1
|
Ma MT, Qerqez AN, Hill KR, Azouz LR, Youngblood HA, Hill SE, Ku Y, Peters DM, Maynard JA, Lieberman RL. Antibody-mediated clearance of an ER-resident aggregate that causes glaucoma. PNAS NEXUS 2025; 4:pgae556. [PMID: 39726989 PMCID: PMC11670252 DOI: 10.1093/pnasnexus/pgae556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Recombinant antibodies are a promising class of therapeutics to treat protein misfolding associated with neurodegenerative diseases, and several antibodies that inhibit aggregation are approved or in clinical trials to treat Alzheimer's disease. Here, we developed antibodies targeting the aggregation-prone β-propeller olfactomedin (OLF) domain of myocilin, variants of which comprise the strongest genetic link to glaucoma and cause early onset vision loss for several million individuals worldwide. Mutant myocilin aggregates intracellularly in the endoplasmic reticulum (ER). Subsequent ER stress causes cytotoxicity that hastens dysregulation of intraocular pressure, the primary risk factor for most forms of glaucoma. Our antibody discovery campaign yielded two recombinant antibodies: anti-OLF1 recognizes a linear epitope, while anti-OLF2 is selective for natively folded OLF and inhibits aggregation in vitro. By binding OLF, these antibodies engage autophagy/lysosomal degradation to promote degradation of two pathogenic mutant myocilins. This work demonstrates the potential for therapeutic antibodies to disrupt ER-localized protein aggregates by altering the fate of folding intermediates. This approach could be translated as a precision medicine to treat myocilin-associated glaucoma with in situ antibody expression. More generally, the study supports the approach of enhancing lysosomal degradation to treat proteostasis decline in glaucoma and other diseases.
Collapse
Affiliation(s)
- Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Ahlam N Qerqez
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Kamisha R Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Laura R Azouz
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Hannah A Youngblood
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Yemo Ku
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Donna M Peters
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Ophthalmology & Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Leimu L, Holm P, Gąciarz A, Haavisto O, Prince S, Pesonen U, Huovinen T, Lamminmäki U. Epitope-specific antibody fragments block aggregation of AGelD187N, an aberrant peptide in gelsolin amyloidosis. J Biol Chem 2024; 300:107507. [PMID: 38944121 PMCID: PMC11298591 DOI: 10.1016/j.jbc.2024.107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Aggregation of aberrant fragment of plasma gelsolin, AGelD187N, is a crucial event underlying the pathophysiology of Finnish gelsolin amyloidosis, an inherited form of systemic amyloidosis. The amyloidogenic gelsolin fragment AGelD187N does not play any physiological role in the body, unlike most aggregating proteins related to other protein misfolding diseases. However, no therapeutic agents that specifically and effectively target and neutralize AGelD187N exist. We used phage display technology to identify novel single-chain variable fragments that bind to different epitopes in the monomeric AGelD187N that were further maturated by variable domain shuffling and converted to antigen-binding fragment (Fab) antibodies. The generated antibody fragments had nanomolar binding affinity for full-length AGelD187N, as evaluated by biolayer interferometry. Importantly, all four Fabs selected for functional studies efficiently inhibited the amyloid formation of full-length AGelD187N as examined by thioflavin fluorescence assay and transmission electron microscopy. Two Fabs, neither of which bound to the previously proposed fibril-forming region of AGelD187N, completely blocked the amyloid formation of AGelD187N. Moreover, no small soluble aggregates, which are considered pathogenic species in protein misfolding diseases, were formed after successful inhibition of amyloid formation by the most promising aggregation inhibitor, as investigated by size-exclusion chromatography combined with multiangle light scattering. We conclude that all regions of the full-length AGelD187N are important in modulating its assembly into fibrils and that the discovered epitope-specific anti-AGelD187N antibody fragments provide a promising starting point for a disease-modifying therapy for gelsolin amyloidosis, which is currently lacking.
Collapse
Affiliation(s)
- Laura Leimu
- R&D, Orion Pharma, Orion Corporation, Turku, Finland; Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Patrik Holm
- R&D, Orion Pharma, Orion Corporation, Turku, Finland; Department of Life Technologies, University of Turku, Turku, Finland; Organon R&D Finland, Turku, Finland
| | - Anna Gąciarz
- R&D, Orion Pharma, Orion Corporation, Turku, Finland; Mobidiag, A Hologic Company, Espoo, Finland
| | - Oskar Haavisto
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Stuart Prince
- R&D, Orion Pharma, Orion Corporation, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Ullamari Pesonen
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Tuomas Huovinen
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland.
| |
Collapse
|
3
|
Manoutcharian K, Gevorkian G. Recombinant Antibody Fragments for Immunotherapy of Parkinson's Disease. BioDrugs 2024; 38:249-257. [PMID: 38280078 PMCID: PMC10912140 DOI: 10.1007/s40259-024-00646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder. Multiple genetic and environmental factors leading to progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SN) and consequent depletion of dopamine were described. Current clinical approaches, such as dopamine replacement or deep brain stimulation using surgically implanted probes, provide symptomatic relief but cannot modify disease progression. Therefore, disease-modifying therapeutic tools are urgently needed. Immunotherapy approaches, including passive transfer of protective antibodies and their fragments, have shown therapeutic efficacy in several animal models of neurodegenerative diseases, including PD. Recombinant antibody fragments are promising alternatives to conventional full-length antibodies. Modern computational approaches and molecular biology tools, directed evolution methodology, and the design of tissue-penetrating fusion peptides allowed for the development of recombinant antibody fragments with superior specificity and affinity, reduced immunogenicity, the capacity to target hidden epitopes and cross the blood-brain barrier (BBB), higher solubility and stability, the ability to refold after heat denaturation, and inexpensive large-scale production. In addition, antibody fragments do not induce microglia Fcγ receptor (FcγR)-mediated proinflammatory response and tissue damage in the central nervous system (CNS), because they lack the Fc portion of the immunoglobulin molecule. In the present review, we summarized data on recombinant antibody fragments evaluated as immunotherapeutics in preclinical models of PD and discussed their potential for developing therapeutic and preventive protocols for patients with PD.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, CP 04510, Mexico, DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, CP 04510, Mexico, DF, Mexico.
| |
Collapse
|
4
|
Bai J, Li X, Zhao J, Zong H, Yuan Y, Wang L, Zhang X, Ke Y, Han L, Xu J, Ma B, Zhang B, Zhu J. Re-Engineering Therapeutic Anti-Aβ Monoclonal Antibody to Target Amyloid Light Chain. Int J Mol Sci 2024; 25:1593. [PMID: 38338870 PMCID: PMC10855199 DOI: 10.3390/ijms25031593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Amyloidosis involves the deposition of misfolded proteins. Even though it is caused by different pathogenic mechanisms, in aggregate, it shares similar features. Here, we tested and confirmed a hypothesis that an amyloid antibody can be engineered by a few mutations to target a different species. Amyloid light chain (AL) and β-amyloid peptide (Aβ) are two therapeutic targets that are implicated in amyloid light chain amyloidosis and Alzheimer's disease, respectively. Though crenezumab, an anti-Aβ antibody, is currently unsuccessful, we chose it as a model to computationally design and prepare crenezumab variants, aiming to discover a novel antibody with high affinity to AL fibrils and to establish a technology platform for repurposing amyloid monoclonal antibodies. We successfully re-engineered crenezumab to bind both Aβ42 oligomers and AL fibrils with high binding affinities. It is capable of reversing Aβ42-oligomers-induced cytotoxicity, decreasing the formation of AL fibrils, and alleviating AL-fibrils-induced cytotoxicity in vitro. Our research demonstrated that an amyloid antibody could be engineered by a few mutations to bind new amyloid sequences, providing an efficient way to reposition a therapeutic antibody to target different amyloid diseases.
Collapse
Affiliation(s)
- Jingyi Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Xi Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA;
| | - Huifang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
| | - Yuan Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Xiaoshuai Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Lei Han
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
| | - Jianrong Xu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
- Jecho Laboratories, Inc., Frederick, MD 21704, USA
| |
Collapse
|
5
|
Guo ZH, Khattak S, Rauf MA, Ansari MA, Alomary MN, Razak S, Yang CY, Wu DD, Ji XY. Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules 2023; 28:1283. [PMID: 36770950 PMCID: PMC9921752 DOI: 10.3390/molecules28031283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023] Open
Abstract
Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.
Collapse
Affiliation(s)
- Zi-Hua Guo
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, No. 54 East Caizhengting St., Kaifeng 475000, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sufyan Razak
- Dow Medical College, John Hopkins Medical Center, School of Medicine, Baltimore, MD 21205, USA
| | - Chang-Yong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Mollica L, Giachin G. Recognition Mechanisms between a Nanobody and Disordered Epitopes of the Human Prion Protein: An Integrative Molecular Dynamics Study. J Chem Inf Model 2022; 63:531-545. [PMID: 36580661 PMCID: PMC9875307 DOI: 10.1021/acs.jcim.2c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunotherapy using antibodies to target the aggregation of flexible proteins holds promise for therapeutic interventions in neurodegenerative diseases caused by protein misfolding. Prions or PrPSc, the causal agents of transmissible spongiform encephalopathies (TSE), represent a model target for immunotherapies as TSE are prototypical protein misfolding diseases. The X-ray crystal structure of the wild-type (WT) human prion protein (HuPrP) bound to a camelid antibody fragment, denoted as Nanobody 484 (Nb484), has been previously solved. Nb484 was found to inhibit prion aggregation in vitro through a unique mechanism of structural stabilization of two disordered epitopes, that is, the palindromic motif (residues 113-120) and the β2-α2 loop region (residues 164-185). The study of the structural basis for antibody recognition of flexible proteins requires appropriate sampling techniques for the identification of conformational states occurring in disordered epitopes. To elucidate the Nb484-HuPrP recognition mechanisms, here we applied molecular dynamics (MD) simulations complemented with available NMR and X-ray crystallography data collected on the WT HuPrP to describe the conformational spaces occurring on HuPrP prior to Nb484 binding. We observe the experimentally determined binding competent conformations within the ensembles of pre-existing conformational states in solution before binding. We also described the Nb484 recognition mechanisms in two HuPrP carrying a polymorphism (E219K) and a TSE-causing mutation (V210I). Our hybrid approaches allow the identification of dynamic conformational landscapes existing on HuPrP and highly characterized by molecular disorder to identify physiologically relevant and druggable transitions.
