1
|
Kulma M, Šakanović A, Bedina-Zavec A, Caserman S, Omersa N, Šolinc G, Orehek S, Hafner-Bratkovič I, Kuhar U, Slavec B, Krapež U, Ocepek M, Kobayashi T, Kwiatkowska K, Jerala R, Podobnik M, Anderluh G. Sequestration of membrane cholesterol by cholesterol-binding proteins inhibits SARS-CoV-2 entry into Vero E6 cells. Biochem Biophys Res Commun 2024; 716:149954. [PMID: 38704887 DOI: 10.1016/j.bbrc.2024.149954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Apolonija Bedina-Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Brigita Slavec
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, F-67401, Illkirch, France
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Chen S, Gistelinck K, Verbeke I, Van Damme EJM. Differential effects of the recombinant type 1 ribosome-inactivating protein, OsRIP1, on growth of PSB-D and BY-2 cells. FRONTIERS IN PLANT SCIENCE 2022; 13:1019591. [PMID: 36247583 PMCID: PMC9557087 DOI: 10.3389/fpls.2022.1019591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Plant suspension cells were treated with recombinant OsRIP1, a type 1 ribosome-inactivating protein (RIP) from rice (Oryza sativa L.). OsRIP1 triggered cell death in tobacco BY-2 cells but not in Arabidopsis PSB-D cells. Phenotypic changes in BY-2 cells exposed to OsRIP1, included loss of growth capacity, loss of integrity of the plasma membrane and vacuolar collapse. These effects were also accompanied by RNA degradation and DNA fragmentation. Targeting of exogenous OsRIP1 to plant vacuoles and OsRIP1-induced accumulation of transcripts for vacuolar processing enzymes (VPEs) indicated that OsRIP1 provoked plant cell death in tobacco BY-2 cells through the activation of VPEs and subsequent vacuolar disruption, which was probably independent of its N-glycosylase activity on cytosolic ribosomes. Necrosis with limited production of H2O2 was observed after infiltration of high concentrations of OsRIP1 in epidermal cells of Nicotiana tabacum cv. Samsun NN plants. Our study provides the first evidence that OsRIP1 exerts differential effects on the growth of PSB-D and BY-2 cells. The vacuole-dependent cell death pathway is associated with the lethal effect of the exogenously applied OsRIP1 on BY-2 cells.
Collapse
Affiliation(s)
- Simin Chen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Koen Gistelinck
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Isabel Verbeke
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Els J. M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Center for Advanced Light Microscopy, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Kuběnová L, Tichá M, Šamaj J, Ovečka M. ROOT HAIR DEFECTIVE 2 vesicular delivery to the apical plasma membrane domain during Arabidopsis root hair development. PLANT PHYSIOLOGY 2022; 188:1563-1585. [PMID: 34986267 PMCID: PMC8896599 DOI: 10.1093/plphys/kiab595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) root hairs develop as long tubular extensions from the rootward pole of trichoblasts and exert polarized tip growth. The establishment and maintenance of root hair polarity is a complex process involving the local apical production of reactive oxygen species generated by A. thaliana nicotinamide adenine dinucleotide phosphate (NADPH) oxidase respiratory burst oxidase homolog protein C/ROOT HAIR-DEFECTIVE 2 (AtRBOHC/RHD2). Loss-of-function root hair defective 2 (rhd2) mutants have short root hairs that are unable to elongate by tip growth, and this phenotype is fully complemented by GREEN FLUORESCENT PROTEIN (GFP)-RHD2 expressed under the RHD2 promoter. However, the spatiotemporal mechanism of AtRBOHC/RHD2 subcellular redistribution and delivery to the plasma membrane (PM) during root hair initiation and tip growth are still unclear. Here, we used advanced microscopy for detailed qualitative and quantitative analysis of vesicular compartments containing GFP-RHD2 and characterization of their movements in developing bulges and growing root hairs. These compartments, identified by an independent molecular marker mCherry-VTI12 as the trans-Golgi network (TGN), deliver GFP-RHD2 to the apical PM domain, the extent of which corresponds with the stage of root hair formation. Movements of TGN/early endosomes, but not late endosomes, were affected in the bulging domains of the rhd2-1 mutant. Finally, we revealed that structural sterols might be involved in the accumulation, docking, and incorporation of TGN compartments containing GFP-RHD2 to the apical PM of root hairs. These results help in clarifying the mechanism of polarized AtRBOHC/RHD2 targeting, maintenance, and recycling at the apical PM domain, coordinated with different developmental stages of root hair initiation and growth.
