural and site-directed mutagenesis data, it is currently believed that the catalytic bias and tolerance to O2 of Hyd 1 are defined by the distal and proximal FeS clusters, respectively. To test these hypotheses, we produced and characterized a hybrid enzyme made of the catalytic subunit of Hyd 1 and the electron transfer subunit of Hyd 2. We conclude that catalytic bias and sensitivity to CO are set by the catalytic subunit rather than by the electron transfer chain. We confirm the importance of the proximal cluster in making the enzyme Hyd 1 resist long-term exposure to O2, but we show that other structural determinants, in both subunits, contribute to O2 tolerance. A similar strategy based on the design of chimeric heterodimers could be used in the future to elucidate various structure-function relationships in hydrogenases and other multimeric metalloenzymes and to engineer useful hydrogenases that combine the desirable properties of distinct, homologous enzymes.
Collapse
Affiliation(s)
- Andrea Fasano
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Chloé Guendon
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Aurore Jacq-Bailly
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Arlette Kpebe
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Jérémy Wozniak
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Carole Baffert
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Melisa Del Barrio
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Myriam Brugna
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| |
Collapse
|
39
|
Wertz AE, Teptarakulkarn P, Stein RE, Moore PJ, Shafaat HS. Rubredoxin Protein Scaffolds Sourced from Diverse Environmental Niches as an Artificial Hydrogenase Platform. Biochemistry 2023; 62:2622-2631. [PMID: 37579005 DOI: 10.1021/acs.biochem.3c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Nickel-substituted rubredoxin (NiRd) from Desulfovibrio desulfuricans has previously been shown to act as both a structural and functional mimic of the [NiFe] hydrogenase. However, improvements both in turnover frequency and overpotential are needed to rival the native [NiFe] hydrogenase enzymes. Characterization of a library of NiRd mutants with variations in the secondary coordination sphere suggested that protein dynamics played a substantial role in modulating activity. In this work, rubredoxin scaffolds were selected from diverse organisms to study the effects of distal sequence variation on catalytic activity. It was found that though electrochemical catalytic activity was only slightly impacted across the series, the Rd sequence from a psychrophilic organism exhibited substantially higher levels of solution-phase hydrogen production. Additionally, Eyring analyses suggest that catalytic activation properties relate to the growth temperature of the parent organism, implying that the general correlation between the parent organism environment and catalytic activity often seen in naturally occurring enzymes may also be observed in artificial enzymes. Selecting protein scaffolds from hosts that inhabit diverse environments, particularly low-temperature environments, represents an alternative approach for engineering artificial metalloenzymes.
Collapse
Affiliation(s)
- Ashlee E Wertz
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Pathorn Teptarakulkarn
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Riley E Stein
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Peter J Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
40
|
Witkowska M, Jedrzejczak RP, Joachimiak A, Cavdar O, Malankowska A, Skowron PM, Zylicz-Stachula A. Promising approaches for the assembly of the catalytically active, recombinant Desulfomicrobium baculatum hydrogenase with substitutions at the active site. Microb Cell Fact 2023; 22:134. [PMID: 37479997 PMCID: PMC10362691 DOI: 10.1186/s12934-023-02127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Hydrogenases (H2ases) are metalloenzymes capable of the reversible conversion of protons and electrons to molecular hydrogen. Exploiting the unique enzymatic activity of H2ases can lead to advancements in the process of biohydrogen evolution and green energy production. RESULTS Here we created of a functional, optimized operon for rapid and robust production of recombinant [NiFe] Desulfomicrobium baculatum hydrogenase (Dmb H2ase). The conversion of the [NiFeSe] Dmb H2ase to [NiFe] type was performed on genetic level by site-directed mutagenesis. The native dmb operon includes two structural H2ase genes, coding for large and small subunits, and an additional gene, encoding a specific maturase (protease) that is essential for the proper maturation of the enzyme. Dmb, like all H2ases, needs intricate bio-production machinery to incorporate its crucial inorganic ligands and cofactors. Strictly anaerobic, sulfate reducer D. baculatum bacteria are distinct, in terms of their biology, from E. coli. Thus, we introduced a series of alterations within the native dmb genes. As a result, more than 100 elements, further compiled into 32 operon variants, were constructed. The initial requirement for a specific maturase was omitted by the artificial truncation of the large Dmb subunit. The assembly of the produced H2ase subunit variants was investigated both, in vitro and in vivo. This approach resulted in 4 recombinant [NiFe] Dmb enzyme variants, capable of H2 evolution. The aim of this study was to overcome the gene expression, protein biosynthesis, maturation and ligand loading bottlenecks for the easy, fast, and cost-effective delivery of recombinant [NiFe] H2ase, using a commonly available E. coli strains. CONCLUSION The optimized genetic constructs together with the developed growth and purification procedures appear to be a promising platform for further studies toward fully-active and O2 tolerant, recombinant [NiFeSe] Dmb H2ase, resembling the native Dmb enzyme. It could likely be achieved by selective cysteine to selenocysteine substitution within the active site of the [NiFe] Dmb variant.