Collapse
Affiliation(s)
- Luca Mollica
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, 20090 Milan, Italy,
| | - Gabriele Giachin
- Department
of Chemical Sciences (DiSC), University
of Padua, 35131 Padova, Italy,
| |
Collapse
|
7
|
Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Front Neurol 2022; 13:852003. [PMID: 35614915 PMCID: PMC9124903 DOI: 10.3389/fneur.2022.852003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (asyn) is a key pathogenetic factor in a group of neurodegenerative diseases generically known as synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Although the initial triggers of pathology and progression are unclear, multiple lines of evidence support therapeutic targeting of asyn in order to limit its prion-like misfolding. Here, we review recent pre-clinical and clinical work that offers promising treatment strategies to sequester, degrade, or silence asyn expression as a means to reduce the levels of seed or substrate. These diverse approaches include removal of aggregated asyn with passive or active immunization or by expression of vectorized antibodies, modulating kinetics of misfolding with small molecule anti-aggregants, lowering asyn gene expression by antisense oligonucleotides or inhibitory RNA, and pharmacological activation of asyn degradation pathways. We also discuss recent technological advances in combining low intensity focused ultrasound with intravenous microbubbles to transiently increase blood-brain barrier permeability for improved brain delivery and target engagement of these large molecule anti-asyn biologics.
Collapse
Affiliation(s)
- Sindhu Menon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Sabrina Armstrong
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Amir Hamzeh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Naomi P. Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | | | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Vendrell-Fernández S, Lozano-Picazo P, Cuadros-Sánchez P, Tejero-Ojeda MM, Giraldo R. Conversion of the OmpF Porin into a Device to Gather Amyloids on the E. coli Outer Membrane. ACS Synth Biol 2022; 11:655-667. [PMID: 34852197 DOI: 10.1021/acssynbio.1c00347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein amyloids are ubiquitous in natural environments. They typically originate from microbial secretions or spillages from mammals infected by prions, currently raising concerns about their infectivity and toxicity in contexts such as gut microbiota or soils. Exploiting the self-assembly potential of amyloids for their scavenging, here, we report the insertion of an amyloidogenic sequence stretch from a bacterial prion-like protein (RepA-WH1) in one of the extracellular loops (L5) of the abundant Escherichia coli outer membrane porin OmpF. The expression of this grafted porin enables bacterial cells to trap on their envelopes the same amyloidogenic sequence when provided as an extracellular free peptide. Conversely, when immobilized on a surface as bait, the full-length prion-like protein including the amyloidogenic peptide can catch bacteria displaying the L5-grafted OmpF. Polyphenolic molecules known to inhibit amyloid assembly interfere with peptide recognition by the engineered OmpF, indicating that this is compatible with the kind of homotypic interactions expected for amyloid assembly. Our study suggests that synthetic porins may provide suitable scaffolds for engineering biosensor and clearance devices to tackle the threat posed by pathogenic amyloids.
Collapse
Affiliation(s)
- Sol Vendrell-Fernández
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
| | - Paloma Lozano-Picazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| | - Paula Cuadros-Sánchez
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
| | - María M. Tejero-Ojeda
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| | - Rafael Giraldo
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| |
Collapse
|
9
|
Patterson-Orazem AC, Qerqez AN, Azouz LR, Ma MT, Hill SE, Ku Y, Schildmeyer LA, Maynard JA, Lieberman RL. Recombinant antibodies recognize conformation-dependent epitopes of the leucine zipper of misfolding-prone myocilin. J Biol Chem 2021; 297:101067. [PMID: 34384785 PMCID: PMC8408531 DOI: 10.1016/j.jbc.2021.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022] Open
Abstract
Recombinant antibodies with well-characterized epitopes and known conformational specificities are critical reagents to support robust interpretation and reproducibility of immunoassays across biomedical research. For myocilin, a protein prone to misfolding that is associated with glaucoma and an emerging player in other human diseases, currently available antibodies are unable to differentiate among the numerous disease-associated protein states. This fundamentally constrains efforts to understand the connection between myocilin structure, function, and disease. To address this concern, we used protein engineering methods to develop new recombinant antibodies that detect the N-terminal leucine zipper structural domain of myocilin and that are cross-reactive for human and mouse myocilin. After harvesting spleens from immunized mice and in vitro library panning, we identified two antibodies, 2A4 and 1G12. 2A4 specifically recognizes a folded epitope while 1G12 recognizes a range of conformations. We matured antibody 2A4 for improved biophysical properties, resulting in variant 2H2. In a human IgG1 format, 2A4, 1G12, and 2H2 immunoprecipitate full-length folded myocilin present in the spent media of human trabecular meshwork (TM) cells, and 2H2 can visualize myocilin in fixed human TM cells using fluorescence microscopy. These new antibodies should find broad application in glaucoma and other research across multiple species platforms.
Collapse
Affiliation(s)
| | - Ahlam N Qerqez
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Laura R Azouz
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yemo Ku
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lisa A Schildmeyer
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
10
|
Shimanovich U, Levin A, Eliaz D, Michaels T, Toprakcioglu Z, Frohm B, De Genst E, Linse S, Åkerfeldt KS, Knowles TPJ. pH-Responsive Capsules with a Fibril Scaffold Shell Assembled from an Amyloidogenic Peptide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007188. [PMID: 34050722 DOI: 10.1002/smll.202007188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Peptides and proteins have evolved to self-assemble into supramolecular entities through a set of non-covalent interactions. Such structures and materials provide the functional basis of life. Crucially, biomolecular assembly processes can be highly sensitive to and modulated by environmental conditions, including temperature, light, ionic strength and pH, providing the inspiration for the development of new classes of responsive functional materials based on peptide building blocks. Here, it is shown that the stimuli-responsive assembly of amyloidogenic peptide can be used as the basis of environmentally responsive microcapsules which exhibit release characteristics triggered by a change in pH. The microcapsules are biocompatible and biodegradable and may act as vehicles for controlled release of a wide range of biomolecules. Cryo-SEM images reveal the formation of a fibrillar network of the capsule interior with discrete compartments in which cargo molecules can be stored. In addition, the reversible formation of these microcapsules by modulating the solution pH is investigated and their potential application for the controlled release of encapsulated cargo molecules, including antibodies, is shown. These results suggest that the approach described here represents a promising venue for generating pH-responsive functional peptide-based materials for a wide range of potential applications for molecular encapsulation, storage, and release.
Collapse
Affiliation(s)
- Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Aviad Levin
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Dror Eliaz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Thomas Michaels
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Birgitta Frohm
- Department of Biochemistry and Structural Biology, Lund University, Lund, 22100, Sweden
| | - Erwin De Genst
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, 22100, Sweden
| | - Karin S Åkerfeldt
- Department of Chemistry, Haverford College, Haverford, PA, 19041, USA
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
11
|
Soluble α-synuclein-antibody complexes activate the NLRP3 inflammasome in hiPSC-derived microglia. Proc Natl Acad Sci U S A 2021; 118:2025847118. [PMID: 33833060 PMCID: PMC8054017 DOI: 10.1073/pnas.2025847118] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is characterized by accumulation of α-synuclein (αSyn). Release of oligomeric/fibrillar αSyn from damaged neurons may potentiate neuronal death in part via microglial activation. Heretofore, it remained unknown if oligomeric/fibrillar αSyn could activate the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome in human microglia and whether anti-αSyn antibodies could prevent this effect. Here, we show that αSyn activates the NLRP3 inflammasome in human induced pluripotent stem cell (hiPSC)-derived microglia (hiMG) via dual stimulation involving Toll-like receptor 2 (TLR2) engagement and mitochondrial damage. In vitro, hiMG can be activated by mutant (A53T) αSyn secreted from hiPSC-derived A9-dopaminergic neurons. Surprisingly, αSyn-antibody complexes enhanced rather than suppressed inflammasome-mediated interleukin-1β (IL-1β) secretion, indicating these complexes are neuroinflammatory in a human context. A further increase in inflammation was observed with addition of oligomerized amyloid-β peptide (Aβ) and its cognate antibody. In vivo, engraftment of hiMG with αSyn in humanized mouse brain resulted in caspase-1 activation and neurotoxicity, which was exacerbated by αSyn antibody. These findings may have important implications for antibody therapies aimed at depleting misfolded/aggregated proteins from the human brain, as they may paradoxically trigger inflammation in human microglia.
