1
|
Tsoi SC, Barrientos AC, Vicario DS, Phan ML, Pytte CL. Daily high doses of atorvastatin alter neuronal morphology in a juvenile songbird model. PLoS One 2025; 20:e0314690. [PMID: 40294005 PMCID: PMC12036933 DOI: 10.1371/journal.pone.0314690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/11/2024] [Indexed: 04/30/2025] Open
Abstract
Statins are highly effective and widely prescribed cholesterol lowering drugs. However, statins cross the blood-brain barrier and decrease neural cholesterol in animal models, raising concern that long-term statin use may impact cholesterol-dependent structures and functions in the brain. Cholesterol is a fundamental component of cell membranes and experimentally decreasing membrane cholesterol has been shown to alter cell morphology in vitro. In addition, brain regions that undergo adult neurogenesis rely on local brain cholesterol for the manufacture of new neuronal membranes. Thus neurogenesis may be particularly vulnerable to long-term statin use. Here we asked whether oral statin treatment impacts neurogenesis in juveniles, either by decreasing numbers of new cells formed or altering the structure of new neurons. The use of statins in children and adolescents has received less attention than in older adults, with few studies on potential unintended effects in young brains. We examined neurons in the juvenile zebra finch songbird in telencephalic regions that function in song perception and memory (caudomedial nidopallium, NCM) and song production (HVC). Birds received either 40 mg/kg of atorvastatin in water or water vehicle once daily for 2-3 months until they reached adulthood. We labeled newborn cells using systemic injections of bromodeoxyuridine (BrdU) and quantified cells double-labeled with antibodies for BrdU and the neuron-specific protein Hu 30-32 days post mitosis. We also quantified a younger cohort of new neurons in the same birds using antibody to the neuronal protein doublecortin (DCX). We then compared numbers of new neurons and soma morphology of BrdU + /Hu+ neurons between statin-treated and control birds. We did not find an effect of statins on the density of newly formed neurons in either brain region, suggesting that statin treatment did not impact neurogenesis or young neuron survival in our paradigm. However, we found that neuronal soma morphology differed significantly between statin-treated and control birds. Somata of BrdU + /Hu+ (30-32 day old) neurons were flatter and had more furrowed contours in statin-treated birds relative to controls. In a larger, heterogeneous cohort of non-birthdated BrdU-/Hu+ neurons, largely born prior to statin treatment, somata were smaller in statin-treated birds than in controls. Our findings indicate that atorvastatin may affect neural cytoarchitecture in both newly formed and mature neurons, perhaps as a consequence of decreased cholesterol availability in the brain.
Collapse
Affiliation(s)
- Shuk C. Tsoi
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Alicia C. Barrientos
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
| | - David S. Vicario
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Mimi L. Phan
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Carolyn L. Pytte
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
- Psychology Department, Queens College, City University of New York, Flushing, New York, United States of America
| |
Collapse
|
2
|
Asthana S, Verma A, Bhattacharya B, Nath A, Sajeev N, Maan K, Nair RR, Ayappa KG, Saini DK. Oxysterols Modulate Protein-Sterol Interactions to Impair CXCR4 Signaling in Aging Cells. Biochemistry 2025; 64:1606-1623. [PMID: 40099855 DOI: 10.1021/acs.biochem.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Organismal aging is accompanied by the accumulation of senescent cells in the body, which drives tissue dysfunction. Senescent cells have a distinctive profile, including proliferation arrest, resistance to apoptosis, altered gene expression, and high inflammation. Despite global signaling and metabolic dysregulation during senescence, the underlying reasons for changes in signaling remain unclear. GPCRs are pivotal in cellular signaling, dynamically mediating the complex interplay between cells and their surrounding environment to maintain cellular homeostasis. The chemokine receptor CXCR4 plays a crucial role in modulating immune responses and inflammation. It has been shown that the expression of CXCR4 increases in cells undergoing senescence, which enhances inflammation postactivation. Here, we examine CXCR4 signaling in deeply senescent cells (aged cells), where cholesterol and its oxidized derivatives, oxysterols, affect receptor function. We report elevated oxysterol levels in senescent cells, which altered classical CXCL12-mediated CXCR4 signaling. Tail-oxidized sterols disrupted signaling more than ring-oxidized counterparts. Molecular dynamics simulations revealed that 27-hydroxycholesterol displaces cholesterol and binds strongly to alter the conformation of critical signaling residues, modifying the sterol-CXCR4 interaction landscape. Our study provides a molecular view of the observed mitigated GPCR signaling in the presence of oxysterols, which switched G-protein signaling from Gαi/o to Gαs class. Overall, we present an altered paradigm of GPCR signaling, where cholesterol oxidation alters the signaling outcome in aged cells.
Collapse
Affiliation(s)
- Suramya Asthana
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
- Longevity India, Indian Institute of Science, Bengaluru 560012, India
| | - Anant Verma
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Baivabi Bhattacharya
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Arnab Nath
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | | | | | - Raji R Nair
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
- Longevity India, Indian Institute of Science, Bengaluru 560012, India
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
3
|
Doktorova M, Symons JL, Zhang X, Wang HY, Schlegel J, Lorent JH, Heberle FA, Sezgin E, Lyman E, Levental KR, Levental I. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. Cell 2025:S0092-8674(25)00270-3. [PMID: 40179882 DOI: 10.1016/j.cell.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Membranes are molecular interfaces that compartmentalize cells to control the flow of nutrients and information. These functions are facilitated by diverse collections of lipids, nearly all of which are distributed asymmetrically between the two bilayer leaflets. Most models of biomembrane structure and function include the implicit assumption that these leaflets have similar abundances of phospholipids. Here, we show that this assumption is generally invalid and investigate the consequences of lipid abundance imbalances in mammalian plasma membranes (PMs). Using lipidomics, we report that cytoplasmic leaflets of human erythrocyte membranes have >50% overabundance of phospholipids compared with exoplasmic leaflets. This imbalance is enabled by an asymmetric interleaflet distribution of cholesterol, which regulates cellular cholesterol homeostasis. These features produce unique functional characteristics, including low PM permeability and resting tension in the cytoplasmic leaflet that regulates protein localization.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA; Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, 17165 Solna, Sweden.