Collapse
Affiliation(s)
- Lenka Kuběnová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michaela Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
4
|
Streptomyces Endophytes Promote Host Health and Enhance Growth across Plant Species. Appl Environ Microbiol 2020; 86:AEM.01053-20. [PMID: 32561579 PMCID: PMC7414947 DOI: 10.1128/aem.01053-20] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants. Streptomyces bacteria are ubiquitous in soils and are well known for producing secondary metabolites, including antimicrobials. Increasingly, they are being isolated from plant roots, and several studies have shown they are specifically recruited to the rhizosphere and the endosphere of the model plant Arabidopsis thaliana. Here, we test the hypothesis that Streptomyces bacteria have a beneficial effect on A. thaliana growth and could potentially be used as plant probiotics. To do this, we selectively isolated streptomycetes from surface-washed A. thaliana roots and generated high-quality genome sequences for five strains, which we named L2, M2, M3, N1, and N2. Reinfection of A. thaliana plants with L2, M2, and M3 significantly increased plant biomass individually and in combination, whereas N1 and N2 had a negative effect on plant growth, likely due to their production of polyene natural products which can bind to phytosterols and reduce plant growth. N2 exhibits broad-spectrum antimicrobial activity and makes filipin-like polyenes, including 14-hydroxyisochainin which inhibits the take-all fungus, Gaeumannomyces graminis var. tritici. N2 antifungal activity as a whole was upregulated ∼2-fold in response to indole-3-acetic acid (IAA), suggesting a possible role during competition in the rhizosphere. Furthermore, coating wheat seeds with N2 spores protected wheat seedlings against take-all disease. We conclude that at least some soil-dwelling streptomycetes confer growth-promoting benefits on A. thaliana, while others might be exploited to protect crops against disease. IMPORTANCE We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants.
Collapse
|
5
|
Xiao J, Li W, Zheng X, Qi L, Wang H, Zhang C, Wan X, Zheng Y, Zhong R, Zhou X, Lu Y, Li Z, Qiu Y, Liu C, Zhang F, Zhang Y, Xu X, Yang Z, Chen H, Zhai Q, Wei B, Wang H. Targeting 7-Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and IRF3 Activation to Eliminate Infection. Immunity 2020; 52:109-122.e6. [PMID: 31882361 DOI: 10.1016/j.immuni.2019.11.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 11/26/2019] [Indexed: 12/29/2022]
Abstract
Recent work suggests that cholesterol metabolism impacts innate immune responses against infection. However, the key enzymes or the natural products and mechanisms involved are not well elucidated. Here, we have shown that upon DNA and RNA viral infection, macrophages reduced 7-dehydrocholesterol reductase (DHCR7) expression. DHCR7 deficiency or treatment with the natural product 7-dehydrocholesterol (7-DHC) could specifically promote phosphorylation of IRF3 (not TBK1) and enhance type I interferon (IFN-I) production in macrophages. We further elucidated that viral infection or 7-DHC treatment enhanced AKT3 expression and activation. AKT3 directly bound and phosphorylated IRF3 at Ser385, together with TBK1-induced phosphorylation of IRF3 Ser386, to achieve IRF3 dimerization. Deletion of DHCR7 and the DHCR7 inhibitors including AY9944 and the chemotherapy drug tamoxifen promoted clearance of Zika virus and multiple viruses in vitro or in vivo. Taken together, we propose that the DHCR7 inhibitors and 7-DHC are potential therapeutics against emerging or highly pathogenic viruses.