Collapse
|
12
|
Ohgita T, Furutani Y, Nakano M, Hattori M, Suzuki A, Nakagawa M, Naniwa S, Morita I, Oyama H, Nishitsuji K, Kobayashi N, Saito H. Novel conformation‐selective monoclonal antibodies against apoA‐I amyloid fibrils. FEBS J 2021. [DOI: 10.1111/febs.15487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Takashi Ohgita
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Yuki Furutani
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Miyu Nakano
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Megumi Hattori
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Ayane Suzuki
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Miho Nakagawa
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Sera Naniwa
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | | | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| |
Collapse
|
13
|
Single Molecule Characterization of Amyloid Oligomers. Molecules 2021; 26:molecules26040948. [PMID: 33670093 PMCID: PMC7916856 DOI: 10.3390/molecules26040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The misfolding and aggregation of polypeptide chains into β-sheet-rich amyloid fibrils is associated with a wide range of neurodegenerative diseases. Growing evidence indicates that the oligomeric intermediates populated in the early stages of amyloid formation rather than the mature fibrils are responsible for the cytotoxicity and pathology and are potentially therapeutic targets. However, due to the low-populated, transient, and heterogeneous nature of amyloid oligomers, they are hard to characterize by conventional bulk methods. The development of single molecule approaches provides a powerful toolkit for investigating these oligomeric intermediates as well as the complex process of amyloid aggregation at molecular resolution. In this review, we present an overview of recent progress in characterizing the oligomerization of amyloid proteins by single molecule fluorescence techniques, including single-molecule Förster resonance energy transfer (smFRET), fluorescence correlation spectroscopy (FCS), single-molecule photobleaching and super-resolution optical imaging. We discuss how these techniques have been applied to investigate the different aspects of amyloid oligomers and facilitate understanding of the mechanism of amyloid aggregation.
Collapse
|
14
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
15
|
Bigi A, Loffredo G, Cascella R, Cecchi C. Targeting Pathological Amyloid Aggregates with Conformation-Sensitive Antibodies. Curr Alzheimer Res 2020; 17:722-734. [PMID: 33167834 DOI: 10.2174/1567205017666201109093848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/05/2020] [Accepted: 10/01/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The pathogenesis of Alzheimer's disease (AD) is not directly caused by the presence of senile plaques but rather by the detrimental effects exerted on neuronal cells by toxic soluble oligomers. Such species are formed early during the aggregation process of the Aβ1-42 peptide or can be released from mature fibrils. Nowadays, efficient tools for an early diagnosis, as well as pharmaceutical treatments targeting the harmful agents in samples of AD patients, are still missing. OBJECTIVE By integrating in vitro immunochemical assay with in vivo neuronal models of toxicity, we aim to understand and target the principles that drive toxicity in AD. METHODS We evaluated the specificity and sensitivity of A11 and OC conformational antibodies to target a range of pathologically relevant amyloid conformers and rescue their cytotoxic effects in neuronal culture models using a number of cellular readouts. RESULTS We demonstrated the peculiar ability of conformational antibodies to label pathologically relevant Aβ1-42 oligomers and fibrils and to prevent their detrimental effects on neuronal cells. CONCLUSION Our results substantially improve our knowledge on the role of toxic assemblies in neurodegenerative diseases, thus suggesting new and more effective diagnostic and therapeutic tools for AD.
Collapse
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Gilda Loffredo
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| |
Collapse
|
16
|
Antibody Fragments as Tools for Elucidating Structure-Toxicity Relationships and for Diagnostic/Therapeutic Targeting of Neurotoxic Amyloid Oligomers. Int J Mol Sci 2020; 21:ijms21238920. [PMID: 33255488 PMCID: PMC7727795 DOI: 10.3390/ijms21238920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
The accumulation of amyloid protein aggregates in tissues is the basis for the onset of diseases known as amyloidoses. Intriguingly, many amyloidoses impact the central nervous system (CNS) and usually are devastating diseases. It is increasingly apparent that neurotoxic soluble oligomers formed by amyloidogenic proteins are the primary molecular drivers of these diseases, making them lucrative diagnostic and therapeutic targets. One promising diagnostic/therapeutic strategy has been the development of antibody fragments against amyloid oligomers. Antibody fragments, such as fragment antigen-binding (Fab), scFv (single chain variable fragments), and VHH (heavy chain variable domain or single-domain antibodies) are an alternative to full-length IgGs as diagnostics and therapeutics for a variety of diseases, mainly because of their increased tissue penetration (lower MW compared to IgG), decreased inflammatory potential (lack of Fc domain), and facile production (low structural complexity). Furthermore, through the use of in vitro-based ligand selection, it has been possible to identify antibody fragments presenting marked conformational selectivity. In this review, we summarize significant reports on antibody fragments selective for oligomers associated with prevalent CNS amyloidoses. We discuss promising results obtained using antibody fragments as both diagnostic and therapeutic agents against these diseases. In addition, the use of antibody fragments, particularly scFv and VHH, in the isolation of unique oligomeric assemblies is discussed as a strategy to unravel conformational moieties responsible for neurotoxicity. We envision that advances in this field may lead to the development of novel oligomer-selective antibody fragments with superior selectivity and, hopefully, good clinical outcomes.
Collapse
|
17
|
Song Y, Wu R, Wang Y, Liu L, Dong M. Structural conversion of human islet amyloid polypeptide aggregates under an electric field. Chem Commun (Camb) 2020; 56:11497-11500. [PMID: 32852504 DOI: 10.1039/d0cc04466k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electric fields (EFs) in biological systems are well known, and their presence implies the activity of protein ion channels and pumps in various cells. The aggregation of islet amyloid polypeptides (IAPP) was recently found in human brain tissue, and this was related to the electrical activity of neurons and caused neuronal loss. However, the association between amyloid formation and the electric field is still unknown. Herein a direct method to stimulate the formation of the hIAPP peptide under an EF is reported.
Collapse
Affiliation(s)
- Yongxiu Song
- Institute for Advanced Materials, Jiangsu University, China.
| | | | | | | | | |
Collapse
|
18
|
Hanif S, Muhammad P, Chesworth R, Rehman FU, Qian RJ, Zheng M, Shi BY. Nanomedicine-based immunotherapy for central nervous system disorders. Acta Pharmacol Sin 2020; 41:936-953. [PMID: 32467570 PMCID: PMC7468531 DOI: 10.1038/s41401-020-0429-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Central nervous system (CNS) disorders represent a broad spectrum of brain ailments with short- and long-term disabilities, and nanomedicine-based approaches provide a new therapeutic approach to treating CNS disorders. A variety of potential drugs have been discovered to treat several neuronal disorders; however, their therapeutic success can be limited by the presence of the blood-brain barrier (BBB). Furthermore, unique immune functions within the CNS provide novel target mechanisms for the amelioration of CNS diseases. Recently, various therapeutic approaches have been applied to fight brain-related disorders, with moderate outcomes. Among the various therapeutic strategies, nanomedicine-based immunotherapeutic systems represent a new era that can deliver useful cargo with promising pharmacokinetics. These approaches exploit the molecular and cellular targeting of CNS disorders for enhanced safety, efficacy, and specificity. In this review, we focus on the efficacy of nanomedicines that utilize immunotherapy to combat CNS disorders. Furthermore, we detailed summarize nanomedicine-based pathways for CNS ailments that aim to deliver drugs across the BBB by mimicking innate immune actions. Overview of how nanomedicines can utilize multiple immunotherapy pathways to combat CNS disorders. ![]()
Collapse
|
19
|
Ferrantelli F, Chiozzini C, Leone P, Manfredi F, Federico M. Engineered Extracellular Vesicles/Exosomes as a New Tool against Neurodegenerative Diseases. Pharmaceutics 2020; 12:E529. [PMID: 32526949 PMCID: PMC7357062 DOI: 10.3390/pharmaceutics12060529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are commonly generated by intracellular accumulation of misfolded/aggregated mutated proteins. These abnormal protein aggregates impair the functions of mitochondria and induce oxidative stress, thereby resulting in neuronal cell death. In turn, neuronal damage induces chronic inflammation and neurodegeneration. Thus, reducing/eliminating these abnormal protein aggregates is a priority for any anti-neurodegenerative therapeutic approach. Although several antibodies against mutated neuronal proteins have been already developed, how to efficiently deliver them inside the target cells remains an unmet issue. Extracellular vesicles/exosomes incorporating intrabodies against the pathogenic products would be a tool for innovative therapeutic approaches. In this review/perspective article, we identify and describe the major molecular targets associated with neurodegenerative diseases, as well as the antibodies already developed against them. Finally, we propose a novel targeting strategy based on the endogenous engineering of extracellular vesicles/exosomes constitutively released by cells of the central nervous system.
Collapse
Affiliation(s)
- Flavia Ferrantelli
- National Center for Global Health, Istituto Superiore Di Sanità (ISS), 00161 Rome, Italy; (C.C.); (P.L.); (F.M.)
| | | | | | | | - Maurizio Federico
- National Center for Global Health, Istituto Superiore Di Sanità (ISS), 00161 Rome, Italy; (C.C.); (P.L.); (F.M.)
| |
Collapse
|
20
|
Yu X, Xu Q, Wu Y, Jiang H, Wei W, Zulipikaer A, Guo Y, Jirimutu, Chen J. Nanobodies derived from Camelids represent versatile biomolecules for biomedical applications. Biomater Sci 2020; 8:3559-3573. [PMID: 32490444 DOI: 10.1039/d0bm00574f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanobodies are antigen binding variable domains of heavy-chain antibodies without light-chains, and these biomolecules occur naturally in the serum of Camelidae species. Nanobodies have a compact structure and low molecular weight when compared with antibodies, and are the smallest active antigen-binding fragments. Because of their remarkable stability and manipulable characteristics, nanobodies have been incorporated into biomaterials and used as molecular recognition and tracing agents, drug delivery systems, molecular imaging tools and disease therapeutics. This review summarizes recent progress in this field focusing on nanobodies as versatile biomolecules for biomedical applications.