Collapse
Affiliation(s)
- Malgorzata Witkowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Robert P Jedrzejczak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Onur Cavdar
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Anna Malankowska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland.
| |
Collapse
|
41
|
Thompson J, Barr C, Babcock-Adams L, Bird L, La Cava E, Garber A, Hongoh Y, Liu M, Nealson KH, Okamoto A, Repeta D, Suzuki S, Tacto C, Tashjian M, Merino N. Insights into the physiological and genomic characterization of three bacterial isolates from a highly alkaline, terrestrial serpentinizing system. Front Microbiol 2023; 14:1179857. [PMID: 37520355 PMCID: PMC10373932 DOI: 10.3389/fmicb.2023.1179857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 08/01/2023] Open
Abstract
The terrestrial serpentinite-hosted ecosystem known as "The Cedars" is home to a diverse microbial community persisting under highly alkaline (pH ~ 12) and reducing (Eh < -550 mV) conditions. This extreme environment presents particular difficulties for microbial life, and efforts to isolate microorganisms from The Cedars over the past decade have remained challenging. Herein, we report the initial physiological assessment and/or full genomic characterization of three isolates: Paenibacillus sp. Cedars ('Paeni-Cedars'), Alishewanella sp. BS5-314 ('Ali-BS5-314'), and Anaerobacillus sp. CMMVII ('Anaero-CMMVII'). Paeni-Cedars is a Gram-positive, rod-shaped, mesophilic facultative anaerobe that grows between pH 7-10 (minimum pH tested was 7), temperatures 20-40°C, and 0-3% NaCl concentration. The addition of 10-20 mM CaCl2 enhanced growth, and iron reduction was observed in the following order, 2-line ferrihydrite > magnetite > serpentinite ~ chromite ~ hematite. Genome analysis identified genes for flavin-mediated iron reduction and synthesis of a bacillibactin-like, catechol-type siderophore. Ali-BS5-314 is a Gram-negative, rod-shaped, mesophilic, facultative anaerobic alkaliphile that grows between pH 10-12 and temperatures 10-40°C, with limited growth observed 1-5% NaCl. Nitrate is used as a terminal electron acceptor under anaerobic conditions, which was corroborated by genome analysis. The Ali-BS5-314 genome also includes genes for benzoate-like compound metabolism. Anaero-CMMVII remained difficult to cultivate for physiological studies; however, growth was observed between pH 9-12, with the addition of 0.01-1% yeast extract. Anaero-CMMVII is a probable oxygen-tolerant anaerobic alkaliphile with hydrogenotrophic respiration coupled with nitrate reduction, as determined by genome analysis. Based on single-copy genes, ANI, AAI and dDDH analyses, Paeni-Cedars and Ali-BS5-314 are related to other species (P. glucanolyticus and A. aestuarii, respectively), and Anaero-CMMVII represents a new species. The characterization of these three isolates demonstrate the range of ecophysiological adaptations and metabolisms present in serpentinite-hosted ecosystems, including mineral reduction, alkaliphily, and siderophore production.
