1
|
Wang Y, Jia F, Zhang L, Jin J, Fan P. Creating the Equivalence Index to Optimize the Precise Evaluation of Bee Products for Functionally Opposite Components. Foods 2025; 14:1499. [PMID: 40361581 PMCID: PMC12071932 DOI: 10.3390/foods14091499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Bee products, such as honey, bee pollen/bread, bee propolis and royal jelly foraged or secreted by honeybee workers, have been consumed by humans for many years and are important due to their complexity, the large number of them and the endemicity of their constituents. The health-promoting activities of bee products are widely documented all around the world. However, we have noticed a distinct but poorly described feature of bee products: groups of functionally opposite components (FOCs) related to blood sugar level, oxidative stress, cell membrane cholesterol distribution, cell membrane stability, cell membrane curvature, allergic reaction, cellular sodium influx and cardiac apoptosis that exist within these products. We then propose the Equivalence Index in order to overcome the challenges associated with FOCs; this is a concise mathematical model that can be used to optimize the evaluation of quality, determine any underlying mechanisms and provide processing guidance regarding bee products.
Collapse
Affiliation(s)
| | | | | | | | - Pei Fan
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.J.); (L.Z.); (J.J.)
| |
Collapse
|
2
|
Dinu M, Sofi F, Lotti S, Colombini B, Mattioli AV, Catapano AL, Casula M, Baragetti A, Wong ND, Steg PG, Ambrosio G. Effects of omega-3 fatty acids on coronary revascularization and cardiovascular events: a meta-analysis. Eur J Prev Cardiol 2024; 31:1863-1875. [PMID: 38869144 DOI: 10.1093/eurjpc/zwae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
AIMS Benefits of pharmacologic omega-3 fatty acid administration in cardiovascular prevention are controversial. Particularly, effects on coronary revascularization are unclear; also debated are specific benefits of eicosapentaenoic acid (EPA). We investigated incident coronary revascularizations, myocardial infarction (MI), stroke, heart failure (HF), unstable angina, and cardiovascular death, in subjects randomized to receive EPA or EPA + docosahexaenoic acid (EPA + DHA) vs. control. METHODS AND RESULTS Meta-analysis of randomized controlled trials (RCTs) was conducted after MEDLINE, Embase, Scopus, Web of Science, and Cochrane Library search. Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines were followed for abstracting data and assessing data quality and validity. Data were pooled using a random effects model. Eighteen RCTs with 134 144 participants (primary and secondary cardiovascular prevention) receiving DHA + EPA (n = 52 498), EPA alone (n = 14 640), or control/placebo (n = 67 006) were included. Follow-up ranged from 4.5 months to 7.4 years. Overall, compared with controls, omega-3 supplementation reduced the risk of revascularization [0.90, 95% confidence interval (CI) 0.84-0.98; P = 0.001; P-heterogeneity = 0.0002; I2 = 68%], MI (0.89, 95% CI 0.81-0.98; P = 0.02; P-heterogeneity = 0.06; I2 = 41%), and cardiovascular death (0.92, 95% CI 0.85-0.99; P = 0.02; P-heterogeneity = 0.13; I2 = 33%). Lower risk was still observed in trials where most participants (≥60%) were on statin therapy. Compared with DHA + EPA, EPA alone showed a further significant risk reduction of revascularizations (0.76, 95% CI 0.65-0.88; P = 0.0002; P-interaction = 0.005) and all outcomes except HF. CONCLUSION Omega-3 fatty acid supplementation reduced the risk of cardiovascular events and coronary revascularization, regardless of background statin use. Eicosapentaenoic acid alone produced greater benefits. The role of specific omega-3 molecules in primary vs. secondary prevention and the potential benefits of reduced revascularizations on overall health status and cost savings warrant further research.
Collapse
Affiliation(s)
- Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Unit of Clinical Nutrition, Careggi University Hospital, Florence, Italy
| | - Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Anna Vittoria Mattioli
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberico L Catapano
- IRCCS MultiMedica, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Manuela Casula
- IRCCS MultiMedica, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Andrea Baragetti
- IRCCS MultiMedica, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Nathan D Wong
- Division of Cardiology, University of California, Irvine, USA
| | - Philippe Gabriel Steg
- Université Paris-Cité, INSERM U1148, FACT French Alliance for Cardiovascular Trials, AP-HP Hopital Bichat, Paris, France
| | - Giuseppe Ambrosio
- Division of Cardiology, Center for Clinical and Translational Research-CERICLET, University of Perugia School of Medicine, Ospedale S. Maria della Misericordia, Via S. Andrea delle Fratte, 06156 Perugia, Italy
| |
Collapse
|
3
|
Sherratt SC, Mason RP, Libby P, Bhatt DL. "A Time to Tear Down and a Time to Mend": The Role of Eicosanoids in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:2258-2263. [PMID: 39441911 PMCID: PMC11495529 DOI: 10.1161/atvbaha.124.319570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Samuel C.R. Sherratt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY (S.C.R.S., D.L.B.)
- Elucida Research, Beverly, MA (S.C.R.S., R.P.M.)
| | - R. Preston Mason
- Elucida Research, Beverly, MA (S.C.R.S., R.P.M.)
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (R.P.M., P.L.)
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (R.P.M., P.L.)
| | - Deepak L. Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY (S.C.R.S., D.L.B.)
| |
Collapse
|
4
|
Gouaref I, Otmane A, Makrelouf M, Abderrhmane SA, Haddam AEM, Koceir EA. Crucial Interactions between Altered Plasma Trace Elements and Fatty Acids Unbalance Ratio to Management of Systemic Arterial Hypertension in Diabetic Patients: Focus on Endothelial Dysfunction. Int J Mol Sci 2024; 25:9288. [PMID: 39273236 PMCID: PMC11395650 DOI: 10.3390/ijms25179288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The coexistence of SAH with T2DM is a common comorbidity. In this study, we investigated the link between altered plasma antioxidant trace elements (ATE: manganese, selenium, zinc, and copper) and fatty acids ratio (FAR: polyunsaturated/saturated) imbalance as transition biomarkers between vascular pathology (SAH) to metabolic pathology (T2DM). Our data revealed strong correlation between plasma ATE and FAR profile, which is modified during SAH-T2DM association compared to the healthy group. This relationship is mediated by lipotoxicity (simultaneously prominent visceral adipose tissue lipolysis, significant flow of non-esterified free fatty acids release, TG-Chol-dyslipidemia, high association of total SFA, palmitic acid, arachidonic acid, and PUFA ω6/PUFA ω3; drop in tandem of PUFA/SFA and EPA + DHA); oxidative stress (lipid peroxidation confirmed by TAS depletion and MDA rise, concurrent drop of Zn/Cu-SOD, GPx, GSH, Se, Zn, Se/Mn, Zn/Cu; concomitant enhancement of Cu, Mn, and Fe); endothelial dysfunction (endotheline-1 increase); athero-thrombogenesis risk (concomitant rise of ApoB100/ApoA1, Ox-LDL, tHcy, and Lp(a)), and inflammation (higher of Hs-CRP, fibrinogen and ferritin). Our study opens to new therapeutic targets and to better dietary management, such as to establishing dietary ATE and PUFA ω6/PUFA ω3 or PUFA/SFA reference values for atherosclerotic risk prevention in hypertensive/diabetic patients.
Collapse
Affiliation(s)
- Ines Gouaref
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, Nutrition and Pathologies Post Graduate School, Houari Boumediene University of Sciences and Technology (USTHB), Bab Ezzouar, Algiers 16123, Algeria
- Tamayouz Laboratory, Centre de Recherche en Biotechnologie (CRBT), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25000, Algeria
| | - Amel Otmane
- Biochemistry and Genetics Laboratory, University Hospital Center, Mohamed Lamine Debaghine, Bab El Oued, Algiers 16000, Algeria
| | - Mohamed Makrelouf
- Biochemistry and Genetics Laboratory, University Hospital Center, Mohamed Lamine Debaghine, Bab El Oued, Algiers 16000, Algeria
| | - Samir Ait Abderrhmane
- Diabetology Unit, University Hospital Center, Mohamed Seghir Nekkache (ex. HCA de Aïn Naâdja), Algiers 16208, Algeria
| | - Ali El Mahdi Haddam
- Diabetology Unit, University Hospital Center, Mohamed Lamine Debaghine, Algiers I-University, Bab El Oued, Algiers 16000, Algeria
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, Nutrition and Pathologies Post Graduate School, Houari Boumediene University of Sciences and Technology (USTHB), Bab Ezzouar, Algiers 16123, Algeria
- Tamayouz Laboratory, Centre de Recherche en Biotechnologie (CRBT), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25000, Algeria
| |
Collapse
|
5
|
Sherratt SCR, Libby P, Dawoud H, Bhatt DL, Mason RP. Eicosapentaenoic Acid Improves Endothelial Nitric Oxide Bioavailability Via Changes in Protein Expression During Inflammation. J Am Heart Assoc 2024; 13:e034076. [PMID: 38958135 PMCID: PMC11292741 DOI: 10.1161/jaha.123.034076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Endothelial cell (EC) dysfunction involves reduced nitric oxide (NO) bioavailability due to NO synthase uncoupling linked to increased oxidation and reduced cofactor availability. Loss of endothelial function and NO bioavailability are associated with inflammation, including leukocyte activation. Eicosapentaenoic acid (EPA) administered as icosapent ethyl reduced cardiovascular events in REDUCE-IT (Reduction of Cardiovascular Events With Icosapent Ethyl-Intervention Trial) in relation to on-treatment EPA blood levels. The mechanisms of cardiovascular protection for EPA remain incompletely elucidated but likely involve direct effects on the endothelium. METHODS AND RESULTS In this study, human ECs were treated with EPA and challenged with the cytokine IL-6 (interleukin-6). Proinflammatory responses in the ECs were confirmed by ELISA capture of sICAM-1 (soluble intercellular adhesion molecule-1) and TNF-α (tumor necrosis factor-α). Global protein expression was determined using liquid chromatography-mass spectrometry tandem mass tag. Release kinetics of NO and peroxynitrite were monitored using porphyrinic nanosensors. IL-6 challenge induced proinflammatory responses from the ECs as evidenced by increased release of sICAM-1 and TNF-α, which correlated with a loss of NO bioavailability. ECs pretreated with EPA modulated expression of 327 proteins by >1-fold (P<0.05), compared with IL-6 alone. EPA augmented expression of proteins involved in NO production, including heme oxygenase-1 and dimethylarginine dimethylaminohydrolase-1, and 34 proteins annotated as associated with neutrophil degranulation. EPA reversed the endothelial NO synthase uncoupling induced by IL-6 as evidenced by an increased [NO]/[peroxynitrite] release ratio (P<0.05). CONCLUSIONS These direct actions of EPA on EC functions during inflammation may contribute to its distinct cardiovascular benefits.