Collapse
Affiliation(s)
- Xinyu Yu
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gerdes C, Waal N, Offner T, Fornasiero EF, Wender N, Verbarg H, Manzini I, Trenkwalder C, Mollenhauer B, Strohäker T, Zweckstetter M, Becker S, Rizzoli SO, Basmanav FB, Opazo F. A nanobody-based fluorescent reporter reveals human α-synuclein in the cell cytosol. Nat Commun 2020; 11:2729. [PMID: 32483166 PMCID: PMC7264335 DOI: 10.1038/s41467-020-16575-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Aggregation and spreading of α-Synuclein (αSyn) are hallmarks of several neurodegenerative diseases, thus monitoring human αSyn (hαSyn) in animal models or cell cultures is vital for the field. However, the detection of native hαSyn in such systems is challenging. We show that the nanobody NbSyn87, previously-described to bind hαSyn, also shows cross-reactivity for the proteasomal subunit Rpn10. As such, when the NbSyn87 is expressed in the absence of hαSyn, it is continuously degraded by the proteasome, while it is stabilized when it binds to hαSyn. Here, we exploit this feature to design a new Fluorescent Reporter for hαSyn (FluoReSyn) by fusing NbSyn87 to fluorescent proteins, which results in fluorescence signal fluctuations depending on the presence and amounts of intracellular hαSyn. We characterize this biosensor in cells and tissues to finally reveal the presence of transmittable αSyn in human cerebrospinal fluid, demonstrating the potential of FluoReSyn for clinical research and diagnostics.
Collapse
Affiliation(s)
- Christoph Gerdes
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Natalia Waal
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Thomas Offner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig University Giessen, 35390, Giessen, Germany
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Nora Wender
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Hannes Verbarg
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig University Giessen, 35390, Giessen, Germany
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
| | - Claudia Trenkwalder
- Department of Neurosurgery, University Medical Center Göttingen, D-37075, Göttingen, Germany
- Paracelsus-Elena-Klinik, Klinikstraße 16, 34128, Kassel, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Klinikstraße 16, 34128, Kassel, Germany
- Department of Neurology, University Medical Center Göttingen, D-37075, Göttingen, Germany
| | - Timo Strohäker
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Göttingen, Germany
| | - Fitnat Buket Basmanav
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
- Campus Laboratory for Advanced Imaging, Microscopy and Spectroscopy, University of Göttingen, D-37073, Göttingen, Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, D-37073, Göttingen, Germany.
| |
Collapse
|
22
|
Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis 2020; 134:104619. [DOI: 10.1016/j.nbd.2019.104619] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 01/27/2023] Open
|
23
|
Dhar N, Arsiwala A, Murali S, Kane RS. "Trim"ming PolyQ proteins with engineered PML. Biotechnol Bioeng 2019; 117:362-371. [PMID: 31710088 DOI: 10.1002/bit.27220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 01/06/2023]
Abstract
Protein abnormalities are the major cause of neurodegenerative diseases such as spinocerebellar ataxia (SCA). Protein misfolding and impaired degradation leads to the build-up of protein aggregates inside the cell, which may further cause cellular degeneration. Reducing levels of either the soluble misfolded form of the protein or its precipitated aggregate, even marginally, could significantly improve cellular health. Despite numerous pre-existing strategies to target these protein aggregates, there is considerable room to improve their specificity and efficiency. In this study, we demonstrated the enhanced intracellular degradation of both monomers and aggregates of mutant ataxin1 (Atxn1 82Q) by engineering an E3 ubiquitin ligase enzyme, promyelocytic leukemia protein (PML). Specifically, we showed enhanced degradation of both soluble and aggregated Atxn1 82Q in mammalian cells by targeting this protein using PML fused to single chain variable fragments (scFvs) specific for monomers and aggregates of the target protein. The ability to solubilize Atxn1 82Q aggregates was due to the PML-mediated enhanced SUMOylation of the target protein. This ability to reduce the intracellular levels of both misfolded forms of Atxn1 82Q may not only be useful for treating SCA, but also applicable for the treatment of other PolyQ disorders.
Collapse
Affiliation(s)
- Neha Dhar
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ammar Arsiwala
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Shruthi Murali
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
24
|
Paul A, Viswanathan GK, Mahapatra S, Balboni G, Pacifico S, Gazit E, Segal D. Antagonistic Activity of Naphthoquinone-Based Hybrids toward Amyloids Associated with Alzheimer's Disease and Type-2 Diabetes. ACS Chem Neurosci 2019; 10:3510-3520. [PMID: 31282646 DOI: 10.1021/acschemneuro.9b00123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein misfolding and amyloid formation are associated with various human diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Type-2 Diabetes mellitus (T2DM). No disease-modifying therapeutics are available for them. Despite the lack of sequence homology between the corresponding proteins, aromatic residues are recognized as common key motifs in the formation and stabilization of amyloid structures via π-π stacking. Thus, targeting aromatic recognition interfaces could be a useful approach for inhibiting amyloid formation as well as disrupting the preformed amyloid fibrils. Combining experimental and computational approaches, we demonstrated the anti-amyloidogenic effect of naphthoquinone-tryptophan-based hybrid molecules toward PHF6 (τ-derived aggregative peptide), Amyloid β (Aβ42), and human islet amyloid polypeptide (hIAPP) implicated in AD and T2DM, respectively. These hybrid molecules significantly inhibited the aggregation and disrupted their preformed fibrillar aggregates in vitro, in a dose-dependent manner as evident from Thioflavin T/S binding assay, CD spectroscopy, and electron microscopy. Dye leakage assay from LUVs and cell-based experiments indicated that the hybrid molecules inhibit membrane disruption and cytotoxicity induced by these amyloids. Furthermore, in silico studies provided probable mechanistic insights into the interaction of these molecules with the amyloidogenic proteins in their monomeric or aggregated forms, including the role of hydrophobic interaction, hydrogen bond formation, and packing during inhibition of aggregation and fibril disassembly. Our findings may help in designing novel therapeutics toward AD, T2DM, and other proteinopathies based on the naphthoquinone derived hybrid molecules.
Collapse
Affiliation(s)
| | | | | | - Gianfranco Balboni
- Department of Life and Environmental Sciences - Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, via Ospedale 72, I-09124 Cagliari, Italy
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 17-19, I-44121 Ferrara, Italy
| | | | | |
Collapse
|
25
|
Fanni AM, Monge FA, Lin CY, Thapa A, Bhaskar K, Whitten DG, Chi EY. High Selectivity and Sensitivity of Oligomeric p-Phenylene Ethynylenes for Detecting Fibrillar and Prefibrillar Amyloid Protein Aggregates. ACS Chem Neurosci 2019; 10:1813-1825. [PMID: 30657326 DOI: 10.1021/acschemneuro.8b00719] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Misfolding and aggregation of amyloid proteins into fibrillar aggregates is a central pathogenic event in neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's diseases (PD). Currently, there is a lack of reliable sensors for detecting the range of protein aggregates involved in disease etiology, particularly the prefibrillar aggregate conformations that are more neurotoxic. In this study, the fluorescent sensing of two novel oligomeric p-phenylene ethynylenes (OPEs), anionic OPE1- and cationic OPE2+, for detecting prefibrillar and fibrillar aggregates of AD-associated amyloid-β (Aβ40 and Aβ42) and PD-associated α-synuclein proteins (wildtype, and single mutants A30P, E35K, and A53T) over their monomeric counterparts, were tested. Furthermore, the performance of OPEs was evaluated and compared to thioflavin T (ThT), the most widely used fibril dye. Our results show that OPE1- and OPE2+ exhibited aggregate-specific binding inducing large fluorescence turn-on and spectral shifts based on a combination of backbone planarization, hydrophobic unquenching, and superluminescent OPE complex formation sensing modes. OPEs exhibited higher selectivity, higher binding affinity, and comparable limits of detection for Aβ40 fibrils compared to ThT. OPE2+ exhibited the largest fluorescence turn-on and highest sensitivity. Significantly, OPEs detected prefibrillar aggregates of Aβ42 and α-synuclein that ThT failed to detect. The superior sensing performance, the nonprotein specific detection, and the ability to selectively detect fibrillar and prefibrillar amyloid protein aggregates point to the potential of OPEs to overcome the limitations of existing probes and promise significant advancement in the detection of the myriad of protein aggregates involved in the early stages of AD and PD.
Collapse
|
26
|
Congo Red and amyloids: history and relationship. Biosci Rep 2019; 39:BSR20181415. [PMID: 30567726 PMCID: PMC6331669 DOI: 10.1042/bsr20181415] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
Staining with Congo Red (CR) is a qualitative method used for the identification of amyloids in vitro and in tissue sections. However, the drawbacks and artefacts obtained when using this dye can be found both in vitro and in vivo. Analysis of scientific data from previous studies shows that CR staining alone is not sufficient for confirmation of the amyloid nature of protein aggregates in vitro or for diagnosis of amyloidosis in tissue sections. In the present paper, we describe the characteristics and limitations of other methods used for amyloid studies. Our historical review on the use of CR staining for amyloid studies may provide insight into the pitfalls and caveats related to this technique for researchers considering using this dye.
Collapse
|
27
|
Luz D, Amaral MM, Sacerdoti F, Bernal AM, Quintilio W, Moro AM, Palermo MS, Ibarra C, Piazza RMF. Human Recombinant Fab Fragment Neutralizes Shiga Toxin Type 2 Cytotoxic Effects in vitro and in vivo. Toxins (Basel) 2018; 10:E508. [PMID: 30513821 PMCID: PMC6315604 DOI: 10.3390/toxins10120508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin (Stx) producing Escherichia coli (STEC) is responsible for causing hemolytic uremic syndrome (HUS), a life-threatening thrombotic microangiopathy characterized by thrombocytopenia, hemolytic anemia, and acute renal failure after bacterially induced hemorrhagic diarrhea. Until now, there has been neither an effective treatment nor method of prevention for the deleterious effects caused by Stx intoxication. Antibodies are well recognized as affinity components of therapeutic drugs; thus, a previously obtained recombinant human FabC11:Stx2 fragment was used to neutralize Stx2 in vitro in a Vero cell viability assay. Herein, we demonstrated that this fragment neutralized, in a dose-dependent manner, the cytotoxic effects of Stx2 on human glomerular endothelial cells, on human proximal tubular epithelial cells, and prevented the morphological alterations induced by Stx2. FabC11:Stx2 protected mice from a lethal dose of Stx2 by toxin-antibody pre-incubation. Altogether, our results show the ability of a new encouraging molecule to prevent Stx-intoxication symptoms during STEC infection.
