1
|
Desilets A, Repetto M, Yang SR, Drilon A. Targeting ROS1 rearrangements in non-small cell lung cancer: Current insights and future directions. Cancer 2025; 131 Suppl 1:e35784. [PMID: 40171848 DOI: 10.1002/cncr.35784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 04/04/2025]
Abstract
ROS1 rearrangements define a molecular subset of non-small cell lung cancer (NSCLC) by accounting for 1%-2% of cases. Targeted therapy with ROS1 tyrosine kinase inhibitors (TKIs) has significantly improved the outcomes for these patients. First-generation inhibitors, such as crizotinib and entrectinib, have demonstrated impressive efficacy, with objective response rates exceeding 60%-70%. However, the emergence of resistance mechanisms, including solvent-front mutations such as ROS1 G2032R, and limited blood-brain barrier penetration have limited the long-term efficacy of early-generation agents. Next-generation TKIs, including lorlatinib, taletrectinib, and repotrectinib, have been developed to overcome these challenges. These agents show enhanced central nervous system (CNS) penetration and activity against on-target ROS1 resistance mutations. Repotrectinib, a potent, CNS-penetrant ROS1 inhibitor, has demonstrated superior activity in both TKI-naive and -resistant tumors, including those harboring the G2032R mutation. Zidesamtinib, a highly selective next-generation ROS1 inhibitor, further addresses TRK-mediated off-target neurological toxicities seen with prior agents, and is poised to offer improved tolerability. Ongoing research is focused on optimizing sequencing strategies for ROS1 inhibitors and exploring combination approaches to prevent or overcome resistance. In addition, the development of novel diagnostic tools, including RNA-based next-generation sequencing, has enhanced the detection of functional ROS1 fusions by ensuring that patients with actionable mutations receive appropriate targeted therapies. These advances highlight the evolving landscape of treatment for ROS1-positive NSCLC, with the aim of maximizing long-term survival and quality of life.
Collapse
Affiliation(s)
- Antoine Desilets
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matteo Repetto
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Soo-Ryum Yang
- Diagnostic Molecular Pathology, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alexander Drilon
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
2
|
Steinestel K, Arndt A. Current Biomarkers in Non-Small Cell Lung Cancer-The Molecular Pathologist's Perspective. Diagnostics (Basel) 2025; 15:631. [PMID: 40075878 PMCID: PMC11899415 DOI: 10.3390/diagnostics15050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Advances in tissue-based biomarkers have significantly enhanced diagnostic and therapeutic approaches in NSCLC, enabling precision medicine strategies. This review provides a comprehensive analysis of the molecular pathologist's practical approach to assessing NSCLC biomarkers across various specimen types (liquid biopsy, broncho-alveolar lavage, transbronchial biopsy/endobronchial ultrasound-guided biopsy, and surgical specimen), including challenges such as biological heterogeneity and preanalytical variability. We discuss the role of programmed death ligand 1 (PD-L1) immunohistochemistry in predicting immunotherapy response, the practice of histopathological tumor regression grading after neoadjuvant chemoimmunotherapy, and the application of DNA- and RNA-based techniques for detecting actionable molecular alterations. Finally, we emphasize the critical need for quality management to ensure the reliability and reproducibility of biomarker testing in NSCLC.