Collapse
Affiliation(s)
- Jun Xiao
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Xin Zheng
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Linlin Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China; School of Life Sciences, Shanghai University, Shangda Road, Shanghai, China
| | - Hui Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chi Zhang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Xiaopeng Wan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuxiao Zheng
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Ruiyue Zhong
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Xin Zhou
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Yao Lu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Zhiqi Li
- Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Chang Liu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China; School of Life Sciences, Shanghai University, Shangda Road, Shanghai, China
| | - Yanbo Zhang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China; Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xiaoyan Xu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China; Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China; School of Life Sciences, Shanghai University, Shangda Road, Shanghai, China; Cancer Center, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China.
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China; Cancer Center, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China.
| |
Collapse
|
6
|
Steele HBB, Sydor MJ, Anderson DS, Holian A, Ross JBA. Using Time-Resolved Fluorescence Anisotropy of di-4-ANEPPDHQ and F2N12S to Analyze Lipid Packing Dynamics in Model Systems. J Fluoresc 2019; 29:347-352. [PMID: 30937610 DOI: 10.1007/s10895-019-02363-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/10/2019] [Indexed: 11/29/2022]
Abstract
The fluorescence probes di-4-ANEPPDHQ and F2N12S have solvochromatic emission spectra and fluorescence lifetimes that are sensitive to order within the environment of lipid membranes. We show in this communication that the time-resolved fluorescence anisotropy of these probes, analyzed either by the wobble-in-a-cone model or by the model-independent order parameter S2, provides complementary information about dynamics and lipid packing in a variety of homogeneous lipid membranes systems.
Collapse
Affiliation(s)
- Harmen B B Steele
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT, 59812, USA.,Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT, 59812, USA
| | - Matthew J Sydor
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Donald S Anderson
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA
| | - J B Alexander Ross
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT, 59812, USA. .,Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
7
|
Aboobucker SI, Suza WP. Why Do Plants Convert Sitosterol to Stigmasterol? FRONTIERS IN PLANT SCIENCE 2019; 10:354. [PMID: 30984220 PMCID: PMC6447690 DOI: 10.3389/fpls.2019.00354] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/07/2019] [Indexed: 05/11/2023]
Abstract
A direct role for cholesterol signaling in mammals is clearly established; yet, the direct role in signaling for a plant sterol or sterol precursor is unclear. Fluctuations in sitosterol and stigmasterol levels during development and stress conditions suggest their involvement in signaling activities essential for plant development and stress compensation. Stigmasterol may be involved in gravitropism and tolerance to abiotic stress. The isolation of stigmasterol biosynthesis mutants offers a promising tool to test the function of sterol end products in signaling responses to developmental and environmental cues.
Collapse
Affiliation(s)
| | - Walter P. Suza
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Morigny P, Houssier M, Mairal A, Ghilain C, Mouisel E, Benhamed F, Masri B, Recazens E, Denechaud PD, Tavernier G, Caspar-Bauguil S, Virtue S, Sramkova V, Monbrun L, Mazars A, Zanoun M, Guilmeau S, Barquissau V, Beuzelin D, Bonnel S, Marques M, Monge-Roffarello B, Lefort C, Fielding B, Sulpice T, Astrup A, Payrastre B, Bertrand-Michel J, Meugnier E, Ligat L, Lopez F, Guillou H, Ling C, Holm C, Rabasa-Lhoret R, Saris WHM, Stich V, Arner P, Rydén M, Moro C, Viguerie N, Harms M, Hallén S, Vidal-Puig A, Vidal H, Postic C, Langin D. Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nat Metab 2019; 1:133-146. [PMID: 32694809 DOI: 10.1038/s42255-018-0007-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 02/08/2023]
Abstract
Impaired adipose tissue insulin signalling is a critical feature of insulin resistance. Here we identify a pathway linking the lipolytic enzyme hormone-sensitive lipase (HSL) to insulin action via the glucose-responsive transcription factor ChREBP and its target, the fatty acid elongase ELOVL6. Genetic inhibition of HSL in human adipocytes and mouse adipose tissue results in enhanced insulin sensitivity and induction of ELOVL6. ELOVL6 promotes an increase in phospholipid oleic acid, which modifies plasma membrane fluidity and enhances insulin signalling. HSL deficiency-mediated effects are suppressed by gene silencing of ChREBP and ELOVL6. Mechanistically, physical interaction between HSL, independent of lipase activity, and the isoform activated by glucose metabolism ChREBPα impairs ChREBPα translocation into the nucleus and induction of ChREBPβ, the isoform with high transcriptional activity that is strongly associated with whole-body insulin sensitivity. Targeting the HSL-ChREBP interaction may allow therapeutic strategies for the restoration of insulin sensitivity.