Collapse
Affiliation(s)
- Samuel C. R. Sherratt
- Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Elucida ResearchBeverlyMAUSA
- Mount Sinai Fuster Heart HospitalIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Hazem Dawoud
- Nanomedical Research LaboratoryOhio UniversityAthensOHUSA
| | - Deepak L. Bhatt
- Mount Sinai Fuster Heart HospitalIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - R. Preston Mason
- Elucida ResearchBeverlyMAUSA
- Department of Medicine, Cardiovascular Division, Brigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
6
|
Cao M, Yang F, McClements DJ, Guo Y, Liu R, Chang M, Wei W, Jin J, Wang X. Impact of dietary n-6/n-3 fatty acid ratio of atherosclerosis risk: A review. Prog Lipid Res 2024; 95:101289. [PMID: 38986846 DOI: 10.1016/j.plipres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Atherosclerosis is a causative factor associated with cardiovascular disease (CVD). Over the past few decades, extensive research has been carried out on the relationship between the n-6/n-3 fatty acid ratio of ingested lipids and the progression of atherosclerosis. However, there are still many uncertainties regarding the precise nature of this relationship, which has led to challenges in providing sound dietary advice to the general public. There is therefore a pressing need to review our current understanding of the relationship between the dietary n-6/n-3 fatty acid ratio and atherosclerosis, and to summarize the underlying factors contributing to the current uncertainties. Initially, this article reviews the association between the n-6/n-3 fatty acid ratio and CVDs in different countries. A summary of the current understanding of the molecular mechanisms of n-6/n-3 fatty acid ratio on atherosclerosis is then given, including inflammatory responses, lipid metabolism, low-density lipoprotein cholesterol oxidation, and vascular function. Possible reasons behind the current controversies on the relationship between the n-6/n-3 fatty acid ratio and atherosclerosis are then provided, including the precise molecular structures of the fatty acids, diet-gene interactions, the role of fat-soluble phytochemicals, and the impact of other nutritional factors. An important objective of this article is to highlight areas where further research is needed to clarify the role of n-6/n-3 fatty acid ratio on atherosclerosis.
Collapse
Affiliation(s)
- Minjie Cao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China; Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Fangwei Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Xuanwu District, Nanjing, China
| | | | - Yiwen Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
7
|
Kaur G, Mason RP, Steg PG, Bhatt DL. Omega-3 fatty acids for cardiovascular event lowering. Eur J Prev Cardiol 2024; 31:1005-1014. [PMID: 38169319 DOI: 10.1093/eurjpc/zwae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
Low-density lipoprotein cholesterol (LDL-C) is the main target for therapeutics aimed at reducing the risk of atherosclerotic cardiovascular disease (ASCVD) and downstream cardiovascular (CV) events. However, multiple studies have demonstrated that high-risk patient populations harbour residual risk despite effective LDL-C lowering. While data support the causal relationship between triglycerides and ASCVD risk, triglyceride-lowering therapies such as omega-3 fatty acids have shown mixed results in CV outcomes trials. Notably, icosapent ethyl, a purified formulation of eicosapentaenoic acid (EPA), has garnered compelling evidence in lowering residual CV risk in patients with hypertriglyceridaemia and treated with statins. In this review, we summarize studies that have investigated omega-3-fatty acids for CV event lowering and discuss the clinical implementation of these agents based on trial data and guidelines.
Collapse
Affiliation(s)
- Gurleen Kaur
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Preston Mason
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Elucida Research LLC, Beverly, MA, USA
| | - Ph Gabriel Steg
- Paris Cité University, Public Hospitals of Paris (AP-HP), Bichat Hospital, Paris, France
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Szarek M, Bhatt DL, Miller M, Brinton EA, Jacobson TA, Tardif JC, Ballantyne CM, Mason RP, Ketchum SB, Lira Pineda A, Doyle RT, Steg PG. Lipoprotein(a) Blood Levels and Cardiovascular Risk Reduction With Icosapent Ethyl. J Am Coll Cardiol 2024; 83:1529-1539. [PMID: 38530686 DOI: 10.1016/j.jacc.2024.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Elevated lipoprotein(a) (Lp[a]) concentrations are associated with increased cardiovascular event risk even in the presence of well-controlled low-density lipoprotein cholesterol levels, but few treatments are documented to reduce this residual risk. OBJECTIVES The aim of this post hoc analysis of REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial) was to explore the cardiovascular benefit of icosapent ethyl (IPE) across a range of Lp(a) levels. METHODS A total of 8,179 participants receiving statin therapy with established cardiovascular disease or age ≥50 years with diabetes and ≥1 additional risk factor, fasting triglyceride 1.69 to 5.63 mmol/L, and low-density lipoprotein cholesterol 1.06 to 2.59 mmol/L were randomized to receive 2 g twice daily of IPE or matching placebo. Relationships between continuous baseline Lp(a) mass concentration and risk for first and total (first and subsequent) major adverse cardiovascular events (MACE) were analyzed, along with the effects of IPE on first MACE among those with Lp(a) concentrations ≥50 or <50 mg/dL. RESULTS Among 7,026 participants (86% of those randomized) with baseline Lp(a) assessments, the median concentration was 11.6 mg/dL (Q1-Q3: 5.0-37.4 mg/dL). Lp(a) had significant relationships with first and total MACE (P < 0.0001), while event reductions with IPE did not vary across the range of Lp(a) (interaction P > 0.10). IPE significantly reduced first MACE in subgroups with concentrations ≥50 and <50 mg/dL. CONCLUSIONS Baseline Lp(a) concentration was prognostic for MACE among participants with elevated triglyceride levels receiving statin therapy. Importantly, IPE consistently reduced MACE across a range of Lp(a) levels, including among those with clinically relevant elevations.
Collapse
Affiliation(s)
- Michael Szarek
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA; CPC Clinical Research, Aurora, Colorado, USA; State University of New York, Downstate Health Sciences University, Brooklyn, New York, USA.
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Miller
- Department of Medicine, Crescenz Veterans Affairs Medical Center and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Terry A Jacobson
- Lipid Clinic and Cardiovascular Risk Reduction Program, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Christie M Ballantyne
- Department of Medicine, Baylor College of Medicine, and the Texas Heart Institute, Houston, Texas, USA
| | | | | | | | | | - Ph Gabriel Steg
- Université Paris-Cité, INSERM-UMR1148, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, French Alliance for Cardiovascular Trials, and Institut Universitaire de France, Paris, France
| |
Collapse
|
9
|
Blaha MJ, Bhatia HS. Lipoprotein(a), Residual Cardiovascular Risk, and the Search for Targeted Therapy. J Am Coll Cardiol 2024; 83:1540-1542. [PMID: 38537912 PMCID: PMC11216951 DOI: 10.1016/j.jacc.2024.03.370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Michael J Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Atherosclerotic Cardiovascular Disease, Baltimore, Maryland, USA.
| | - Harpreet S Bhatia
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Djuricic I, Calder PC. Omega-3 ( n-3) Fatty Acid-Statin Interaction: Evidence for a Novel Therapeutic Strategy for Atherosclerotic Cardiovascular Disease. Nutrients 2024; 16:962. [PMID: 38612996 PMCID: PMC11013773 DOI: 10.3390/nu16070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Managing atherosclerotic cardiovascular disease (ASCVD) often involves a combination of lifestyle modifications and medications aiming to decrease the risk of cardiovascular outcomes, such as myocardial infarction and stroke. The aim of this article is to discuss possible omega-3 (n-3) fatty acid-statin interactions in the prevention and treatment of ASCVD and to provide evidence to consider for clinical practice, highlighting novel insights in this field. Statins and n-3 fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) are commonly used to control cardiovascular risk factors in order to treat ASCVD. Statins are an important lipid-lowering therapy, primarily targeting low-density lipoprotein cholesterol (LDL-C) levels, while n-3 fatty acids address triglyceride (TG) concentrations. Both statins and n-3 fatty acids have pleiotropic actions which overlap, including improving endothelial function, modulation of inflammation, and stabilizing atherosclerotic plaques. Thus, both statins and n-3 fatty acids potentially mitigate the residual cardiovascular risk that remains beyond lipid lowering, such as persistent inflammation. EPA and DHA are both substrates for the synthesis of so-called specialized pro-resolving mediators (SPMs), a relatively recently recognized feature of their ability to combat inflammation. Interestingly, statins seem to have the ability to promote the production of some SPMs, suggesting a largely unrecognized interaction between statins and n-3 fatty acids with relevance to the control of inflammation. Although n-3 fatty acids are the major substrates for the production of SPMs, these signaling molecules may have additional therapeutic benefits beyond those provided by the precursor n-3 fatty acids themselves. In this article, we discuss the accumulating evidence that supports SPMs as a novel therapeutic tool and the possible statin-n-3 fatty acid interactions relevant to the prevention and treatment of ASCVD.
Collapse
Affiliation(s)
- Ivana Djuricic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
11
|
Sherratt SCR, Mason RP, Libby P, Steg PG, Bhatt DL. Do patients benefit from omega-3 fatty acids? Cardiovasc Res 2024; 119:2884-2901. [PMID: 38252923 PMCID: PMC10874279 DOI: 10.1093/cvr/cvad188] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 01/24/2024] Open
Abstract
Omega-3 fatty acids (O3FAs) possess beneficial properties for cardiovascular (CV) health and elevated O3FA levels are associated with lower incident risk for CV disease (CVD.) Yet, treatment of at-risk patients with various O3FA formulations has produced disparate results in large, well-controlled and well-conducted clinical trials. Prescription formulations and fish oil supplements containing low-dose mixtures of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have routinely failed to prevent CV events in primary and secondary prevention settings when added to contemporary care, as shown most recently in the STRENGTH and OMEMI trials. However, as observed in JELIS, REDUCE-IT, and RESPECT-EPA, EPA-only formulations significantly reduce CVD events in high-risk patients. The CV mechanism of action of EPA, while certainly multifaceted, does not depend solely on reductions of circulating lipids, including triglycerides (TG) and LDL, and event reduction appears related to achieved EPA levels suggesting that the particular chemical and biological properties of EPA, as compared to DHA and other O3FAs, may contribute to its distinct clinical efficacy. In vitro and in vivo studies have shown different effects of EPA compared with DHA alone or EPA/DHA combination treatments, on atherosclerotic plaque morphology, LDL and membrane oxidation, cholesterol distribution, membrane lipid dynamics, glucose homeostasis, endothelial function, and downstream lipid metabolite function. These findings indicate that prescription-grade, EPA-only formulations provide greater benefit than other O3FAs formulations tested. This review summarizes the clinical findings associated with various O3FA formulations, their efficacy in treating CV disease, and their underlying mechanisms of action.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Elucida Research LLC, Beverly, MA, USA
| | - R Preston Mason
- Elucida Research LLC, Beverly, MA, USA
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ph Gabriel Steg
- Université Paris-Cité, INSERM_UMR1148/LVTS, FACT (French Alliance for Cardiovascular Trials), Assistance Publique–Hôpitaux de Paris, Hôpital Bichat, Paris, France
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, NewYork 10029-5674, NY, USA
| |
Collapse
|
12
|
Zheng G, Wang D, Mao K, Wang M, Wang J, Xun W, Huang S. Exploring the Rumen Microbiota and Serum Metabolite Profile of Hainan Black Goats with Different Body Weights before Weaning. Animals (Basel) 2024; 14:425. [PMID: 38338068 PMCID: PMC10854652 DOI: 10.3390/ani14030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The critical role of the rumen microbiota in the growth performance of livestock is recognized, yet its significance in determining the body weight of goat kids before weaning remains less understood. To bridge this gap, our study delved into the rumen microbiota, serum metabolome, rumen fermentation, and rumen development in goat kids with contrasting body weights before weaning. We selected 10 goat kids from a cohort of 100, categorized into low body weight (LBW, 5.56 ± 0.98 kg) and high body weight (HBW, 9.51 ± 1.01 kg) groups. The study involved sampling rumen contents, tissues, and serum from these animals. Our findings showed that the HBW goat kids showed significant enrichment of VFA-producing bacteria, particularly microbiota taxa within the Prevotellaceae genera (UCG-001, UCG-003, and UCG-004) and the Prevotella genus. This enrichment correlated with elevated acetate and butyrate levels, positively influencing rumen papillae development. Additionally, it was associated with elevated serum levels of glucose, total cholesterol, and triglycerides. The serum metabonomic analysis revealed marked differences in fatty acid metabolism between the LBW and HBW groups, particularly in encompassing oleic acid and both long-chain saturated and polyunsaturated fatty acids. Further correlational analysis underscored a significant positive association between Prevotellaceae_UCG-001 and specific lipids, such as phosphatidylcholine (PC) (22:5/18:3) and PC (20:3/20:1) (r > 0.60, p < 0.05). In summary, this study underscores the pivotal role of the rumen microbiota in goat kids' weight and its correlation with specific serum metabolites. These insights could pave the way for innovative strategies aimed at improving animal body weight through targeted modulation of the rumen microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuai Huang
- Forage Processing and Ruminant Nutrition Laboratory, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (G.Z.)