Collapse
Affiliation(s)
- Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503900, Brasil.
| | - Maria Marta Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121, Argentina.
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121, Argentina.
| | - Alan Mauro Bernal
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires C1425, Argentina.
| | - Wagner Quintilio
- Laboratório de Biofármacos em Células Animais, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Ana Maria Moro
- Laboratório de Biofármacos em Células Animais, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires C1425, Argentina.
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121, Argentina.
| | | |
Collapse
|
28
|
Salveson PJ, Haerianardakani S, Thuy-Boun A, Yoo S, Kreutzer AG, Demeler B, Nowick JS. Repurposing Triphenylmethane Dyes to Bind to Trimers Derived from Aβ. J Am Chem Soc 2018; 140:11745-11754. [PMID: 30125493 PMCID: PMC6339561 DOI: 10.1021/jacs.8b06568] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Soluble oligomers of the β-amyloid peptide, Aβ, are associated with the progression of Alzheimer's disease. Although many small molecules bind to these assemblies, the details of how these molecules interact with Aβ oligomers remain unknown. This paper reports that crystal violet, and other C3 symmetric triphenylmethane dyes, bind to C3 symmetric trimers derived from Aβ17-36. Binding changes the color of the dyes from purple to blue, and causes them to fluoresce red when irradiated with green light. Job plot and analytical ultracentrifugation experiments reveal that two trimers complex with one dye molecule. Studies with several triphenylmethane dyes reveal that three N, N-dialkylamino substituents are required for complexation. Several mutant trimers, in which Phe19, Phe20, and Ile31 were mutated to cyclohexylalanine, valine, and cyclohexylglycine, were prepared to probe the triphenylmethane dye binding site. Size exclusion chromatography, SDS-PAGE, and X-ray crystallographic studies demonstrate that these mutations do not impact the structure or assembly of the triangular trimer. Fluorescence spectroscopy and analytical ultracentrifugation experiments reveal that the dye packs against an aromatic surface formed by the Phe20 side chains and is clasped by the Ile31 side chains. Docking and molecular modeling provide a working model of the complex in which the triphenylmethane dye is sandwiched between two triangular trimers. Collectively, these findings demonstrate that the X-ray crystallographic structures of triangular trimers derived from Aβ can be used to guide the discovery of ligands that bind to soluble oligomers derived from Aβ.
Collapse
Affiliation(s)
- Patrick J. Salveson
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025
| | | | - Alexander Thuy-Boun
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025
| | - Stan Yoo
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025
| | - Adam G. Kreutzer
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025
| | - Borries Demeler
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - James S. Nowick
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025
| |
Collapse
|
29
|
Chatterjee D, Bhatt M, Butler D, De Genst E, Dobson CM, Messer A, Kordower JH. Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson's disease model. NPJ PARKINSONS DISEASE 2018; 4:25. [PMID: 30155513 PMCID: PMC6105584 DOI: 10.1038/s41531-018-0062-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/02/2023]
Abstract
Therapeutics designed to target α-synuclein (α-syn) aggregation may be critical in halting the progression of pathology in Parkinson's disease (PD) patients. Nanobodies are single-domain antibody fragments that bind with antibody specificity, but allow readier genetic engineering and delivery. When expressed intracellularly as intrabodies, anti-α-syn nanobodies fused to a proteasome-targeting proline, aspartate or glutamate, serine, and threonine (PEST) motif can modulate monomeric concentrations of target proteins. Here we aimed to validate and compare the in vivo therapeutic potential of gene therapy delivery of two proteasome-directed nanobodies selectively targeting α-syn in a synuclein overexpression-based PD model: VH14*PEST (non-amyloid component region) and NbSyn87*PEST (C-terminal region). Stereotaxic injections of adeno-associated viral 5-α-syn (AAV5-α-syn) into the substantia nigra (SN) were performed in Sprague-Dawley rats that were sorted into three cohorts based on pre-operative behavioral testing. Rats were treated with unilateral SN injections of vectors for VH14*PEST, NbSyn87*PEST, or injected with saline 3 weeks post lesion. Post-mortem assessments of the SN showed that both nanobodies markedly reduced the level of phosphorylated Serine-129 α-syn labeling relative to saline-treated animals. VH14*PEST showed considerable maintenance of striatal dopaminergic tone in comparison to saline-treated and NbSyn87*PEST-treated animals as measured by tyrosine hydroxylase immunoreactivity (optical density), DAT immunoreactivity (optical density), and dopamine concentration (high-performance liquid chromatography). Microglial accumulation and inflammatory response, assessed by stereological counts of Iba-1-labeled cells, was modestly increased in NbSyn87*PEST-injected rats but not in VH14*PEST-treated or saline-treated animals. Modest behavioral rescue was also observed, although there was pronounced variability among individual animals. These data validate in vivo therapeutic efficacy of vector-delivered intracellular nanobodies targeting α-syn misfolding and aggregation in synucleinopathies such as PD.
Collapse
Affiliation(s)
- Diptaman Chatterjee
- 1Department of Neurological Sciences, Rush University Medical Center, Chicago, IL c60612 USA
| | - Mansi Bhatt
- 1Department of Neurological Sciences, Rush University Medical Center, Chicago, IL c60612 USA
| | - David Butler
- 2Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144 USA.,3Department of Biomedical Sciences, University at Albany, Albany, NY 12208 USA
| | - Erwin De Genst
- 4Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Christopher M Dobson
- 4Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Anne Messer
- 2Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144 USA.,3Department of Biomedical Sciences, University at Albany, Albany, NY 12208 USA
| | - Jeffrey H Kordower
- 1Department of Neurological Sciences, Rush University Medical Center, Chicago, IL c60612 USA.,5Van Andel Research Institute, Grand Rapids, MI 49503 USA
| |
Collapse
|
30
|
Manoutcharian K, Perez-Garmendia R, Gevorkian G. Recombinant Antibody Fragments for Neurodegenerative Diseases. Curr Neuropharmacol 2018; 15:779-788. [PMID: 27697033 PMCID: PMC5771054 DOI: 10.2174/1570159x01666160930121647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/04/2016] [Accepted: 09/28/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recombinant antibody fragments are promising alternatives to full-length immunoglobulins and offer important advantages compared with conventional monoclonal antibodies: extreme specificity, higher affinity, superior stability and solubility, reduced immunogenicity as well as easy and inexpensive large-scale production. OBJECTIVE In this article we will review and discuss recombinant antibodies that are being evaluated for neurodegenerative diseases in pre-clinical models and in clinical studies and will summarize new strategies that are being developed to optimize their stability, specificity and potency for advancing their use. METHODS Articles describing recombinant antibody fragments used for neurological diseases were selected (PubMed) and evaluated for their significance. RESULTS Different antibody formats such as single-chain fragment variable (scFv), single-domain antibody fragments (VHHs or sdAbs), bispecific antibodies (bsAbs), intrabodies and nanobodies, are currently being studied in pre-clinical models of cancer as well as infectious and autoimmune diseases and many of them are being tested as therapeutics in clinical trials. Immunotherapy approaches have shown therapeutic efficacy in several animal models of Alzheimer´s disease (AD), Parkinson disease (PD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), Huntington disease (HD), transmissible spongiform encephalopathies (TSEs) and multiple sclerosis (MS). It has been demonstrated that recombinant antibody fragments may neutralize toxic extra- and intracellular misfolded proteins involved in the pathogenesis of AD, PD, DLB, FTD, HD or TSEs and may target toxic immune cells participating in the pathogenesis of MS. CONCLUSION Recombinant antibody fragments represent a promising tool for the development of antibody-based immunotherapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF. Mexico
| | - Roxanna Perez-Garmendia
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF. Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico. 0
| |
Collapse
|
31
|
Nikoleli GP, Nikolelis DP, Siontorou CG, Karapetis S, Varzakas T. Novel Biosensors for the Rapid Detection of Toxicants in Foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 84:57-102. [PMID: 29555073 DOI: 10.1016/bs.afnr.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The modern environmental and food analysis requires sensitive, accurate, and rapid methods. The growing field of biosensors represents an answer to this demand. Unfortunately, most biosensor systems have been tested only on distilled water or buffered solutions, although applications to real samples are increasingly appearing in recent years. In this context, biosensors for potential food applications continue to show advances in areas such as genetic modification of enzymes and microorganisms, improvement of recognition element immobilization, and sensor interfaces. This chapter investigates the progress in the development of biosensors for the rapid detection of food toxicants for online applications. Recent progress in nanotechnology has produced affordable, mass-produced devices, and to integrate these into components and systems (including portable ones) for mass market applications for food toxicants monitoring. Sensing includes chemical and microbiological food toxicants, such as toxins, insecticides, pesticides, herbicides, microorganisms, bacteria, viruses and other microorganisms, phenolic compounds, allergens, genetically modified foods, hormones, dioxins, etc. Therefore, the state of the art of recent advances and future targets in the development of biosensors for food monitoring is summarized as follows: biosensors for food analysis will be highly sensitive, selective, rapidly responding, real time, massively parallel, with no or minimum sample preparation, and platform suited to portable and handheld nanosensors for the rapid detection of food toxicants for online uses even by nonskilled personnel.