| | - Jessica L Symons
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoxuan Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Joseph H Lorent
- Department of Cellular and Molecular Pharmacology, TFAR, LDRI, UCLouvain, Avenue Mounier 73, B1.73.05, 1200 Brussels, Belgium
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Edward Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
4
|
Doktorova M, Symons JL, Zhang X, Wang HY, Schlegel J, Lorent JH, Heberle FA, Sezgin E, Lyman E, Levental KR, Levental I. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.30.551157. [PMID: 39713443 PMCID: PMC11661119 DOI: 10.1101/2023.07.30.551157] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Membranes are molecular interfaces that compartmentalize cells to control the flow of nutrients and information. These functions are facilitated by diverse collections of lipids, nearly all of which are distributed asymmetrically between the two bilayer leaflets. Most models of biomembrane structure and function often include the implicit assumption that these leaflets have similar abundances of phospholipids. Here, we show that this assumption is generally invalid and investigate the consequences of lipid abundance imbalances in mammalian plasma membranes (PM). Using quantitative lipidomics, we discovered that cytoplasmic leaflets of human erythrocyte membranes have >50% overabundance of phospholipids compared to exoplasmic leaflets. This imbalance is enabled by an asymmetric interleaflet distribution of cholesterol, which regulates cellular cholesterol homeostasis. These features produce unique functional characteristics, including low PM permeability and resting tension in the cytoplasmic leaflet that regulates protein localization. These largely overlooked aspects of membrane asymmetry represent an evolution of classic paradigms of biomembrane structure and physiology.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Biochemistry and Biophysics, Stockholm University; Science for Life Laboratory, Solna 171 65, Sweden
| | - Jessica L. Symons
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston; Houston, TX 77030, USA
| | - Xiaoxuan Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia; Charlottesville, VA 22903, USA
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia; Charlottesville, VA 22903, USA
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet; 17165 Solna, Sweden
| | - Joseph H. Lorent
- Department of Cellular and Molecular Pharmacology, TFAR, LDRI, UCLouvain; Avenue Mounier 73, B1.73.05, B-1200 Brussels
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee Knoxville; Knoxville, TN 37916, USA
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet; 17165 Solna, Sweden
| | - Edward Lyman
- Department of Physics and Astronomy; Department of Chemistry and Biochemistry, University of Delaware; Newark, DE 19716, USA
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia; Charlottesville, VA 22903, USA
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia; Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Chaptal MC, Maraninchi M, Musto G, Mancini J, Chtioui H, Dupont-Roussel J, Marlinge M, Fromonot J, Lalevee N, Mourre F, Beliard S, Guieu R, Valero R, Mottola G. Low Density Lipoprotein Cholesterol Decreases the Expression of Adenosine A 2A Receptor and Lipid Rafts-Protein Flotillin-1: Insights on Cardiovascular Risk of Hypercholesterolemia. Cells 2024; 13:488. [PMID: 38534331 PMCID: PMC10969546 DOI: 10.3390/cells13060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
High blood levels of low-density lipoprotein (LDL)-cholesterol (LDL-C) are associated with atherosclerosis, mainly by promoting foam cell accumulation in vessels. As cholesterol is an essential component of cell plasma membranes and a regulator of several signaling pathways, LDL-C excess may have wider cardiovascular toxicity. We examined, in untreated hypercholesterolemia (HC) patients, selected regardless of the cause of LDL-C accumulation, and in healthy participants (HP), the expression of the adenosine A2A receptor (A2AR), an anti-inflammatory and vasodilatory protein with cholesterol-dependent modulation, and Flotillin-1, protein marker of cholesterol-enriched plasma membrane domains. Blood cardiovascular risk and inflammatory biomarkers were measured. A2AR and Flotillin-1 expression in peripheral blood mononuclear cells (PBMC) was lower in patients compared to HP and negatively correlated to LDL-C blood levels. No other differences were observed between the two groups apart from transferrin and ferritin concentrations. A2AR and Flotillin-1 proteins levels were positively correlated in the whole study population. Incubation of HP PBMCs with LDL-C caused a similar reduction in A2AR and Flotillin-1 expression. We suggest that LDL-C affects A2AR expression by impacting cholesterol-enriched membrane microdomains. Our results provide new insights into the molecular mechanisms underlying cholesterol toxicity, and may have important clinical implication for assessment and treatment of cardiovascular risk in HC.
Collapse
Affiliation(s)
- Marie-Charlotte Chaptal
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
| | - Marie Maraninchi
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
| | - Giorgia Musto
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Julien Mancini
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
| | - Hedi Chtioui
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France; (H.C.); (J.D.-R.)
| | - Janine Dupont-Roussel
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France; (H.C.); (J.D.-R.)
| | - Marion Marlinge
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Secteur de Biochimie, Biogenopôle, Hôpital de la Timone, APHM, 13005 Marseille, France
| | - Julien Fromonot
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Secteur de Biochimie, Biogenopôle, Hôpital de la Timone, APHM, 13005 Marseille, France
| | - Nathalie Lalevee
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
| | - Florian Mourre
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France; (H.C.); (J.D.-R.)
| | - Sophie Beliard
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France; (H.C.); (J.D.-R.)
| | - Régis Guieu
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Secteur de Biochimie, Biogenopôle, Hôpital de la Timone, APHM, 13005 Marseille, France
| | - René Valero
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France; (H.C.); (J.D.-R.)
| | - Giovanna Mottola
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Secteur de Biochimie, Biogenopôle, Hôpital de la Timone, APHM, 13005 Marseille, France
| |
Collapse
|
6
|
Tachibana H, Minoura K, Omachi T, Nagao K, Ichikawa T, Kimura Y, Kono N, Shimanaka Y, Arai H, Ueda K, Kioka N. The plasma membrane of focal adhesions has a high content of cholesterol and phosphatidylcholine with saturated acyl chains. J Cell Sci 2023; 136:jcs260763. [PMID: 37470177 DOI: 10.1242/jcs.260763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Cellular functions, such as differentiation and migration, are regulated by the extracellular microenvironment, including the extracellular matrix (ECM). Cells adhere to ECM through focal adhesions (FAs) and sense the surrounding microenvironments. Although FA proteins have been actively investigated, little is known about the lipids in the plasma membrane at FAs. In this study, we examine the lipid composition at FAs with imaging and biochemical approaches. Using the cholesterol-specific probe D4 with total internal reflection fluorescence microscopy and super-resolution microscopy, we show an enrichment of cholesterol at FAs simultaneously with FA assembly. Furthermore, we establish a method to isolate the lipid from FA-rich fractions, and biochemical quantification of the lipids reveals that there is a higher content of cholesterol and phosphatidylcholine with saturated fatty acid chains in the lipids of the FA-rich fraction than in either the plasma membrane fraction or the whole-cell membrane. These results demonstrate that plasma membrane at FAs has a locally distinct lipid composition compared to the bulk plasma membrane.
Collapse
Affiliation(s)
- Hiroshi Tachibana
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kodai Minoura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomohiro Omachi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kohjiro Nagao
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Takafumi Ichikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuta Shimanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
7
|
Ray AP, Thakur N, Pour NG, Eddy MT. Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition. Structure 2023; 31:836-847.e6. [PMID: 37236187 PMCID: PMC10330489 DOI: 10.1016/j.str.2023.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
Cholesterol is a critical component of mammalian cell membranes and an allosteric modulator of G protein-coupled receptors (GPCRs), but divergent views exist on the mechanisms by which cholesterol influences receptor functions. Leveraging the benefits of lipid nanodiscs, i.e., quantitative control of lipid composition, we observe distinct impacts of cholesterol in the presence and absence of anionic phospholipids on the function-related conformational dynamics of the human A2A adenosine receptor (A2AAR). Direct receptor-cholesterol interactions drive activation of agonist-bound A2AAR in membranes containing zwitterionic phospholipids. Intriguingly, the presence of anionic lipids attenuates cholesterol's impact through direct interactions with the receptor, highlighting a more complex role for cholesterol that depends on membrane phospholipid composition. Targeted amino acid replacements at two frequently predicted cholesterol interaction sites showed distinct impacts of cholesterol at different receptor locations, demonstrating the ability to delineate different roles of cholesterol in modulating receptor signaling and maintaining receptor structural integrity.