| |
Collapse
|
13
|
Erbay MI, Gamarra Valverde NN, Patel P, Ozkan HS, Wilson A, Banerjee S, Babazade A, Londono V, Sood A, Gupta R. Fish Oil Derivatives in Hypertriglyceridemia: Mechanism and Cardiovascular Prevention: What Do Studies Say? Curr Probl Cardiol 2024; 49:102066. [PMID: 37657524 DOI: 10.1016/j.cpcardiol.2023.102066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Hypertriglyceridemia is a type of dyslipidemia characterized by high triglyceride levels in the blood and increases the risk of cardiovascular disease. Conventional management includes antilipidemic medications such as statins, lowering LDL and triglyceride levels as well as raising HDL levels. However, the treatment may be stratified using omega-3 fatty acid supplements such as eicosatetraenoic acid (EPA) and docosahexaenoic acid (DHA), aka fish oil derivatives. Studies have shown that fish oil supplements reduce the risk of cardiovascular diseases; however, the underlying mechanism and the extent of reduction in CVD need more clarification. Our paper aims to review the clinical trials and observational studies in the current literature, investigating the use of fish oil and its benefits on the cardiovascular system as well as the proposed underlying mechanism.
Collapse
Affiliation(s)
- Muhammed Ibrahim Erbay
- Department of Medicine, Istanbul University Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Norma Nicole Gamarra Valverde
- Department of Medicine, Alberto Hurtado Faculty of Human Medicine, Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Parth Patel
- Department of Medicine, University of Missouri Kansas City School of Medicine, Kansas City, MI
| | - Hasan Selcuk Ozkan
- Department of Medicine, Ege University, School of Medicine, Izmir, Turkey
| | - Andre Wilson
- Department of Medicine, Howard University College of Medicine, Washington, D.C
| | - Suvam Banerjee
- Department of Health and Family Welfare, Burdwan Medical College and Hospital, The West Bengal University of Health Sciences, Government of West Bengal, India
| | - Aydan Babazade
- Department of Medicine, Azerbaijan Medical University, School of Medicine, Baku, Azerbaijan
| | - Valeria Londono
- Department of Medicine, Georgetown University School of Medicine, Washington, D.C
| | - Aayushi Sood
- Department of Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, PA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA.
| |
Collapse
|
14
|
Michaeloudes C, Christodoulides S, Christodoulou P, Kyriakou TC, Patrikios I, Stephanou A. Variability in the Clinical Effects of the Omega-3 Polyunsaturated Fatty Acids DHA and EPA in Cardiovascular Disease-Possible Causes and Future Considerations. Nutrients 2023; 15:4830. [PMID: 38004225 PMCID: PMC10675410 DOI: 10.3390/nu15224830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular disease (CVD) that includes myocardial infarction and stroke, is the leading cause of mortality worldwide. Atherosclerosis, the primary underlying cause of CVD, can be controlled by pharmacological and dietary interventions, including n-3 polyunsaturated fatty acid (PUFA) supplementation. n-3 PUFA supplementation, primarily consisting of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has shown promise in reducing atherosclerosis by modulating risk factors, including triglyceride levels and vascular inflammation. n-3 PUFAs act by replacing pro-inflammatory fatty acid types in cell membranes and plasma lipids, by regulating transcription factor activity, and by inducing epigenetic changes. EPA and DHA regulate cellular function through shared and differential molecular mechanisms. Large clinical studies on n-3 PUFAs have reported conflicting findings, causing confusion among the public and health professionals. In this review, we discuss important factors leading to these inconsistencies, in the context of atherosclerosis, including clinical study design and the differential effects of EPA and DHA on cell function. We propose steps to improve clinical and basic experimental study design in order to improve supplement composition optimization. Finally, we propose that understanding the factors underlying the poor response to n-3 PUFAs, and the development of molecular biomarkers for predicting response may help towards a more personalized treatment.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (S.C.); (P.C.); (T.-C.K.); (I.P.); (A.S.)
| | | | | | | | | | | |
Collapse
|
15
|
Le VT, Knight S, Watrous JD, Najhawan M, Dao K, McCubrey RO, Bair TL, Horne BD, May HT, Muhlestein JB, Nelson JR, Carlquist JF, Knowlton KU, Jain M, Anderson JL. Higher docosahexaenoic acid levels lower the protective impact of eicosapentaenoic acid on long-term major cardiovascular events. Front Cardiovasc Med 2023; 10:1229130. [PMID: 37680562 PMCID: PMC10482040 DOI: 10.3389/fcvm.2023.1229130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction Long-chain omega-3 polyunsaturated fatty acids (OM3 PUFA) are commonly used for cardiovascular disease prevention. High-dose eicosapentaenoic acid (EPA) is reported to reduce major adverse cardiovascular events (MACE); however, a combined EPA and docosahexaenoic acid (DHA) supplementation has not been proven to do so. This study aimed to evaluate the potential interaction between EPA and DHA levels on long-term MACE. Methods We studied a cohort of 987 randomly selected subjects enrolled in the INSPIRE biobank registry who underwent coronary angiography. We used rapid throughput liquid chromatography-mass spectrometry to quantify the EPA and DHA plasma levels and examined their impact unadjusted, adjusted for one another, and fully adjusted for comorbidities, EPA + DHA, and the EPA/DHA ratio on long-term (10-year) MACE (all-cause death, myocardial infarction, stroke, heart failure hospitalization). Results The average subject age was 61.5 ± 12.2 years, 57% were male, 41% were obese, 42% had severe coronary artery disease (CAD), and 311 (31.5%) had a MACE. The 10-year MACE unadjusted hazard ratio (HR) for the highest (fourth) vs. lowest (first) quartile (Q) of EPA was HR = 0.48 (95% CI: 0.35, 0.67). The adjustment for DHA changed the HR to 0.30 (CI: 0.19, 0.49), and an additional adjustment for baseline differences changed the HR to 0.36 (CI: 0.22, 0.58). Conversely, unadjusted DHA did not significantly predict MACE, but adjustment for EPA resulted in a 1.81-fold higher risk of MACE (CI: 1.14, 2.90) for Q4 vs. Q1. However, after the adjustment for baseline differences, the risk of MACE was not significant for DHA (HR = 1.37; CI: 0.85, 2.20). An EPA/DHA ratio ≥1 resulted in a lower rate of 10-year MACE outcomes (27% vs. 37%, adjusted p-value = 0.013). Conclusions Higher levels of EPA, but not DHA, are associated with a lower risk of MACE. When combined with EPA, higher DHA blunts the benefit of EPA and is associated with a higher risk of MACE in the presence of low EPA. These findings can help explain the discrepant results of EPA-only and EPA/DHA mixed clinical supplementation trials.
Collapse
Affiliation(s)
- Viet T. Le
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, United States
- Department of Physician Assistant Studies, Rocky Mountain University of Health Professions, Provo, UT, United States
| | - Stacey Knight
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, United States
- The University of Utah, School of Medicine, Salt Lake City, UT, United States
| | - Jeramie D. Watrous
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Mahan Najhawan
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Khoi Dao
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Raymond O. McCubrey
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, United States
| | - Tami L. Bair
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, United States
| | - Benjamin D. Horne
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Heidi T. May
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, United States
| | - Joseph B. Muhlestein
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, United States
- The University of Utah, School of Medicine, Salt Lake City, UT, United States
| | - John R. Nelson
- California Cardiovascular Institute, Fresno, CA, United States
| | - John F. Carlquist
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, United States
- The University of Utah, School of Medicine, Salt Lake City, UT, United States
| | - Kirk U. Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, United States
- The University of Utah, School of Medicine, Salt Lake City, UT, United States
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Mohit Jain
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Jeffrey L. Anderson
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, United States
- The University of Utah, School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
16
|
Sherratt SCR, Libby P, Dawoud H, Bhatt DL, Malinski T, Mason RP. Eicosapentaenoic acid (EPA) reduces pulmonary endothelial dysfunction and inflammation due to changes in protein expression during exposure to particulate matter air pollution. Biomed Pharmacother 2023; 162:114629. [PMID: 37027984 DOI: 10.1016/j.biopha.2023.114629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
AIMS Inhalation of air pollution small particle matter (PM) is a leading cause of cardiovascular (CV) disease. Exposure to PMs causes endothelial cell (EC) dysfunction as evidenced by nitric oxide (NO) synthase uncoupling, vasoconstriction and inflammation. Eicosapentaenoic acid (EPA) has been shown to mitigate PM-induced adverse cardiac changes in patients receiving omega-3 fatty acid supplementation. We set out to determine the pro-inflammatory effects of multiple PMs (urban and fine) on pulmonary EC NO bioavailability and protein expression, and whether EPA restores EC function under these conditions. METHODS AND RESULTS We pretreated pulmonary ECs with EPA and then exposed them to urban or fine air pollution PMs. LC/MS-based proteomic analysis to assess relative expression levels. Expression of adhesion molecules was measured by immunochemistry. The ratio of NO to peroxynitrite (ONOO-) release, an indication of eNOS coupling, was measured using porphyrinic nanosensors following calcium stimulation. Urban/fine PMs also modulated 9/12 and 13/36 proteins, respectively, linked to platelet and neutrophil degranulation pathways and caused > 50% (p < 0.001) decrease in the stimulated NO/ONOO- release ratio. EPA treatment altered expression of proteins involved in these inflammatory pathways, including a decrease in peroxiredoxin-5 and an increase in superoxide dismutase-1. EPA also increased expression of heme oxygenase-1 (HMOX1), a cytoprotective protein, by 2.1-fold (p = 0.024). EPA reduced elevations in sICAM-1 levels by 22% (p < 0.01) and improved the NO/ONOO- release ratio by > 35% (p < 0.05). CONCLUSION These cellular changes may contribute to anti-inflammatory, cytoprotective and lipid changes associated with EPA treatment during air pollution exposure.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA; Elucida Research LLC, Beverly, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hazem Dawoud
- Nanomedical Research Laboratory, Ohio University, Athens, OH, USA
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, NY, USA
| | - Tadeusz Malinski
- Nanomedical Research Laboratory, Ohio University, Athens, OH, USA.