Collapse
Affiliation(s)
- Georgia-Paraskevi Nikoleli
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Chemical Sciences, National Technical University of Athens, Athens, Greece
| | | | - Christina G Siontorou
- Laboratory of Simulation of Industrial Processes, School of Maritime and Industry, University of Piraeus, Piraeus, Greece
| | - Stephanos Karapetis
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Chemical Sciences, National Technical University of Athens, Athens, Greece
| | - Theo Varzakas
- Laboratory of Inorganic Chemistry, University of Athens, Athens, Greece; Technological Educational Institute of Peloponnese, Kalamata, Greece
| |
Collapse
|
32
|
Iezzi ME, Policastro L, Werbajh S, Podhajcer O, Canziani GA. Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment. Front Immunol 2018. [PMID: 29520274 PMCID: PMC5827546 DOI: 10.3389/fimmu.2018.00273] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies and their fragments have significantly changed the outcome of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody-dependent immune effector cell activation and complement mediated cell death. Along with a continued expansion in number, diversity, and complexity of validated tumor targets there is an increasing focus on engineering recombinant antibody fragments for lead development. Single-domain antibodies (sdAbs), in particular those engineered from the variable heavy-chain fragment (VHH gene) found in Camelidae heavy-chain antibodies (or IgG2 and IgG3), are the smallest fragments that retain the full antigen-binding capacity of the antibody with advantageous properties as drugs. For similar reasons, growing attention is being paid to the yet smaller variable heavy chain new antigen receptor (VNAR) fragments found in Squalidae. sdAbs have been selected, mostly from immune VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell membrane receptors, or block cytoplasmic targets. This succinct review is a compilation of recent data documenting the application of engineered, recombinant sdAb in the clinic as epitope recognition “modules” to build monomeric, dimeric and multimeric ligands that target, tag and stall solid tumor growth in vivo. Size, affinity, specificity, and the development profile of sdAbs drugs are seemingly consistent with desirable clinical efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and called for a thorough pre-screening of the immune and poly-specific reactivities of the sdAb leads.
Collapse
Affiliation(s)
- María Elena Iezzi
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Policastro
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio Nanomedicina, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Comisión Nacional de Energía Atómica, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago Werbajh
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Osvaldo Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Alicia Canziani
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
33
|
Zhang Y, Yates EV, Hong L, Saar KL, Meisl G, Dobson CM, Knowles TPJ. On-chip measurements of protein unfolding from direct observations of micron-scale diffusion. Chem Sci 2018; 9:3503-3507. [PMID: 29780480 PMCID: PMC5934698 DOI: 10.1039/c7sc04331g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/09/2018] [Indexed: 11/26/2022] Open
Abstract
The unfolding process of BSA in solution as a function of pH was studied by microfluidic diffusional sizing device.
Investigations of protein folding, unfolding and stability are critical for the understanding of the molecular basis of biological structure and function. We describe here a microfluidic approach to probe the unfolding of unlabelled protein molecules in microliter volumes. We achieve this objective through the use of a microfluidic platform, which allows the changes in molecular diffusivity upon folding and unfolding to be detected directly. We illustrate this approach by monitoring the unfolding of bovine serum albumin in solution as a function of pH. These results show the viability of probing protein stability on chip in small volumes.
Collapse
Affiliation(s)
- Yuewen Zhang
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336344
| | - Emma V Yates
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336344
| | - Liu Hong
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336344.,Zhou Pei-Yuan Center for Applied Mathematics , Tsinghua University , Beijing , 10084 , P. R. China
| | - Kadi L Saar
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336344
| | - Georg Meisl
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336344
| | - Christopher M Dobson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336344
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336344.,Cavendish Laboratory , University of Cambridge , J J Thomson Avenue , Cambridge , CB3 0HE , UK
| |
Collapse
|
34
|
Transthyretin familial amyloid polyneuropathy: an update. J Neurol 2017; 265:976-983. [PMID: 29249054 DOI: 10.1007/s00415-017-8708-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/18/2022]
Abstract
Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a progressive, fatal, inherited disorder first identified in Portugal and now recognized in all continents. Over the past decade, thanks to the availability of the genetic test, our knowledge on the range of clinical expressions of this disorder has expanded, including different patterns and progression rates of the neuropathy, as well as aspects of the cardiomyopathy, which can be prominent. In the mean time, new tools are being developed to detect earlier TTR amyloid deposition such as cardiac scintigraphy with technetium-labelled pyrophosphate tracers or small nerve fiber alterations from skin biopsies, or using neurophysiological approaches as well as magnetic resonance neurography (MRN). Such refinements, along with an increased awareness of the disease, should reduce the diagnostic delay and facilitate early treatment. In this regard, thanks to a better understanding of the TTR amyloid formation, major advances have been made, allowing for therapeutic developments which are less invasive than liver transplantation (LT). TTR stabilizer drugs are safe and seem to delay the disease progression in some groups of patients. Indeed, positive results have just been released from 2 phase III trials on TTR gene modifiers, namely silencing RNA and antisense oligonucleotide therapies. These recent advances open a new area in the field with the hope that we can safely bring about long-term stabilization of the disease. Furthermore, immunotherapies targeting the amyloid deposits are being explored.
Collapse
|
35
|
Zhao J, Nussinov R, Ma B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J Biol Chem 2017; 292:18325-18343. [PMID: 28924036 PMCID: PMC5672054 DOI: 10.1074/jbc.m117.801514] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/26/2017] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease is one of the most devastating neurodegenerative diseases without effective therapies. Immunotherapy is a promising approach, but amyloid antibody structural information is limited. Here we simulate the recognition of monomeric, oligomeric, and fibril amyloid-β (Aβ) by three homologous antibodies (solanezumab, crenezumab, and their chimera, CreneFab). Solanezumab only binds the monomer, whereas crenezumab and CreneFab can recognize different oligomerization states; however, the structural basis for this observation is not understood. We successfully identified stable complexes of crenezumab with Aβ pentamer (oligomer model) and 16-mer (fibril model). It is noteworthy that solanezumab targets Aβ residues 16-26 preferentially in the monomeric state; conversely, crenezumab consistently targets residues 13-16 in different oligomeric states. Unlike the buried monomeric peptide in solanezumab's complementarity-determining region, crenezumab binds the oligomer's lateral and edge residues. Surprisingly, crenezumab's complementarity-determining region loops can effectively bind the Aβ fibril lateral surface around the same 13-16 region. The constant domain influences antigen recognition through entropy redistribution. Different constant domain residues in solanezumab/crenezumab/chimera influence the binding of Aβ aggregates. Collectively, we provide molecular insight into the recognition mechanisms facilitating antibody design.
Collapse
MESH Headings
- Amyloid/antagonists & inhibitors
- Amyloid/chemistry
- Amyloid/metabolism
- Amyloid beta-Peptides/antagonists & inhibitors
- Amyloid beta-Peptides/chemistry
- Amyloid beta-Peptides/metabolism
- Animals
- Antibodies/chemistry
- Antibodies/genetics
- Antibodies/metabolism
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/metabolism
- Antibody Specificity
- Binding Sites, Antibody
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Drug Design
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Weight
- Nootropic Agents/chemistry
- Nootropic Agents/metabolism
- Protein Aggregates
- Protein Aggregation, Pathological/metabolism
- Protein Conformation
- Protein Engineering
- Protein Multimerization
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Structural Homology, Protein
Collapse
Affiliation(s)
- Jun Zhao
- From the Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland 21702
| | - Ruth Nussinov
- the Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland 21702, and
- the Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- the Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland 21702, and
| |
Collapse
|
36
|
HDAC6 Suppresses Age-Dependent Ectopic Fat Accumulation by Maintaining the Proteostasis of PLIN2 in Drosophila. Dev Cell 2017; 43:99-111.e5. [DOI: 10.1016/j.devcel.2017.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/01/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023]
|
37
|
Donabedian P, Evanoff M, Monge FA, Whitten DG, Chi EY. Substituent, Charge, and Size Effects on the Fluorogenic Performance of Amyloid Ligands: A Small-Library Screening Study. ACS OMEGA 2017; 2:3192-3200. [PMID: 30023689 PMCID: PMC6044928 DOI: 10.1021/acsomega.7b00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/01/2017] [Indexed: 05/24/2023]
Abstract
Developing new molecular ligands for the direct detection and tracking of amyloid protein aggregates is key to understanding and defeating myriad neurodegenerative and other disorders including Alzheimer's and Parkinson's diseases. A crucial factor in the performance of an amyloid dye is its ability to detect the amyloid structural motif independent of the sequence of the amyloid-forming protomer. The current study investigates structure-function relationships of a class of novel phenyleneethynylene (PPE)-based dyes and fluorescent polymers using amyloid fibrils formed by two model proteins: lysozyme and insulin. A small library of 18 PPE compounds that vary in molecular weights, charge densities, water solubilities, and types and geometries of functional groups was tested. One compound, the small anionic oligo(p-phenylene ethynylene) electrolyte OPE1, was identified as a selective sensor for the amyloid conformation of both lysozyme and insulin. On the basis of protein binding and photophysical changes observed in the dye from this set of PPE compounds, keys to the selective detection of the amyloid protein conformation include moderate size, negative charge, and substituents that provide high microenvironment sensitivity to the fluorescence yield. These principles can serve as a guide for the further refinement of the effective amyloid-sensing molecules.