Collapse
Affiliation(s)
- Arka Prabha Ray
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Naveen Thakur
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
8
|
Tzortzini E, Kolocouris A. Molecular Biophysics of Class A G Protein Coupled Receptors-Lipids Interactome at a Glance-Highlights from the A 2A Adenosine Receptor. Biomolecules 2023; 13:957. [PMID: 37371538 DOI: 10.3390/biom13060957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are embedded in phospholipid membrane bilayers with cholesterol representing 34% of the total lipid content in mammalian plasma membranes. Membrane lipids interact with GPCRs structures and modulate their function and drug-stimulated signaling through conformational selection. It has been shown that anionic phospholipids form strong interactions between positively charged residues in the G protein and the TM5-TM6-TM 7 cytoplasmic interface of class A GPCRs stabilizing the signaling GPCR-G complex. Cholesterol with a high content in plasma membranes can be identified in more specific sites in the transmembrane region of GPCRs, such as the Cholesterol Consensus Motif (CCM) and Cholesterol Recognition Amino Acid Consensus (CRAC) motifs and other receptor dependent and receptor state dependent sites. Experimental biophysical methods, atomistic (AA) MD simulations and coarse-grained (CG) molecular dynamics simulations have been applied to investigate these interactions. We emphasized here the impact of phosphatidyl inositol-4,5-bisphosphate (PtdIns(4,5)P2 or PIP2), a minor phospholipid component and of cholesterol on the function-related conformational equilibria of the human A2A adenosine receptor (A2AR), a representative receptor in class A GPCR. Several GPCRs of class A interacted with PIP2 and cholesterol and in many cases the mechanism of the modulation of their function remains unknown. This review provides a helpful comprehensive overview for biophysics that enter the field of GPCRs-lipid systems.
Collapse
Affiliation(s)
- Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
9
|
Maslov I, Volkov O, Khorn P, Orekhov P, Gusach A, Kuzmichev P, Gerasimov A, Luginina A, Coucke Q, Bogorodskiy A, Gordeliy V, Wanninger S, Barth A, Mishin A, Hofkens J, Cherezov V, Gensch T, Hendrix J, Borshchevskiy V. Sub-millisecond conformational dynamics of the A 2A adenosine receptor revealed by single-molecule FRET. Commun Biol 2023; 6:362. [PMID: 37012383 PMCID: PMC10070357 DOI: 10.1038/s42003-023-04727-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
The complex pharmacology of G-protein-coupled receptors (GPCRs) is defined by their multi-state conformational dynamics. Single-molecule Förster Resonance Energy Transfer (smFRET) is well suited to quantify dynamics for individual protein molecules; however, its application to GPCRs is challenging. Therefore, smFRET has been limited to studies of inter-receptor interactions in cellular membranes and receptors in detergent environments. Here, we performed smFRET experiments on functionally active human A2A adenosine receptor (A2AAR) molecules embedded in freely diffusing lipid nanodiscs to study their intramolecular conformational dynamics. We propose a dynamic model of A2AAR activation that involves a slow (>2 ms) exchange between the active-like and inactive-like conformations in both apo and antagonist-bound A2AAR, explaining the receptor's constitutive activity. For the agonist-bound A2AAR, we detected faster (390 ± 80 µs) ligand efficacy-dependent dynamics. Our work establishes a general smFRET platform for GPCR investigations that can potentially be used for drug screening and/or mechanism-of-action studies.
Collapse
Affiliation(s)
- Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | | | - Polina Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Philipp Orekhov
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Anastasiia Gusach
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Pavel Kuzmichev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Andrey Gerasimov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Vyatka State University, Kirov, Russia
| | - Aleksandra Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Quinten Coucke
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Valentin Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Simon Wanninger
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Anders Barth
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, HZ, Delft, The Netherlands
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
- Max Plank Institute for Polymer Research, Mainz, Germany
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Thomas Gensch
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium.
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium.
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
- Joint Institute for Nuclear Research, Dubna, Russian Federation.
| |
Collapse
|
10
|
Wang S, Neel AI, Adams KL, Sun H, Jones SR, Howlett AC, Chen R. Atorvastatin differentially regulates the interactions of cocaine and amphetamine with dopamine transporters. Neuropharmacology 2023; 225:109387. [PMID: 36567004 PMCID: PMC9872521 DOI: 10.1016/j.neuropharm.2022.109387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The function of the dopamine transporter (DAT) is regulated by membrane cholesterol content. A direct, acute removal of membrane cholesterol by methyl-β-cyclodextrin (MβCD) has been shown to reduce dopamine (DA) uptake and release mediated by the DAT. This is of particular interest because a few widely prescribed statins that lower peripheral cholesterol levels are blood-brain barrier (BBB) penetrants, and therefore could alter DAT function through brain cholesterol modulation. The goal of this study was to investigate the effects of prolonged atorvastatin treatment (24 h) on DAT function in neuroblastoma 2A cells stably expressing DAT. We found that atorvastatin treatment effectively lowered membrane cholesterol content in a concentration-dependent manner. Moreover, atorvastatin treatment markedly reduced DA uptake and abolished cocaine inhibition of DA uptake, independent of surface DAT levels. These deficits induced by atorvastatin treatment were reversed by cholesterol replenishment. However, atorvastatin treatment did not change amphetamine (AMPH)-induced DA efflux. This is in contrast to a small but significant reduction in DA efflux induced by acute depletion of membrane cholesterol using MβCD. This discrepancy may involve differential changes in membrane lipid composition resulting from chronic and acute cholesterol depletion. Our data suggest that the outward-facing conformation of DAT, which favors the binding of DAT blockers such as cocaine, is more sensitive to atorvastatin-induced cholesterol depletion than the inward-facing conformation, which favors the binding of DAT substrates such as AMPH. Our study on statin-DAT interactions may have clinical implications in our understanding of neurological side effects associated with chronic use of BBB penetrant statins.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Anna I Neel
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Kristen L Adams
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Haiguo Sun
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Sara R Jones
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Allyn C Howlett
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Rong Chen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States.
| |
Collapse
|
11
|
Tzortzini E, Corey RA, Kolocouris A. Comparative Study of Receptor-, Receptor State-, and Membrane-Dependent Cholesterol Binding Sites in A 2A and A 1 Adenosine Receptors Using Coarse-Grained Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:928-949. [PMID: 36637988 DOI: 10.1021/acs.jcim.2c01181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We used coarse-grained molecular dynamics (CG MD) simulations to study protein-cholesterol interactions for different activation states of the A2A adenosine receptor (A2AR) and the A1 adenosine receptor (A1R) and predict new cholesterol binding sites indicating amino acid residues with a high residence time in three biologically relevant membranes. Compared to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-cholesterol and POPC-phosphatidylinositol-bisphosphate (PIP2)-cholesterol, the plasma mimetic membrane best described the cholesterol binding sites previously detected for the inactive state of A2AR and revealed the binding sites with long-lasting amino acid residues. We observed that using the plasma mimetic membrane and plotting residues with cholesterol residence time ≥2 μs, our CG MD simulations captured most obviously the cholesterol-protein interactions. For the inactive A2AR, we identified one more binding site in which cholesterol is bound to residues with a long residence time compared to the previously detected, for the active A1R, three binding sites, and for the inactive A1R, two binding sites. We calculated that for the active states, cholesterol binds to residues with a much longer residence time compared to the inactive state for both A2AR and A1R. The stability of the identified binding sites to A1R or A2AR with CG MD simulations was additionally investigated with potential of mean force calculations using umbrella sampling. We observed that the binding sites with residues to which cholesterol has a long residence time in A2AR have shallow binding free energy minima compared to the related binding sites in A1R, suggesting a stronger binding for cholesterol to A1R. The differences in binding sites in which cholesterol is stabilized and interacts with residues with a long residence time between active and inactive states of A1R and A2AR can be important for differences in functional activity and orthosteric agonist or antagonist affinity and can be used for the design of allosteric modulators, which can bind through lipid pathways. We observed a stronger binding for cholesterol to A1R (i.e., generally higher association rates) compared to A2AR, which remains to be demonstrated. For the active states, cholesterol binds to residues with much longer residence times compared to the inactive state for both A2AR and A1R. Taken together, binding sites of active A1R may be considered as promising allosteric targets.