| | - R Preston Mason
- Elucida Research LLC, Beverly, MA, USA; Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Rundblad A, Sandoval V, Holven KB, Ordovás JM, Ulven SM. Omega-3 fatty acids and individual variability in plasma triglyceride response: A mini-review. Redox Biol 2023; 63:102730. [PMID: 37150150 PMCID: PMC10184047 DOI: 10.1016/j.redox.2023.102730] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. Supplementation with the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is associated with lower CVD risk. However, results from randomized controlled trials that examine the effect of omega-3 supplementation on CVD risk are inconsistent. This risk-reducing effect may be mediated by reducing inflammation, oxidative stress and serum triglyceride (TG) levels. However, not all individuals respond by reducing TG levels after omega-3 supplementation. This inter-individual variability in TG response to omega-3 supplementation is not fully understood. Hence, we aim to review the evidence for how interactions between omega-3 fatty acid supplementation and genetic variants, epigenetic and gene expression profiling, gut microbiota and habitual intake of omega-3 fatty acids can explain why the TG response differs between individuals. This may contribute to understanding the current controversies and play a role in defining future personalized guidelines to prevent CVD.
Collapse
Affiliation(s)
- Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1046 Blindern, 0317, Oslo, Norway
| | - Viviana Sandoval
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1046 Blindern, 0317, Oslo, Norway; Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Gral. Lagos 1025, 5110693, Valdivia, Chile
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1046 Blindern, 0317, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Norway
| | - José M Ordovás
- Nutrition and Genomics Laboratory, USDA ARS, JM-USDA Human Research Center on Aging at Tufts University, Boston, MA, USA; Nutritional Genomics and Epigenomics Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1046 Blindern, 0317, Oslo, Norway.
| |
Collapse
|
18
|
Sherratt SCR, Libby P, Bhatt DL, Mason RP. Comparative Effects of Mineral Oil, Corn Oil, Eicosapentaenoic Acid, and Docosahexaenoic Acid in an In Vitro Atherosclerosis Model. J Am Heart Assoc 2023; 12:e029109. [PMID: 36942760 PMCID: PMC10122895 DOI: 10.1161/jaha.122.029109] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/17/2023] [Indexed: 03/23/2023]
Affiliation(s)
- Samuel C. R. Sherratt
- Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Elucida Research LLCBeverlyMAUSA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Deepak L. Bhatt
- Mount Sinai HeartIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - R. Preston Mason
- Elucida Research LLCBeverlyMAUSA
- Department of Medicine, Cardiovascular Division, Brigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
19
|
Chaaba R, Bouaziz A, Ben Amor A, Mnif W, Hammami M, Mehri S. Fatty Acid Profile and Genetic Variants of Proteins Involved in Fatty Acid Metabolism Could Be Considered as Disease Predictor. Diagnostics (Basel) 2023; 13:979. [PMID: 36900123 PMCID: PMC10001328 DOI: 10.3390/diagnostics13050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Circulating fatty acids (FA) have an endogenous or exogenous origin and are metabolized under the effect of many enzymes. They play crucial roles in many mechanisms: cell signaling, modulation of gene expression, etc., which leads to the hypothesis that their perturbation could be the cause of disease development. FA in erythrocytes and plasma rather than dietary FA could be used as a biomarker for many diseases. Cardiovascular disease was associated with elevated trans FA and decreased DHA and EPA. Increased arachidonic acid and decreased Docosahexaenoic Acids (DHA) were associated with Alzheimer's disease. Low Arachidonic acid and DHA are associated with neonatal morbidities and mortality. Decreased saturated fatty acids (SFA), increased monounsaturated FA (MUFA) and polyunsaturated FA (PUFA) (C18:2 n-6 and C20:3 n-6) are associated with cancer. Additionally, genetic polymorphisms in genes coding for enzymes implicated in FA metabolism are associated with disease development. FA desaturase (FADS1 and FADS2) polymorphisms are associated with Alzheimer's disease, Acute Coronary Syndrome, Autism spectrum disorder and obesity. Polymorphisms in FA elongase (ELOVL2) are associated with Alzheimer's disease, Autism spectrum disorder and obesity. FA-binding protein polymorphism is associated with dyslipidemia, type 2 diabetes, metabolic syndrome, obesity, hypertension, non-alcoholic fatty liver disease, peripheral atherosclerosis combined with type 2 diabetes and polycystic ovary syndrome. Acetyl-coenzyme A carboxylase polymorphisms are associated with diabetes, obesity and diabetic nephropathy. FA profile and genetic variants of proteins implicated in FA metabolism could be considered as disease biomarkers and may help with the prevention and management of diseases.
Collapse
Affiliation(s)
- Raja Chaaba
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
| | - Aicha Bouaziz
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
- Bio-Resources, Integrative Biology & Valorization (BIOLIVAL, LR14ES06), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Asma Ben Amor
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
- Faculty of Medicine, “Ibn El Jazzar” University of Sousse, Sousse 4054, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Mohamed Hammami
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
| | - Sounira Mehri
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The omega-3 fatty acids (n3-FAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have recently undergone testing for their ability to reduce residual cardiovascular (CV) risk among statin-treated subjects. The outcome trials have yielded highly inconsistent results, perhaps attributable to variations in dosage, formulation, and composition. In particular, CV trials using icosapent ethyl (IPE), a highly purified ethyl ester of EPA, reproducibly reduced CV events and progression of atherosclerosis compared with mixed EPA/DHA treatments. This review summarizes the mechanistic evidence for differences among n3-FAs on the development and manifestations of atherothrombotic disease. RECENT FINDINGS Large randomized clinical trials with n3-FAs have produced discordant outcomes despite similar patient profiles, doses, and triglyceride (TG)-lowering effects. A large, randomized trial with IPE, a prescription EPA only formulation, showed robust reduction in CV events in statin treated patients in a manner proportional to achieved blood EPA concentrations. Multiple trials using mixed EPA/DHA formulations have not shown such benefits, despite similar TG lowering. These inconsistencies have inspired investigations into mechanistic differences among n3-FAs, as EPA and DHA have distinct membrane interactions, metabolic products, effects on cholesterol efflux, antioxidant properties, and tissue distribution. EPA maintains normal membrane cholesterol distribution, enhances endothelial function, and in combination with statins improves features implicated in plaque stability and reduces lipid content of plaques. Insights into reductions in residual CV risk have emerged from clinical trials using different formulations of n3-FAs. Among high-risk patients on contemporary care, mixed n3-FA formulations showed no reduction in CV events. The distinct benefits of IPE in multiple trials may arise from pleiotropic actions that correlate with on-treatment EPA levels beyond TG-lowering. These effects include altered platelet function, inflammation, cholesterol distribution, and endothelial dysfunction. Elucidating such mechanisms of vascular protection for EPA may lead to new interventions for atherosclerosis, a disease that continues to expand worldwide.
Collapse
|
21
|
Cholesterol crystals and atherosclerotic plaque instability: Therapeutic potential of Eicosapentaenoic acid. Pharmacol Ther 2022; 240:108237. [PMID: 35772589 DOI: 10.1016/j.pharmthera.2022.108237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
Abstract
Atherosclerotic plaques associated with acute coronary syndromes (ACS), i.e. culprit lesions, frequently feature a ruptured fibrous cap with thrombotic complications. On imaging, these plaques exhibit a low attenuation, lipid-rich, necrotic core containing cholesterol crystals and are inherently unstable. Indeed, cholesterol crystals are causally associated with plaque vulnerability in vivo; their formation results from spontaneous self-assembly of cholesterol molecules. Cholesterol homeostasis is a central determinant of the physicochemical conditions leading to crystal formation, which are favored by elevated membrane free cholesterol content in plaque endothelial cells, smooth muscle cells, monocyte-derived macrophages, and foam cells, and equally by lipid oxidation. Emerging evidence from imaging trials in patients with coronary heart disease has highlighted the impact of intervention involving the omega-3 fatty acid, eicosapentaenoic acid (EPA), on vulnerable, low attenuation atherosclerotic plaques. Thus, EPA decreased features associated with unstable plaque by increasing fibrous cap thickness in statin-treated patients, by reducing lipid volume and equally attenuating intraplaque inflammation. Importantly, atherosclerotic plaques rapidly incorporate EPA; indeed, a high content of EPA in plaque tissue is associated with decreased plaque inflammation and increased stability. These findings are entirely consistent with the major reduction seen in cardiovascular events in the REDUCE-IT trial, in which high dose EPA was administered as its esterified precursor, icosapent ethyl (IPE); moreover, clinical benefit was proportional to circulating EPA levels. Eicosapentaenoic acid is efficiently incorporated into phospholipids, where it modulates cholesterol-enriched domains in cell membranes through physicochemical lipid interactions and changes in rates of lipid oxidation. Indeed, biophysical analyses indicate that EPA exists in an extended conformation in membranes, thereby enhancing normal cholesterol distribution while reducing propagation of free radicals. Such effects mitigate cholesterol aggregation and crystal formation. In addition to its favorable effect on cholesterol domain structure, EPA/IPE exerts pleiotropic actions, including antithrombotic, antiplatelet, anti-inflammatory, and proresolving effects, whose plaque-stabilizing potential cannot be excluded. Docosahexaenoic acid is distinguished from EPA by a higher degree of unsaturation and longer carbon chain length; DHA is thus predisposed to changes in its conformation with ensuing increase in membrane lipid fluidity and promotion of cholesterol aggregation into discrete domains. Such distinct molecular effects between EPA and DHA are pronounced under conditions of high cellular cholesterol content and oxidative stress. This review will focus on the formation and role of cholesterol monohydrate crystals in destabilizing atherosclerotic plaques, and on the potential of EPA as a therapeutic agent to attenuate the formation of deleterious cholesterol membrane domains and of cholesterol crystals. Such a therapeutic approach may translate to enhanced plaque stability and ultimately to reduction in cardiovascular risk.
