1
|
Jiang Y, Cai W, Lei G, Cai G, Wu Q, Lu P. Deubiquitinase USP47 Ameliorates Cardiac Hypertrophy Through Reducing Protein O-GlcNAcylation. J Cardiovasc Pharmacol 2025; 85:54-62. [PMID: 39436323 DOI: 10.1097/fjc.0000000000001640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Cardiac hypertrophy is a crucial risk factor for heart failure when the heart is confronted with physiologic or pathologic stimuli. The ubiquitin-proteasome system plays a critical role in the pathogenesis of cardiac hypertrophy. However, as a key component of the ubiquitin-proteasome system, the role of deubiquitinating enzymes in cardiac hypertrophy is not well understood. In this study, we observed that the expression level of deubiquitinase USP47 was increased in hypertrophic hearts and angiotensin II (Ang II)-stimulated neonatal rat cardiomyocytes. Adenovirus-mediated gain- and loss-of-function approaches indicated that USP47 overexpression significantly attenuated Ang II-induced cardiac hypertrophy in vitro and in vivo, whereas endogenous USP47 deficiency promoted the prohypertrophic effect of Ang II. Further investigation demonstrated that USP47 inhibited O-GlcNAcylation in cardiomyocytes by controlling the expression of O-GlcNAcase. Mechanistically, USP47 bound, deubiquitinated, and stabilized protein arginine methyltransferase 5 (PRMT5), thus upregulating O-GlcNAcase expression. We found that the restoration of PRMT5 abolished the prohypertrophic effects of USP47 silence in vitro. Therefore, our results provide the first evidence of the involvement of USP47 in cardiac hypertrophy and identify USP47 as a potential target for hypertrophic therapy.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China ; and
| | - Wenyao Cai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China ; and
| | - Guangtao Lei
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guorong Cai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China ; and
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Lu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Barré-Villeneuve C, Azevedo-Favory J. R-Methylation in Plants: A Key Regulator of Plant Development and Response to the Environment. Int J Mol Sci 2024; 25:9937. [PMID: 39337424 PMCID: PMC11432338 DOI: 10.3390/ijms25189937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Although arginine methylation (R-methylation) is one of the most important post-translational modifications (PTMs) conserved in eukaryotes, it has not been studied to the same extent as phosphorylation and ubiquitylation. Technical constraints, which are in the process of being resolved, may partly explain this lack of success. Our knowledge of R-methylation has recently evolved considerably, particularly in metazoans, where misregulation of the enzymes that deposit this PTM is implicated in several diseases and cancers. Indeed, the roles of R-methylation have been highlighted through the analyses of the main actors of this pathway: the PRMT writer enzymes, the TUDOR reader proteins, and potential "eraser" enzymes. In contrast, R-methylation has been much less studied in plants. Even so, it has been shown that R-methylation in plants, as in animals, regulates housekeeping processes such as transcription, RNA silencing, splicing, ribosome biogenesis, and DNA damage. R-methylation has recently been highlighted in the regulation of membrane-free organelles in animals, but this role has not yet been demonstrated in plants. The identified R-met targets modulate key biological processes such as flowering, shoot and root development, and responses to abiotic and biotic stresses. Finally, arginine demethylases activity has mostly been identified in vitro, so further studies are needed to unravel the mechanism of arginine demethylation.
Collapse
Affiliation(s)
- Clément Barré-Villeneuve
- Crop Biotechnics, Department of Biosystems, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, 3000 Leuven, Belgium
| | - Jacinthe Azevedo-Favory
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, UMR 5096, 66860 Perpignan, France
| |
Collapse
|
3
|
Liu RX, Gu RH, Li ZP, Hao ZQ, Hu QX, Li ZY, Wang XG, Tang W, Wang XH, Zeng YK, Li ZW, Dong Q, Zhu XF, Chen D, Zhao KW, Zhang RH, Zha ZG, Zhang HT. Trim21 depletion alleviates bone loss in osteoporosis via activation of YAP1/β-catenin signaling. Bone Res 2023; 11:56. [PMID: 37884520 PMCID: PMC10603047 DOI: 10.1038/s41413-023-00296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/26/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Despite the diverse roles of tripartite motif (Trim)-containing proteins in the regulation of autophagy, the innate immune response, and cell differentiation, their roles in skeletal diseases are largely unknown. We recently demonstrated that Trim21 plays a crucial role in regulating osteoblast (OB) differentiation in osteosarcoma. However, how Trim21 contributes to skeletal degenerative disorders, including osteoporosis, remains unknown. First, human and mouse bone specimens were evaluated, and the results showed that Trim21 expression was significantly elevated in bone tissues obtained from osteoporosis patients. Next, we found that global knockout of the Trim21 gene (KO, Trim21-/-) resulted in higher bone mass compared to that of the control littermates. We further demonstrated that loss of Trim21 promoted bone formation by enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and elevating the activity of OBs; moreover, Trim21 depletion suppressed osteoclast (OC) formation of RAW264.7 cells. In addition, the differentiation of OCs from bone marrow-derived macrophages (BMMs) isolated from Trim21-/- and Ctsk-cre; Trim21f/f mice was largely compromised compared to that of the littermate control mice. Mechanistically, YAP1/β-catenin signaling was identified and demonstrated to be required for the Trim21-mediated osteogenic differentiation of BMSCs. More importantly, the loss of Trim21 prevented ovariectomy (OVX)- and lipopolysaccharide (LPS)-induced bone loss in vivo by orchestrating the coupling of OBs and OCs through YAP1 signaling. Our current study demonstrated that Trim21 is crucial for regulating OB-mediated bone formation and OC-mediated bone resorption, thereby providing a basis for exploring Trim21 as a novel dual-targeting approach for treating osteoporosis and pathological bone loss.
Collapse
Affiliation(s)
- Ri-Xu Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
- Department of Orthopedic and Spine Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rong-He Gu
- School of Basic Medical Sciences of Guangxi Medical University, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Zhi-Peng Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhi-Quan Hao
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Qin-Xiao Hu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Gang Wang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 100191, Beijing, China
| | - Wang Tang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-He Wang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yu-Kai Zeng
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhen-Wei Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Qiu Dong
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Feng Zhu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, College of Pharmacy, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518005, Shenzhen, China
| | - Ke-Wei Zhao
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, the Third Affiliated Hospital of Guangzhou University of Chinese Medicine, 510375, Guangzhou, China
| | - Rong-Hua Zhang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, College of Pharmacy, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
4
|
Zheng K, Chen S, Ren Z, Wang Y. Protein arginine methylation in viral infection and antiviral immunity. Int J Biol Sci 2023; 19:5292-5318. [PMID: 37928266 PMCID: PMC10620831 DOI: 10.7150/ijbs.89498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Protein arginine methyltransferase (PRMT)-mediated arginine methylation is an important post-transcriptional modification that regulates various cellular processes including epigenetic gene regulation, genome stability maintenance, RNA metabolism, and stress-responsive signal transduction. The varying substrates and biological functions of arginine methylation in cancer and neurological diseases have been extensively discussed, providing a rationale for targeting PRMTs in clinical applications. An increasing number of studies have demonstrated an interplay between arginine methylation and viral infections. PRMTs have been found to methylate and regulate several host cell proteins and different functional types of viral proteins, such as viral capsids, mRNA exporters, transcription factors, and latency regulators. This modulation affects their activity, subcellular localization, protein-nucleic acid and protein-protein interactions, ultimately impacting their roles in various virus-associated processes. In this review, we discuss the classification, structure, and regulation of PRMTs and their pleiotropic biological functions through the methylation of histones and non-histones. Additionally, we summarize the broad spectrum of PRMT substrates and explore their intricate effects on various viral infection processes and antiviral innate immunity. Thus, comprehending the regulation of arginine methylation provides a critical foundation for understanding the pathogenesis of viral diseases and uncovering opportunities for antiviral therapy.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Siyu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
5
|
Jing H, Yang X, Emenecker RJ, Feng J, Zhang J, Figueiredo MRAD, Chaisupa P, Wright RC, Holehouse AS, Strader LC, Zuo J. Nitric oxide-mediated S-nitrosylation of IAA17 protein in intrinsically disordered region represses auxin signaling. J Genet Genomics 2023; 50:473-485. [PMID: 37187411 PMCID: PMC11070147 DOI: 10.1016/j.jgg.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. Auxin signaling is activated through the phytohormone-induced proteasomal degradation of the Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) family of transcriptional repressors. Notably, many auxin-modulated physiological processes are also regulated by nitric oxide (NO) that executes its biological effects predominantly through protein S-nitrosylation at specific cysteine residues. However, little is known about the molecular mechanisms in regulating the interactive NO and auxin networks. Here, we show that NO represses auxin signaling by inhibiting IAA17 protein degradation. NO induces the S-nitrosylation of Cys-70 located in the intrinsically disordered region of IAA17, which inhibits the TIR1-IAA17 interaction and consequently the proteasomal degradation of IAA17. The accumulation of a higher level of IAA17 attenuates auxin response. Moreover, an IAA17C70W nitrosomimetic mutation renders the accumulation of a higher level of the mutated protein, thereby causing partial resistance to auxin and defective lateral root development. Taken together, these results suggest that S-nitrosylation of IAA17 at Cys-70 inhibits its interaction with TIR1, thereby negatively regulating auxin signaling. This study provides unique molecular insights into the redox-based auxin signaling in regulating plant growth and development.
Collapse
Affiliation(s)
- Hongwei Jing
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biology, Duke University, Durham, NC 27008, USA.
| | - Xiaolu Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jian Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; The Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, VA 24061, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Liu L, Yin S, Gan W. TRAF6 Promotes PRMT5 Activity in a Ubiquitination-Dependent Manner. Cancers (Basel) 2023; 15:2501. [PMID: 37173967 PMCID: PMC10177089 DOI: 10.3390/cancers15092501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is the primary enzyme generating symmetric dimethylarginine (sDMA) on numerous substrates, through which it regulates many cellular processes, such as transcription and DNA repair. Aberrant expression and activation of PRMT5 is frequently observed in various human cancers and associated with poor prognosis and survival. However, the regulatory mechanisms of PRMT5 remain poorly understood. Here, we report that TRAF6 serves as an upstream E3 ubiquitin ligase to promote PRMT5 ubiquitination and activation. We find that TRAF6 catalyzes K63-linked ubiquitination of PRMT5 and interacts with PRMT5 in a TRAF6-binding-motif-dependent manner. Moreover, we identify six lysine residues located at the N-terminus as the primarily ubiquitinated sites. Disruption of TRAF6-mediated ubiquitination decreases PRMT5 methyltransferase activity towards H4R3 in part by impairing PRMT5 interaction with its co-factor MEP50. As a result, mutating the TRAF6-binding motifs or the six lysine residues significantly suppresses cell proliferation and tumor growth. Lastly, we show that TRAF6 inhibitor enhances cellular sensitivity to PRMT5 inhibitor. Therefore, our study reveals a critical regulatory mechanism of PRMT5 in cancers.