Collapse
Affiliation(s)
- Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771Athens, Greece
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771Athens, Greece
| |
Collapse
|
12
|
Levental I, Lyman E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat Rev Mol Cell Biol 2023; 24:107-122. [PMID: 36056103 PMCID: PMC9892264 DOI: 10.1038/s41580-022-00524-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane proteins comprise ~30% of the mammalian proteome, mediating metabolism, signalling, transport and many other functions required for cellular life. The microenvironment of integral membrane proteins (IMPs) is intrinsically different from that of cytoplasmic proteins, with IMPs solvated by a compositionally and biophysically complex lipid matrix. These solvating lipids affect protein structure and function in a variety of ways, from stereospecific, high-affinity protein-lipid interactions to modulation by bulk membrane properties. Specific examples of functional modulation of IMPs by their solvating membranes have been reported for various transporters, channels and signal receptors; however, generalizable mechanistic principles governing IMP regulation by lipid environments are neither widely appreciated nor completely understood. Here, we review recent insights into the inter-relationships between complex lipidomes of mammalian membranes, the membrane physicochemical properties resulting from such lipid collectives, and the regulation of IMPs by either or both. The recent proliferation of high-resolution methods to study such lipid-protein interactions has led to generalizable insights, which we synthesize into a general framework termed the 'functional paralipidome' to understand the mutual regulation between membrane proteins and their surrounding lipid microenvironments.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Molecular and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Ed Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
13
|
Passarella D, Ronci M, Di Liberto V, Zuccarini M, Mudò G, Porcile C, Frinchi M, Di Iorio P, Ulrich H, Russo C. Bidirectional Control between Cholesterol Shuttle and Purine Signal at the Central Nervous System. Int J Mol Sci 2022; 23:ijms23158683. [PMID: 35955821 PMCID: PMC9369131 DOI: 10.3390/ijms23158683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/07/2022] Open
Abstract
Recent studies have highlighted the mechanisms controlling the formation of cerebral cholesterol, which is synthesized in situ primarily by astrocytes, where it is loaded onto apolipoproteins and delivered to neurons and oligodendrocytes through interactions with specific lipoprotein receptors. The “cholesterol shuttle” is influenced by numerous proteins or carbohydrates, which mainly modulate the lipoprotein receptor activity, function and signaling. These molecules, provided with enzymatic/proteolytic activity leading to the formation of peptide fragments of different sizes and specific sequences, could be also responsible for machinery malfunctions, which are associated with neurological, neurodegenerative and neurodevelopmental disorders. In this context, we have pointed out that purines, ancestral molecules acting as signal molecules and neuromodulators at the central nervous system, can influence the homeostatic machinery of the cerebral cholesterol turnover and vice versa. Evidence gathered so far indicates that purine receptors, mainly the subtypes P2Y2, P2X7 and A2A, are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s and Niemann–Pick C diseases, by controlling the brain cholesterol homeostasis; in addition, alterations in cholesterol turnover can hinder the purine receptor function. Although the precise mechanisms of these interactions are currently poorly understood, the results here collected on cholesterol–purine reciprocal control could hopefully promote further research.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Patrizia Di Iorio
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Henning Ulrich
- Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-087-440-4897
| |
Collapse
|
14
|
Elbaradei A, Wang Z, Malmstadt N. Oxidation of Membrane Lipids Alters the Activity of the Human Serotonin 1A Receptor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6798-6807. [PMID: 35608952 DOI: 10.1021/acs.langmuir.1c03238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipid oxidation has significant effects on lipid bilayer properties; these effects can be expected to extend to interactions between the lipid bilayer and integral membrane proteins. Given that G protein-coupled receptor (GPCR) activity is known to depend on the properties of the surrounding lipid bilayer, these proteins represent an intriguing class of molecules in which the impact of lipid oxidation on protein behavior is studied. Here, we study the effects of lipid oxidation on the human serotonin 1A receptor (5-HT1AR). Giant unilamellar vesicles (GUVs) containing integral 5-HT1AR were fabricated by the hydrogel swelling method; these GUVs contained polyunsaturated 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLinPC) and its oxidation product 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC) at various ratios. 5-HT1AR-integrated GUVs were also fabricated from lipid mixtures that had been oxidized by extended exposure to the atmosphere. Both types of vesicles were used to evaluate 5-HT1AR activity using an assay to quantify GDP-GTP exchange by the coupled G protein α subunit. Results indicated that 5-HT1AR activity increases significantly in bilayers containing oxidized lipids. This work is an important step in understanding how hyperbaric oxidation can change plasma membrane properties and lead to physiological dysfunction.
Collapse
|
15
|
McGraw C, Koretz KS, Oseid D, Lyman E, Robinson AS. Cholesterol Dependent Activity of the Adenosine A 2A Receptor Is Modulated via the Cholesterol Consensus Motif. Molecules 2022; 27:molecules27113529. [PMID: 35684466 PMCID: PMC9182133 DOI: 10.3390/molecules27113529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Membrane cholesterol dysregulation has been shown to alter the activity of the adenosine A2A receptor (A2AR), a G protein-coupled receptor, thereby implicating cholesterol levels in diseases such as Alzheimer's and Parkinson's. A limited number of A2AR crystal structures show the receptor interacting with cholesterol, as such molecular simulations are often used to predict cholesterol interaction sites. METHODS Here, we use experimental methods to determine whether a specific interaction between amino acid side chains in the cholesterol consensus motif (CCM) of full length, wild-type human A2AR, and cholesterol modulates activity of the receptor by testing the effects of mutational changes on functional consequences, including ligand binding, G protein coupling, and downstream activation of cyclic AMP. RESULTS AND CONCLUSIONS Our data, taken with previously published studies, support a model of receptor state-dependent binding between cholesterol and the CCM, whereby cholesterol facilitates both G protein coupling and downstream signaling of A2AR.
Collapse
Affiliation(s)
- Claire McGraw
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA; (C.M.); (D.O.)
| | - Kirsten Swonger Koretz
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Daniel Oseid
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA; (C.M.); (D.O.)
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19711, USA;
| | - Anne Skaja Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
- Correspondence: ; Tel.: +1-(412)-268-7673
| |
Collapse
|
16
|
Cholesterol occupies the lipid translocation pathway to block phospholipid scrambling by a G protein-coupled receptor. Structure 2022; 30:1208-1217.e2. [PMID: 35660161 PMCID: PMC9356978 DOI: 10.1016/j.str.2022.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022]
Abstract
Class A (rhodopsin-like) G protein-coupled receptors (GPCRs) are constitutive phospholipid scramblases as evinced after their reconstitution into liposomes. Yet phospholipid scrambling is not detectable in the resting plasma membrane of mammalian cells that is replete with GPCRs. We considered whether cholesterol, a prominent component of the plasma membrane, limits the ability of GPCRs to scramble lipids. Our previous Markov State Model (MSM) analysis of molecular dynamics simulations of membrane-embedded opsin indicated that phospholipid headgroups traverse a dynamically revealed hydrophilic groove between transmembrane helices (TM) 6 and 7 while their tails remain in the bilayer. Here, we present comparative MSM analyses of 150-μs simulations of opsin in cholesterol-free and cholesterol-rich membranes. Our analyses reveal that cholesterol inhibits phospholipid scrambling by occupying the TM6/7 interface and stabilizing the closed groove conformation while itself undergoing flip-flop. This mechanism may explain the inability of GPCRs to scramble lipids at the plasma membrane.