Collapse
|
22
|
Lyso-DGTS Lipid Derivatives Enhance PON1 Activities and Prevent Oxidation of LDL: A Structure–Activity Relationship Study. Antioxidants (Basel) 2022; 11:antiox11102058. [PMID: 36290781 PMCID: PMC9598486 DOI: 10.3390/antiox11102058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
Paraoxonase 1 (PON1) plays a role in regulating reverse cholesterol transport and has antioxidative, anti-inflammatory, antiapoptotic, vasodilative, and antithrombotic activities. Scientists are currently focused on the modulation of PON1 expression using different pharmacological, nutritional, and lifestyle approaches. We previously isolated a novel active compound from Nannochloropsis microalgae—lyso-diacylglyceryltrimethylhomoserine (lyso-DGTS)—which increased PON1 activity, HDL-cholesterol efflux, and endothelial nitric oxide release. Here, to explore this important lipid moiety’s effect on PON1 activities, we examined the effect of synthesized lipid derivatives and endogenous analogs of lyso-DGTS on PON1 lactonase and arylesterase activities and LDL oxidation using structure–activity relationship (SAR) methods. Six lipids significantly elevated recombinant PON1 (rePON1) lactonase activity in a dose-dependent manner, and four lipids significantly increased rePON1 arylesterase activity. Using tryptophan fluorescence-quenching assay and a molecular docking method, lipid–PON1 interactions were characterized. An inverse correlation was obtained between the lactonase activity of PON1 and the docking energy of the lipid–PON1 complex. Furthermore, five of the lipids increased the LDL oxidation lag time and inhibited its propagation. Our findings suggest a beneficial effect of lyso-DGTS or lyso-DGTS derivatives through increased PON1 activity and prevention of LDL oxidation.
Collapse
|
23
|
Iranshahy M, Banach M, Hasanpour M, Lavie CJ, Sahebkar A. Killing the Culprit: Pharmacological Solutions to Get Rid of Cholesterol Crystals. Curr Probl Cardiol 2022; 47:101274. [PMID: 35661813 DOI: 10.1016/j.cpcardiol.2022.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/19/2022]
Abstract
Cholesterol crystals (CCs) play a key role in the pathophysiology of cardiovascular diseases (CVD) via triggering inflammation, plaque formation and subsequently plaque rupture. Although statins can stabilize plaques via calcification and alteration of the lipid composition within plaques, there is still a high residual risk of CVD events among statins users. Several studies have tried to blunt the detrimental effects of cholesterol crystals by pharmacological interventions. Cyclodexterins (CDs) and other nanoformulations, including polymers of CDs and liposomes, have the ability to dissolve CCs in vitro and in vivo. CDs were the first in their class that entered clinical trials and showed promising results, though their ototoxicity outweighed their benefits. Moreover, small molecules with structural similarity to cholesterol may also perturb cholesterol-cholesterol interactions and prevent from expansion of 2D crystalline domains to large 3D CCs. The results from ethyl eicosapentaenoic acid and ursodeoxycholic acid were encouraging and worth further consideration. In this review, the significance of CCs in pathogenesis of CVD is discussed and pharmacological agents with the ability to dissolve CCs or prevent from CCs formation are introduced.
Collapse
Affiliation(s)
- Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Carl J Lavie
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School -the University of Oueensland School of Medicine, New Orleans, LA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Impact of Feeding Probiotics on Blood Parameters, Tail Fat Metabolites, and Volatile Flavor Components of Sunit Sheep. Foods 2022; 11:foods11172644. [PMID: 36076827 PMCID: PMC9455658 DOI: 10.3390/foods11172644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Sheep crude tail fat has unique nutritional values and is used as a raw material for high-quality natural oil. The purpose of this study was to investigate the effects of probiotics on the metabolites and flavor of sheep crude tail fat. In this study, 12 Sunit sheep were randomly divided into an experimental group (LTF, basal feed + Lactiplantibacillusplantarum powder) and a control group (CTF, basal feed). The results of sheep crude tail fat analysis showed that blood lipid parameters were significantly lower and the expression of fatty acid synthase and stearoyl-CoA desaturase genes higher in the LTF group than in the CTF group (p < 0.05). Metabolomic analysis via liquid chromatography−mass spectrometry showed that the contents of metabolites such as eicosapentaenoic acid, 16-hydroxypalmitic acid, and L-citrulline were higher in the LTF group (p < 0.01). Gas chromatography−mass spectrometry detection of volatile flavor compounds in the tail fat showed that nonanal, decanal, and 1-hexanol were more abundant in the LTF group (p < 0.05). Therefore, Lactiplantibacillus plantarum feeding affected blood lipid parameters, expression of lipid metabolism-related genes, tail fat metabolites, and volatile flavor compounds in Sunit sheep. In this study, probiotics feeding was demonstrated to support high-value sheep crude tail fat production.
Collapse
|
25
|
Miller M, Tokgozoglu L, Parhofer KG, Handelsman Y, Leiter LA, Landmesser U, Brinton EA, Catapano AL. Icosapent ethyl for reduction of persistent cardiovascular risk: a critical review of major medical society guidelines and statements. Expert Rev Cardiovasc Ther 2022; 20:609-625. [DOI: 10.1080/14779072.2022.2103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Michael Miller
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
- Hospital of the University of Pennsylvania, Philadelphia, PA
| | | | - Klaus G. Parhofer
- Medizinische Klinik IV – Grosshadern, Klinikum der Universität München, Munich, Germany
| | | | - Lawrence A. Leiter
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ulf Landmesser
- Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
26
|
Mason RP, Sherratt SCR, Eckel RH. Omega-3-fatty acids: Do they prevent cardiovascular disease? Best Pract Res Clin Endocrinol Metab 2022; 37:101681. [PMID: 35739003 DOI: 10.1016/j.beem.2022.101681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite cardiovascular disease (CVD) reductions with high-intensity statins, there remains residual risk among patients with metabolic disorders. Alongside low-density lipoproteins (LDL-C), elevated triglycerides (TG) are associated with incident CVD events. Omega-3 fatty acids (n3-FAs), specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower TG levels, but their ability to reduce CV risk has been highly inconsistent. Trials using icosapent ethyl (IPE), a purified EPA ethyl ester, produced reductions in CVD events and atherosclerotic plaque regression compared with mixed EPA/DHA formulations despite similar TG-reductions. The separate effects of EPA and DHA on tissue distribution, oxidative stress, inflammation, membrane structure and endothelial function may contribute to these discordant outcomes. Additional mechanistic trials will provide further insights into the role of n3-FAs in reducing CVD risk beyond TG lowering.
Collapse
Affiliation(s)
- R Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Samuel C R Sherratt
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03823, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism & Diabetes, Division of Cardiology, University of Colorado Anschutz Medical Campus, 1635 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
27
|
Mason RP, Sherratt SCR, Eckel RH. Rationale for different formulations of omega-3 fatty acids leading to differences in residual cardiovascular risk reduction. Metabolism 2022; 130:155161. [PMID: 35151755 DOI: 10.1016/j.metabol.2022.155161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Affiliation(s)
- R Preston Mason
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States of America.
| | | | - Robert H Eckel
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| |
Collapse
|
28
|
Quispe R, Alfaddagh A, Kazzi B, Zghyer F, Marvel FA, Blumenthal RS, Sharma G, Martin SS. Controversies in the Use of Omega-3 Fatty Acids to Prevent Atherosclerosis. Curr Atheroscler Rep 2022; 24:571-581. [PMID: 35499805 DOI: 10.1007/s11883-022-01031-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We discuss current controversies in the clinical use of omega-3 fatty acids (FA), primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and examine discrepancies between recent trials. Furthermore, we discuss potential side effects reported in these studies and the role of mixed omega-3 FA dietary supplements and concerns about their use. RECENT FINDINGS REDUCE-IT showed that addition of icosapent ethyl, a highly purified form of EPA, can reduce risk of cardiovascular events among statin-treated individuals with high triglycerides. Additional supportive evidence for EPA has come from other trials and meta-analyses of omega-3 FA therapy. In contrast, trials of mixed EPA/DHA products have consistently failed to improve cardiovascular outcomes. Discrepancies in results reported in RCTs could be explained by differences in omega-3 FA products, dosing, study populations, and study designs including the placebo control formulation. Evidence obtained from highly purified forms should not be extrapolated to other mixed formulations, including "over-the-counter" omega-3 supplements. Targeting TG-rich lipoproteins represents a new frontier for mitigating ASCVD risk. Clinical and basic research evidence suggests that the use of omega-3 FA, specifically EPA, appears to slow atherosclerosis by reducing triglyceride-rich lipoproteins and/or inflammation, therefore addressing residual risk of clinical ASCVD.
Collapse
Affiliation(s)
- Renato Quispe
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Abdulhamied Alfaddagh
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Brigitte Kazzi
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Fawzi Zghyer
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Francoise A Marvel
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Roger S Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Garima Sharma
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Seth S Martin
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA.
| |
Collapse
|
29
|
Novel Pharmaceutical and Nutraceutical-Based Approaches for Cardiovascular Diseases Prevention Targeting Atherogenic Small Dense LDL. Pharmaceutics 2022; 14:pharmaceutics14040825. [PMID: 35456658 PMCID: PMC9027611 DOI: 10.3390/pharmaceutics14040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Compelling evidence supports the causative link between increased levels of low-density lipoprotein cholesterol (LDL-C) and atherosclerotic cardiovascular disease (CVD) development. For that reason, the principal aim of primary and secondary cardiovascular prevention is to reach and sustain recommended LDL-C goals. Although there is a considerable body of evidence that shows that lowering LDL-C levels is directly associated with CVD risk reduction, recent data shows that the majority of patients across Europe cannot achieve their LDL-C targets. In attempting to address this matter, a new overarching concept of a lipid-lowering approach, comprising of even more intensive, much earlier and longer intervention to reduce LDL-C level, was recently proposed for high-risk patients. Another important concern is the residual risk for recurrent cardiovascular events despite optimal LDL-C reduction, suggesting that novel lipid biomarkers should also be considered as potential therapeutic targets. Among them, small dense LDL particles (sdLDL) seem to have the most significant potential for therapeutic modulation. This paper discusses the potential of traditional and emerging lipid-lowering approaches for cardiovascular prevention by targeting sdLDL particles.