Collapse
Affiliation(s)
| | | | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
7
|
PRMT5-mediated regulatory arginine methylation of RIPK3. Cell Death Dis 2023; 9:14. [PMID: 36658119 PMCID: PMC9852244 DOI: 10.1038/s41420-023-01299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
The TNF receptor-interacting protein kinases (RIPK)-1 and 3 are regulators of extrinsic cell death response pathways, where RIPK1 makes the cell survival or death decisions by associating with distinct complexes mediating survival signaling, caspase activation or RIPK3-dependent necroptotic cell death in a context-dependent manner. Using a mass spectrometry-based screen to find new components of the ripoptosome/necrosome, we discovered the protein-arginine methyltransferase (PRMT)-5 as a direct interaction partner of RIPK1. Interestingly, RIPK3 but not RIPK1 was then found to be a target of PRMT5-mediated symmetric arginine dimethylation. A conserved arginine residue in RIPK3 (R486 in human, R415 in mouse) was identified as the evolutionarily conserved target for PRMT5-mediated symmetric dimethylation and the mutations R486A and R486K in human RIPK3 almost completely abrogated its methylation. Rescue experiments using these non-methylatable mutants of RIPK3 demonstrated PRMT5-mediated RIPK3 methylation to act as an efficient mechanism of RIPK3-mediated feedback control on RIPK1 activity and function. Therefore, this study reveals PRMT5-mediated RIPK3 methylation as a novel modulator of RIPK1-dependent signaling.
Collapse
|
8
|
Xu Y, Yang X, Xiong Q, Han J, Zhu Q. The dual role of p63 in cancer. Front Oncol 2023; 13:1116061. [PMID: 37182132 PMCID: PMC10174455 DOI: 10.3389/fonc.2023.1116061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
The p53 family is made up of three transcription factors: p53, p63, and p73. These proteins are well-known regulators of cell function and play a crucial role in controlling various processes related to cancer progression, including cell division, proliferation, genomic stability, cell cycle arrest, senescence, and apoptosis. In response to extra- or intracellular stress or oncogenic stimulation, all members of the p53 family are mutated in structure or altered in expression levels to affect the signaling network, coordinating many other pivotal cellular processes. P63 exists as two main isoforms (TAp63 and ΔNp63) that have been contrastingly discovered; the TA and ΔN isoforms exhibit distinguished properties by promoting or inhibiting cancer progression. As such, p63 isoforms comprise a fully mysterious and challenging regulatory pathway. Recent studies have revealed the intricate role of p63 in regulating the DNA damage response (DDR) and its impact on diverse cellular processes. In this review, we will highlight the significance of how p63 isoforms respond to DNA damage and cancer stem cells, as well as the dual role of TAp63 and ΔNp63 in cancer.
Collapse
Affiliation(s)
- Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojuan Yang
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qunli Xiong
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| | - Qing Zhu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| |
Collapse
|
9
|
Sun Y, Wang Q, Wang M, Sun F, Qiao P, Jiang A, Ren C, Yu Z, Yang T. CHIP induces ubiquitination and degradation of HMGB1 to regulate glycolysis in ovarian endometriosis. Cell Mol Life Sci 2022; 80:13. [PMID: 36536161 PMCID: PMC11073454 DOI: 10.1007/s00018-022-04637-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
Ovarian endometriosis is a common gynecological condition that can cause infertility in women of childbearing age. However, the pathogenesis is still unknown. We demonstrate that the carboxyl terminus of Hsc70-interacting protein (CHIP) is a negative regulator in the development of endometriosis and reduces HMGB1 expression in endometriotic cells. Meanwhile, CHIP interacts with HMGB1 and promotes its ubiquitinated degradation, thereby inhibiting aerobic glycolysis and the progression of endometriosis. Furthermore, the CHIP agonist YL-109 effectively suppresses the growth of ectopic endometrium in endometriosis mouse model, which could be a potential therapeutic approach for endometriosis. In conclusion, our data suggest that CHIP may inhibit the development of endometriosis by suppressing the HMGB1-related glycolysis.
Collapse
Affiliation(s)
- Yujun Sun
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Qian Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Mengxue Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Fangyuan Sun
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Aifang Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China.
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China.
| | - Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
Yuan HF, Zhao M, Zhao LN, Yun HL, Yang G, Geng Y, Wang YF, Zheng W, Yuan Y, Song TQ, Niu JQ, Zhang XD. PRMT5 confers lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours. Acta Pharmacol Sin 2022; 43:2373-2385. [PMID: 35046516 PMCID: PMC9433386 DOI: 10.1038/s41401-021-00841-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
The protein arginine methyltransferase 5 (PRMT5), which is highly expressed in tumour tissues, plays a crucial role in cancer development. However, the mechanism by which PRMT5 promotes cancer growth is poorly understood. Here, we report that PRMT5 contributes to lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours. Mass spectrometric analysis identified PRMT5 lysine 387 as its succinylation site. Moreover, the desuccinylation of PRMT5 K387 enhances the methyltransferase activity of PRMT5. SIRT7 catalyses the desuccinylation of PRMT5 in cells. The SIRT7-mediated dessuccinylation of PRMT5 lysine 387 fails to bind to STUB1, decreasing PRMT5 ubiquitination and increasing the interaction between PRMT5 and Mep50, which promotes the formation of the PRMT5-Mep50 octamer. The PRMT5-Mep50 octamer increases PRMT5 methyltransferase activity, leading to arginine methylation of SREBP1a. The symmetric dimethylation of SREBP1a increases the levels of cholesterol, fatty acid, and triglyceride biogenesis in the cells, escaping degradation through the ubiquitin-proteasome pathway. Functionally, the desuccinylation of PRMT5 K387 promotes lipid metabolism reprogramming, tumour growth and metastasis in vitro and in vivo in tumours.
Collapse
Affiliation(s)
- Hong-Feng Yuan
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Man Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Li-Na Zhao
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hao-Lin Yun
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu Geng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu-Fei Wang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Zheng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ying Yuan
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tian-Qiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Jun-Qi Niu
- Department of Hepatology, the First Hospital, Jilin University, Jilin, 130021, China.
| | - Xiao-Dong Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
12
|
Lin KH, Ali A, Kuo CH, Yang PC, Kumar VB, Padma VV, Lo JF, Huang CY, Kuo WW. Carboxyl terminus of HSP70-interacting protein attenuates advanced glycation end products-induced cardiac injuries by promoting NFκB proteasomal degradation. J Cell Physiol 2021; 237:1888-1901. [PMID: 34958118 DOI: 10.1002/jcp.30660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 11/06/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Advanced glycation end products (AGEs), which are highly reactive molecules resulting from persistent high-glucose levels, can lead to the generation of oxidative stress and cardiac complications. The carboxyl terminus of HSP70 interacting protein (CHIP) has been demonstrated to have a protective role in several diseases, including cardiac complications; however, the role in preventing AGE-induced cardiac damages remains poorly understood. Here, we found that elevated AGE levels impaired cardiac CHIP expression in streptozotocin-induced diabetes and high-fat diet-administered animals, representing AGE exposure models. We used the TUNEL assay, hematoxylin and eosin, Masson's trichrome staining, and western blotting to prove that cardiac injuries were induced in diabetic animals and AGE-treated cardiac cells. Interestingly, our results collectively indicated that CHIP overexpression significantly rescued the AGE-induced cardiac injuries and promoted cell survival. Moreover, CHIP knockdown-mediated stabilization of nuclear factor κB (NFκB) was attenuated by overexpressing CHIP in the cells. Furthermore, co-immunoprecipitation and immunoblot assay revealed that CHIP promotes the ubiquitination and proteasomal degradation of AGE-induced NFκB. Importantly, fluorescence microscopy, a luciferase reporter assay, electrophoretic mobility shift assay, and subcellular fractionation further demonstrated that CHIP overexpression inhibits AGE-induced NFκB nuclear translocation, reduced its binding ability with the promoter sequences of the receptor of AGE, consequently inhibiting the translocation of the receptor AGE to the cell membrane for its proper function. Overall, our current study findings suggest that CHIP can target NFκB for ubiquitin-mediated proteasomal degradation, and thereby potentially rescue AGE-induced cardiac damages.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan.,Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ayaz Ali
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Pei-Chen Yang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | | | - Jeng-Fan Lo
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Genome Research Centre, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Centre of Excellence, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Liu RX, Tang W, Zheng BY, Yang Y, Li ZY, Gui T, Zhang HT, Liu N, Zha ZG, Li JX. YAP/miR-524-5p axis negatively regulates TXNIP expression to promote chondrosarcoma cell growth. Biochem Biophys Res Commun 2021; 590:20-26. [PMID: 34968780 DOI: 10.1016/j.bbrc.2021.12.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022]
Abstract
Chondrosarcoma (CHS) is the second most common bone malignant tumor and currently has limited treatment options. We have recently demonstrated that thioredoxin interacting protein (TXNIP) plays a crucial role in the oncogenesis of bone sarcoma, yet its implication in CHS is underdetermined. In the present study, we first found that knockdown of TXNIP promotes the proliferation of CHS cell largely through increasing their glycolytic metabolism, which is well-known as Warburg effect for providing energy. Consistent with our previous report that YAP is fundamental for CHS cell growth, herein we revealed that YAP functioned as an upstream molecule of TXNIP, and that YAP negatively regulated TXNIP mRNA and protein expression both in vitro and in vivo. Mechanistically, although knockdown of YAP upregulated both the nuclear and cytoplasmic TXNIP expression, we did not observe any obvious interaction between YAP and TXNIP; instead, miRNA-524-5p was demonstrated to be required for YAP-regulated TXNIP expression and thus controlling CHS cell growth. Together, our study reveals that TXNIP is a tumor suppressor in terms of CHS, and that the YAP/miRNA-524-5p/TXNIP signaling axis may provide a novel clue for CHS targeted therapy.