Collapse
|
17
|
Woo JH, Park SJ, Park SM, Joe E, Jou I. Interleukin‐6 signaling requires EHD1‐mediated alteration of membrane rafts. FEBS J 2022; 289:5914-5932. [DOI: 10.1111/febs.16458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Joo Hong Woo
- Inflamm‐aging Translational Research Center Ajou University School of Medicine Suwon Korea
| | - Soo Jung Park
- Inflamm‐aging Translational Research Center Ajou University School of Medicine Suwon Korea
| | - Sang Myun Park
- Department of Pharmacology Ajou University School of Medicine Suwon Korea
- Center for Convergence Research of Neurological Disorders Ajou University School of Medicine Suwon Korea
| | - Eun‐hye Joe
- Department of Pharmacology Ajou University School of Medicine Suwon Korea
- Center for Convergence Research of Neurological Disorders Ajou University School of Medicine Suwon Korea
| | - Ilo Jou
- Inflamm‐aging Translational Research Center Ajou University School of Medicine Suwon Korea
- Department of Pharmacology Ajou University School of Medicine Suwon Korea
| |
Collapse
|
18
|
Repurposing Dipyridamole in Niemann Pick Type C Disease: A Proof of Concept Study. Int J Mol Sci 2022; 23:ijms23073456. [PMID: 35408815 PMCID: PMC8999038 DOI: 10.3390/ijms23073456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/10/2022] Open
Abstract
Niemann Pick type C disease (NPC) is a rare disorder characterized by lysosomal lipid accumulation that damages peripheral organs and the central nervous system. Currently, only miglustat is authorized for NPC treatment in Europe, and thus the identification of new therapies is necessary. The hypothesis addressed in this study is that increasing adenosine levels may represent a new therapeutic approach for NPC. In fact, a reduced level of adenosine has been shown in the brain of animal models of NPC; moreover, the compound T1-11, which is able to weakly stimulate A2A receptor and to increase adenosine levels by blocking the equilibrative nucleoside transporter ENT1, significantly ameliorated the pathological phenotype and extended the survival in a mouse model of the disease. To test our hypothesis, fibroblasts from NPC1 patients were treated with dipyridamole, a clinically-approved drug with inhibitory activity towards ENT1. Dipyridamole significantly reduced cholesterol accumulation in fibroblasts and rescued mitochondrial deficits; the mechanism elicited by dipyridamole relies on activation of the adenosine A2AR subtype subsequent to the increased levels of extracellular adenosine due to the inhibition of ENT1. In conclusion, our results provide the proof of concept that targeting adenosine tone could be beneficial in NPC.
Collapse
|
19
|
Baccouch R, Rascol E, Stoklosa K, Alves ID. The role of the lipid environment in the activity of G protein coupled receptors. Biophys Chem 2022; 285:106794. [DOI: 10.1016/j.bpc.2022.106794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 12/21/2022]
|
20
|
Mansoor S, Kayık G, Durdagi S, Sensoy O. Mechanistic insight into the impact of a bivalent ligand on the structure and dynamics of a GPCR oligomer. Comput Struct Biotechnol J 2022; 20:925-936. [PMID: 35242285 PMCID: PMC8861583 DOI: 10.1016/j.csbj.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/25/2021] [Accepted: 01/17/2022] [Indexed: 12/25/2022] Open
Abstract
Development of effective bivalent ligands has become the focus of intensive research toward modulation of G protein-coupled receptor (GPCR) oligomers, particularly in the field of GPCR pharmacology. Experimental studies have shown that they increased binding affinity and signaling potency compared to their monovalent counterparts, yet underlying molecular mechanism remains elusive. To address this, we performed accelerated molecular dynamics simulations on bivalent-ligand bound Adenosine 2A receptor (A2AR) dimer in the context of a modeled tetramer, which consists of A2AR and dopamine 2 receptor (D2R) homodimers and their cognate G proteins. Our results demonstrate that bivalent ligand impacted interactions between pharmacophore groups and ligand binding residues, thus modulating allosteric communication network and water channel formed within the receptor. Moreover, it also strengthens contacts between receptor and G protein, by modulating the volume of ligand binding pocket and intracellular domain of the receptor. Importantly, we showed that impact evoked by the bivalent ligand on A2AR dimer was also transmitted to apo D2R, which is part of the neighboring D2R dimer. To the best of our knowledge, this is the first study that provides a mechanistic insight into the impact of a bivalent ligand on dynamics of a GPCR oligomer. Consequently, this will pave the way for development of effective ligands for modulation of GPCR oligomers and hence treatment of crucial diseases such as Parkinson's disease and cancer.
Collapse
Affiliation(s)
- Samman Mansoor
- School of Engineering and Natural Sciences, Department of Biomedical Engineering and Bioinformatics, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Gülru Kayık
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Ozge Sensoy
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciencesand Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- School of Engineering and Natural Sciences, Department of Computer Engineering, Istanbul Medipol University, Turkey
| |
Collapse
|
21
|
Huang SK, Almurad O, Pejana RJ, Morrison ZA, Pandey A, Picard LP, Nitz M, Sljoka A, Prosser RS. Allosteric modulation of the adenosine A 2A receptor by cholesterol. eLife 2022; 11:e73901. [PMID: 34986091 PMCID: PMC8730723 DOI: 10.7554/elife.73901] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is a major component of the cell membrane and commonly regulates membrane protein function. Here, we investigate how cholesterol modulates the conformational equilibria and signaling of the adenosine A2A receptor (A2AR) in reconstituted phospholipid nanodiscs. This model system conveniently excludes possible effects arising from cholesterol-induced phase separation or receptor oligomerization and focuses on the question of allostery. GTP hydrolysis assays show that cholesterol weakly enhances the basal signaling of A2AR while decreasing the agonist EC50. Fluorine nuclear magnetic resonance (19F NMR) spectroscopy shows that this enhancement arises from an increase in the receptor's active state population and a G-protein-bound precoupled state. 19F NMR of fluorinated cholesterol analogs reveals transient interactions with A2AR, indicating a lack of high-affinity binding or direct allosteric modulation. The combined results suggest that the observed allosteric effects are largely indirect and originate from cholesterol-mediated changes in membrane properties, as shown by membrane fluidity measurements and high-pressure NMR.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of TorontoTorontoCanada
- Department of Chemical and Physical Sciences, University of Toronto MississaugaMississaugaCanada
| | - Omar Almurad
- Department of Chemistry, University of TorontoTorontoCanada
- Department of Chemical and Physical Sciences, University of Toronto MississaugaMississaugaCanada
| | - Reizel J Pejana
- Department of Chemistry, University of TorontoTorontoCanada
- Department of Chemical and Physical Sciences, University of Toronto MississaugaMississaugaCanada
| | | | - Aditya Pandey
- Department of Chemistry, University of TorontoTorontoCanada
- Department of Chemical and Physical Sciences, University of Toronto MississaugaMississaugaCanada
| | - Louis-Philippe Picard
- Department of Chemistry, University of TorontoTorontoCanada
- Department of Chemical and Physical Sciences, University of Toronto MississaugaMississaugaCanada
| | - Mark Nitz
- Department of Chemistry, University of TorontoTorontoCanada
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence ProjectTokyoJapan
- York University, Department of ChemistryTorontoCanada
| | - R Scott Prosser
- Department of Chemistry, University of TorontoTorontoCanada
- Department of Chemical and Physical Sciences, University of Toronto MississaugaMississaugaCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| |
Collapse
|
22
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
23
|
Bernardo A, De Nuccio C, Visentin S, Martire A, Minghetti L, Popoli P, Ferrante A. Myelin Defects in Niemann-Pick Type C Disease: Mechanisms and Possible Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms22168858. [PMID: 34445564 PMCID: PMC8396228 DOI: 10.3390/ijms22168858] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022] Open
Abstract
Niemann–Pick type C (NPC) disease is a wide-spectrum clinical condition classified as a neurovisceral disorder affecting mainly the liver and the brain. It is caused by mutations in one of two genes, NPC1 and NPC2, coding for proteins located in the lysosomes. NPC proteins are deputed to transport cholesterol within lysosomes or between late endosome/lysosome systems and other cellular compartments, such as the endoplasmic reticulum and plasma membrane. The first trait of NPC is the accumulation of unesterified cholesterol and other lipids, like sphingosine and glycosphingolipids, in the late endosomal and lysosomal compartments, which causes the blockade of autophagic flux and the impairment of mitochondrial functions. In the brain, the main consequences of NPC are cerebellar neurodegeneration, neuroinflammation, and myelin defects. This review will focus on myelin defects and the pivotal importance of cholesterol for myelination and will offer an overview of the molecular targets and the pharmacological strategies so far proposed, or an object of clinical trials for NPC. Finally, it will summarize recent data on a new and promising pharmacological perspective involving A2A adenosine receptor stimulation in genetic and pharmacological NPC dysmyelination models.