Collapse
|
30
|
Drenjančević I, Pitha J. Omega-3 Polyunsaturated Fatty Acids-Vascular and Cardiac Effects on the Cellular and Molecular Level (Narrative Review). Int J Mol Sci 2022; 23:ijms23042104. [PMID: 35216214 PMCID: PMC8879741 DOI: 10.3390/ijms23042104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/16/2022] Open
Abstract
In the prevention and treatment of cardiovascular disease, in addition to the already proven effective treatment of dyslipidemia, hypertension and diabetes mellitus, omega-3 polyunsaturated fatty acids (n-3 PUFAs) are considered as substances with additive effects on cardiovascular health. N-3 PUFAs combine their indirect effects on metabolic, inflammatory and thrombogenic parameters with direct effects on the cellular level. Eicosapentaenoic acid (EPA) seems to be more efficient than docosahexaenoic acid (DHA) in the favorable mitigation of atherothrombosis due to its specific molecular properties. The inferred mechanism is a more favorable effect on the cell membrane. In addition, the anti-fibrotic effects of n-3 PUFA were described, with potential impacts on heart failure with a preserved ejection fraction. Furthermore, n-3 PUFA can modify ion channels, with a favorable impact on arrhythmias. However, despite recent evidence in the prevention of cardiovascular disease by a relatively high dose of icosapent ethyl (EPA derivative), there is still a paucity of data describing the exact mechanisms of n-3 PUFAs, including the role of their particular metabolites. The purpose of this review is to discuss the effects of n-3 PUFAs at several levels of the cardiovascular system, including controversies.
Collapse
Affiliation(s)
- Ines Drenjančević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, University Josip Juraj Strossmayer, Osijek J. Huttlera 4, HR-31000 Osijek, Croatia;
- Scientific Centre of Excellence for Personalized Health Care, University Josip Juraj Strossmayer Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia
| | - Jan Pitha
- Laboratory for Atherosclerosis Research, Center for Experimental Research, Department of Cardiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
31
|
Jin X, Yang S, Lu J, Wu M. Small, Dense Low-Density Lipoprotein-Cholesterol and Atherosclerosis: Relationship and Therapeutic Strategies. Front Cardiovasc Med 2022; 8:804214. [PMID: 35224026 PMCID: PMC8866335 DOI: 10.3389/fcvm.2021.804214] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) plays an important role in the formation, incidence, and development of atherosclerosis (AS). Low-density lipoproteins can be divided into two categories: large and light LDL-C and small, dense low-density lipoprotein cholesterol (sdLDL-C). In recent years, an increasing number of studies have shown that sdLDL-C has a strong ability to cause AS because of its unique characteristics, such as having small-sized particles and low density. Therefore, this has become the focus of further research. However, the specific mechanisms regarding the involvement of sdLDL-C in AS have not been fully explained. This paper reviews the possible mechanisms of sdLDL-C in AS by reviewing relevant literature in recent years. It was found that sdLDL-C can increase the atherogenic effect by regulating the activity of gene networks, monocytes, and enzymes. This article also reviews the research progress on the effects of sdLDL-C on endothelial function, lipid metabolism, and inflammation; it also discusses its intervention effect. Diet, exercise, and other non-drug interventions can improve sdLDL-C levels. Further, drug interventions such as statins, fibrates, ezetimibe, and niacin have also been found to improve sdLDL-C levels.
Collapse
Affiliation(s)
- Xiao Jin
- General Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- General Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Lu
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- General Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Verma S, Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Dhingra NK, Ketchum SB, Juliano RA, Jiao L, Doyle RT, Granowitz C, Gibson CM, Pinto D, Giugliano RP, Budoff MJ, Mason RP, Tardif JC, Ballantyne CM. Icosapent Ethyl Reduces Ischemic Events in Patients With a History of Previous Coronary Artery Bypass Grafting: REDUCE-IT CABG. Circulation 2021; 144:1845-1855. [PMID: 34710343 DOI: 10.1161/circulationaha.121.056290] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite advances in surgery and pharmacotherapy, there remains significant residual ischemic risk after coronary artery bypass grafting surgery. METHODS In REDUCE-IT (Reduction of Cardiovascular Events With Icosapent Ethyl-Intervention Trial), a multicenter, placebo-controlled, double-blind trial, statin-treated patients with controlled low-density lipoprotein cholesterol and mild to moderate hypertriglyceridemia were randomized to 4 g daily of icosapent ethyl or placebo. They experienced a 25% reduction in risk of a primary efficacy end point (composite of cardiovascular death, myocardial infarction, stroke, coronary revascularization, or hospitalization for unstable angina) and a 26% reduction in risk of a key secondary efficacy end point (composite of cardiovascular death, myocardial infarction, or stroke) when compared with placebo. The current analysis reports on the subgroup of patients from the trial with a history of coronary artery bypass grafting. RESULTS Of the 8179 patients randomized in REDUCE-IT, a total of 1837 (22.5%) had a history of coronary artery bypass grafting, with 897 patients randomized to icosapent ethyl and 940 to placebo. Baseline characteristics were similar between treatment groups. Randomization to icosapent ethyl was associated with a significant reduction in the primary end point (hazard ratio [HR], 0.76 [95% CI, 0.63-0.92]; P=0.004), in the key secondary end point (HR, 0.69 [95% CI, 0.56-0.87]; P=0.001), and in total (first plus subsequent or recurrent) ischemic events (rate ratio, 0.64 [95% CI, 0.50-0.81]; P=0.0002) compared with placebo. This yielded an absolute risk reduction of 6.2% (95% CI, 2.3%-10.2%) in first events, with a number needed to treat of 16 (95% CI, 10-44) during a median follow-up time of 4.8 years. Safety findings were similar to the overall study: beyond an increased rate of atrial fibrillation/flutter requiring hospitalization for at least 24 hours (5.0% vs 3.1%; P=0.03) and a nonsignificant increase in bleeding, occurrences of adverse events were comparable between groups. CONCLUSIONS In REDUCE-IT patients with a history of coronary artery bypass grafting, treatment with icosapent ethyl was associated with significant reductions in first and recurrent ischemic events. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01492361.
Collapse
Affiliation(s)
- Subodh Verma
- Montreal Heart Institute, Université de Montréal, Quebec, Canada (J-C.T.)
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA (D.L.B., R.P.G.)
| | - Ph Gabriel Steg
- Université de Paris, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, French Alliance for Cardiovascular Trials, and Institut National de la Santé et de la Recherche Médicale U-1148, Paris, France (P.G.S.)
| | - Michael Miller
- Department of Medicine, University of Maryland School of Medicine, Baltimore (M.M.)
| | | | - Terry A Jacobson
- Office of Health Promotion and Disease Prevention, Department of Medicine, Emory University School of Medicine, Atlanta, GA (T.A.J.)
| | - Nitish K Dhingra
- Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, ON, Canada (S.V., N.K.D.)
| | - Steven B Ketchum
- Amarin Pharma Inc, Bridgewater, NJ (S.B.K., R.A.J., L.J., R.T.D., C.G.)
| | - Rebecca A Juliano
- Amarin Pharma Inc, Bridgewater, NJ (S.B.K., R.A.J., L.J., R.T.D., C.G.)
| | - Lixia Jiao
- Amarin Pharma Inc, Bridgewater, NJ (S.B.K., R.A.J., L.J., R.T.D., C.G.)
| | - Ralph T Doyle
- Amarin Pharma Inc, Bridgewater, NJ (S.B.K., R.A.J., L.J., R.T.D., C.G.)
| | - Craig Granowitz
- Amarin Pharma Inc, Bridgewater, NJ (S.B.K., R.A.J., L.J., R.T.D., C.G.)
| | | | - Duane Pinto
- Baim Clinical Research Institute, Boston, MA (C.M.G., D.P.)
| | - Robert P Giugliano
- Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA (D.L.B., R.P.G.)
| | - Matthew J Budoff
- David Geffen School of Medicine, Lundquist Institute, Torrance, CA (M.J.B.)
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Quebec, Canada (J-C.T.)
| | - Christie M Ballantyne
- Department of Medicine, Baylor College of Medicine, and Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX (C.M.B.)
| | | |
Collapse
|
33
|
Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. MEMBRANES 2021; 11:membranes11120919. [PMID: 34940418 PMCID: PMC8708953 DOI: 10.3390/membranes11120919] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).
Collapse
|
34
|
Sherratt SCR, Juliano RA, Copland C, Bhatt DL, Libby P, Mason RP. EPA and DHA containing phospholipids have contrasting effects on membrane structure. J Lipid Res 2021; 62:100106. [PMID: 34400132 PMCID: PMC8430377 DOI: 10.1016/j.jlr.2021.100106] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022] Open
Abstract
Omega-3 FAs EPA and DHA influence membrane fluidity, lipid rafts, and signal transduction. A clinical trial, Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial, demonstrated that high-dose EPA (4 g/d icosapent ethyl) reduced composite cardiovascular events in statin-treated high-risk patients. EPA benefits correlated with on-treatment levels, but similar trials using DHA-containing formulations did not show event reduction. We hypothesized that differences in clinical efficacy of various omega-3 FA preparations could result from differential effects on membrane structure. To test this, we used small-angle X-ray diffraction to compare 1-palmitoyl-2-eicosapentaenoyl-sn-glycero-3-phosphocholine (PL-EPA), 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PL-DHA), and 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PL-AA) in membranes with and without 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol. Electron density profiles (electrons/Å3 vs. Å) were used to determine membrane structure, including membrane width (d-space). PL-EPA and PL-DHA had similar membrane structures without POPC and/or cholesterol but had contrasting effects in the presence of POPC and cholesterol. PL-EPA increased membrane hydrocarbon core electron density over an area of ±0-10 Å from the center, indicating an extended orientation. PL-DHA increased electron density in the phospholipid head group region, concomitant with disordering in the hydrocarbon core and a similar d-space (58 Å). Adding equimolar amounts of PL-EPA and PL-DHA produced changes that were attenuated compared with their separate effects. PL-AA increased electron density centered ±12 Å from the membrane center. The contrasting effects of PL-EPA, PL-DHA, and PL-AA on membrane structure may contribute to differences observed in the biological activities and clinical actions of various omega-3 FAs.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Elucida Research LLC, Beverly, MA, USA; Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | | | | | - Deepak L Bhatt
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Preston Mason
- Elucida Research LLC, Beverly, MA, USA; Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Lakshmanan S, Budoff MJ. The Evolving Role of Omega 3 Fatty Acids in Cardiovascular Disease: Is Icosapent Ethyl the Answer? Heart Int 2021; 15:7-13. [PMID: 36277323 PMCID: PMC9524612 DOI: 10.17925/hi.2021.15.1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/18/2021] [Indexed: 09/06/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of morbidity and mortality globally. Despite significant advances in pharmacotherapies and the beneficial effects of statin therapy on ASCVD outcomes and progression of atherosclerosis, residual cardiovascular (CV) risk remains. Extensive evidence has identified the contribution of atherogenic dyslipidaemia, which is particularly characterised by elevated triglycerides (TGL) as a key driver of CV risk, even if low-density lipoprotein cholesterol levels are well controlled. Epidemiologic and genetic/Mendelian randomisation studies have demonstrated that elevated TGL levels serve as an independent marker for an increased risk of ischaemic events, highlighting TGLs as a suitable therapeutic target. Clinical studies have shown that omega 3 fatty acids (OM3FA) are effective in lowering TGLs; however, to date, trials and meta-analyses of combined OM3FA products have not demonstrated any clinical CV outcome benefit in patients receiving statins. However, icosapent ethyl (IPE) - a highly purified, stable ethyl ester of eicosapentaenoic acid (EPA) - has been rigorously demonstrated in multiple studies to be a useful adjunctive therapy to address residual CV risk. EPA is an omega-3 polyunsaturated fatty acid that is incorporated into membrane phospholipid bilayers and is reported to exert multiple beneficial effects along the pathway of coronary atherosclerosis. In this brief review, we will provide an overview of the mode of action of IPE in coronary atherosclerosis, the robust clinical evidence and trial data supporting its use, and expert consensus/recommendations on its use in specific populations, as an adjunct to existing anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Suvasini Lakshmanan
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Los Angeles, CA, USA
| | - Matthew J Budoff
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Los Angeles, CA, USA
| |
Collapse
|
36
|
Nelson JR, Budoff MJ, Wani OR, Le V, Patel DK, Nelson A, Nemiroff RL. EPA's pleiotropic mechanisms of action: a narrative review. Postgrad Med 2021; 133:651-664. [PMID: 33900135 DOI: 10.1080/00325481.2021.1921491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Treatment with icosapent ethyl 4 g/day, a highly purified and stable ethyl ester of eicosapentaenoic acid (EPA), demonstrated a significant reduction in atherosclerotic cardiovascular disease (ASCVD) events and death in REDUCE-IT. However, analyses of REDUCE-IT and meta-analyses have suggested that this clinical benefit is greater than can be achieved by triglyceride reduction alone. EPA therefore may have additional pleiotropic effects, including anti-inflammatory and anti-aggregatory mechanisms. EPA competes with arachidonic acid for cyclooxygenase and lipoxygenase, producing anti-inflammatory and anti-aggregatory metabolites rather than the more deleterious metabolites associated with arachidonic acid. Changing the EPA:arachidonic acid ratio may shift metabolic status from pro-inflammatory/pro-aggregatory to anti-inflammatory/anti-aggregatory. EPA also has antioxidant effects and increases synthesis of nitric oxide. Incorporation of EPA into phospholipid bilayers influences membrane structure and may help to prevent cardiac arrhythmias. Clinically, this may translate into improved vascular health, including regression of atherosclerotic plaque. Overall, EPA has a range of pleiotropic effects that contribute to a reduction in ASCVD.