Collapse
Affiliation(s)
- Ri-Xu Liu
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Wang Tang
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Bo-Yuan Zheng
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Yong Yang
- Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China; Department of Joint Surgery, The Affiliated Shunde Hospital of Jinan University, Foshan, 528305, China
| | - Zhen-Yan Li
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Tao Gui
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Huan-Tian Zhang
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Ning Liu
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Zhen-Gang Zha
- Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China; Institute of Orthopedic Diseases & the Bone and Joint Disease Institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China.
| | - Jing-Xiang Li
- NanFang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Kurop MK, Huyen CM, Kelly JH, Blagg BSJ. The heat shock response and small molecule regulators. Eur J Med Chem 2021; 226:113846. [PMID: 34563965 PMCID: PMC8608735 DOI: 10.1016/j.ejmech.2021.113846] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023]
Abstract
The heat shock response (HSR) is a highly conserved cellular pathway that is responsible for stress relief and the refolding of denatured proteins [1]. When a host cell is exposed to conditions such as heat shock, ischemia, or toxic substances, heat shock factor-1 (HSF-1), a transcription factor, activates the genes that encode for the heat shock proteins (Hsps), which are a family of proteins that work alongside other chaperones to relieve stress and refold proteins that have been denatured (Burdon, 1986) [2]. Along with the refolding of denatured proteins, Hsps facilitate the removal of misfolded proteins by escorting them to degradation pathways, thereby preventing the accumulation of misfolded proteins [3]. Research has indicated that many pathological conditions, such as diabetes, cancer, neuropathy, cardiovascular disease, and aging have a negative impact on HSR function and are commonly associated with misfolded protein aggregation [4,5]. Studies indicate an interplay between mitochondrial homeostasis and HSF-1 levels can impact stress resistance, proteostasis, and malignant cell growth, which further support the role of Hsps in pathological and metabolic functions [6]. On the other hand, Hsp activation by specific small molecules can induce the heat shock response, which can afford neuroprotection and other benefits [7]. This review will focus on the modulation of Hsps and the HSR as therapeutic options to treat these conditions.
Collapse
Affiliation(s)
- Margaret K Kurop
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Cormac M Huyen
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - John H Kelly
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
15
|
Brehmer D, Beke L, Wu T, Millar HJ, Moy C, Sun W, Mannens G, Pande V, Boeckx A, van Heerde E, Nys T, Gustin EM, Verbist B, Zhou L, Fan Y, Bhargava V, Safabakhsh P, Vinken P, Verhulst T, Gilbert A, Rai S, Graubert TA, Pastore F, Fiore D, Gu J, Johnson A, Philippar U, Morschhäuser B, Walker D, De Lange D, Keersmaekers V, Viellevoye M, Diels G, Schepens W, Thuring JW, Meerpoel L, Packman K, Lorenzi MV, Laquerre S. Discovery and Pharmacological Characterization of JNJ-64619178, a Novel Small-Molecule Inhibitor of PRMT5 with Potent Antitumor Activity. Mol Cancer Ther 2021; 20:2317-2328. [PMID: 34583982 PMCID: PMC9398174 DOI: 10.1158/1535-7163.mct-21-0367] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 09/15/2021] [Indexed: 01/07/2023]
Abstract
The protein arginine methyltransferase 5 (PRMT5) methylates a variety of proteins involved in splicing, multiple signal transduction pathways, epigenetic control of gene expression, and mechanisms leading to protein expression required for cellular proliferation. Dysregulation of PRMT5 is associated with clinical features of several cancers, including lymphomas, lung cancer, and breast cancer. Here, we describe the characterization of JNJ-64619178, a novel, selective, and potent PRMT5 inhibitor, currently in clinical trials for patients with advanced solid tumors, non-Hodgkin's lymphoma, and lower-risk myelodysplastic syndrome. JNJ-64619178 demonstrated a prolonged inhibition of PRMT5 and potent antiproliferative activity in subsets of cancer cell lines derived from various histologies, including lung, breast, pancreatic, and hematological malignancies. In primary acute myelogenous leukemia samples, the presence of splicing factor mutations correlated with a higher ex vivo sensitivity to JNJ-64619178. Furthermore, the potent and unique mechanism of inhibition of JNJ-64619178, combined with highly optimized pharmacological properties, led to efficient tumor growth inhibition and regression in several xenograft models in vivo, with once-daily or intermittent oral-dosing schedules. An increase in splicing burden was observed upon JNJ-64619178 treatment. Overall, these observations support the continued clinical evaluation of JNJ-64619178 in patients with aberrant PRMT5 activity-driven tumors.
Collapse
Affiliation(s)
- Dirk Brehmer
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Lijs Beke
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Tongfei Wu
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | | | - Christopher Moy
- Janssen Research and Development, Spring House, Pennsylvania
| | - Weimei Sun
- Janssen Research and Development, Spring House, Pennsylvania
| | - Geert Mannens
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Vineet Pande
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - An Boeckx
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | | | - Thomas Nys
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | | | - Bie Verbist
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Longen Zhou
- Janssen Research and Development, Shanghai, China
| | - Yue Fan
- Janssen Research and Development, Shanghai, China
| | - Vipul Bhargava
- Janssen Research and Development, Spring House, Pennsylvania
| | | | - Petra Vinken
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Tinne Verhulst
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Angelique Gilbert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Sumit Rai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Timothy A Graubert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | | | - Danilo Fiore
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Junchen Gu
- Janssen Research and Development, Spring House, Pennsylvania
| | - Amy Johnson
- Janssen Research and Development, Spring House, Pennsylvania
| | | | | | - David Walker
- Janssen Research and Development, Spring House, Pennsylvania
| | | | | | | | - Gaston Diels
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Wim Schepens
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | | | | | - Kathryn Packman
- Janssen Research and Development, Spring House, Pennsylvania
| | | | - Sylvie Laquerre
- Janssen Research and Development, Spring House, Pennsylvania.
| |
Collapse
|
16
|
Wei H, Hartley AV, Motolani A, Jiang G, Safa A, Prabhu L, Liu Y, Lu T. A complex signature network that controls the upregulation of PRMT5 in colorectal cancer. Genes Dis 2021; 9:285-287. [PMID: 35224144 PMCID: PMC8843984 DOI: 10.1016/j.gendis.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Han Wei
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Antja-Voy Hartley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Aishat Motolani
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Guanglong Jiang
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut Street, Indianapolis, IN 46202, USA
| | - Ahmad Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Lakshmi Prabhu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut Street, Indianapolis, IN 46202, USA
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut Street, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Corresponding author. Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA. Fax: +1 317 274 7714.
| |
Collapse
|
17
|
Motolani A, Martin M, Sun M, Lu T. The Structure and Functions of PRMT5 in Human Diseases. Life (Basel) 2021; 11:life11101074. [PMID: 34685445 PMCID: PMC8539453 DOI: 10.3390/life11101074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of protein arginine methyltransferase 5 (PRMT5) and the resolution of its structure, an increasing number of papers have investigated and delineated the structural and functional role of PRMT5 in diseased conditions. PRMT5 is a type II arginine methyltransferase that catalyzes symmetric dimethylation marks on histones and non-histone proteins. From gene regulation to human development, PRMT5 is involved in many vital biological functions in humans. The role of PRMT5 in various cancers is particularly well-documented, and investigations into the development of better PRMT5 inhibitors to promote tumor regression are ongoing. Notably, emerging studies have demonstrated the pathological contribution of PRMT5 in the progression of inflammatory diseases, such as diabetes, cardiovascular diseases, and neurodegenerative disorders. However, more research in this direction is needed. Herein, we critically review the position of PRMT5 in current literature, including its structure, mechanism of action, regulation, physiological and pathological relevance, and therapeutic strategies.
Collapse
Affiliation(s)
- Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Matthew Martin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Mengyao Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-278-0520
| |
Collapse
|
18
|
Landscape analysis of lncRNAs shows that DDX11-AS1 promotes cell-cycle progression in liver cancer through the PARP1/p53 axis. Cancer Lett 2021; 520:282-294. [PMID: 34371129 DOI: 10.1016/j.canlet.2021.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022]
Abstract
Although long non-coding RNAs (lncRNAs) play important roles in tumorigenesis, the underlying mechanisms are unclear. Transcriptomic analysis of 33 hepatocellular carcinoma (HCC) samples revealed that the most enriched pathway for differentially expressed genes was related to the cell cycle process, where DDX11-AS1 is the most significant lncRNA. Upregulation of DDX11-AS1 expression through demethylation was significantly associated with a poor prognosis. Further mechanistic studies revealed that DDX11-AS1 promoted the growth of HCC by interacting with PARP1 through attenuating its binding to p53, leading to downregulated expression of p53 for inhibiting the transcription of downstream genes such as p21. Knockdown of DDX11-AS1 expression in xenograft mice using anti-DDX11-AS1 oligonucleotide suppressed liver tumor proliferation. These findings indicate that DDX11-AS1 plays a role in the development of liver cancer by affecting the cell cycle.
Collapse
|
19
|
Ghafouri-Fard S, Gholipour M, Hussen BM, Taheri M. The Impact of Long Non-Coding RNAs in the Pathogenesis of Hepatocellular Carcinoma. Front Oncol 2021; 11:649107. [PMID: 33968749 PMCID: PMC8097102 DOI: 10.3389/fonc.2021.649107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the utmost deadly human malignancies. This type of cancer has been associated with several environmental, viral, and lifestyle risk factors. Among the epigenetic factors which contribute in the pathogenesis of HCC is dysregulation of long non-coding RNAs (lncRNAs). These transcripts modulate expression of several tumor suppressor genes and oncogenes and alter the activity of cancer-related signaling axes. Several lncRNAs such as NEAT1, MALAT1, ANRIL, and SNHG1 have been up-regulated in HCC samples. On the other hand, a number of so-called tumor suppressor lncRNAs namely CASS2 and MEG3 are down-regulated in HCC. The interaction between lncRNAs and miRNAs regulate expression of a number of mRNA coding genes which are involved in the pathogenesis of HCC. H19/miR-15b/CDC42, H19/miR-326/TWIST1, NEAT1/miR-485/STAT3, MALAT1/miR-124-3p/Slug, MALAT1/miR-195/EGFR, MALAT1/miR-22/SNAI1, and ANRIL/miR-144/PBX3 axes are among functional axes in the pathobiology of HCC. Some genetic polymorphisms within non-coding regions of the genome have been associated with risk of HCC in certain populations. In the current paper, we describe the recent finding about the impact of lncRNAs in HCC.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Samuel SF, Barry A, Greenman J, Beltran-Alvarez P. Arginine methylation: the promise of a 'silver bullet' for brain tumours? Amino Acids 2021; 53:489-506. [PMID: 33404912 PMCID: PMC8107164 DOI: 10.1007/s00726-020-02937-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Despite intense research efforts, our pharmaceutical repertoire against high-grade brain tumours has not been able to increase patient survival for a decade and life expectancy remains at less than 16 months after diagnosis, on average. Inhibitors of protein arginine methyltransferases (PRMTs) have been developed and investigated over the past 15 years and have now entered oncology clinical trials, including for brain tumours. This review collates recent advances in the understanding of the role of PRMTs and arginine methylation in brain tumours. We provide an up-to-date literature review on the mechanisms for PRMT regulation. These include endogenous modulators such as alternative splicing, miRNA, post-translational modifications and PRMT-protein interactions, and synthetic inhibitors. We discuss the relevance of PRMTs in brain tumours with a particular focus on PRMT1, -2, -5 and -8. Finally, we include a future perspective where we discuss possible routes for further research on arginine methylation and on the use of PRMT inhibitors in the context of brain tumours.