Collapse
Affiliation(s)
- Pauline Morigny
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Marianne Houssier
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Aline Mairal
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Claire Ghilain
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Etienne Mouisel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Fadila Benhamed
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bernard Masri
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Emeline Recazens
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Pierre-Damien Denechaud
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Geneviève Tavernier
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sylvie Caspar-Bauguil
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France
| | - Sam Virtue
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Veronika Sramkova
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Laurent Monbrun
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Anne Mazars
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Madjid Zanoun
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sandra Guilmeau
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valentin Barquissau
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Diane Beuzelin
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sophie Bonnel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Marie Marques
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Boris Monge-Roffarello
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Corinne Lefort
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Barbara Fielding
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bernard Payrastre
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Justine Bertrand-Michel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Emmanuelle Meugnier
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Lyon 1, INSA Lyon, Oullins, France
| | - Laetitia Ligat
- Pôle Technologique, Cancer Research Center of Toulouse (CRCT), Plateau Interactions Moléculaires, INSERM-UMR1037, Toulouse, France
| | - Frédéric Lopez
- Pôle Technologique, Cancer Research Center of Toulouse (CRCT), Plateau Interactions Moléculaires, INSERM-UMR1037, Toulouse, France
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRA), UMR1331, Integrative Toxicology and Metabolism, Toulouse, France
- University of Toulouse, UMR1331, Institut National Polytechnique (INP), Paul Sabatier University, Toulouse, France
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Cecilia Holm
- Department of Experimental Medical Science, Lund University, Biomedical Centre, Lund, Sweden
| | - Remi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Department of nutrition, Université de Montréal, Montreal, Canada
- Montreal Diabetes Research Center (MDRC), Montreal, Canada
| | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Vladimir Stich
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Peter Arner
- Department of Medicine, H7, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine, H7, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Cedric Moro
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Nathalie Viguerie
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Matthew Harms
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stefan Hallén
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hubert Vidal
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Lyon 1, INSA Lyon, Oullins, France
| | - Catherine Postic
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dominique Langin
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France.
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France.
| |
Collapse
|
9
|
Grosjean K, Der C, Robert F, Thomas D, Mongrand S, Simon-Plas F, Gerbeau-Pissot P. Interactions between lipids and proteins are critical for organization of plasma membrane-ordered domains in tobacco BY-2 cells. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3545-3557. [PMID: 29722895 PMCID: PMC6022670 DOI: 10.1093/jxb/ery152] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/16/2018] [Indexed: 05/20/2023]
Abstract
The laterally heterogeneous plant plasma membrane (PM) is organized into finely controlled specialized areas that include membrane-ordered domains. Recently, the spatial distribution of such domains within the PM has been identified as playing a key role in cell responses to environmental challenges. To examine membrane order at a local level, BY-2 tobacco suspension cell PMs were labelled with an environment-sensitive probe (di-4-ANEPPDHQ). Four experimental models were compared to identify mechanisms and cell components involved in short-term (1 h) maintenance of the ordered domain organization in steady-state cell PMs: modulation of the cytoskeleton or the cell wall integrity of tobacco BY-2 cells; and formation of giant vesicles using either a lipid mixture of tobacco BY-2 cell PMs or the original lipid and protein combinations of the tobacco BY-2 cell PM. Whilst inhibiting phosphorylation or disrupting either the cytoskeleton or the cell wall had no observable effects, we found that lipids and proteins significantly modified both the abundance and spatial distribution of ordered domains. This indicates the involvement of intrinsic membrane components in the local physical state of the plant PM. Our findings support a major role for the 'lipid raft' model, defined as the sterol-dependent ordered assemblies of specific lipids and proteins in plant PM organization.