Collapse
Affiliation(s)
- Patrick
L. Donabedian
- Nanoscience and Microsystems Engineering Graduate
Program, Center for Biomedical
Engineering, Biomedical Engineering Graduate Program, and Department of Chemical and Biological
Engineering, University of New Mexico, MSC01 1141, Albuquerque, New Mexico 87131, United States
| | - Mallory Evanoff
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Florencia A. Monge
- Nanoscience and Microsystems Engineering Graduate
Program, Center for Biomedical
Engineering, Biomedical Engineering Graduate Program, and Department of Chemical and Biological
Engineering, University of New Mexico, MSC01 1141, Albuquerque, New Mexico 87131, United States
| | - David G. Whitten
- Nanoscience and Microsystems Engineering Graduate
Program, Center for Biomedical
Engineering, Biomedical Engineering Graduate Program, and Department of Chemical and Biological
Engineering, University of New Mexico, MSC01 1141, Albuquerque, New Mexico 87131, United States
| | - Eva Y. Chi
- Nanoscience and Microsystems Engineering Graduate
Program, Center for Biomedical
Engineering, Biomedical Engineering Graduate Program, and Department of Chemical and Biological
Engineering, University of New Mexico, MSC01 1141, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
38
|
Silk micrococoons for protein stabilisation and molecular encapsulation. Nat Commun 2017; 8:15902. [PMID: 28722016 PMCID: PMC5524934 DOI: 10.1038/ncomms15902] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/12/2017] [Indexed: 12/21/2022] Open
Abstract
Naturally spun silks generate fibres with unique properties, including strength, elasticity and biocompatibility. Here we describe a microfluidics-based strategy to spin liquid native silk, obtained directly from the silk gland of Bombyx mori silkworms, into micron-scale capsules with controllable geometry and variable levels of intermolecular β-sheet content in their protein shells. We demonstrate that such micrococoons can store internally the otherwise highly unstable liquid native silk for several months and without apparent effect on its functionality. We further demonstrate that these native silk micrococoons enable the effective encapsulation, storage and release of other aggregation-prone proteins, such as functional antibodies. These results show that native silk micrococoons are capable of preserving the full activity of sensitive cargo proteins that can aggregate and lose function under conditions of bulk storage, and thus represent an attractive class of materials for the storage and release of active biomolecules. Silk fibres currently used in biotechnology are chemically reconstituted silk fibroins (RSF), which are more stable than native silk fibroin (NSF) but possess different biophysical properties. Here, the authors use microfluidic droplets to encapsulate and store NSF, preserving their native structure.
Collapse
|
39
|
Cremades N, Dobson CM. The contribution of biophysical and structural studies of protein self-assembly to the design of therapeutic strategies for amyloid diseases. Neurobiol Dis 2017; 109:178-190. [PMID: 28709995 DOI: 10.1016/j.nbd.2017.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/26/2017] [Accepted: 07/10/2017] [Indexed: 01/26/2023] Open
Abstract
Many neurodegenerative disorders, including Alzheimer's, Parkinson's and the prion diseases, are characterized by a conformational conversion of normally soluble proteins or peptides into pathological species, by a process of misfolding and self-assembly that leads ultimately to the formation of amyloid fibrils. Recent studies support the idea that multiple intermediate species with a wide variety of degrees of neuronal toxicity are generated during such processes. The development of a high level of knowledge of the nature and structure of the pathogenic amyloid species would significantly enhance efforts to underline the molecular origins of these disorders and also to develop both accurate diagnoses and effective therapeutic interventions for these types of conditions. In this review, we discuss recent biophysical and structural information concerning different types of amyloid aggregates and the way in which such information can guide rational therapeutic approaches designed to target specific pathogenic events that occur during the development of these highly debilitating and increasingly common diseases.
Collapse
Affiliation(s)
- Nunilo Cremades
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain.
| | - Christopher M Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
40
|
Iljina M, Hong L, Horrocks MH, Ludtmann MH, Choi ML, Hughes CD, Ruggeri FS, Guilliams T, Buell AK, Lee JE, Gandhi S, Lee SF, Bryant CE, Vendruscolo M, Knowles TPJ, Dobson CM, De Genst E, Klenerman D. Nanobodies raised against monomeric ɑ-synuclein inhibit fibril formation and destabilize toxic oligomeric species. BMC Biol 2017; 15:57. [PMID: 28673288 PMCID: PMC5496350 DOI: 10.1186/s12915-017-0390-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022] Open
Abstract
Background The aggregation of the protein ɑ-synuclein (ɑS) underlies a range of increasingly common neurodegenerative disorders including Parkinson’s disease. One widely explored therapeutic strategy for these conditions is the use of antibodies to target aggregated ɑS, although a detailed molecular-level mechanism of the action of such species remains elusive. Here, we characterize ɑS aggregation in vitro in the presence of two ɑS-specific single-domain antibodies (nanobodies), NbSyn2 and NbSyn87, which bind to the highly accessible C-terminal region of ɑS. Results We show that both nanobodies inhibit the formation of ɑS fibrils. Furthermore, using single-molecule fluorescence techniques, we demonstrate that nanobody binding promotes a rapid conformational conversion from more stable oligomers to less stable oligomers of ɑS, leading to a dramatic reduction in oligomer-induced cellular toxicity. Conclusions The results indicate a novel mechanism by which diseases associated with protein aggregation can be inhibited, and suggest that NbSyn2 and NbSyn87 could have significant therapeutic potential. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0390-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marija Iljina
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Liu Hong
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, 100084, China
| | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Marthe H Ludtmann
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Minee L Choi
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Craig D Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Francesco S Ruggeri
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tim Guilliams
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Present address: Healx Ltd., St John's Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK
| | - Alexander K Buell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Present address: Institute of Physical Biology, University of Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Ji-Eun Lee
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sonia Gandhi
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. .,Present address: Astra Zeneca, Innovative Medicines Discovery Sciences Unit 310, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
41
|
Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, McCampbell A, Leblanc G, Venkateswaran A, Nurmi A, Hodgson R. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 2017; 6:6. [PMID: 28293421 PMCID: PMC5348787 DOI: 10.1186/s40035-017-0077-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
A hallmark of neurodegenerative proteinopathies is the formation of misfolded protein aggregates that cause cellular toxicity and contribute to cellular proteostatic collapse. Therapeutic options are currently being explored that target different steps in the production and processing of proteins implicated in neurodegenerative disease, including synthesis, chaperone-assisted folding and trafficking, and degradation via the proteasome and autophagy pathways. Other therapies, like mTOR inhibitors and activators of the heat shock response, can rebalance the entire proteostatic network. However, there are major challenges that impact the development of novel therapies, including incomplete knowledge of druggable disease targets and their mechanism of action as well as a lack of biomarkers to monitor disease progression and therapeutic response. A notable development is the creation of collaborative ecosystems that include patients, clinicians, basic and translational researchers, foundations and regulatory agencies to promote scientific rigor and clinical data to accelerate the development of therapies that prevent, reverse or delay the progression of neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Patrick Sweeney
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
- Royal Veterinary College, University of London, London, UK
| | - Hyunsun Park
- Health & Life Science Consulting, Los Angeles, CA USA
| | - Marc Baumann
- Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - John Dunlop
- Neuroscience Innovation Medicines, Astra Zeneca, Cambridge, MA USA
| | | | | | | | | | | | - Antti Nurmi
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| | - Robert Hodgson
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| |
Collapse
|
42
|
Zhao J, Nussinov R, Ma B. Allosteric control of antibody-prion recognition through oxidation of a disulfide bond between the CH and CL chains. Protein Eng Des Sel 2017; 30:67-76. [PMID: 27899437 PMCID: PMC5157118 DOI: 10.1093/protein/gzw065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/05/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Molecular details of the recognition of disordered antigens by their cognate antibodies have not been studied as extensively as folded protein antigens and much is still unknown. To follow the conformational changes in the antibody and cross-talk between its subunits and with antigens, we performed molecular dynamics (MD) simulations of the complex of Fab and prion-associated peptide in the apo and bound forms. We observed that the inter-chain disulfide bond in constant domains restrains the conformational changes of Fab, especially the loops in the CH1 domain, resulting in inhibition of the cross-talk between Fab subdomains that thereby may prevent prion peptide binding. We further identified several negative and positive correlations of motions between the peptide and Fab constant domains, which suggested structural cross-talks between the constant domains and the antigen. The cross-talk was influenced by the inter-chain disulfide bond, which reduced the number of paths between them. Importantly, network analysis of the complex and its bound water molecules observed that those water molecules form an integral part of the Fab/peptide complex network and potential allosteric pathways. On-going work focuses on developing strategies aimed to incorporate these new network communications-including the associated water molecules-toward the grand challenge of antibody design.
Collapse
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Genetics and Molecular Medicine, Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
43
|
Butler DC, Joshi SN, Genst ED, Baghel AS, Dobson CM, Messer A. Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ. PLoS One 2016; 11:e0165964. [PMID: 27824888 PMCID: PMC5100967 DOI: 10.1371/journal.pone.0165964] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022] Open
Abstract
Misfolding, abnormal accumulation, and secretion of α-Synuclein (α-Syn) are closely associated with synucleinopathies, including Parkinson’s disease (PD). VH14 is a human single domain intrabody selected against the non-amyloid component (NAC) hydrophobic interaction region of α-Syn, which is critical for initial aggregation. Using neuronal cell lines, we show that as a bifunctional nanobody fused to a proteasome targeting signal, VH14PEST can counteract heterologous proteostatic effects of mutant α-Syn on mutant huntingtin Exon1 and protect against α-Syn toxicity using propidium iodide or Annexin V readouts. We compared this anti-NAC candidate to NbSyn87, which binds to the C-terminus of α-Syn. NbSyn87PEST degrades α-Syn as well or better than VH14PEST. However, while both candidates reduced toxicity, VH14PEST appears more effective in both proteostatic stress and toxicity assays. These results show that the approach of reducing intracellular monomeric targets with novel antibody engineering technology should allow in vivo modulation of proteostatic pathologies.