Collapse
Affiliation(s)
- Jaclyn Thompson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Casey Barr
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Lydia Babcock-Adams
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Lina Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Eugenio La Cava
- National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Arkadiy Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Mark Liu
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Daniel Repeta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Shino Suzuki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Sagamihara, Kanagawa, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Clarissa Tacto
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michelle Tashjian
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
42
|
Zhang F, Woods TJ, Rauchfuss TB. Hybrids of [FeFe]- and [NiFe]-H 2ase Active Site Models. Organometallics 2023; 42:1607-1614. [PMID: 37928214 PMCID: PMC10624399 DOI: 10.1021/acs.organomet.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Complexes of the type (diphosphine)Ni(μ-SR)2Fe(CO)3 are investigated with azadithiolate (adt, HN(CH2S-)2) as the dithiolate. The resulting complexes are hybrid models for the active sites of the [NiFe]- and [FeFe]-hydrogenases. The key complex (dppv)Ni(μ-adt)Fe(CO)3 (3) was prepared from the complex Ni[(SCH2)2NCbz](dppv), which contains a Cbz-protected adt ligand (Cbz = C(O)OCH2Ph, dppv = cis-1,2-(Ph2P)2C2H2). This complex combines with Fe2(CO)9 to give (dppv)Ni[(μ-SCH2)2NCbz]Fe(CO)3, which is readily deprotected to give 3. Complex 3 undergoes protonation at both Fe and N to give successively [(dppv)Ni(μ-adt)FeH(CO)3]+ ([H3]+) and [(dppv)Ni(μ-adtH)FeH(CO)3]2+ ([H3H]2+). The redox properties and dynamics of these complexes resemble previously reported analogues with propanedithiolate. Solutions of [H3]+ readily degrade to [(dppv)Ni[(μ-SCH2)2NCH2]Fe(CO)3]+ ([4]+), which features a methylene group linking N and Fe. Complex [4]+ can be made in high yield by reaction of [H3]+ with CH2O, and this conversion was also demonstrated with 13CH2O. Complex [4]+ undergoes hydrogenolysis by photochemical reaction with H2 to give [(dppv)Ni[(μ-SCH2)2NMe]FeH(CO)3]+, the N-methylated analogue of [H3]+. Upon treatment ith Me3O+, [4]+ undergoes quaternization, giving [(dppv)Ni[(μ-SCH2)2N(Me)CH2]Fe(CO)3]2+. In contrast with the lability of [H3]+, the phosphine-substituted derivative [(dppv)Ni(μ-adt)FeH(CO)2(PPh3)]+ did not degrade. Most complexes were characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Fanjun Zhang
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States; Present Address: School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China (F.Z.)
| | - Toby J Woods
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Balci B, O'Neill RD, Shepard EM, Pagnier A, Marlott A, Mock MT, Broderick WE, Broderick JB. Semisynthetic maturation of [FeFe]-hydrogenase using [Fe 2(μ-SH) 2(CN) 2(CO) 4] 2-: key roles for HydF and GTP. Chem Commun (Camb) 2023. [PMID: 37376915 DOI: 10.1039/d3cc02169f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Here we describe maturation of the [FeFe]-hydrogenase from its [4Fe-4S]-bound precursor state by using the synthetic complex [Fe2(μ-SH)2(CN)2(CO)4]2- together with HydF and components of the glycine cleavage system, but in the absence of the maturases HydE and HydG. This semisynthetic and fully-defined maturation provides new insights into the nature of H-cluster biosynthesis.