Collapse
Affiliation(s)
- Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, 89081 Ulm, Germany;
| | | |
Collapse
|
3
|
Cai P, Sun H, Jiang T, Li H, Huang D, Hao X, Wang W, Xing W, Liang G. Harnessing TAGAP to improve immunotherapy for lung squamous carcinoma treatment by targeting c-Rel in CD4+ T cells. Cancer Immunol Immunother 2025; 74:114. [PMID: 39998561 PMCID: PMC11861500 DOI: 10.1007/s00262-025-03960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Revealing the immunosenescence, particularly in CD4+ T cell function in lung squamous carcinoma (LUSC) assists in devising individual treatment strategies. This study identifies differentially expressed genes (DEGs) between ROS1 mutated (ROS1MUT) and wild-type (ROS1WT) LUSC samples from the TCGA database. Using WGCNA, immune-related DEGs (IRGs) were screened. Prognostic signatures derived from IRGs were used to compare immune infiltration, chemotherapy sensitivity, and immune-phenotyping score (IPS) between high- and low-risk subgroups. Hub gene abundance in different cell clusters was analyzed via Sc-seq. TAGAP overexpression or silencing was employed to assess its impact on cytokines production and differentiation of CD4+ T cells, downstream c-Rel expression, and tumor progression. High-risk subgroups exhibited decreased infiltration of natural killer, follicular helper T, and CD8+ T cells, but increased plasma, CD4+ memory resting T, and macrophage M2 cells. These subgroups were more sensitive to Sunitinib and CTLA4 blockade. TAGAP expression was significantly reduced in LUSC. Overexpressing TAGAP enhanced CD4+ T cells to produce cytokines, promoted differentiation into Th1/Th17 cells, inhibited Treg conversion, and suppressed LUSC cell phenotype in vitro. TAGAP overexpression in CD4+ T cells also inhibited LUSC tumor growth and boosted immune infiltration in vivo. TAGAP's effects on CD4+ T cells were partly reversed by c-Rel overexpression, highlighting TAGAP's role in rejuvenating CD4+ T cells and exerting anticancer effects by inhibiting c-Rel. This study elucidates the novel therapeutic potential of targeting TAGAP to modulate CD4+ T cell activity in immunotherapy for LUSC.
Collapse
Affiliation(s)
- Peian Cai
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Haibo Sun
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Tongmeng Jiang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Provincial Stem Cell Research Institute, Hainan Medical University, Haikou, 571199, China.
| | - Huawei Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Dejing Huang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xiaopei Hao
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Wei Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Guanghui Liang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
4
|
Shamsnia HS, Peyrovinasab A, Amirlou D, Sirouskabiri S, Rostamian F, Basiri N, Shalmani LM, Hashemi M, Hushmandi K, Abdolghaffari AH. BDNF-TrkB Signaling Pathway in Spinal Cord Injury: Insights and Implications. Mol Neurobiol 2025; 62:1904-1944. [PMID: 39046702 DOI: 10.1007/s12035-024-04381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Spinal cord injury (SCI) is a neurodegenerative disorder that has critical impact on patient's life expectance and life span, and this disorder also leads to negative socioeconomic features. SCI is defined as a firm collision to the spinal cord which leads to the fracture and the dislocation of vertebrae. The current available treatment is surgery. However, it cannot fully treat SCI, and many consequences remain after the surgery. Accordingly, finding new therapeutics is critical. BDNF-TrkB signaling is a vital signaling in neuronal differentiation, survival, overgrowth, synaptic plasticity, etc. Hence, many studies evaluate its impact on various neurodegenerative disorders. There are several studies evaluating this signaling in SCI, and they show promising outcomes. It was shown that various exercises, chemical interventions, etc. had significant positive impact on SCI by affecting BDNF-TrkB signaling pathway. This study aims to accumulate and evaluate these data and inspect whether this signaling is effective or not.
Collapse
Affiliation(s)
- Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirreza Peyrovinasab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Dorsa Amirlou
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shirin Sirouskabiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Rostamian
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasim Basiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Jones K, Keddy C, Jenkins C, Nicholson K, Shinde U, Davare MA. Novel insight into mechanisms of ROS1 catalytic activation via loss of the extracellular domain. Sci Rep 2024; 14:22191. [PMID: 39333184 PMCID: PMC11437283 DOI: 10.1038/s41598-024-71687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
The ROS1 receptor tyrosine kinase (RTK) possesses the largest extracellular amino-terminal domain (ECD) among the human RTK family, yet the mechanisms regulating its activation are not fully understood. While chimeric ROS1 fusion proteins, resulting from chromosomal rearrangements, are well-known oncogenic drivers, their activation mechanisms also remain underexplored. To elucidate the role of the ROS1 ECD in catalytic regulation, we engineered a series of amino-terminal deletion mutants. Our functional studies compared the full-length ROS1 receptor, the CD74-ROS1 oncogenic fusion, and ECD-deleted ROS1 constructs, identifying the ECD regions that inhibit ROS1 tyrosine kinase activity. Notably, we found that deletion of the ROS1 ECD alone significantly increases constitutive catalytic activation and neoplastic transformation in the absence of an amino-terminal fusion partner, challenging the presumed necessity for a dimerization domain in the activation mechanism of kinase fusions in cancer. Our data suggest that inter-genic deletions resulting in the loss of the ECD may be underappreciated oncogenic drivers in cancer. Furthermore, our studies demonstrate that RNASE7 is not a ligand for the ROS1 receptor as previously reported, confirming that ROS1 remains an orphan receptor. Thus, the discovery of a ROS1 ligand remains an important future priority. These findings highlight the potential for disease-associated somatic aberrations or splice variants that modify the ROS1 ECD to promote constitutive receptor activation, warranting further investigation.