Collapse
Affiliation(s)
| | - Antonia Barry
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | | |
Collapse
|
21
|
Chakrapani B, Khan MIK, Kadumuri RV, Gupta S, Verma M, Awasthi S, Govindaraju G, Mahesh A, Rajavelu A, Chavali S, Dhayalan A. The uncharacterized protein FAM47E interacts with PRMT5 and regulates its functions. Life Sci Alliance 2021; 4:e202000699. [PMID: 33376131 PMCID: PMC7772775 DOI: 10.26508/lsa.202000699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) symmetrically dimethylates arginine residues in various proteins affecting diverse cellular processes such as transcriptional regulation, splicing, DNA repair, differentiation, and cell cycle. Elevated levels of PRMT5 are observed in several types of cancers and are associated with poor clinical outcomes, making PRMT5 an important diagnostic marker and/or therapeutic target for cancers. Here, using yeast two-hybrid screening, followed by immunoprecipitation and pull-down assays, we identify a previously uncharacterized protein, FAM47E, as an interaction partner of PRMT5. We report that FAM47E regulates steady-state levels of PRMT5 by affecting its stability through inhibition of its proteasomal degradation. Importantly, FAM47E enhances the chromatin association and histone methylation activity of PRMT5. The PRMT5-FAM47E interaction affects the regulation of PRMT5 target genes expression and colony-forming capacity of the cells. Taken together, we identify FAM47E as a protein regulator of PRMT5, which promotes the functions of this versatile enzyme. These findings imply that disruption of PRMT5-FAM47E interaction by small molecules might be an alternative strategy to attenuate the oncogenic function(s) of PRMT5.
Collapse
Affiliation(s)
- Baskar Chakrapani
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Somlee Gupta
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Mamta Verma
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Gayathri Govindaraju
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Arun Mahesh
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Arumugam Rajavelu
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | | |
Collapse
|
22
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Wang Y, Saelao P, Kern C, Jin S, Gallardo RA, Kelly T, Dekkers JM, Lamont SJ, Zhou H. Liver Transcriptome Responses to Heat Stress and Newcastle Disease Virus Infection in Genetically Distinct Chicken Inbred Lines. Genes (Basel) 2020; 11:E1067. [PMID: 32932855 PMCID: PMC7563548 DOI: 10.3390/genes11091067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/21/2023] Open
Abstract
Heat stress results in reduced productivity, anorexia, and mortality in chickens. The objective of the study was to identify genes and signal pathways associated with heat stress and Newcastle disease virus (NDV) infection in the liver of chickens through RNA-seq analysis, using two highly inbred chicken lines (Leghorn and Fayoumi). All birds were held in the same environment until 14 days of age. On day 14, half the birds were exposed to 38 °C with 50% relative humidity for 4 h, then 35 °C until the end of the experiment. The remaining birds were kept at 25 °C throughout the experiment. The heat-treated birds were inoculated at 21 days of age with 107 EID50 (One EID50 unit is the amount of virus that will infect 50 percent of inoculated embryos) NDV La Sota strain to investigate the effects of both heat stress and NDV infection. Physiological parameters were recorded as blood phenotypes at three stages: acute heat (AH), chronic heat (CH1), and chronic heat combined with NDV infection (CH&NDV), at 4 h, 7 days, and 10 days post-initiation of heat treatment, respectively. Our previous work revealed that the heat-resilient Fayoumi line maintained a more stable acid-base balance in their blood compared to the Leghorn line. Liver samples were harvested on both AH and CH&NDV to characterize the transcriptome profiles of these two inbred lines. Both genetic lines and treatments had large impact on the liver transcriptome. Fayoumi birds had more differentially expressed genes (DEGs) than Leghorn birds for both treatments. Metabolic and immune-related genes were on the DEG list, with Fayoumi having more immune-related DEGs than Leghorns, which was confirmed by gene functional enrichment analysis. Weighted correlation network analysis (WGCNA) indicated that the driver genes such as Solute Carrier Family genes could be very important for stabilizing the acid-base balance in Fayoumi birds during heat stress. Therefore, candidate genes such solute carrier family genes could be potential genetic targets that are regulated by Fayoumis to maintain physical hemostasis under heat stress. Differential gene expression showed that Leghorns mainly performed metabolic regulation in response to heat stress and NDV infection, while Fayoumis regulated both immune and metabolic functions. This study provides novel insights and enhances our understandings of liver response to heat stress of heat resilient and susceptible inbred chicken lines.
Collapse
Affiliation(s)
- Ying Wang
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
| | - Colin Kern
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
| | - Sihua Jin
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
| | - Rodrigo A. Gallardo
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Terra Kelly
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jack M. Dekkers
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Susan J. Lamont
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
| |
Collapse
|
24
|
Abstract
Protein methyl transferases play critical roles in numerous regulatory pathways that underlie cancer development, progression and therapy-response. Here we discuss the function of PRMT5, a member of the nine-member PRMT family, in controlling oncogenic processes including tumor intrinsic, as well as extrinsic microenvironmental signaling pathways. We discuss PRMT5 effect on histone methylation and methylation of regulatory proteins including those involved in RNA splicing, cell cycle, cell death and metabolic signaling. In all, we highlight the importance of PRMT5 regulation and function in cancer, which provide the foundation for therapeutic modalities targeting PRMT5.
Collapse
Affiliation(s)
- Hyungsoo Kim
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
25
|
Hartley AV, Lu T. Modulating the modulators: regulation of protein arginine methyltransferases by post-translational modifications. Drug Discov Today 2020; 25:1735-1743. [PMID: 32629172 DOI: 10.1016/j.drudis.2020.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
The therapeutic potential of targeting protein arginine methyltransferases (PRMTs) is inextricably linked to their key roles in various cellular functions, including splicing, proliferation, cell cycle regulation, differentiation, and DNA damage signaling. Unsurprisingly, the development of inhibitors against these enzymes has become a rapidly expanding research area. However, effective targeting of PRMTs requires a deeper understanding of the mechanistic details behind their regulation at multiple levels, involving those mechanisms that alter their activity, interactions, and localization. Recently, post-translational modifications (PTMs) of PRMTs have emerged as another crucial aspect of this regulation. Here, we review the regulatory role of PTMs in the activity and function of PRMTs, with emphasis on the contribution of these PTMs to pathological states, such as cancer.
Collapse
Affiliation(s)
- Antja-Voy Hartley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, 975 W. Walnut Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
26
|
Kim J, Chung JY, Park YS, Jang SJ, Kim HR, Choi CM, Song JS. Prognostic Significance of CHIP and RIPK3 in Non-Small Cell Lung Cancer. Cancers (Basel) 2020; 12:E1496. [PMID: 32521727 PMCID: PMC7352347 DOI: 10.3390/cancers12061496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
RIPK3 is a key regulator of necroptosis, which plays a double-edged sword role in tumor progression. CHIP is an E3 ubiquitin ligase that regulates necroptosis by degrading RIPK3. Here, we investigated the prognostic value of RIPK3 and CHIP expression in 404 patients with non-small cell lung cancer (NSCLC). Expressions of CHIP and RIPK3 showed opposite correlations with survival. CHIP expression was associated with the longer overall survival (OS), whereas RIPK3 expression was associated with the shorter OS. RIPK3 positivity showed marginal association with shorter OS and disease-free survival (DFS) in adjuvant radiotherapy recipients but not in non-recipients, suggesting that necroptosis may induce radioresistance. In multivariate analysis, CHIP expression was associated with longer OS. Compared with other patients, CHIP(-)/RIPK3(+) patients had shorter OS and DFS. In summary, in patients with NSCLC, the expression of CHIP was an independent favorable prognostic factor while that of RIPK3 was an adverse prognostic factor.
Collapse
Affiliation(s)
- Jisup Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.K.); (Y.S.P.); (S.J.J.)
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.K.); (Y.S.P.); (S.J.J.)
| | - Se Jin Jang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.K.); (Y.S.P.); (S.J.J.)
- Center for Cancer Genome Discovery, Asan Medical Center, Asan Institute for Life Sciences, Seoul 05505, Korea
| | - Hyeong Ryul Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Chang-Min Choi
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, Korea
- Department of Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, Korea
| | - Joon Seon Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.K.); (Y.S.P.); (S.J.J.)
| |
Collapse
|
27
|
Pan C, Chun J, Li D, Boese AC, Li J, Kang J, Umano A, Jiang Y, Song L, Magliocca KR, Chen ZG, Saba NF, Shin DM, Owonikoko TK, Lonial S, Jin L, Kang S. Hsp90B enhances MAST1-mediated cisplatin resistance by protecting MAST1 from proteosomal degradation. J Clin Invest 2020; 129:4110-4123. [PMID: 31449053 DOI: 10.1172/jci125963] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Microtubule-associated serine/threonine kinase 1 (MAST1) is a central driver of cisplatin resistance in human cancers. However, the molecular mechanism regulating MAST1 levels in cisplatin-resistant tumors is unknown. Through a proteomics screen, we identified the heat shock protein 90 B (hsp90B) chaperone as a direct MAST1 binding partner essential for its stabilization. Targeting hsp90B sensitized cancer cells to cisplatin predominantly through MAST1 destabilization. Mechanistically, interaction of hsp90B with MAST1 blocked ubiquitination of MAST1 at lysines 317 and 545 by the E3 ubiquitin ligase CHIP and prevented proteasomal degradation. The hsp90B-MAST1-CHIP signaling axis and its relationship with cisplatin response were clinically validated in cancer patients. Furthermore, combined treatment with a hsp90 inhibitor and the MAST1 inhibitor lestaurtinib further abrogated MAST1 activity and consequently enhanced cisplatin-induced tumor growth arrest in a patient-derived xenograft model. Our study not only uncovers the regulatory mechanism of MAST1 in tumors but also suggests a promising combinatorial therapy to overcome cisplatin resistance in human cancers.
Collapse
Affiliation(s)
- Chaoyun Pan
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jaemoo Chun
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dan Li
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Austin C Boese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jie Li
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anna Umano
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yunhan Jiang
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Lina Song
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Kelly R Magliocca
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Shao G, Zhou C, Ma K, Zhao W, Xiong Q, Yang L, Huang Z, Yang Z. MiRNA-494 enhances M1 macrophage polarization via Nrdp1 in ICH mice model. JOURNAL OF INFLAMMATION-LONDON 2020; 17:17. [PMID: 32351331 PMCID: PMC7183644 DOI: 10.1186/s12950-020-00247-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Abstract
Background Ubiquitination-mediated M1/M2 macrophage polarization plays important roles in the pathogenesis of immune disease. However, the regulatory mechanism of ubiquitination during M1/M2 macrophage polarization following intracerebral hemorrhage (ICH) has not been well studied. Methods In the experiment, macrophages were administered with erythrocyte lysates, and then miR-494-, Nrdp1-, and M1/M2-related markers were analyzed. Brain inflammatory response, brain edema, and neurological functions of ICH mice were also assessed. Results We found that miR-494 levels increased while Nrdp1 levels decreased in macrophages after ICH. We also demonstrated that miR-494 inhibited Nrdp1 expression by directly binding its 3′-untranslated region. MiR-494 attenuated C/EBP-β activation and downstream proinflammatory factor production. Upregulation of Nrdp1 in macrophages significantly promoted M2 macrophage polarization via ubiquitinating and activating C/EBP-β. Moreover, the results indicated that miR-494 could enhance M1 macrophage polarization, promote brain edema, and impair neurological functions in ICH mice. Conclusions Taken together, our results demonstrated that Nrdp1 contributed to M1/M2 macrophage polarization and neuroinflammation via ubiquitination and activation of C/EBP-β in ICH. miR-494 may provide a promising therapeutic clue for ICH.