Collapse
Affiliation(s)
- Batuhan Balci
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Roark D O'Neill
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Eric M Shepard
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Adrien Pagnier
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Alexander Marlott
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Michael T Mock
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - William E Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Joan B Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
44
|
Leone L, Sgueglia G, La Gatta S, Chino M, Nastri F, Lombardi A. Enzymatic and Bioinspired Systems for Hydrogen Production. Int J Mol Sci 2023; 24:ijms24108605. [PMID: 37239950 DOI: 10.3390/ijms24108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gianmattia Sgueglia
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
45
|
Chalopin Y, Cramer SP, Arragain S. Phonon-assisted electron-proton transfer in [FeFe] hydrogenases: Topological role of clusters. Biophys J 2023; 122:1557-1567. [PMID: 36960530 PMCID: PMC10147833 DOI: 10.1016/j.bpj.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
[FeFe] hydrogenases are enzymes that have acquired a unique capacity to synthesize or consume molecular hydrogen (H2). This function relies on a complex catalytic mechanism involving the active site and two distinct electron and proton transfer networks working in concert. By an analysis based on terahertz vibrations of [FeFe] hydrogenase structure, we are able to predict and identify the existence of rate-promoting vibrations at the catalytic site and the coupling with functional residues involved in reported electron and proton transfer networks. Our findings suggest that the positioning of the cluster is influenced by the response of the scaffold to thermal fluctuations, which in turn drives the formation of networks for electron transfer through phonon-assisted mechanisms. Thus, we address the problem of linking the molecular structure to the catalytic function through picosecond dynamics, while raising the functional gain brought by the cofactors or clusters, using the concept of fold-encoded localized vibrations.
Collapse
Affiliation(s)
- Yann Chalopin
- Laboratoire d'Energétique Macroscopique et Moléculaire, Combustion (EM2C), CNRS/CentraleSupélec, University of Paris-Saclay, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
46
|
Hausinger RP. Five decades of metalloenzymology. Enzymes 2023; 54:71-105. [PMID: 37945178 PMCID: PMC11934070 DOI: 10.1016/bs.enz.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Metalloenzymes have been detailed in The Enzymes since its inception over half a century ago. Here, I review selected metal-containing enzyme highlights from early chapters in this series and I describe advances made since those contributions. Three topics are emphasized: nickel-containing enzymes, Fe(II)/2-oxoglutarate-dependent oxygenases, and enzymes containing non-canonical iron-sulfur clusters.
Collapse
Affiliation(s)
- Robert P Hausinger
- Departments of Microbiology & Molecular Genetics and Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
47
|
Rodríguez-Gijón A, Buck M, Andersson AF, Izabel-Shen D, Nascimento FJA, Garcia SL. Linking prokaryotic genome size variation to metabolic potential and environment. ISME COMMUNICATIONS 2023; 3:25. [PMID: 36973336 PMCID: PMC10042847 DOI: 10.1038/s43705-023-00231-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
While theories and models have appeared to explain genome size as a result of evolutionary processes, little work has shown that genome sizes carry ecological signatures. Our work delves into the ecological implications of microbial genome size variation in benthic and pelagic habitats across environmental gradients of the brackish Baltic Sea. While depth is significantly associated with genome size in benthic and pelagic brackish metagenomes, salinity is only correlated to genome size in benthic metagenomes. Overall, we confirm that prokaryotic genome sizes in Baltic sediments (3.47 Mbp) are significantly bigger than in the water column (2.96 Mbp). While benthic genomes have a higher number of functions than pelagic genomes, the smallest genomes coded for a higher number of module steps per Mbp for most of the functions irrespective of their environment. Some examples of this functions are amino acid metabolism and central carbohydrate metabolism. However, we observed that nitrogen metabolism was almost absent in pelagic genomes and was mostly present in benthic genomes. Finally, we also show that Bacteria inhabiting Baltic sediments and water column not only differ in taxonomy, but also in their metabolic potential, such as the Wood-Ljungdahl pathway or the presence of different hydrogenases. Our work shows how microbial genome size is linked to abiotic factors in the environment, metabolic potential and taxonomic identity of Bacteria and Archaea within aquatic ecosystems.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Gijón
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- Science for Life Laboratory, Stockholm, Sweden.