Collapse
Affiliation(s)
- David C. Butler
- Neural Stem Cell Institute, Rensselaer, NY, 12144, United States of America; and Department of Biomedical Sciences; University at Albany, Albany, NY, 12208, United States of America
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States of America
| | - Shubhada N. Joshi
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States of America
| | - Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Ankit S. Baghel
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States of America
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Anne Messer
- Neural Stem Cell Institute, Rensselaer, NY, 12144, United States of America; and Department of Biomedical Sciences; University at Albany, Albany, NY, 12208, United States of America
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States of America
- * E-mail:
| |
Collapse
|
44
|
Ma B, Zhao J, Nussinov R. Conformational selection in amyloid-based immunotherapy: Survey of crystal structures of antibody-amyloid complexes. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:2672-81. [PMID: 27266343 PMCID: PMC5610039 DOI: 10.1016/j.bbagen.2016.05.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/05/2016] [Accepted: 05/31/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND The dominant feature in neurodegenerative diseases is protein aggregations that lead to neuronal loss. Immunotherapies using antibodies or antibody fragments to target the aggregations are a highly perused approach. The molecular mechanisms underlying the amyloid-based immunotherapy are complex. Deciphering the properties of amyloidogenic proteins responsible for these diseases is essential to obtain insights into antibody recognition of the amyloid antigens. SCOPE OF REVIEW We systematically explore all available crystal structures of antibody-amyloid complexes related to neurodegenerative diseases, including antibodies that recognize the Aβ peptide, tau protein, prion protein, alpha-synuclein, huntingtin protein (mHTT), and polyglutamine. MAJOR CONCLUSIONS We found that antibodies mostly use the conformational selection mechanism to recognize the highly flexible amyloid antigens. In particular, solanezumab bound to Aβ12-28 tripeptide motif conformation (F19F20A21), which is shared with the Aβ42 fibril. This motif, which is trapped by the antibody, may provide the missing link in amyloid formation. Water molecules often bridge between the antibody and amyloid, contributing to the recognition. GENERAL SIGNIFICANCE This paper provides the structural basis for antibody recognition of amyloidogenic proteins. The analysis and discussion of known structures are expected to help in the design and optimization of antibodies in neurodegenerative diseases. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States.
| | - Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
45
|
Zhao J, Ma B, Nussinov R. Compilation and Analysis of Enzymes, Engineered Antibodies, and Nanoparticles Designed to Interfere with Amyloid-β Aggregation. Isr J Chem 2016. [DOI: 10.1002/ijch.201600093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
| | - Buyong Ma
- Basic Science Program; Leidos Biomedical Research, Inc.; Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
| | - Ruth Nussinov
- Basic Science Program; Leidos Biomedical Research, Inc.; Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
- Sackler Institute of Molecular Medicine; Department of Human Genetics and Molecular Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
46
|
Higaki JN, Chakrabartty A, Galant NJ, Hadley KC, Hammerson B, Nijjar T, Torres R, Tapia JR, Salmans J, Barbour R, Tam SJ, Flanagan K, Zago W, Kinney GG. Novel conformation-specific monoclonal antibodies against amyloidogenic forms of transthyretin. Amyloid 2016; 23:86-97. [PMID: 26981744 PMCID: PMC4898150 DOI: 10.3109/13506129.2016.1148025] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Transthyretin amyloidosis (ATTR amyloidosis) is caused by the misfolding and deposition of the transthyretin (TTR) protein and results in progressive multi-organ dysfunction. TTR epitopes exposed by dissociation and misfolding are targets for immunotherapeutic antibodies. We developed and characterized antibodies that selectively bound to misfolded, non-native conformations of TTR. METHODS Antibody clones were generated by immunizing mice with an antigenic peptide comprising a cryptotope within the TTR sequence and screened for specific binding to non-native TTR conformations, suppression of in vitro TTR fibrillogenesis, promotion of antibody-dependent phagocytic uptake of mis-folded TTR and specific immunolabeling of ATTR amyloidosis patient-derived tissue. RESULTS Four identified monoclonal antibodies were characterized. These antibodies selectively bound the target epitope on monomeric and non-native misfolded forms of TTR and strongly suppressed TTR fibril formation in vitro. These antibodies bound fluorescently tagged aggregated TTR, targeting it for phagocytic uptake by macrophage THP-1 cells, and amyloid-positive TTR deposits in heart tissue from patients with ATTR amyloidosis, but did not bind to other types of amyloid deposits or normal tissue. CONCLUSIONS Conformation-specific anti-TTR antibodies selectively bind amyloidogenic but not native TTR. These novel antibodies may be therapeutically useful in preventing deposition and promoting clearance of TTR amyloid and in diagnosing TTR amyloidosis.
Collapse
Affiliation(s)
| | - Avi Chakrabartty
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada , and
| | - Natalie J Galant
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada , and
| | - Kevin C Hadley
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada , and
| | | | | | - Ronald Torres
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Jose R Tapia
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Joshua Salmans
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Robin Barbour
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Stephen J Tam
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Ken Flanagan
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Wagner Zago
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Gene G Kinney
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| |
Collapse
|
47
|
Jefferis R. Posttranslational Modifications and the Immunogenicity of Biotherapeutics. J Immunol Res 2016; 2016:5358272. [PMID: 27191002 PMCID: PMC4848426 DOI: 10.1155/2016/5358272] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/20/2016] [Indexed: 12/23/2022] Open
Abstract
Whilst the amino acid sequence of a protein is determined by its gene sequence, the final structure and function are determined by posttranslational modifications (PTMs), including quality control (QC) in the endoplasmic reticulum (ER) and during passage through the Golgi apparatus. These processes are species and cell specific and challenge the biopharmaceutical industry when developing a production platform for the generation of recombinant biologic therapeutics. Proteins and glycoproteins are also subject to chemical modifications (CMs) both in vivo and in vitro. The individual is naturally tolerant to molecular forms of self-molecules but nonself variants can provoke an immune response with the generation of anti-drug antibodies (ADA); aggregated forms can exhibit enhanced immunogenicity and QC procedures are developed to avoid or remove them. Monoclonal antibody therapeutics (mAbs) are a special case because their purpose is to bind the target, with the formation of immune complexes (ICs), a particular form of aggregate. Such ICs may be removed by phagocytic cells that have antigen presenting capacity. These considerations may frustrate the possibility of ameliorating the immunogenicity of mAbs by rigorous exclusion of aggregates from drug product. Alternate strategies for inducing immunosuppression or tolerance are discussed.
Collapse
Affiliation(s)
- Roy Jefferis
- Institute of Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
48
|
Marciani DJ. A retrospective analysis of the Alzheimer's disease vaccine progress - The critical need for new development strategies. J Neurochem 2016; 137:687-700. [PMID: 26990863 DOI: 10.1111/jnc.13608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022]
Abstract
The promising results obtained with aducanumab and solanezumab against Alzheimer's disease (AD) strengthen the vaccine approach to prevent AD, despite of the many clinical setbacks. It has been problematic to use conjugated peptides with Th1/Th2 adjuvants to induce immune responses against conformational epitopes formed by Aβ oligomers, which is critical to induce protective antibodies. Hence, vaccination should mimic natural immunity by using whole or if possible conjugated antigens, but biasing the response to Th2 with anti-inflammatory adjuvants. Also, selection of the carrier and cross-linking agents is important to prevent suppression of the immune response against the antigen. That certain compounds having phosphorylcholine or fucose induce a sole Th2 immunity would allow antigens with T-cell epitopes without inflammatory autoimmune reactions to be used. Another immunization method is DNA vaccines combined with antigenic ones, which favors the clonal selection and expansion of high affinity antibodies needed for immune protection, but this also requires Th2 immunity. Since AD transgenic mouse models have limited value for immunogen selection as shown by the clinical studies, screening may require the use of validated antibodies and biophysical methods to identify the antigens that would be most likely recognized by the human immune system and thus capable to stimulate a protective antibody response. To induce an anti-Alzheimer's disease protective immunity and prevent possible damage triggered by antigens having B-cell epitopes-only, whole antigens might be used; while inducing Th2 immunity with sole anti-inflammatory fucose-based adjuvants. This approach would avert a damaging systemic inflammatory immunity and the suppression of immunoresponse against the antigen because of carrier and cross-linkers; immune requirements that extend to DNA vaccines.
Collapse
|
49
|
The misfolded pro-inflammatory protein S100A9 disrupts memory via neurochemical remodelling instigating an Alzheimer's disease-like cognitive deficit. Behav Brain Res 2016; 306:106-16. [PMID: 26965570 DOI: 10.1016/j.bbr.2016.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/15/2016] [Accepted: 03/05/2016] [Indexed: 12/14/2022]
Abstract
Memory deficits may develop from a variety of neuropathologies including Alzheimer's disease dementia. During neurodegenerative conditions there are contributory factors such as neuroinflammation and amyloidogenesis involved in memory impairment. In the present study, dual properties of S100A9 protein as a pro-inflammatory and amyloidogenic agent were explored in the passive avoidance memory task along with neurochemical assays in the prefrontal cortex and hippocampus of aged mice. S100A9 oligomers and fibrils were generated in vitro and verified by AFM, Thioflavin T and A11 antibody binding. Native S100A9 as well as S100A9 oligomers and fibrils or their combination were administered intranasally over 14 days followed by behavioral and neurochemical analysis. Both oligomers and fibrils evoked amnestic activity which correlated with disrupted prefrontal cortical and hippocampal dopaminergic neurochemistry. The oligomer-fibril combination produced similar but weaker neurochemistry to the fibrils administered alone but without passive avoidance amnesia. Native S100A9 did not modify memory task performance even though it generated a general and consistent decrease in monoamine levels (DA, 5-HT and NA) and increased metabolic marker ratios of DA and 5-HT turnover (DOPAC/DA, HVA/DA and 5-HIAA) in the prefrontal cortex. These results provide insight into a novel pathogenetic mechanism underlying amnesia in a fear-aggravated memory task based on amyloidogenesis of a pro-inflammatory factor leading to disrupted brain neurochemistry in the aged brain. The data further suggests that amyloid species of S100A9 create deleterious effects principally on the dopaminergic system and this novel finding might be potentially exploited during dementia management through a neuroprotective strategy.
Collapse
|
50
|
La transconformation protéique, nouveau paradigme en neurologie. Rev Neurol (Paris) 2015; 171:825-31. [DOI: 10.1016/j.neurol.2015.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 01/06/2023]
|