Collapse
Affiliation(s)
- Kevin Grosjean
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Christophe Der
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Franck Robert
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Dominique Thomas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR, CNRS, Université de Bordeaux, Bordeaux, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | | |
Collapse
|
10
|
Zhang X, Ren J, Wang J, Li S, Zou Q, Gao N. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property. J Cell Physiol 2018; 233:5908-5919. [PMID: 29243828 DOI: 10.1002/jcp.26400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Juan Ren
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa
| | - Jingren Wang
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Shixie Li
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Qingze Zou
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| |
Collapse
|
11
|
John DA, Williams LK, Kanamarlapudi V, Humphrey TJ, Wilkinson TS. The Bacterial Species Campylobacter jejuni Induce Diverse Innate Immune Responses in Human and Avian Intestinal Epithelial Cells. Front Microbiol 2017; 8:1840. [PMID: 29033908 PMCID: PMC5626877 DOI: 10.3389/fmicb.2017.01840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 11/13/2022] Open
Abstract
Campylobacter remain the major cause of human gastroenteritis in the Developed World causing a significant burden to health services. Campylobacter are pathogens in humans and chickens, although differences in mechanistic understanding are incomplete, in part because phenotypic strain diversity creates inconsistent findings. Here, we took Campylobacter jejuni isolates (n = 100) from multi-locus sequence typed collections to assess their pathogenic diversity, through their inflammatory, cytotoxicity, adhesion, invasion and signaling responses in a high-throughput model using avian and human intestinal epithelial cells. C. jejuni induced IL-8 and CXCLi1/2 in human and avian epithelial cells, respectively, in a MAP kinase-dependent manner. In contrast, IL-10 responses in both cell types were PI 3-kinase/Akt-dependent. C. jejuni strains showed diverse levels of invasion with high invasion dependent on MAP kinase signaling in both cell lines. C. jejuni induced diverse cytotoxic responses in both cell lines with cdt-positive isolates showing significantly higher toxicity. Blockade of endocytic pathways suggested that invasion by C. jejuni was clathrin- and dynamin-dependent but caveolae- independent in both cells. In contrast, IL-8 (and CXCLi1/2) production was dependent on clathrin, dynamin, and caveolae. This study is important because of its scale, and the data produced, suggesting that avian and human epithelial cells use similar innate immune pathways where the magnitude of the response is determined by the phenotypic diversity of the Campylobacter species.
Collapse
Affiliation(s)
- Daniel A John
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Lisa K Williams
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Venkateswarlu Kanamarlapudi
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom.,Cellular Biology, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Thomas J Humphrey
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Thomas S Wilkinson
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| |
Collapse
|
12
|
Khare D, Mitsuda N, Lee S, Song W, Hwang D, Ohme‐Takagi M, Martinoia E, Lee Y, Hwang J. Root avoidance of toxic metals requires the GeBP-LIKE 4 transcription factor in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 213:1257-1273. [PMID: 27768815 PMCID: PMC5248625 DOI: 10.1111/nph.14242] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/30/2016] [Indexed: 05/20/2023]
Abstract
Plants reorganize their root architecture to avoid growth into unfavorable regions of the rhizosphere. In a screen based on chimeric repressor gene-silencing technology, we identified the Arabidopsis thaliana GeBP-LIKE 4 (GPL4) transcription factor as an inhibitor of root growth that is induced rapidly in root tips in response to cadmium (Cd). We tested the hypothesis that GPL4 functions in the root avoidance of Cd by analyzing root proliferation in split medium, in which only half of the medium contained toxic concentrations of Cd. The wild-type (WT) plants exhibited root avoidance by inhibiting root growth in the Cd side but increasing root biomass in the control side. By contrast, GPL4-suppression lines exhibited nearly comparable root growth in the Cd and control sides and accumulated more Cd in the shoots than did the WT. GPL4 suppression also altered the root avoidance of toxic concentrations of other essential metals, modulated the expression of many genes related to oxidative stress, and consistently decreased reactive oxygen species concentrations. We suggest that GPL4 inhibits the growth of roots exposed to toxic metals by modulating reactive oxygen species concentrations, thereby allowing roots to colonize noncontaminated regions of the rhizosphere.