Collapse
Affiliation(s)
- Kristen Jones
- Department of Pediatrics, School of Medicine, Papé Pediatric Research Institute, OHSU, Portland, OR, 97239, USA
| | - Clare Keddy
- Department of Pediatrics, School of Medicine, Papé Pediatric Research Institute, OHSU, Portland, OR, 97239, USA
| | - Chelsea Jenkins
- Department of Pediatrics, School of Medicine, Papé Pediatric Research Institute, OHSU, Portland, OR, 97239, USA
| | - Katelyn Nicholson
- Department of Pediatrics, School of Medicine, Papé Pediatric Research Institute, OHSU, Portland, OR, 97239, USA
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Monika A Davare
- Department of Pediatrics, School of Medicine, Papé Pediatric Research Institute, OHSU, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Tóth LJ, Mokánszki A, Méhes G. The rapidly changing field of predictive biomarkers of non-small cell lung cancer. Pathol Oncol Res 2024; 30:1611733. [PMID: 38953007 PMCID: PMC11215025 DOI: 10.3389/pore.2024.1611733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Lung cancer is a leading cause of cancer-related death worldwide in both men and women, however mortality in the US and EU are recently declining in parallel with the gradual cut of smoking prevalence. Consequently, the relative frequency of adenocarcinoma increased while that of squamous and small cell carcinomas declined. During the last two decades a plethora of targeted drug therapies have appeared for the treatment of metastasizing non-small cell lung carcinomas (NSCLC). Personalized oncology aims to precisely match patients to treatments with the highest potential of success. Extensive research is done to introduce biomarkers which can predict the effectiveness of a specific targeted therapeutic approach. The EGFR signaling pathway includes several sufficient targets for the treatment of human cancers including NSCLC. Lung adenocarcinoma may harbor both activating and resistance mutations of the EGFR gene, and further, mutations of KRAS and BRAF oncogenes. Less frequent but targetable genetic alterations include ALK, ROS1, RET gene rearrangements, and various alterations of MET proto-oncogene. In addition, the importance of anti-tumor immunity and of tumor microenvironment has become evident recently. Accumulation of mutations generally trigger tumor specific immune defense, but immune protection may be upregulated as an aggressive feature. The blockade of immune checkpoints results in potential reactivation of tumor cell killing and induces significant tumor regression in various tumor types, such as lung carcinoma. Therapeutic responses to anti PD1-PD-L1 treatment may correlate with the expression of PD-L1 by tumor cells. Due to the wide range of diagnostic and predictive features in lung cancer a plenty of tests are required from a single small biopsy or cytology specimen, which is challenged by major issues of sample quantity and quality. Thus, the efficacy of biomarker testing should be warranted by standardized policy and optimal material usage. In this review we aim to discuss major targeted therapy-related biomarkers in NSCLC and testing possibilities comprehensively.