Collapse
Affiliation(s)
- Antonietta Bernardo
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
| | - Chiara De Nuccio
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.D.N.); (L.M.)
| | - Sergio Visentin
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
| | - Alberto Martire
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.D.N.); (L.M.)
| | - Patrizia Popoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
| | - Antonella Ferrante
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
- Correspondence: ; Tel.: +39-06-49902050
| |
Collapse
|
24
|
Using kICS to Reveal Changed Membrane Diffusion of AQP-9 Treated with Drugs. MEMBRANES 2021; 11:membranes11080568. [PMID: 34436330 PMCID: PMC8399444 DOI: 10.3390/membranes11080568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
The formation of nanodomains in the plasma membrane are thought to be part of membrane proteins regulation and signaling. Plasma membrane proteins are often investigated by analyzing the lateral mobility. k-space ICS (kICS) is a powerful image correlation spectroscopy (ICS) technique and a valuable supplement to fluorescence correlation spectroscopy (FCS). Here, we study the diffusion of aquaporin-9 (AQP9) in the plasma membrane, and the effect of different membrane and cytoskeleton affecting drugs, and therefore nanodomain perturbing, using kICS. We measured the diffusion coefficient of AQP9 after addition of these drugs using live cell Total Internal Reflection Fluorescence imaging on HEK-293 cells. The actin polymerization inhibitors Cytochalasin D and Latrunculin A do not affect the diffusion coefficient of AQP9. Methyl-β-Cyclodextrin decreases GFP-AQP9 diffusion coefficient in the plasma membrane. Human epidermal growth factor led to an increase in the diffusion coefficient of AQP9. These findings led to the conclusion that kICS can be used to measure diffusion AQP9, and suggests that the AQP9 is not part of nanodomains.
Collapse
|
25
|
Overduin M, Trieber C, Prosser RS, Picard LP, Sheff JG. Structures and Dynamics of Native-State Transmembrane Protein Targets and Bound Lipids. MEMBRANES 2021; 11:451. [PMID: 34204456 PMCID: PMC8235241 DOI: 10.3390/membranes11060451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Membrane proteins work within asymmetric bilayers of lipid molecules that are critical for their biological structures, dynamics and interactions. These properties are lost when detergents dislodge lipids, ligands and subunits, but are maintained in native nanodiscs formed using styrene maleic acid (SMA) and diisobutylene maleic acid (DIBMA) copolymers. These amphipathic polymers allow extraction of multicomponent complexes of post-translationally modified membrane-bound proteins directly from organ homogenates or membranes from diverse types of cells and organelles. Here, we review the structures and mechanisms of transmembrane targets and their interactions with lipids including phosphoinositides (PIs), as resolved using nanodisc systems and methods including cryo-electron microscopy (cryo-EM) and X-ray diffraction (XRD). We focus on therapeutic targets including several G protein-coupled receptors (GPCRs), as well as ion channels and transporters that are driving the development of next-generation native nanodiscs. The design of new synthetic polymers and complementary biophysical tools bodes well for the future of drug discovery and structural biology of native membrane:protein assemblies (memteins).
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Catharine Trieber
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - R. Scott Prosser
- Department of Chemistry, University of Toronto, UTM, Mississauga, ON L5L 1C6, Canada; (R.S.P.); (L.-P.P.)
| | - Louis-Philippe Picard
- Department of Chemistry, University of Toronto, UTM, Mississauga, ON L5L 1C6, Canada; (R.S.P.); (L.-P.P.)
| | - Joey G. Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada;
| |
Collapse
|
26
|
Koretz KS, McGraw CE, Stradley S, Elbaradei A, Malmstadt N, Robinson AS. Characterization of binding kinetics of A 2AR to Gα s protein by surface plasmon resonance. Biophys J 2021; 120:1641-1649. [PMID: 33675761 DOI: 10.1016/j.bpj.2021.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 01/09/2023] Open
Abstract
Because of their surface localization, G protein-coupled receptors (GPCRs) are often pharmaceutical targets as they respond to a variety of extracellular stimuli (e.g., light, hormones, small molecules) that may activate or inhibit a downstream signaling response. The adenosine A2A receptor (A2AR) is a well-characterized GPCR that is expressed widely throughout the human body, with over 10 crystal structures determined. Truncation of the A2AR C-terminus is necessary for crystallization as this portion of the receptor is long and unstructured; however, previous work suggests shortening of the A2AR C-terminus from 412 to 316 amino acids (A2AΔ316R) ablates downstream signaling, as measured by cAMP production, to below that of constitutive full-length A2AR levels. As cAMP production is downstream of the first activation event-coupling of G protein to its receptor-investigating that first step in activation is important in understanding how the truncation effects native GPCR function. Here, using purified receptor and Gαs proteins, we characterize the association of A2AR and A2AΔ316R to Gαs with and without GDP or GTPγs using surface plasmon resonance (SPR). Gαs affinity for A2AR was greatest for apo-Gαs, moderately affected in the presence of GDP and nearly completely ablated by the addition of GTPγs. Truncation of the A2AR C-terminus (A2AΔ316R) decreased the affinity of the unliganded receptor for Gαs by ∼20%, suggesting small changes to binding can greatly impact downstream signaling.
Collapse
Affiliation(s)
- Kirsten S Koretz
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana; Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Claire E McGraw
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana
| | - Steven Stradley
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana
| | - Ahmed Elbaradei
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California
| | - Anne S Robinson
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana; Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
27
|
Kalash L, Winfield I, Safitri D, Bermudez M, Carvalho S, Glen R, Ladds G, Bender A. Structure-based identification of dual ligands at the A 2AR and PDE10A with anti-proliferative effects in lung cancer cell-lines. J Cheminform 2021; 13:17. [PMID: 33658076 PMCID: PMC7927403 DOI: 10.1186/s13321-021-00492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
Enhanced/prolonged cAMP signalling has been suggested as a suppressor of cancer proliferation. Interestingly, two key modulators that elevate cAMP, the A2A receptor (A2AR) and phosphodiesterase 10A (PDE10A), are differentially co-expressed in various types of non-small lung cancer (NSCLC) cell-lines. Thus, finding dual-target compounds, which are simultaneously agonists at the A2AR whilst also inhibiting PDE10A, could be a novel anti-proliferative approach. Using ligand- and structure-based modelling combined with MD simulations (which identified Val84 displacement as a novel conformational descriptor of A2AR activation), a series of known PDE10A inhibitors were shown to dock to the orthosteric site of the A2AR. Subsequent in-vitro analysis confirmed that these compounds bind to the A2AR and exhibit dual-activity at both the A2AR and PDE10A. Furthermore, many of the compounds exhibited promising anti-proliferative effects upon NSCLC cell-lines, which directly correlated with the expression of both PDE10A and the A2AR. Thus, we propose a structure-based methodology, which has been validated in in-vitro binding and functional assays, and demonstrated a promising therapeutic value.