Collapse
Affiliation(s)
- John R Nelson
- California Cardiovascular Institute, Fresno, California, USA
| | - Matthew J Budoff
- Department of Medicine, Lundquist Institute, Torrance, California, USA
| | - Omar R Wani
- Northern Arizona Healthcare Medical Group - Flagstaff, Flagstaff, AZ, USA
| | - Viet Le
- Cardiovascular Research, Intermountain Heart Institute/CV Research, Intermountain Healthcare, Murray, Utah, and Rocky Mountain University of Health Professions, Provo, USA
| | - Dhiren K Patel
- Department of Pharmacy Practice, MCPHS University, Boston, MA, USA
| | - Ashley Nelson
- Department of Internal Medicine, Saint Agnes Medical Center, Fresno, California, USA
| | - Richard L Nemiroff
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
37
|
Fiore E, Lisuzzo A, Tessari R, Spissu N, Moscati L, Morgante M, Gianesella M, Badon T, Mazzotta E, Berlanda M, Contiero B, Fiore F. Milk Fatty Acids Composition Changes According to β-Hydroxybutyrate Concentrations in Ewes during Early Lactation. Animals (Basel) 2021; 11:ani11051371. [PMID: 34065915 PMCID: PMC8150806 DOI: 10.3390/ani11051371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Ketosis can occur during the last six weeks of gestation and continue to the early weeks of lactation due to an increase in energy requirement. This condition can cause substantial economic issues because of the decrease in production, the cost of medical management, the loss of the mothers and the lambs. A better knowledge of this disorder and its early diagnosis could make treatment more effective and optimize productivity. The aims of this study were to understand the metabolic status of the early-lactating ewes and to identify biomarkers for precocious diagnosis of subclinical ketosis using gas chromatographic technique. Different relationships were found between milk fatty acids and metabolic status of the ewes. Furthermore, 8 potential biomarkers were determined. Abstract Ketosis is a metabolic disease of pregnant and lactating ewes linked to a negative energy balance which can cause different economic losses. The aims of this study were to understand the metabolic status of the early-lactating ewes and to identify biomarkers for early diagnosis of subclinical ketosis. Forty-six Sarda ewes were selected in the immediate post-partum for the collection of the biological samples. A blood sample from the jugular vein was used to determine β-Hydroxybutyrate (BHB) concentrations. Animals were divided into two groups: BHB 0 or healthy group (n = 28) with BHB concentration < 0.86 mmol/L; and BHB 1 or subclinical ketosis (n = 18) with a BHB concentration ≥ 0.86 mmol/L. Ten mL of pool milk were collected at the morning milking for the analyses. The concentration of 34 milk fatty acids was evaluated using gas chromatography. Two biochemical parameters and 11 milk fatty acids of the total lipid fraction presented a p-value ≤ 0.05. The study revealed different relationships with tricarboxylic acid cycle, blood flows, immune and nervous systems, cell functions, inflammatory response, and oxidative stress status. Eight parameters were significant for the receiver operating characteristic (ROC) analysis with an area under the curve greater than 0.70.
Collapse
Affiliation(s)
- Enrico Fiore
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
- Correspondence:
| | - Anastasia Lisuzzo
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Rossella Tessari
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Nicoletta Spissu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (N.S.); (F.F.)
| | - Livia Moscati
- Experimental Zooprophylactic Institute of Umbria and Marche, Via G. Salvemini, 06126 Perugia, Italy;
| | - Massimo Morgante
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Matteo Gianesella
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Tamara Badon
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Elisa Mazzotta
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Michele Berlanda
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Filippo Fiore
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (N.S.); (F.F.)
| |
Collapse
|
38
|
Bujok J, Miśta D, Wincewicz E, Króliczewska B, Dzimira S, Żuk M. Atherosclerosis Development and Aortic Contractility in Hypercholesterolemic Rabbits Supplemented with Two Different Flaxseed Varieties. Foods 2021; 10:534. [PMID: 33806676 PMCID: PMC8001360 DOI: 10.3390/foods10030534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-linolenic acid (ALA) is widely regarded as the main beneficial component of flax for the prevention of cardiovascular disease. We evaluated the effect of the transgenic flaxseed W86-which is rich in ALA-on the lipid profile, atherosclerosis progression, and vascular reactivity in hypercholesterolemic rabbits compared to the parental cultivar Linola with a very low ALA content. Rabbits were fed a basal diet (control) or a basal diet supplemented with 1% cholesterol, 1% cholesterol and 10% flaxseed W86, or 1% cholesterol and 10% Linola flaxseed. A high-cholesterol diet resulted in an elevated plasma cholesterol and triglyceride levels compared to the control animals. Aortic sections from rabbits fed Linola had lower deposits of foamy cells than those from rabbits fed W86. A potassium-induced and phenylephrine-induced contractile response was enhanced by a high-cholesterol diet and not influenced by the W86 or Linola flaxseed. Pretreatment of the aortic rings with nitro-L-arginine methyl ester resulted in a concentration-dependent tendency to increase the reaction amplitude in the control and high-cholesterol diet groups but not the flaxseed groups. Linola flaxseed with a low ALA content more effectively reduced the atherosclerosis progression compared with the W86 flaxseed with a high concentration of stable ALA. Aorta contractility studies suggested that flaxseed ameliorated an increased contractility in hypercholesterolemia but had little or no impact on NO synthesis in the vascular wall.
Collapse
Affiliation(s)
- Jolanta Bujok
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (D.M.); (E.W.); (B.K.)
| | - Dorota Miśta
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (D.M.); (E.W.); (B.K.)
| | - Edyta Wincewicz
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (D.M.); (E.W.); (B.K.)
| | - Bożena Króliczewska
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (D.M.); (E.W.); (B.K.)
| | - Stanisław Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland;
| | - Magdalena Żuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wrocław, Poland;
| |
Collapse
|
39
|
Peterson BE, Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Juliano RA, Jiao L, Doyle RT, Granowitz C, Gibson CM, Pinto D, Giugliano RP, Budoff MJ, Tardif JC, Verma S, Ballantyne CM. Reduction in Revascularization With Icosapent Ethyl: Insights From REDUCE-IT Revascularization Analyses. Circulation 2021; 143:33-44. [PMID: 33148016 PMCID: PMC7752247 DOI: 10.1161/circulationaha.120.050276] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Patients with elevated triglycerides despite statin therapy have increased risk for ischemic events, including coronary revascularizations. METHODS REDUCE-IT (The Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial), a multicenter, double-blind, placebo-controlled trial, randomly assigned statin-treated patients with elevated triglycerides (135-499 mg/dL), controlled low-density lipoprotein (41-100 mg/dL), and either established cardiovascular disease or diabetes plus other risk factors to receive icosapent ethyl 4 g/d or placebo. The primary and key secondary composite end points were significantly reduced. Prespecified analyses examined all coronary revascularizations, recurrent revascularizations, and revascularization subtypes. RESULTS A total of 8179 randomly assigned patients were followed for 4.9 years (median). First revascularizations were reduced to 9.2% (22.5/1000 patient-years) with icosapent ethyl versus 13.3% (33.7/1000 patient-years) with placebo (hazard ratio, 0.66 [95% CI, 0.58-0.76]; P<0.0001; number needed to treat for 4.9 years=24); similar reductions were observed in total (first and subsequent) revascularizations (negative binomial rate ratio, 0.64 [95% CI, 0.56-0.74]; P<0.0001), and across elective, urgent, and emergent revascularizations. Icosapent ethyl significantly reduced percutaneous coronary intervention (hazard ratio, 0.68 [95% CI, 0.59-0.79]; P<0.0001) and coronary artery bypass grafting (hazard ratio, 0.61 [95% CI, 0.45-0.81]; P=0.0005). CONCLUSIONS Icosapent ethyl reduced the need for first and subsequent coronary revascularizations in statin-treated patients with elevated triglycerides and increased cardiovascular risk. To our knowledge, icosapent ethyl is the first non-low-density lipoprotein-lowering treatment that has been shown to reduce coronary artery bypass grafting in a blinded, randomized trial. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01492361.