Collapse
Affiliation(s)
- Gaohai Shao
- 1Department of orthopedics, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Changlong Zhou
- 2Department of Neurology and Chongqing key laboratory of cerebravascular disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Kunlong Ma
- 1Department of orthopedics, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Wang Zhao
- 2Department of Neurology and Chongqing key laboratory of cerebravascular disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Qijiang Xiong
- 2Department of Neurology and Chongqing key laboratory of cerebravascular disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Ling Yang
- 2Department of Neurology and Chongqing key laboratory of cerebravascular disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Zhongyan Huang
- 2Department of Neurology and Chongqing key laboratory of cerebravascular disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Zhao Yang
- 2Department of Neurology and Chongqing key laboratory of cerebravascular disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| |
Collapse
|
29
|
Li YH, Tong KL, Lu JL, Lin JB, Li ZY, Sang Y, Ghodbane A, Gao XJ, Tam MS, Hu CD, Zhang HT, Zha ZG. PRMT5-TRIM21 interaction regulates the senescence of osteosarcoma cells by targeting the TXNIP/p21 axis. Aging (Albany NY) 2020; 12:2507-2529. [PMID: 32023548 PMCID: PMC7041745 DOI: 10.18632/aging.102760] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
Osteosarcoma (OS) is the most common bone malignancy in adolescents and has poor clinical outcomes. Protein arginine methyltransferase 5 (PRMT5) has recently been shown to be aberrantly expressed in various cancers, yet its role in OS remains elusive. Here, we found that PRMT5 was overexpressed in OS and its overexpression predicted poor clinical outcomes. PRMT5 knockdown significantly triggered pronounced senescence in OS cells, as evidenced by the increase in senescence-associated β-galactosidase (SA-β-gal)-stained cells, induction of p21 expression, and upregulation of senescence-associated secretory phenotype (SASP) gene expression. In addition, we found that PRMT5 plays a key role in regulating DNA damaging agents-induced OS cell senescence, possibly, via affecting the repair of DNA damage. Furthermore, we found that TXNIP acts as a key factor mediating PRMT5 depletion-induced DNA damage and cellular senescence. Mechanistically, TRIM21, which interacts with PRMT5, was essential for the regulation of TXNIP/p21 expression. In summary, we propose a model in which PRMT5, by interaction with TRIM21, plays a key role in regulating the TXNIP/p21 axis during senescence in OS cells. The present findings suggest that PRMT5 overexpression in OS cells might confer resistance to chemotherapy and that targeting the PRMT5/TRIM21/TXNIP signaling may enhance the therapeutic efficacy in OS.
Collapse
Affiliation(s)
- Yu-Hang Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Kui-Leung Tong
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Jun-Lei Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jie-Bin Lin
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhen-Yan Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Yuan Sang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong, China
| | - Abdelmoumin Ghodbane
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Xue-Juan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Man-Seng Tam
- IAN WO Medical Center, Macao Special Administrative Region, Macao 999078, China
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Huan-Tian Zhang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
30
|
Ballar Kirmizibayrak P, Erbaykent-Tepedelen B, Gozen O, Erzurumlu Y. Divergent Modulation of Proteostasis in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:117-151. [PMID: 32274755 DOI: 10.1007/978-3-030-38266-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteostasis regulates key cellular processes such as cell proliferation, differentiation, transcription, and apoptosis. The mechanisms by which proteostasis is regulated are crucial and the deterioration of cellular proteostasis has been significantly associated with tumorigenesis since it specifically targets key oncoproteins and tumor suppressors. Prostate cancer (PCa) is the second most common cause of cancer death in men worldwide. Androgens mediate one of the most central signaling pathways in all stages of PCa via the androgen receptor (AR). In addition to their regulation by hormones, PCa cells are also known to be highly secretory and are particularly prone to ER stress as proper ER function is essential. Alterations in various complex signaling pathways and cellular processes including cell cycle control, transcription, DNA repair, apoptosis, cell adhesion, epithelial-mesenchymal transition (EMT), and angiogenesis are critical factors influencing PCa development through key molecular changes mainly by posttranslational modifications in PCa-related proteins, including AR, NKX3.1, PTEN, p53, cyclin D1, and p27. Several ubiquitin ligases like MDM2, Siah2, RNF6, CHIP, and substrate-binding adaptor SPOP; deubiquitinases such as USP7, USP10, USP26, and USP12 are just some of the modifiers involved in the regulation of these key proteins via ubiquitin-proteasome system (UPS). Some ubiquitin-like modifiers, especially SUMOs, have been also closely associated with PCa. On the other hand, the proteotoxicity resulting from misfolded proteins and failure of ER adaptive capacity induce unfolded protein response (UPR) that is an indispensable signaling mechanism for PCa development. Lastly, ER-associated degradation (ERAD) also plays a crucial role in prostate tumorigenesis. In this section, the relationship between prostate cancer and proteostasis will be discussed in terms of UPS, UPR, SUMOylation, ERAD, and autophagy.
Collapse
Affiliation(s)
| | | | - Oguz Gozen
- Faculty of Medicine, Department of Physiology, Ege University, Izmir, Turkey
| | - Yalcin Erzurumlu
- Faculty of Pharmacy, Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
31
|
Owens JL, Beketova E, Liu S, Tinsley SL, Asberry AM, Deng X, Huang J, Li C, Wan J, Hu CD. PRMT5 Cooperates with pICln to Function as a Master Epigenetic Activator of DNA Double-Strand Break Repair Genes. iScience 2019; 23:100750. [PMID: 31884170 PMCID: PMC6941881 DOI: 10.1016/j.isci.2019.100750] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/06/2019] [Accepted: 11/22/2019] [Indexed: 01/21/2023] Open
Abstract
DNA double-strand break (DSB) repair is critical for cell survival and genome integrity. Upon recognition of DSBs, repair proteins are transiently upregulated to facilitate repair through homologous recombination (HR) or non-homologous end joining (NHEJ). We present evidence that PRMT5 cooperates with pICln to function as a master epigenetic activator of DNA damage response (DDR) genes involved in HR, NHEJ, and G2 arrest (including RAD51, BRCA1, and BRCA2) to upregulate gene expression upon DNA damage. Contrary to the predominant role of PRMT5 as an epigenetic repressor, our results demonstrate that PRMT5 and pICln can activate gene expression, potentially independent of PRMT5's obligate cofactor MEP50. Targeting PRMT5 or pICln hinders repair of DSBs in multiple cancer cell lines, and both PRMT5 and pICln expression positively correlates with DDR genes across 32 clinical cancer datasets. Thus, targeting PRMT5 or pICln may be explored in combination with radiation or chemotherapy for cancer treatment. PRMT5 activates transcription of DSB repair genes upon DNA damage pICln cooperates with PRMT5 to activate transcription of DSB repair genes Targeting PRMT5 is effective to sensitize multiple cancer types to radiation PRMT5 expression positively correlates with DSB repair genes in cancer tissues
Collapse
Affiliation(s)
- Jake L Owens
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Elena Beketova
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN 47907, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; The Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Samantha L Tinsley
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew M Asberry
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN 47907, USA
| | - Xuehong Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; The Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA; The Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
32
|
Yang J, Li Y, He M, Qiao J, Sang Y, Cheang LH, Gomes FC, Hu Y, Li Z, Liu N, Zhang H, Zha Z. HSP90 regulates osteosarcoma cell apoptosis by targeting the p53/TCF‐1‐mediated transcriptional network. J Cell Physiol 2019; 235:3894-3904. [PMID: 31595984 DOI: 10.1002/jcp.29283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jie Yang
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Yu‐Hang Li
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Ming‐Tang He
- Department of Orthopedics Longgang Orthopedics Hospital of Shenzhen Shenzhen Guangdong China
| | - Ju‐Feng Qiao
- Department of Orthopedic Surgery Chashan Hospital of Dongguan Dongguan Guangdong China
| | - Yuan Sang
- Department of Orthopedic Surgery, The Third Affiliated Hospital Sun Yat‐sen University Guangzhou Guangdong China
| | - Lek Hang Cheang
- Department of Orthotraumaology Centro Hospitalar Conde S. Januario Macau China
| | - Fernando Cardoso Gomes
- Department of Physical Medicine and Rehabilitation Centro Hospitalar Conde S. Januario Macau China
| | - Yang Hu
- School of Preclinical Medicine Jinan University Guangzhou Guangdong China
| | - Zhen‐Yan Li
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Ning Liu
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Huan‐Tian Zhang
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Zhen‐Gang Zha
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| |
Collapse
|
33
|
The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol 2019; 20:642-657. [PMID: 31350521 DOI: 10.1038/s41580-019-0155-x] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
Methylation of arginine residues by protein arginine methyltransferases (PRMTs) is involved in the regulation of fundamental cellular processes, including transcription, RNA processing, signal transduction cascades, the DNA damage response and liquid-liquid phase separation. Recent studies have provided considerable advances in the development of experimental tools and the identification of clinically relevant PRMT inhibitors. In this review, we discuss the regulation of PRMTs, their various cellular roles and the clinical relevance of PRMT inhibitors for the therapy of neurodegenerative diseases and cancer.
Collapse
|
34
|
Lu W, Kim JD, Tabara S, Kwon C, Mizukami H, Kimura K, Fukamizu A. The N-terminal sequence of murine PRMT5 variant 2 is required for Hsp70 interaction and CHIP ligase-mediated degradation. Biochem Biophys Res Commun 2019; 514:1185-1191. [PMID: 31103260 DOI: 10.1016/j.bbrc.2019.05.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Protein arginine methyltransferase PRMT5 synthesizes the symmetric dimethylarginine in nuclear and cytoplasmic proteins such as histone H2A, H4 and several non-histone proteins that are required for a variety of biological processes. Currently, two splice variants (v1 and v2) of murine PRMT5 have been deposited in the NCBI sequence database, in which PRMT5-v1 and -v2 contain different 33 and 16 amino acids at the N-terminal sequences, respectively. Here we showed that murine PRMT5-v1 is stable, but PRMT5-v2 is constantly degraded through both the ubiquitin proteasome system (UPS) and the autophagic-lysosomal pathway (ALP) in an N-terminal sequence-dependent manner. Furthermore, inhibition of UPS and ALP elevated the stability of PRMT5-v2 that made it localized in the nucleus and the cytoplasm. In addition, PRMT5-v2 exhibited the enzyme activity to catalyze histone H2A and H4 methylation. Notably, we found that the heat shock protein (Hsp) 70 specially recognizes the N-terminal sequence of PRMT5-v2 and the carboxyl terminus of Hsp70-interacting protein (CHIP) is required for poly-ubiquitination and the degradation of PRMT5-v2. These results suggest that Hsp70/CHIP chaperone-mediated protein degradation system is crucial in the regulation of PRMT5-v2 turnover, which has the potential to balance the symmetrical arginine dimethylation in cells.