Collapse
Affiliation(s)
- Leen Kalash
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB21EW, Cambridge, UK
- GlaxoSmithKline, Gunnels Wood Road, Hertfordshire, SG1 2NY, Stevenage, UK
| | - Ian Winfield
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB21EW, Cambridge, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK
| | - Dewi Safitri
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK
- Pharmacology and Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, 40132, Bandung, Indonesia
| | - Marcel Bermudez
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB21EW, Cambridge, UK
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 und 4, 14195, Berlin, Germany
| | - Sabrina Carvalho
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK
| | - Robert Glen
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB21EW, Cambridge, UK
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ, London, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK.
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB21EW, Cambridge, UK.
| |
Collapse
|
28
|
Activation of G-protein-coupled receptors is thermodynamically linked to lipid solvation. Biophys J 2021; 120:1777-1787. [PMID: 33640381 DOI: 10.1016/j.bpj.2021.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022] Open
Abstract
Preferential lipid solvation of the G-protein-coupled A2A adenosine receptor (A2AR) is evaluated from 35 μs of all-atom molecular dynamics simulation. A coarse-grained transition matrix algorithm is developed to overcome slow equilibration of the first solvation shell, obtaining estimates of the free energy of solvation by different lipids for the receptor in different activation states. Results indicate preference for solvation by unsaturated chains, which favors the active receptor. A model for lipid-dependent G-protein-coupled receptor activity is proposed in which the chemical potential of lipids in the bulk membrane modulates receptor activity. The entropies associated with moving saturated and unsaturated lipids from bulk to A2AR's first solvation shell are evaluated. Overall, the acyl chains are more disordered (i.e., obtain a favorable entropic contribution) when partitioning to the receptor surface, and this effect is augmented for the saturated chains, which are relatively more ordered in bulk.
Collapse
|
29
|
Jakubík J, El-Fakahany EE. Allosteric Modulation of GPCRs of Class A by Cholesterol. Int J Mol Sci 2021; 22:1953. [PMID: 33669406 PMCID: PMC7920425 DOI: 10.3390/ijms22041953] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are membrane proteins that convey extracellular signals to the cellular milieu. They represent a target for more than 30% of currently marketed drugs. Here we review the effects of membrane cholesterol on the function of GPCRs of Class A. We review both the specific effects of cholesterol mediated via its direct high-affinity binding to the receptor and non-specific effects mediated by cholesterol-induced changes in the properties of the membrane. Cholesterol binds to many GPCRs at both canonical and non-canonical binding sites. It allosterically affects ligand binding to and activation of GPCRs. Additionally, it changes the oligomerization state of GPCRs. In this review, we consider a perspective of the potential for the development of new therapies that are targeted at manipulating the level of membrane cholesterol or modulating cholesterol binding sites on to GPCRs.
Collapse
Affiliation(s)
- Jan Jakubík
- Department of Neurochemistry, Institute of Physiology Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Esam E. El-Fakahany
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| |
Collapse
|
30
|
The Specificity of Downstream Signaling for A 1 and A 2AR Does Not Depend on the C-Terminus, Despite the Importance of This Domain in Downstream Signaling Strength. Biomedicines 2020; 8:biomedicines8120603. [PMID: 33322210 PMCID: PMC7764039 DOI: 10.3390/biomedicines8120603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Recent efforts to determine the high-resolution crystal structures for the adenosine receptors (A1R and A2AR) have utilized modifications to the native receptors in order to facilitate receptor crystallization and structure determination. One common modification is a truncation of the unstructured C-terminus, which has been utilized for all the adenosine receptor crystal structures obtained to date. Ligand binding for this truncated receptor has been shown to be similar to full-length receptor for A2AR. However, the C-terminus has been identified as a location for protein-protein interactions that may be critical for the physiological function of these important drug targets. We show that variants with A2AR C-terminal truncations lacked cAMP-linked signaling compared to the full-length receptor constructs transfected into mammalian cells (HEK-293). In addition, we show that in a humanized yeast system, the absence of the full-length C-terminus affected downstream signaling using a yeast MAPK response-based fluorescence assay, though full-length receptors showed native-like G-protein coupling. To further study the G protein coupling, we used this humanized yeast platform to explore coupling to human-yeast G-protein chimeras in a cellular context. Although the C-terminus was essential for Gα protein-associated signaling, chimeras of A1R with a C-terminus of A2AR coupled to the A1R-specific Gα (i.e., Gαi1 versus Gαs). This surprising result suggests that the C-terminus is important in the signaling strength, but not specificity, of the Gα protein interaction. This result has further implications in drug discovery, both in enabling the experimental use of chimeras for ligand design, and in the cautious interpretation of structure-based drug design using truncated receptors.
Collapse
|
31
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
32
|
Jain AR, Britton ZT, Markwalter CE, Robinson AS. Improved ligand-binding- and signaling-competent human NK2R yields in yeast using a chimera with the rat NK2R C-terminus enable NK2R-G protein signaling platform. Protein Eng Des Sel 2020; 32:459-469. [PMID: 32400863 DOI: 10.1093/protein/gzaa009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/09/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
The tachykinin 2 receptor (NK2R) plays critical roles in gastrointestinal, respiratory and mental disorders and is a well-recognized target for therapeutic intervention. To date, therapeutics targeting NK2R have failed to meet regulatory agency approval due in large part to the limited characterization of the receptor-ligand interaction and downstream signaling. Herein, we report a protein engineering strategy to improve ligand-binding- and signaling-competent human NK2R that enables a yeast-based NK2R signaling platform by creating chimeras utilizing sequences from rat NK2R. We demonstrate that NK2R chimeras incorporating the rat NK2R C-terminus exhibited improved ligand-binding yields and downstream signaling in engineered yeast strains and mammalian cells, where observed yields were better than 4-fold over wild type. This work builds on our previous studies that suggest exchanging the C-termini of related and well-expressed family members may be a general protein engineering strategy to overcome limitations to ligand-binding and signaling-competent G protein-coupled receptor yields in yeast. We expect these efforts to result in NK2R drug candidates with better characterized signaling properties.
Collapse
Affiliation(s)
- Abhinav R Jain
- Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA, 70118, USA
| | - Zachary T Britton
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.,AstraZeneca, Antibody Discovery and Protein Engineering, Gaithersburg, MD 20878, USA
| | - Chester E Markwalter
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Anne S Robinson
- Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA, 70118, USA.,Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.,Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
33
|
Insights into adenosine A2A receptor activation through cooperative modulation of agonist and allosteric lipid interactions. PLoS Comput Biol 2020; 16:e1007818. [PMID: 32298258 PMCID: PMC7188303 DOI: 10.1371/journal.pcbi.1007818] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/28/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
The activation process of G protein-coupled receptors (GPCRs) has been extensively studied, both experimentally and computationally. In particular, Molecular Dynamics (MD) simulations have proven useful in exploring GPCR conformational space. The typical behaviour of class A GPCRs, when subjected to unbiased MD simulations from their crystallized inactive state, is to fluctuate between inactive and intermediate(s) conformations, even with bound agonist. Fully active conformation(s) are rarely stabilized unless a G protein is also bound. Despite several crystal structures of the adenosine A2a receptor (A2aR) having been resolved in complex with co-crystallized agonists and Gs protein, its agonist-mediated activation process is still not completely understood. In order to thoroughly examine the conformational landscape of A2aR activation, we performed unbiased microsecond-length MD simulations in quadruplicate, starting from the inactive conformation either in apo or with bound agonists: endogenous adenosine or synthetic NECA, embedded in two homogeneous phospholipid membranes: 1,2-dioleoyl-sn-glycerol-3-phosphoglycerol (DOPG) or 1,2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC). In DOPC with bound adenosine or NECA, we observe transition to an intermediate receptor conformation consistent with the known adenosine-bound crystal state. In apo state in DOPG, two different intermediate conformations are obtained. One is similar to that observed with bound adenosine in DOPC, while the other is closer to the active state but not yet fully active. Exclusively, in DOPG with bound adenosine or NECA, we reproducibly identify receptor conformations with fully active features, which are able to dock Gs protein. These different receptor conformations can be attributed to the action/absence of agonist and phospholipid-mediated allosteric effects on the intracellular side of the receptor.