Collapse
Affiliation(s)
- Deepa Khare
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| | - Nobukata Mitsuda
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
| | - Seungchul Lee
- School of Interdisciplinary Bioscience and BioengineeringPOSTECHPohang37673Korea
| | - Won‐Yong Song
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and BioengineeringPOSTECHPohang37673Korea
- Department of New Biology and Center for Plant Aging ResearchDGISTDaegu42988Korea
| | - Masaru Ohme‐Takagi
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
- Division of Strategic Research and DevelopmentGraduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Enrico Martinoia
- Department of Plant and Microbial BiologyUniversity ZurichZollikerstrasse 107CH‐8008ZürichSwitzerland
| | - Youngsook Lee
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| | - Jae‐Ung Hwang
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| |
Collapse
|
13
|
Sandor R, Der C, Grosjean K, Anca I, Noirot E, Leborgne-Castel N, Lochman J, Simon-Plas F, Gerbeau-Pissot P. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5173-85. [PMID: 27604805 PMCID: PMC5014163 DOI: 10.1093/jxb/erw284] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence.
Collapse
Affiliation(s)
- Roman Sandor
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Christophe Der
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Kevin Grosjean
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Iulia Anca
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Elodie Noirot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Nathalie Leborgne-Castel
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
14
|
Grosjean K, Mongrand S, Beney L, Simon-Plas F, Gerbeau-Pissot P. Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols. J Biol Chem 2015; 290:5810-25. [PMID: 25575593 DOI: 10.1074/jbc.m114.598805] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains.
Collapse
Affiliation(s)
- Kevin Grosjean
- From UMR1347 Agroécologie, ERL 6300 CNRS, Université de Bourgogne, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Sébastien Mongrand
- the Laboratoire de Biogenèse Membranaire (LBM), CNRS, UMR 5200, F-33000 Villenave d'Ornon, France, the Laboratoire de Biogenèse Membranaire (LBM), Université de Bordeaux, UMR 5200, F-33000 Villenave d'Ornon, France
| | - Laurent Beney
- the Laboratoire Procédés Alimentaires et Microbiologiques, AgroSup Dijon, F-21000 Dijon, France, and
| | - Françoise Simon-Plas
- ERL 6300 CNRS, INRA, UMR1347 Agroécologie, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Patricia Gerbeau-Pissot
- From UMR1347 Agroécologie, ERL 6300 CNRS, Université de Bourgogne, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France,
| |
Collapse
|
15
|
Chulkov EG, Efimova SS, Schagina LV, Ostroumova OS. Direct visualization of solid ordered domains induced by polyene antibiotics in giant unilamellar vesicles. Chem Phys Lipids 2014; 183:204-7. [DOI: 10.1016/j.chemphyslip.2014.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
|
16
|
Stanislas T, Grebe M, Boutté Y. Sterol dynamics during endocytic trafficking in Arabidopsis. Methods Mol Biol 2014; 1209:13-29. [PMID: 25117272 DOI: 10.1007/978-1-4939-1420-3_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sterols are lipids found in membranes of eukaryotic cells. Functions of sterols have been demonstrated for various cellular processes including endocytic trafficking in animal, fungal, and plant cells. The ability to visualize sterols at the subcellular level is crucial to understand sterol distribution and function during endocytic trafficking. In plant cells, the polyene antibiotic filipin is the most extensively used tool for the specific detection of fluorescently labeled 3-β-hydroxysterols in situ. Filipin can to some extent be used to track sterol internalization in live cells, but this application is limited, due to the inhibitory effects filipin exerts on sterol-dependent endocytosis. Nevertheless, filipin-sterol labeling can be performed on aldehyde-fixed cells which allows for sterol detection in endocytic compartments. This approach can combine studies correlating sterol distribution with experimental manipulations of endocytic trafficking pathways. Here, we describe step-by-step protocols and troubleshooting for procedures on live and fixed cells to visualize sterols during endocytic trafficking. We also provide a detailed discussion of advantages and limitations of both methods. Moreover, we illustrate the use of the endocytic recycling inhibitor brefeldin A and a genetically modified version of one of its target molecules for studying endocytic sterol trafficking.