Collapse
Affiliation(s)
- Weizhe Lu
- Ph.D. Program in Human Biology, School of Integrative Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Saori Tabara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Chulwon Kwon
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Hayase Mizukami
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Keiji Kimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
35
|
Mai H, Zhou B, Liu L, Yang F, Conran C, Ji Y, Hou J, Jiang D. Molecular pattern of lncRNAs in hepatocellular carcinoma. J Exp Clin Cancer Res 2019; 38:198. [PMID: 31097003 PMCID: PMC6524221 DOI: 10.1186/s13046-019-1213-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most notable lethal malignancies worldwide. However, the molecular mechanisms involved in the initiation and progression of this disease remain poorly understood. Over the past decade, many studies have demonstrated the important regulatory roles of long non-coding RNAs (lncRNAs) in HCC. Here, we comprehensively review recent discoveries regarding HCC-associated lncRNA functions, which we have classified and described according to their mechanism models.
Collapse
Affiliation(s)
- Haoming Mai
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institute of Liver Diseases Research of Guangdong Province, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institute of Liver Diseases Research of Guangdong Province, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Li Liu
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institute of Liver Diseases Research of Guangdong Province, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University, Shanghai, 200433 China
| | - Carly Conran
- University of Illinois College of Medicine, Chicago, IL 60612 USA
| | - Yuan Ji
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637 USA
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institute of Liver Diseases Research of Guangdong Province, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institute of Liver Diseases Research of Guangdong Province, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
36
|
Chao C, Lai C, Badrealam KF, Lo J, Shen C, Chen C, Chen R, Viswanadha VP, Kuo W, Huang C. CHIP attenuates lipopolysaccharide‐induced cardiac hypertrophy and apoptosis by promoting NFATc3 proteasomal degradation. J Cell Physiol 2019; 234:20128-20138. [DOI: 10.1002/jcp.28614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Chun‐Nun Chao
- Department of Biotechnology Asia University Taichung Taiwan
- Department of Pediatrics Ditmanson Medical Foundation Chia‐Yi Christian Hospital Chiayi Taiwan
| | - Chao‐Hung Lai
- Division of Cardiology, Department of Internal Medicine Armed Force Taichung, General Hospital Taichung Taiwan
| | | | - Jeng‐Fan Lo
- Institute of Oral Biology National Yang‐Ming University Taipei Taiwan
| | - Chia‐Yao Shen
- Department of Nursing MeiHo University Pingtung Taiwan
| | - Chia‐Hua Chen
- Graduate Institute of Basic Medical Science China Medical University Taichung Taiwan
| | - Ray‐Jade Chen
- Department of Surgery, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
| | | | - Wei‐Wen Kuo
- Department of Biological Science and Technology China Medical University Taichung Taiwan
| | - Chih‐Yang Huang
- Department of Biotechnology Asia University Taichung Taiwan
- Graduate Institute of Basic Medical Science China Medical University Taichung Taiwan
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation Tzu Chi University Hualien Taiwan
- Medical Research Center for Exosomes and Mitochondria Related Diseases China Medical University Hospital Taichung Taiwan
| |
Collapse
|
37
|
Pan JH, Zhou H, Zhu SB, Huang JL, Zhao XX, Ding H, Qin L, Pan YL. Nicotinamide phosphoribosyl transferase regulates cell growth via the Sirt1/P53 signaling pathway and is a prognosis marker in colorectal cancer. J Cell Physiol 2019; 234:4385-4395. [PMID: 30191976 DOI: 10.1002/jcp.27228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 07/17/2018] [Indexed: 01/01/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy, and the metabolic properties of CRC cells include enhanced aerobic glycolysis (the Warburg effect). Nicotinamide phosphoribosyl transferase (NAMPT) is one of the crucial enzymes that regulate the activity of nicotinamide adenine dinucleodinucleotide dependent enzymes. Targeting NAMPT is a potential method of CRC therapy. Nevertheless, the underlying clinical implications and regulatory mechanisms of NAMPT in CRC remain unclear. In this study, we showed that NAMPT protein expression was increased in subjects with rectal localization compared with those with colon localization, and NAMPT was a poor prognostic marker for the overall survival rate in patients with CRC. In addition, the NAMPT inhibitor FK866 or lentivirus-mediated silencing induced CRC cell growth inhibition. Mechanistically, NAMPT regulated Sirt1 and P53 expression and induced G0/G1 cell cycle arrest, along with the upregulation of downstream p21 and downregulation of cyclin D1, cyclin E1, and cyclin E2 expression. FK866 administration or knockdown of NAMPT induced CRC cell apoptosis via upregulation of caspase-3. In conclusion, NAMPT regulated Sirt1/P53 signaling during CRC cell growth and warrants further investigation for clinical administration in CRC.
Collapse
Affiliation(s)
- Jing-Hua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hong Zhou
- Department of Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sheng-Bin Zhu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jin-Lian Huang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Xu Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Ding
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Qin
- Department of Histology and Embryology, Medical School of Jinan University, Guangzhou, China
| | - Yun-Long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
38
|
Trcka F, Durech M, Vankova P, Chmelik J, Martinkova V, Hausner J, Kadek A, Marcoux J, Klumpler T, Vojtesek B, Muller P, Man P. Human Stress-inducible Hsp70 Has a High Propensity to Form ATP-dependent Antiparallel Dimers That Are Differentially Regulated by Cochaperone Binding. Mol Cell Proteomics 2019; 18:320-337. [PMID: 30459217 PMCID: PMC6356074 DOI: 10.1074/mcp.ra118.001044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/09/2018] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic protein homeostasis (proteostasis) is largely dependent on the action of highly conserved Hsp70 molecular chaperones. Recent evidence indicates that, apart from conserved molecular allostery, Hsp70 proteins have retained and adapted the ability to assemble as functionally relevant ATP-bound dimers throughout evolution. Here, we have compared the ATP-dependent dimerization of DnaK, human stress-inducible Hsp70, Hsc70 and BiP Hsp70 proteins, showing that their dimerization propensities differ, with stress-inducible Hsp70 being predominantly dimeric in the presence of ATP. Structural analyses using hydrogen/deuterium exchange mass spectrometry, native electrospray ionization mass spectrometry and small-angle X-ray scattering revealed that stress-inducible Hsp70 assembles in solution as an antiparallel dimer with the intermolecular interface closely resembling the ATP-bound dimer interfaces captured in DnaK and BiP crystal structures. ATP-dependent dimerization of stress-inducible Hsp70 is necessary for its efficient interaction with Hsp40, as shown by experiments with dimerization-deficient mutants. Moreover, dimerization of ATP-bound Hsp70 is required for its participation in high molecular weight protein complexes detected ex vivo, supporting its functional role in vivo As human cytosolic Hsp70 can interact with tetratricopeptide repeat (TPR) domain containing cochaperones, we tested the interaction of Hsp70 ATP-dependent dimers with Chip and Tomm34 cochaperones. Although Chip associates with intact Hsp70 dimers to form a larger complex, binding of Tomm34 disrupts the Hsp70 dimer and this event plays an important role in Hsp70 activity regulation. In summary, this study provides structural evidence of robust ATP-dependent antiparallel dimerization of human inducible Hsp70 protein and suggests a novel role of TPR domain cochaperones in multichaperone complexes involving Hsp70 ATP-bound dimers.
Collapse
Affiliation(s)
- Filip Trcka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Michal Durech
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Pavla Vankova
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Josef Chmelik
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Veronika Martinkova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Jiri Hausner
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Alan Kadek
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tomas Klumpler
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Petr Muller
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic;.
| | - Petr Man
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic;.
| |
Collapse
|
39
|
Jeong DH, Choi YN, Seo TW, Lee JS, Yoo SJ. Ubiquitin-proteasome dependent regulation of Profilin2 (Pfn2) by a cellular inhibitor of apoptotic protein 1 (cIAP1). Biochem Biophys Res Commun 2018; 506:423-428. [PMID: 30352681 DOI: 10.1016/j.bbrc.2018.10.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
The two major isoforms of the profilin (Pfn) family of proteins in mammals are Pfn1 and Pfn2. Pfn1 is a universal actin cytoskeletal regulator, while Pfn2 is an actin binding protein and mediator of synapse architecture, specific to neural tissues. However, it has recently been suggested that Pfn2 is also widely distributed in various tissues and involved in numerous cellular events as well as cytoskeletal regulation. In our previous study, we showed that Pfn1 is regulated by carboxyl terminus of Hsc70-Interacting Protein (CHIP) via an ubiquitin (Ub) proteasome system; although, the mechanism of regulation of Pfn2 is unknown. In this report, we demonstrate that Pfn2 is heavily ubiquitinated via differential Ub-linkages for degradation or as a regulatory signal. We also show that cellular inhibitor of apoptosis 1 (cIAP1) rather than CHIP, functions as an E3 ligase that targets Pfn2 for proteasomal degradation. Finally, we observed that Pfn2 levels, regulated by cIAP1, affected intracellular levels of reactive oxygen species. These results may provide a regulatory mechanism for cellular function of Pfn2 in various tissues.