Collapse
Affiliation(s)
- Benjamin E. Peterson
- Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA (B.E.P, D.L.B., R.P.G.)
| | - Deepak L. Bhatt
- Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA (B.E.P, D.L.B., R.P.G.)
| | - Ph. Gabriel Steg
- Université de Paris, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Bichat, FACT (French Alliance for Cardiovascular Trials), INSERM U-1148, France (Ph.G.S.)
| | - Michael Miller
- Department of Medicine, University of Maryland School of Medicine, Baltimore (M.M.)
| | | | - Terry A. Jacobson
- Office of Health Promotion and Disease Prevention, Department of Medicine, Emory University School of Medicine, Atlanta, GA (T.A.J.)
| | - Steven B. Ketchum
- Amarin Pharma, Inc (Amarin), Bridgewater, NJ (S.B.K., R.A.J., L.J., R.T.D., C.G.)
| | - Rebecca A. Juliano
- Amarin Pharma, Inc (Amarin), Bridgewater, NJ (S.B.K., R.A.J., L.J., R.T.D., C.G.)
| | - Lixia Jiao
- Amarin Pharma, Inc (Amarin), Bridgewater, NJ (S.B.K., R.A.J., L.J., R.T.D., C.G.)
| | - Ralph T. Doyle
- Amarin Pharma, Inc (Amarin), Bridgewater, NJ (S.B.K., R.A.J., L.J., R.T.D., C.G.)
| | - Craig Granowitz
- Amarin Pharma, Inc (Amarin), Bridgewater, NJ (S.B.K., R.A.J., L.J., R.T.D., C.G.)
| | | | - Duane Pinto
- Baim Clinical Research Institute, Boston, MA (C.M.G., D.P.)
| | - Robert P. Giugliano
- Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA (B.E.P, D.L.B., R.P.G.)
| | - Matthew J. Budoff
- David Geffen School of Medicine, Lundquist Institute, Torrance, CA (M.J.B.)
| | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada (J.-C.T.)
| | - Subodh Verma
- Division of Cardiac Surgery, St Michael’s Hospital, University of Toronto, ON, Canada (S.V.)
| | - Christie M. Ballantyne
- Department of Medicine, Baylor College of Medicine, and Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX (C.M.B.)
| |
Collapse
|
40
|
Trivedi K, Le V, Nelson JR. The case for adding eicosapentaenoic acid (icosapent ethyl) to the ABCs of cardiovascular disease prevention. Postgrad Med 2021; 133:28-41. [PMID: 32762268 DOI: 10.1080/00325481.2020.1783937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/15/2020] [Indexed: 01/10/2023]
Abstract
The high-purity eicosapentaenoic acid (EPA) prescription fish oil-derived omega-3 fatty acid (omega-3), icosapent ethyl (IPE), was recently approved by the United States Food and Drug Administration (FDA) for cardiovascular disease (CVD) prevention in high-risk patients. This approval is based on the 25% CVD event risk reduction observed with IPE in the pre-specified primary composite endpoint (cardiovascular [CV] death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or hospitalization for unstable angina) in the landmark Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT). Notably, this reduction in CVD event risk with IPE was an incremental benefit to well-controlled low-density lipoprotein cholesterol; patients in REDUCE-IT had elevated triglyceride (TG) levels (135-499 mg/dL) and either had a history of atherosclerotic CVD or diabetes with additional CV risk factors. Given the CVD event risk reduction in REDUCE-IT, within a year following trial results, several global medical societies added IPE to their clinical guidelines. IPE is a stable, highly purified, FDA-approved prescription EPA ethyl ester. In contrast, mixed omega-3 products (docosahexaenoic acid + EPA combinations) have limited or no evidence for CVD event risk reduction, and nonprescription fish oil dietary supplements are not regulated as medicine by the FDA. We offer our perspective and rationale for why this evidence-based EPA-only formulation, IPE, should be added to the 'E' in the ABCDEF methodology for CV prevention. We provide multiple lines of evidence regarding an unmet need for CVD prevention beyond statin therapy, IPE clinical trials, IPE cost-effectiveness analyses, and proposed pleiotropic (non-lipid) mechanisms of action of EPA, as well as other relevant clinical considerations. See Figure 1 for the graphical abstract.[Figure: see text].
Collapse
Affiliation(s)
| | - Viet Le
- Intermountain Medical Center , Murray, UT, USA
- Principle PA Faculty, Rocky Mountain University of Health Professions , Provo, UT, USA
| | - John R Nelson
- California Cardiovascular Institute , Fresno, CA, USA
| |
Collapse
|
41
|
Wang X, Verma S, Mason RP, Bhatt DL. The Road to Approval: a Perspective on the Role of Icosapent Ethyl in Cardiovascular Risk Reduction. Curr Diab Rep 2020; 20:65. [PMID: 33095318 PMCID: PMC7584545 DOI: 10.1007/s11892-020-01343-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Epidemiological studies have long suggested the cardiovascular benefits of omega-3 fatty acids (OM3FAs). However, until recently, clinical trials using OM3FAs have been largely negative with respect to their cardioprotective effects. In this review, we aim to summarize key clinical trials, examine the clinical benefits of eicosapentaenoic acid (EPA) and potential mechanisms, and review the changes in guidelines and recommendations. RECENT FINDINGS The Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT) has demonstrated significant cardiovascular mortality benefits of purified EPA ethyl ester, with a 25% relative risk reduction in major cardiovascular events. As first of its class to be approved, icosapent ethyl offers a new option to further reduce cardiovascular risks in patients already treated with maximally tolerated statins.
Collapse
Affiliation(s)
- Xiaowen Wang
- Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | | | - R Preston Mason
- Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Elucida Research LLC, Beverly, MA, USA
| | - Deepak L Bhatt
- Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
42
|
Antarctic Krill Oil Attenuates Oxidative Stress via the KEAP1-NRF2 Signaling in Patients with Coronary Heart Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9534137. [PMID: 33082834 PMCID: PMC7563054 DOI: 10.1155/2020/9534137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/07/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
Background Antarctic krill oil (AKO) has strong antioxidant activities and is effective for alleviating coronary heart disease (CHD). Kelch-like ECH-associated protein 1-NF-E2-related factor 2 (KEAP1-NRF2) axis is a crucial antioxidant signaling pathway. Thus, AKO may exert its antioxidant effects on CHD patients via KEAP1-NRF2 signaling. Methods AKO fatty acid (FA) profiles were analyzed by using gas chromatography (GC). One hundred CHD patients were divided into the intervention (IG, AKO) and control (CG, placebo) groups. Before and after 1, 2, and 3 months of intervention, we measured serum levels of reactive oxygen species (ROS), 8-hydroxy-2-deoxyguanosine (8-OHdG), nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione peroxidase (GPx), and KEAP1 and NRF2 levels in peripheral blood leukocytes (PBLs). Serum FAs were measured by GC at baseline and after 3-month intervention. Results AKO contains rich eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which is more than 27% of total FA. The levels of EPA and DHA, KEAP1, and NRF2 in the IG group were higher than those in the CG group (p < 0.05). Serum levels of ROS, 8-OHdG, NO, and MDA in the IG group were lower than those in the CG group, whereas the levels of SOD, GSH, and GPx in the IG group were higher than those in the CG group (p < 0.05). Serum levels of saturated fatty acids (UFA) in the IG group were higher than those in the CG group, whereas reverse results were obtained for the levels of saturated fatty acids (SFA). Serum levels of EPA and DHA had a strong negative relationship with the level of ROS, whereas the ROS level had a strong negative relationship with the levels of KEAP1-NRF2. Conclusion AKO increases antioxidant capacities of CHD patients via the KEAP1-NRF2 signaling in the PBL.
Collapse
|
43
|
O'Connell TD, Mason RP, Budoff MJ, Navar AM, Shearer GC. Mechanistic insights into cardiovascular protection for omega-3 fatty acids and their bioactive lipid metabolites. Eur Heart J Suppl 2020; 22:J3-J20. [PMID: 33061864 PMCID: PMC7537803 DOI: 10.1093/eurheartj/suaa115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with well-controlled low-density lipoprotein cholesterol levels, but persistent high triglycerides, remain at increased risk for cardiovascular events as evidenced by multiple genetic and epidemiologic studies, as well as recent clinical outcome trials. While many trials of low-dose ω3-polyunsaturated fatty acids (ω3-PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have shown mixed results to reduce cardiovascular events, recent trials with high-dose ω3-PUFAs have reignited interest in ω3-PUFAs, particularly EPA, in cardiovascular disease (CVD). REDUCE-IT demonstrated that high-dose EPA (4 g/day icosapent-ethyl) reduced a composite of clinical events by 25% in statin-treated patients with established CVD or diabetes and other cardiovascular risk factors. Outcome trials in similar statin-treated patients using DHA-containing high-dose ω3 formulations have not yet shown the benefits of EPA alone. However, there are data to show that high-dose ω3-PUFAs in patients with acute myocardial infarction had reduced left ventricular remodelling, non-infarct myocardial fibrosis, and systemic inflammation. ω3-polyunsaturated fatty acids, along with their metabolites, such as oxylipins and other lipid mediators, have complex effects on the cardiovascular system. Together they target free fatty acid receptors and peroxisome proliferator-activated receptors in various tissues to modulate inflammation and lipid metabolism. Here, we review these multifactorial mechanisms of ω3-PUFAs in view of recent clinical findings. These findings indicate physico-chemical and biological diversity among ω3-PUFAs that influence tissue distributions as well as disparate effects on membrane organization, rates of lipid oxidation, as well as various receptor-mediated signal transduction pathways and effects on gene expression.
Collapse
Affiliation(s)
- Timothy D O'Connell
- Department of Integrative Biology and Physiology, University of Minnesota, 3-141 CCRB, 2231 6th Street SE, Minneapolis, MN 55414, USA
| | - Richard Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew J Budoff
- Cardiovascular Division, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ann Marie Navar
- Cardiovascular Division, Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16802, USA
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Substantial risk of ASCVD events persists despite intensive statin therapy and other agents to lower LDL-C. The optimal way to address other elements of dyslipidemia, such as triglyceride-rich particles (TRL) and when to treat has remained unclear. RECENT FINDINGS Several lines of evidence indicate that TRL are associated with atherogenesis, partly because of associated factors, such as cholesterol-enriched remnant particles, high LDL particle number, high apo-B, high apo-CIII, and others. High triglyceride is increasingly prevalent because of worsening of lifestyle factors, obesity, and diabetes. Trials with fibrates, and niacin to reduce residual dyslipidemia have not provided evidence of benefits after statin therapy, thus far. A recent trial with an omega 3 fatty acid (OM3FA), icosapent-ethyl (IPE), provided evidence for a 25% reduction in ASCVD events in statin-treated high-risk population. These results were unexplained by triglyceride reduction alone, and are likely related to unique biologic effects of IPE on atherosclerosis. Finally, in patients with very high triglycerides, lifestyle measures and several triglyceride-lowering agents are indicated, often in combination, to prevent episodes of pancreatitis. A novel Apo C-III inhibitor may provide additional benefit in such patients. SUMMARY There is evidence for the benefits of IPE in preventing ASCVD events. A novel fibrate is in clinical trials.
Collapse
Affiliation(s)
- Om P Ganda
- Clinical Research and Adult Diabetes sections, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|