Collapse
Affiliation(s)
- Thomas Stanislas
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, 90 187, Sweden
| | | | | |
Collapse
|
17
|
Gerbeau-Pissot P, Der C, Thomas D, Anca IA, Grosjean K, Roche Y, Perrier-Cornet JM, Mongrand S, Simon-Plas F. Modification of plasma membrane organization in tobacco cells elicited by cryptogein. PLANT PHYSIOLOGY 2014; 164:273-86. [PMID: 24235133 PMCID: PMC3875808 DOI: 10.1104/pp.113.225755] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/05/2013] [Indexed: 05/07/2023]
Abstract
Lipid mixtures within artificial membranes undergo a separation into liquid-disordered and liquid-ordered phases. However, the existence of this segregation into microscopic liquid-ordered phases has been difficult to prove in living cells, and the precise organization of the plasma membrane into such phases has not been elucidated in plant cells. We developed a multispectral confocal microscopy approach to generate ratiometric images of the plasma membrane surface of Bright Yellow 2 tobacco (Nicotiana tabacum) suspension cells labeled with an environment sensitive fluorescent probe. This allowed the in vivo characterization of the global level of order of this membrane, by which we could demonstrate that an increase in its proportion of ordered phases transiently occurred in the early steps of the signaling triggered by cryptogein and flagellin, two elicitors of plant defense reactions. The use of fluorescence recovery after photobleaching revealed an increase in plasma membrane fluidity induced by cryptogein, but not by flagellin. Moreover, we characterized the spatial distribution of liquid-ordered phases on the membrane of living plant cells and monitored their variations induced by cryptogein elicitation. We analyze these results in the context of plant defense signaling, discuss their meaning within the framework of the "membrane raft" hypothesis, and propose a new mechanism of signaling platform formation in response to elicitor treatment.
Collapse
Affiliation(s)
| | - Christophe Der
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Dominique Thomas
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Iulia-Andra Anca
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Kevin Grosjean
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Yann Roche
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Jean-Marie Perrier-Cornet
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Sébastien Mongrand
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Françoise Simon-Plas
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| |
Collapse
|
18
|
Martinière A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, Luu DT, Botchway SW, Webb SED, Mongrand S, Maurel C, Martin-Fernandez ML, Kleine-Vehn J, Friml J, Moreau P, Runions J. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci U S A 2012. [PMID: 22689944 DOI: 10.1073/pnas.1202040109 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports, however, describe retarded diffusion of membrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein-protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed of PM protein diffusion. Regulation of PM protein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction.
Collapse
Affiliation(s)
- Alexandre Martinière
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Martinière A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, Luu DT, Botchway SW, Webb SED, Mongrand S, Maurel C, Martin-Fernandez ML, Kleine-Vehn J, Friml J, Moreau P, Runions J. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci U S A 2012; 109:12805-10. [PMID: 22689944 PMCID: PMC3411962 DOI: 10.1073/pnas.1202040109] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports, however, describe retarded diffusion of membrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein-protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed of PM protein diffusion. Regulation of PM protein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction.