Collapse
Affiliation(s)
- Dar Heum Jeong
- Department of Nanopharmaceutical Life Sciences, Research Institute for Basic Sciences, Kyung Hee University, Seoul, 130-701, South Korea
| | - Ye Na Choi
- Department of Biology, Research Institute for Basic Sciences, Kyung Hee University, Seoul, 130-701, South Korea
| | - Tae Woong Seo
- Department of Biology, Research Institute for Basic Sciences, Kyung Hee University, Seoul, 130-701, South Korea
| | - Ji Sun Lee
- Department of Nanopharmaceutical Life Sciences, Research Institute for Basic Sciences, Kyung Hee University, Seoul, 130-701, South Korea
| | - Soon Ji Yoo
- Department of Biology, Research Institute for Basic Sciences, Kyung Hee University, Seoul, 130-701, South Korea; Department of Nanopharmaceutical Life Sciences, Research Institute for Basic Sciences, Kyung Hee University, Seoul, 130-701, South Korea.
| |
Collapse
|
40
|
Nie M, Wang Y, Guo C, Li X, Wang Y, Deng Y, Yao B, Gui T, Ma C, Liu M, Wang P, Wang R, Tan R, Fang M, Chen B, He Y, Huang DCS, Ju J, Zhao Q. CARM1-mediated methylation of protein arginine methyltransferase 5 represses human γ-globin gene expression in erythroleukemia cells. J Biol Chem 2018; 293:17454-17463. [PMID: 30257864 DOI: 10.1074/jbc.ra118.004028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a member of the arginine methyltransferase protein family that critically mediates the symmetric dimethylation of Arg-3 at histone H4 (H4R3me2s) and is involved in many key cellular processes, including hematopoiesis. However, the post-translational modifications (PTMs) of PRMT5 that may affect its biological functions remain less well-understood. In this study, using MS analyses, we found that PRMT5 itself is methylated in human erythroleukemia Lys-562 cells. Biochemical assays revealed that coactivator-associated arginine methyltransferase 1 (CARM1) interacts directly with and methylates PRMT5 at Arg-505 both in vivo and in vitro. Substitutions at Arg-505 significantly reduced PRMT5's methyltransferase activity, decreased H4R3me2s enrichment at the γ-globin gene promoter, and increased the expression of the γ-globin gene in Lys-562 cells. Moreover, CARM1 knockdown consistently reduced PRMT5 activity and activated γ-globin gene expression. Importantly, we show that CARM1-mediated methylation of PRMT5 is essential for the intracellular homodimerization of PRMT5 to its active form. These results thus reveal a critical PTM of PRMT5 that represses human γ-globin gene expression. We conclude that CARM1-mediated asymmetric methylation of PRMT5 is critical for its dimerization and methyltransferase activity leading to the repression of γ-globin expression. Given PRMT5's crucial role in diverse cellular processes, these findings may inform strategies for manipulating its methyltransferase activity for managing hemoglobinopathy or cancer.
Collapse
Affiliation(s)
- Min Nie
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yadong Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chan Guo
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinyu Li
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yexuan Deng
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bing Yao
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tao Gui
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chi Ma
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ming Liu
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Panxue Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ruoyun Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Renxiang Tan
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Ming Fang
- Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Bing Chen
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yinghong He
- School of Basic Medicine, Dali University, Yunnan 671003 China, and
| | - David C S Huang
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, 3010 Australia
| | - Junyi Ju
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China,
| | - Quan Zhao
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China,
| |
Collapse
|
41
|
Xu J, Zhou J, Dai H, Liu F, Li W, Wang W, Guo F. CHIP functions as an oncogene by promoting colorectal cancer metastasis via activation of MAPK and AKT signaling and suppression of E-cadherin. J Transl Med 2018; 16:169. [PMID: 29921293 PMCID: PMC6008917 DOI: 10.1186/s12967-018-1540-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The carboxyl terminus of Hsc70-interacting protein (CHIP) is an E3 ubiquitin ligase that plays a controversial role in different cancers, either as a tumor suppressor or a tumor promoter. To date, the exact function and underlying mechanism of CHIP in colorectal cancer (CRC) is not yet clear. Here we aimed to determine whether CHIP could affect the biological behaviors of CRC cells and its underlying mechanisms. METHODS Stably transfected CHIP overexpression and depletion DLD-1 and HT-29 cells were established using Lipofectamine 2000. Cell growth was monitored by x-Celligence system. Cell proliferation was detected using CCK-8 and Brdu proliferation assay. Cell apoptosis and cell cycle were detected by flow cytometry analysis. Cell migration and invasion abilities were monitored by x-Celligence system, wound healing assay and transwell assay. In vivo intraperitoneal metastasis assay was performed to investigate the influence of CHIP on the tumor metastasis of CRC cells in nude mice. The expression of ERK, AKT, NF-кB signaling subunits and EMT related proteins were detected by Western blotting. The influence and function of CHIP on the protein expression of CRC cells were also elucidated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. CRC microarray tissue was analyzed to investigate the CHIP expression and its clinical significance. RESULTS CHIP depletion inhibited cell growth, migration and invasion potential of CRC cells, accompanied by downregulation of MAPK and AKT signaling activities and upregulation of E-cadherin. CHIP overexpression dramatically enhanced the migration and invasion abilities, due to the upregulation of MAPK and AKT signaling and downregulation of E-cadherin. The proteomic analysis confirmed that E-cadherin was decreased in CHIP-overexpressing CRC cells. Furthermore, clinical tissue data revealed that CHIP expression was upregulated in CRC samples and was significantly correlated with poor survival of CRC patients. Mechanically, CHIP probably activated the MAPK and AKT signaling, which inactivated GSK-3β. The GSK-3β inactivation, in turn, upregulated Slug and led to E-cadherin downregulation and EMT initiation. CONCLUSIONS Our finding suggested that CHIP functions as an oncogene in the migration and metastasis of CRC, and is a potential unfavorable independent predictive biomarker for CRC. CHIP activates the AKT pathway to promote EMT and metastasis in CRC through the CHIP-MAPK/AKT-GSK-3β-Slug-E-cadherin pathways.
Collapse
Affiliation(s)
- Jingjing Xu
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jun Zhou
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Hanjue Dai
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Wenjing Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Wenjuan Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250012 China
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Jinan, 250012 China
| | - Feng Guo
- Department of Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Baita West Road 16, Suzhou, 215001 China
| |
Collapse
|
42
|
Li Z, Zhang J, Liu X, Li S, Wang Q, Di Chen, Hu Z, Yu T, Ding J, Li J, Yao M, Fan J, Huang S, Gao Q, Zhao Y, He X. The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nat Commun 2018; 9:1572. [PMID: 29679004 PMCID: PMC5910401 DOI: 10.1038/s41467-018-04006-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Recurrent chromosomal aberrations have led to the discovery of oncogenes or tumour suppressors involved in carcinogenesis. Here we characterized an oncogenic long intergenic non-coding RNA in the frequent DNA-gain regions in hepatocellular carcinoma (HCC), LINC01138 (long intergenic non-coding RNA located on 1q21.2). The LINC01138 locus is frequently amplified in HCC; the LINC01138 transcript is stabilized by insulin like growth factor-2 mRNA-binding proteins 1/3 (IGF2BP1/IGF2BP3) and is associated with the malignant features and poor outcomes of HCC patients. LINC01138 acts as an oncogenic driver that promotes cell proliferation, tumorigenicity, tumour invasion and metastasis by physically interacting with arginine methyltransferase 5 (PRMT5) and enhancing its protein stability by blocking ubiquitin/proteasome-dependent degradation in HCC. The discovery of LINC01138, a promising prognostic indicator, provides insight into the molecular pathogenesis of HCC, and the LINC01138/PRMT5 axis is an ideal therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Zhe Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiwei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinyang Liu
- Liver Cancer Institute, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shengli Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qifeng Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Di Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhixiang Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jie Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yingjun Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Collaborative Innovation Center for Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
43
|
Bhuripanyo K, Wang Y, Liu X, Zhou L, Liu R, Duong D, Zhao B, Bi Y, Zhou H, Chen G, Seyfried NT, Chazin WJ, Kiyokawa H, Yin J. Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer. SCIENCE ADVANCES 2018; 4:e1701393. [PMID: 29326975 PMCID: PMC5756662 DOI: 10.1126/sciadv.1701393] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
E3 ubiquitin (UB) ligases E4B and carboxyl terminus of Hsc70-interacting protein (CHIP) use a common U-box motif to transfer UB from E1 and E2 enzymes to their substrate proteins and regulate diverse cellular processes. To profile their ubiquitination targets in the cell, we used phage display to engineer E2-E4B and E2-CHIP pairs that were free of cross-reactivity with the native UB transfer cascades. We then used the engineered E2-E3 pairs to construct "orthogonal UB transfer (OUT)" cascades so that a mutant UB (xUB) could be exclusively used by the engineered E4B or CHIP to label their substrate proteins. Purification of xUB-conjugated proteins followed by proteomics analysis enabled the identification of hundreds of potential substrates of E4B and CHIP in human embryonic kidney 293 cells. Kinase MAPK3 (mitogen-activated protein kinase 3), methyltransferase PRMT1 (protein arginine N-methyltransferase 1), and phosphatase PPP3CA (protein phosphatase 3 catalytic subunit alpha) were identified as the shared substrates of the two E3s. Phosphatase PGAM5 (phosphoglycerate mutase 5) and deubiquitinase OTUB1 (ovarian tumor domain containing ubiquitin aldehyde binding protein 1) were confirmed as E4B substrates, and β-catenin and CDK4 (cyclin-dependent kinase 4) were confirmed as CHIP substrates. On the basis of the CHIP-CDK4 circuit identified by OUT, we revealed that CHIP signals CDK4 degradation in response to endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Karan Bhuripanyo
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Yiyang Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xianpeng Liu
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Li Zhou
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Ruochuan Liu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Duc Duong
- Integrated Proteomics Core, Emory University, Atlanta, GA 30322, USA
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingtao Bi
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
| | - Han Zhou
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Geng Chen
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Walter J. Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Jun Yin
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
44
|
Xu L, Zhang Y, Qu X, Che X, Guo T, Li C, Ma R, Fan Y, Ma Y, Hou K, Li D, Hu X, Liu B, Yu R, Yan H, Gong J, Liu Y. DR5-Cbl-b/c-Cbl-TRAF2 complex inhibits TRAIL-induced apoptosis by promoting TRAF2-mediated polyubiquitination of caspase-8 in gastric cancer cells. Mol Oncol 2017; 11:1733-1751. [PMID: 28972304 PMCID: PMC5709619 DOI: 10.1002/1878-0261.12140] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/21/2017] [Accepted: 09/08/2017] [Indexed: 01/22/2023] Open
Abstract
Ubiquitination of caspase‐8 regulates TNF‐related apoptosis‐inducing ligand (TRAIL) sensitivity in cancer cells, and the preligand assembly complex plays a role in caspase‐8 polyubiquitination. However, whether such a complex exists in gastric cancer cells and its role in TRAIL‐triggered apoptosis is unclear. In this study, DR5, casitas B‐lineage lymphoma‐b (Cbl‐b)/c‐Cbl, and TRAF2 formed a complex in TRAIL‐resistant gastric cancer cells, and Cbl‐b and c‐Cbl were the critical adaptors linking DR5 and TRAF2. Treatment with TRAIL induced caspase‐8 translocation into the DR5‐Cbl‐b/c‐Cbl‐TRAF2 complex to interact with TRAF2, which then mediated the K48‐linked polyubiquitination of caspase‐8. The proteasome inhibitor bortezomib markedly enriched the p43/41 products of caspase‐8 activated by TRAIL, indicating proteasomal degradation of caspase‐8. Moreover, TRAF2 knockdown prevented the polyubiquitination of caspase‐8 and thus increased TRAIL sensitivity. In addition, the inhibition of Cbl‐b or c‐Cbl expression and overexpression of miR‐141 targeting Cbl‐b and c‐Cbl partially reversed TRAIL resistance by inhibiting the interaction between TRAF2 and caspase‐8 and the subsequent polyubiquitination of caspase‐8. These results indicate that the DR5‐Cbl‐b/c‐Cbl‐TRAF2 complex inhibited TRAIL‐induced apoptosis by promoting TRAF2‐mediated polyubiquitination of caspase‐8 in gastric cancer cells.