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders F Andersson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- Science for Life Laboratory, Stockholm, Sweden.
| |
Collapse
|
48
|
Kronen M, Vázquez-Campos X, Wilkins MR, Lee M, Manefield MJ. Evidence for a Putative Isoprene Reductase in Acetobacterium wieringae. mSystems 2023; 8:e0011923. [PMID: 36943133 PMCID: PMC10134865 DOI: 10.1128/msystems.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Recent discoveries of isoprene-metabolizing microorganisms suggest they might play an important role in the global isoprene budget. Under anoxic conditions, isoprene can be used as an electron acceptor and is reduced to methylbutene. This study describes the proteogenomic profiling of an isoprene-reducing bacterial culture to identify organisms and genes responsible for the isoprene hydrogenation reaction. A metagenome-assembled genome (MAG) of the most abundant (89% relative abundance) lineage in the enrichment, Acetobacterium wieringae, was obtained. Comparative proteogenomics and reverse transcription-PCR (RT-PCR) identified a putative five-gene operon from the A. wieringae MAG upregulated during isoprene reduction. The operon encodes a putative oxidoreductase, three pleiotropic nickel chaperones (2 × HypA, HypB), and one 4Fe-4S ferredoxin. The oxidoreductase is proposed as the putative isoprene reductase with a binding site for NADH, flavin adenine dinucleotide (FAD), two pairs of canonical [4Fe-4S] clusters, and a putative iron-sulfur cluster site in a Cys6-bonding environment. Well-studied Acetobacterium strains, such as A. woodii DSM 1030, A. wieringae DSM 1911, or A. malicum DSM 4132, do not encode the isoprene-regulated operon but encode, like many other bacteria, a homolog of the putative isoprene reductase (~47 to 49% amino acid sequence identity). Uncharacterized homologs of the putative isoprene reductase are observed across the Firmicutes, Spirochaetes, Tenericutes, Actinobacteria, Chloroflexi, Bacteroidetes, and Proteobacteria, suggesting the ability of biohydrogenation of unfunctionalized conjugated doubled bonds in other unsaturated hydrocarbons. IMPORTANCE Isoprene was recently shown to act as an electron acceptor for a homoacetogenic bacterium. The focus of this study is the molecular basis for isoprene reduction. By comparing a genome from our isoprene-reducing enrichment culture, dominated by Acetobacterium wieringae, with genomes of other Acetobacterium lineages that do not reduce isoprene, we shortlisted candidate genes for isoprene reduction. Using comparative proteogenomics and reverse transcription-PCR we have identified a putative five-gene operon encoding an oxidoreductase referred to as putative isoprene reductase.
Collapse
Affiliation(s)
- Miriam Kronen
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Lee
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Michael J Manefield
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
49
|
Timm J, Pike DH, Mancini JA, Tyryshkin AM, Poudel S, Siess JA, Molinaro PM, McCann JJ, Waldie KM, Koder RL, Falkowski PG, Nanda V. Design of a minimal di-nickel hydrogenase peptide. SCIENCE ADVANCES 2023; 9:eabq1990. [PMID: 36897954 PMCID: PMC10005181 DOI: 10.1126/sciadv.abq1990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/07/2023] [Indexed: 06/07/2023]
Abstract
Ancestral metabolic processes involve the reversible oxidation of molecular hydrogen by hydrogenase. Extant hydrogenase enzymes are complex, comprising hundreds of amino acids and multiple cofactors. We designed a 13-amino acid nickel-binding peptide capable of robustly producing molecular hydrogen from protons under a wide variety of conditions. The peptide forms a di-nickel cluster structurally analogous to a Ni-Fe cluster in [NiFe] hydrogenase and the Ni-Ni cluster in acetyl-CoA synthase, two ancient, extant proteins central to metabolism. These experimental results demonstrate that modern enzymes, despite their enormous complexity, likely evolved from simple peptide precursors on early Earth.
Collapse
Affiliation(s)
- Jennifer Timm
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Douglas H. Pike
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Joshua A. Mancini
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Alexei M. Tyryshkin
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Saroj Poudel
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jan A. Siess
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Paul M. Molinaro
- Department of Physics, The City College of New York, New York, NY 10016, USA
| | - James J. McCann
- Department of Physics, The City College of New York, New York, NY 10016, USA
| | - Kate M. Waldie
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ronald L. Koder
- Department of Physics, The City College of New York, New York, NY 10016, USA
| | - Paul G. Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
50
|
Stepwise assembly of the active site of [NiFe]-hydrogenase. Nat Chem Biol 2023; 19:498-506. [PMID: 36702959 DOI: 10.1038/s41589-022-01226-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 01/27/2023]
Abstract
[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.
Collapse
|