Collapse
Affiliation(s)
- Alexandre Martinière
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Irene Lavagi
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Gayathri Nageswaran
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Daniel J. Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Lilly Maneta-Peyret
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique, Université Bordeaux Segalen, 33076 Bordeaux, France
| | - Doan-Trung Luu
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique, 34060 Montpellier, France
| | - Stanley W. Botchway
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Stephen E. D. Webb
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Sebastien Mongrand
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique, Université Bordeaux Segalen, 33076 Bordeaux, France
| | - Christophe Maurel
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique, 34060 Montpellier, France
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; and
| | - Jirí Friml
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique, Université Bordeaux Segalen, 33076 Bordeaux, France
| | - John Runions
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
20
|
Cacas JL, Furt F, Le Guédard M, Schmitter JM, Buré C, Gerbeau-Pissot P, Moreau P, Bessoule JJ, Simon-Plas F, Mongrand S. Lipids of plant membrane rafts. Prog Lipid Res 2012; 51:272-99. [PMID: 22554527 DOI: 10.1016/j.plipres.2012.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids tend to organize in mono or bilayer phases in a hydrophilic environment. While they have long been thought to be incapable of coherent lateral segregation, it is now clear that spontaneous assembly of these compounds can confer microdomain organization beyond spontaneous fluidity. Membrane raft microdomains have the ability to influence spatiotemporal organization of protein complexes, thereby allowing regulation of cellular processes. In this review, we aim at summarizing briefly: (i) the history of raft discovery in animals and plants, (ii) the main findings about structural and signalling plant lipids involved in raft segregation, (iii) imaging of plant membrane domains, and their biochemical purification through detergent-insoluble membranes, as well as the existing debate on the topic. We also discuss the potential involvement of rafts in the regulation of plant physiological processes, and further discuss the prospects of future research into plant membrane rafts.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ogita A, Fujita KI, Tanaka T. Enhancing effects on vacuole-targeting fungicidal activity of amphotericin B. Front Microbiol 2012; 3:100. [PMID: 22457662 PMCID: PMC3307023 DOI: 10.3389/fmicb.2012.00100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/28/2012] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections are major threats for immunocompromised patients as well as for those undergoing cancer chemotherapy. Amphotericin B (AmB), a classical antifungal drug with a polyene macrolide structure, is widely used for the control of serious fungal infections. However, the clinical use of this antifungal drug is limited by its side effects and the emergence of drug-resistant strains. AmB lethality has been generally attributed to alterations in plasma membrane ion permeability due to its specific binding to plasma membrane ergosterol. Recent studies with Saccharomyces cerevisiae and Candida albicans reveal the vacuole disruptive action as another cause of AmB lethality on the basis of marked amplification of its activity in combination with allicin, an allyl-sulfur compound from garlic. The enhancing effect of allicin is dependent on the inhibition of ergosterol-trafficking from the plasma membrane to the vacuole membrane, which is considered to be a cellular response to protect against disintegration of the vacuole membrane. The polyol macrolide niphimycin (NM) also possesses vacuole-targeting fungicidal activity, which is greater than that of AmB and nystatin. The alkyl side chain attached to the macrolide ring of NM is considered to possess an allicin-like inhibitory effect on the intracellular trafficking of ergosterol. The vacuole-targeting fungicidal activity was additionally detected with a bactericidal cyclic peptide polymyxin B (PMB), and was markedly enhanced when administered together with allicin, monensin, or salinomycin. The synergistic fungicidal activities of AmB and allicin may have significant implications for the development of vacuole-targeting chemotherapy against fungal infections.
Collapse
Affiliation(s)
- Akira Ogita
- Research Center for Urban Health and Sports, Osaka City University Osaka, Japan
| | | | | |
Collapse
|
22
|
Abstract
Sterols are eukaryotic membrane components with crucial roles in diverse cellular processes. Elucidation of sterol function relies on development of tools for in situ sterol visualization. Here we describe protocols for in situ sterol localization in Arabidopsis thaliana root cells, using filipin as a specific probe for detection of fluorescent filipin-sterol complexes. Currently, filipin is the only established tool for sterol visualization in plants. Filipin labeling can be performed on aldehyde-fixed samples, largely preserving fluorescent proteins and being compatible with immunocytochemistry. Filipin can also be applied for probing live cells, taking into account the fact that it inhibits sterol-dependent endocytosis. The experimental procedures described are designed for fluorescence detection by confocal laser-scanning microscopy with excitation of filipin-sterol complexes at 364 nm. The protocols require 1 d for sterol covisualization with fluorescent proteins in fixed or live roots and 2 d for immunocytochemistry on whole-mount roots.
Collapse
|