Collapse
Affiliation(s)
- Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ye Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Tianshu Guo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Rui Ma
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yanju Ma
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xuejun Hu
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bofang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ruoxi Yu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Hongfei Yan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Jing Gong
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
45
|
Zhang H, Yang J, Liang G, Gao X, Sang Y, Gui T, Liang Z, Tam M, Zha Z. Andrographolide Induces Cell Cycle Arrest and Apoptosis of Chondrosarcoma by Targeting TCF‐1/SOX9 Axis. J Cell Biochem 2017; 118:4575-4586. [PMID: 28485543 DOI: 10.1002/jcb.26122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Huan‐Tian Zhang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesCollege of Life Science and Technology, Jinan UniversityGuangzhouPR China
| | - Jie Yang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
| | - Gui‐Hong Liang
- Department of Orthopedics, the Third Affiliated HospitalGuangzhou University of Chinese MedicineGuangzhouPR China
| | - Xue‐Juan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesCollege of Life Science and Technology, Jinan UniversityGuangzhouPR China
| | - Yuan Sang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
| | - Tao Gui
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
| | - Zu‐Jian Liang
- Department of Orthopedics, the Third Affiliated HospitalGuangzhou University of Chinese MedicineGuangzhouPR China
| | - Man‐Seng Tam
- Macau Medical Science and Technology AssociationMacao Special Administrative RegionPR China
- IAN WO Medical CenterMacao Special Administrative RegionPR China
| | - Zhen‐Gang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicinethe First Affiliated Hospital, Jinan UniversityGuangzhouPR China
| |
Collapse
|
46
|
Liang GH, Liu N, He MT, Yang J, Liang ZJ, Gao XJ, Rahhal AH, He QY, Zhang HT, Zha ZG. Transcriptional regulation of Runx2 by HSP90 controls osteosarcoma apoptosis via the AKT/GSK-3β/β-catenin signaling. J Cell Biochem 2017; 119:948-959. [PMID: 28681940 DOI: 10.1002/jcb.26260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022]
Abstract
Osteosarcoma (OS) is the most malignant primary bone tumor in children and adolescents with limited treatment options and poor prognosis. Recently, aberrant expression of Runx2 has been found in OS, thereby contributing to the development, and progression of OS. However, the upstream signaling molecules that regulate its expression in OS remain largely unknown. In the present study, we first confirmed that the inhibition of HSP90 with 17-AAG caused significant apoptosis of OS cells via a caspase-3-dependent mechanism, and that inhibition or knockdown of HSP90 by 17-AAG or siRNAs significantly suppressed mRNA and protein expression of Runx2. Furthermore, we provided evidence that Runx2 was transcriptionally regulated by HSP90 when using MG132 and CHX chase assay. We also demonstrated that β-catenin was overexpressed in OS tissue, and that knockdown of β-catenin induced pronounced apoptosis of OS cells in the presence or absence of 17-AAG. Interestingly, this phenomenon was accompanied with a significant reduction of Runx2 and Cyclin D1 expression, indicating an essential role of Runx2/Cyclin D1 in 17-AAG-induced cells apoptosis. Moreover, we demonstrated that the apoptosis of OS cells induced by 17-AAG did require the involvement of the AKT/GSK-3β/β-catenin signaling pathway by using pharmacological inhibitor GSK-3β (LiCl) or siGSK-3β. Our findings reveal a novel mechanism that Runx2 is transcriptionally regulated by HSP90 via the AKT/GSK-3β/β-catenin signaling pathway, and by which leads to apoptosis of OS cells.
Collapse
Affiliation(s)
- Gui-Hong Liang
- The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ning Liu
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Ming-Tang He
- Longgang Orthopedics Hospital of Shenzhen, Shenzhen, PR China
| | - Jie Yang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Zu-Jian Liang
- The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xue-Juan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, PR China
| | - Ali Hasan Rahhal
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, PR China
| | - Huan-Tian Zhang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, PR China.,Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, PR China
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, PR China
| |
Collapse
|
47
|
Ji CH, Kwon YT. Crosstalk and Interplay between the Ubiquitin-Proteasome System and Autophagy. Mol Cells 2017; 40:441-449. [PMID: 28743182 PMCID: PMC5547213 DOI: 10.14348/molcells.2017.0115] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022] Open
Abstract
Proteolysis in eukaryotic cells is mainly mediated by the ubiquitin (Ub)-proteasome system (UPS) and the autophagylysosome system (hereafter autophagy). The UPS is a selective proteolytic system in which substrates are recognized and tagged with ubiquitin for processive degradation by the proteasome. Autophagy is a bulk degradative system that uses lysosomal hydrolases to degrade proteins as well as various other cellular constituents. Since the inception of their discoveries, the UPS and autophagy were thought to be independent of each other in components, action mechanisms, and substrate selectivity. Recent studies suggest that cells operate a single proteolytic network comprising of the UPS and autophagy that share notable similarity in many aspects and functionally cooperate with each other to maintain proteostasis. In this review, we discuss the mechanisms underlying the crosstalk and interplay between the UPS and autophagy, with an emphasis on substrate selectivity and compensatory regulation under cellular stresses.
Collapse
Affiliation(s)
- Chang Hoon Ji
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, Seoul National University, Seoul 03080,
Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, Seoul National University, Seoul 03080,
Korea
- Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 03080,
Korea
| |
Collapse
|
48
|
Kevei É, Pokrzywa W, Hoppe T. Repair or destruction-an intimate liaison between ubiquitin ligases and molecular chaperones in proteostasis. FEBS Lett 2017; 591:2616-2635. [PMID: 28699655 PMCID: PMC5601288 DOI: 10.1002/1873-3468.12750] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Cellular differentiation, developmental processes, and environmental factors challenge the integrity of the proteome in every eukaryotic cell. The maintenance of protein homeostasis, or proteostasis, involves folding and degradation of damaged proteins, and is essential for cellular function, organismal growth, and viability 1, 2. Misfolded proteins that cannot be refolded by chaperone machineries are degraded by specialized proteolytic systems. A major degradation pathway regulating cellular proteostasis is the ubiquitin (Ub)/proteasome system (UPS), which regulates turnover of damaged proteins that accumulate upon stress and during aging. Despite a large number of structurally unrelated substrates, Ub conjugation is remarkably selective. Substrate selectivity is mainly provided by the group of E3 enzymes. Several observations indicate that numerous E3 Ub ligases intimately collaborate with molecular chaperones to maintain the cellular proteome. In this review, we provide an overview of specialized quality control E3 ligases playing a critical role in the degradation of damaged proteins. The process of substrate recognition and turnover, the type of chaperones they team up with, and the potential pathogeneses associated with their malfunction will be further discussed.
Collapse
Affiliation(s)
- Éva Kevei
- School of Biological Sciences, University of Reading, Whiteknights, UK
| | - Wojciech Pokrzywa
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
49
|
Zhang HT, Gui T, Sang Y, Yang J, Li YH, Liang GH, Li T, He QY, Zha ZG. The BET Bromodomain Inhibitor JQ1 Suppresses Chondrosarcoma Cell Growth via Regulation of YAP/p21/c-Myc Signaling. J Cell Biochem 2017; 118:2182-2192. [PMID: 28059436 DOI: 10.1002/jcb.25863] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Huan-Tian Zhang
- Department of Bone and Joint Surgery; Institute of Orthopedic Diseases; The First Affiliated Hospital; Jinan University; Guangzhou 510630 China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes; College of Life Science and Technology; Jinan University; Guangzhou 510632 China
| | - Tao Gui
- Department of Bone and Joint Surgery; Institute of Orthopedic Diseases; The First Affiliated Hospital; Jinan University; Guangzhou 510630 China
| | - Yuan Sang
- Department of Bone and Joint Surgery; Institute of Orthopedic Diseases; The First Affiliated Hospital; Jinan University; Guangzhou 510630 China
| | - Jie Yang
- Department of Bone and Joint Surgery; Institute of Orthopedic Diseases; The First Affiliated Hospital; Jinan University; Guangzhou 510630 China
| | - Yu-Hang Li
- Department of Bone and Joint Surgery; Institute of Orthopedic Diseases; The First Affiliated Hospital; Jinan University; Guangzhou 510630 China
| | - Gui-Hong Liang
- The Third Affiliated Hospital; Guangzhou University of Chinese Medicine; Guangzhou 510240 China
| | - Thomas Li
- Department of Bone and Joint Surgery; Institute of Orthopedic Diseases; The First Affiliated Hospital; Jinan University; Guangzhou 510630 China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes; College of Life Science and Technology; Jinan University; Guangzhou 510632 China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery; Institute of Orthopedic Diseases; The First Affiliated Hospital; Jinan University; Guangzhou 510630 China
| |
Collapse
|
50
|
Stability of the cancer target DDIAS is regulated by the CHIP/HSP70 pathway in lung cancer cells. Cell Death Dis 2017; 8:e2554. [PMID: 28079882 PMCID: PMC5386388 DOI: 10.1038/cddis.2016.488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Abstract
DNA damage-induced apoptosis suppressor (DDIAS) rescues lung cancer cells from apoptosis in response to DNA damage. DDIAS is transcriptionally activated by NFATc1 and EGF-mediated ERK5/MEF2B, leading to cisplatin resistance and cell invasion. Therefore, DDIAS is suggested as a therapeutic target for lung cancer. Here, we report that DDIAS stability is regulated by E3 U-box ubiquitin ligase carboxyl terminus of HSP70-interacting protein (CHIP)-mediated proteasomal degradation. We first isolated CHIP as an interacting partner of DDIAS by yeast two-hybrid screening. CHIP physically associated with both the N- and C-terminal regions of DDIAS, targeting it for proteasomal degradation and reducing the DDIAS half-life. CHIP overexpression analyses indicated that the tetratrico peptide repeat (TPR) domain and the U-box are required for DDIAS ubiquitination. It is likely that HSP70-bound DDIAS is recruited to the CHIP E3 ligase via the TPR domain, suggesting DDIAS as a client protein of HSP70. In addition, CHIP overexpression in lung cancer cells expressing high DDIAS levels induced significant growth inhibition by enhancing DDIAS degradation. Furthermore, simultaneous CHIP overexpression and DNA damage agent treatment caused a substantial increase in the apoptosis of lung cancer cells. Taken together, these findings indicate that the stability of the DDIAS protein is regulated by CHIP/HSP70-mediated proteasomal degradation and that CHIP overexpression stimulates the apoptosis of lung cancer cells in response to DNA-damaging agents.
Collapse
|