Collapse
|
34
|
Meza U, Delgado-Ramírez M, Romero-Méndez C, Sánchez-Armass S, Rodríguez-Menchaca AA. Functional marriage in plasma membrane: Critical cholesterol level-optimal protein activity. Br J Pharmacol 2020; 177:2456-2465. [PMID: 32060896 DOI: 10.1111/bph.15027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
In physiology, homeostasis refers to the condition where a system exhibits an optimum functional level. In contrast, any variation from this optimum is considered as a dysfunctional or pathological state. In this review, we address the proposal that a critical cholesterol level in the plasma membrane is required for the proper functioning of transmembrane proteins. Thus, membrane cholesterol depletion or enrichment produces a loss or gain of direct cholesterol-protein interaction and/or changes in the physical properties of the plasma membrane, which affect the basal or optimum activity of transmembrane proteins. Whether or not this functional switching is a generalized mechanism exhibited for all transmembrane proteins, or if it works just for an exclusive group of them, is an open question and an attractive subject to explore at a basic, pharmacological and clinical level.
Collapse
Affiliation(s)
- Ulises Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Catalina Romero-Méndez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Sergio Sánchez-Armass
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
35
|
Calmet P, Cullin C, Cortès S, Vang M, Caudy N, Baccouch R, Dessolin J, Maamar NT, Lecomte S, Tillier B, Alves ID. Cholesterol impacts chemokine CCR5 receptor ligand-binding activity. FEBS J 2019; 287:2367-2385. [PMID: 31738467 DOI: 10.1111/febs.15145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/27/2019] [Accepted: 11/16/2019] [Indexed: 01/03/2023]
Abstract
The chemokine CCR5 receptor is target of maraviroc, a negative allosteric modulator of CCR5 that blocks the HIV protein gp120 from associating with the receptor, thereby inhibiting virus cellular entry. As noted with other G-protein-coupled receptor family members, the role of the lipid environment in CCR5 signaling remains obscure and very modestly investigated. Controversial literature on the impact of cholesterol (Chol) depletion in HIV infection and CCR5 signaling, including the hypothesis that Chol depletion could inhibit HIV infection, lead us to focus on the understanding of Chol impact in the first stages of receptor activation. To address this aim, the approach chosen was to employ reconstituted model lipid systems of controlled lipid composition containing CCR5 from two distinct expression systems: Pichia pastoris and cell-free expression. The characterization of receptor/ligand interaction in terms of total binding or competition binding assays was independently performed by plasmon waveguide resonance and fluorescence anisotropy, respectively. Maraviroc, a potent receptor antagonist, was the ligand investigated. Additionally, coarse-grained molecular dynamics simulation was employed to investigate Chol impact in the receptor-conformational flexibility and dynamics. Results obtained with receptor produced by different expression systems and using different biophysical approaches clearly demonstrate a considerable impact of Chol in the binding affinity of maraviroc to the receptor and receptor-conformational dynamics. Chol considerably decreases maraviroc binding affinity to the CCR5 receptor. The mechanisms by which this effect occurs seem to involve the adoption of distinct receptor-conformational states with restrained structural dynamics and helical motions in the presence of Chol.
Collapse
Affiliation(s)
- Pierre Calmet
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | | | - Maylou Vang
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Nada Caudy
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Rim Baccouch
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Jean Dessolin
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | - Sophie Lecomte
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | - Isabel D Alves
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| |
Collapse
|
36
|
Agonist binding of human mu opioid receptors expressed in the yeast Pichia pastoris: Effect of cholesterol complementation. Neurochem Int 2019; 132:104588. [PMID: 31704091 DOI: 10.1016/j.neuint.2019.104588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/26/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023]
Abstract
This study compared pharmacological profiles between human mu opioid receptors (hMOR) overexpressed in the SH-SY5Y neuroblastoma cell line (SH-hMOR) and the methylotrophic yeast Pichia pastoris (Pp-hMOR). Affinity determinations were performed by direct binding with the tritiated agonist DAMGO and antagonist diprenorphine (DIP). Additionally, displacement of these drugs with agonists (morphine and DAMGO) and antagonists (β-funaltrexamine, naloxone and diprenorphine) was examined. Tritiated DAMGO could bind to membranes prepared from Pp-hMOR, although the receptor was not coupled with G-proteins. The data obtained with this yeast strain suggested that only 7.5% of receptors were in a high-affinity-state conformation. This value was markedly less than that estimated in SH-hMOR membranes, which reached 50%. Finally, to understand the pharmacological discrepancies between Pp-hMOR and SH-hMOR, the role of sterols was evaluated. The major sterol in P. pastoris is ergosterol, while hMOR naturally functions in a cholesterol-containing membrane environment. Cell membranes were sterol-depleted or cholesterol-loaded with methyl-β-cyclodextrine. The results indicated that cholesterol must be present to ensure Pp-hMOR function. The proportion of high-affinity-state conformation was reversibly increased by cholesterol complementation.
Collapse
|
37
|
Yang L, Lyman E. Local Enrichment of Unsaturated Chains around the A 2A Adenosine Receptor. Biochemistry 2019; 58:4096-4105. [PMID: 31496229 DOI: 10.1021/acs.biochem.9b00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Two 15 μs all-atom simulations of the A2A adenosine receptor were obtained in a ternary mixture of cholesterol, saturated phosphatidylcholine lipids, and unsaturated phosphatidylcholine lipids. An analysis of local lipid solvation is reported on the basis of a Voronoi tessellation of the upper and lower leaflets, identifying first and second solvation shells. The local environments of both the inactive state and the partially active state of the receptor are significantly enriched with unsaturated chains but depleted of cholesterol and saturated chains, relative to the bulk membrane composition. In spite of the local depletion of cholesterol, the partially active receptor binds cholesterol at three locations during the entire simulation trajectory. These long-lived interactions represent the extreme of a very broad distribution of first-solvation shell lipid lifetimes, confounding sharp distinctions between lipid interactions. The broad distributions of lifetimes also make equilibrating the local lipid environment difficult, necessitating long simulation times.
Collapse
Affiliation(s)
- Lewen Yang
- Department of Epidemiology , University of Florida , Gainesville , Florida 32610 , United States
| | - Edward Lyman
- Department of Physics and Astronomy , University of Delaware , Newark , Delaware 19716 , United States.,Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
38
|
Díaz Ó, Dalton JAR, Giraldo J. Revealing the Mechanism of Agonist-Mediated Cannabinoid Receptor 1 (CB1) Activation and Phospholipid-Mediated Allosteric Modulation. J Med Chem 2019; 62:5638-5654. [DOI: 10.1021/acs.jmedchem.9b00612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Óscar Díaz
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
| | - James A. R. Dalton
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
| | - Jesús Giraldo
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
| |
Collapse
|