Collapse
Affiliation(s)
- László József Tóth
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
7
|
Camp E, Garcia LG, Pribadi C, Paton S, Vasilev K, Anderson P, Gronthos S. Targeting of C-ROS-1 Activity Using a Controlled Release Carrier to Treat Craniosynostosis in a Preclinical Model of Saethre-Chotzen Syndrome. J Tissue Eng Regen Med 2024; 2024:8863925. [PMID: 40225751 PMCID: PMC11919205 DOI: 10.1155/2024/8863925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 04/15/2025]
Abstract
Saethre-Chotzen syndrome (SCS) is one of the most prevalent craniosynostosis, caused by a loss-of-function mutation in the TWIST-1 gene, with current treatment options relying on major invasive transcranial surgery. TWIST-1 haploinsufficient osteogenic progenitor cells exhibit increased osteogenic differentiation potential due to an upregulation of the transmembrane tyrosine kinase receptor, C-ROS-1, a TWIST-1 target gene known to promote bone formation. The present study assessed the efficacy of suppressing C-ROS-1 activity using a known chemical inhibitor to C-ROS-1, crizotinib, to halt premature coronal suture fusion in a preclinical mouse model of SCS. Crizotinib (1 μM, 2 μM, or 4 μM) was administered locally over the calvaria of Twist-1del/+ heterozygous mice prior to coronal suture fusion using either a nonresorbable collagen sponge (quick drug release) or a resorbable sodium carboxymethylcellulose microdisk (slow sustained release). Coronal suture fusion rates and bone parameters were determined by μCT imaging and histomorphometric analysis of calvaria postcoronal suture fusion. Results demonstrated a dose-dependent increase in the efficacy of crizotinib to maintain coronal suture patency, with no adverse effects to brain, kidney, liver, and spleen tissue, or blood cell parameters. Moreover, crizotinib delivered on microdisks resulted in a greater efficacy at a lower concentration to reduce bone formation at the coronal suture sites compared to sponges. However, the bone inhibitory effects were found to be diminished by over time following cessation of treatment. Our findings lay the foundation for the development of a pharmacological nonsurgical, targeted approach to temporarily maintain open coronal sutures in SCS patients. This study could potentially be used to develop similar therapeutic strategies to treat different syndromic craniosynostosis conditions caused by known genetic mutations.
Collapse
Affiliation(s)
- Esther Camp
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Laura Gonzalez Garcia
- School of Engineering and Future Industries Institute, Mawson Lakes Campus, University of South Australia, Mawson Lakes, SA, Australia
| | - Clara Pribadi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Krasimir Vasilev
- School of Engineering and Future Industries Institute, Mawson Lakes Campus, University of South Australia, Mawson Lakes, SA, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Peter Anderson
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Cleft & Craniofacial SA, Woman's and Children's Hospital, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
8
|
Khan MS, Altwaijry N, Al-Bagmi MS, Alafaleq NO, Alokail MS, Shahwan M, Shamsi A. Structure-guided identification of potent inhibitors of ROS1 kinase for therapeutic development against non-small cell lung cancer. J Biomol Struct Dyn 2024; 42:3837-3847. [PMID: 37254309 DOI: 10.1080/07391102.2023.2217450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Proto-oncogene tyrosine-protein kinase ROS (ROS1) is a member of the sevenless receptor, which affects epithelial cell differentiation and is highly expressed in a variety of tumor cells. The elevated expression and dysfunction of ROS1 have been involved in various malignancies, such as non-small cell lung cancer (NSCLC), stomach cancer, ovarian, breast cancer, cholangiocarcinoma, colorectal cancer, adenosarcoma, oesophageal cancer, etc. ROS1 has been postulated as a potential drug target in anticancer therapeutics. In this study, we carried out a virtual screening of phytochemicals against ROS1 to identify its potential inhibitors. The virtual screening process was performed on the ROS1 structure, where two phytochemicals, Helioscopinolide C and Taiwanin C, were identified. These compounds resulted from filters like Lipinski rule of five, PAINS filter, binding affinities values, and all-atom molecular dynamics (MD) simulations followed by principal component analysis (PCA) and essential dynamics. The findings of this study highlight the role of ROS1 in multiple physiological candidates and its therapeutic targeting using phytochemicals. This study suggests Helioscopinolide C and Taiwanin C as potential compounds for therapeutic development targeting ROS1-associated non-small cell lung cancer for clinical applications. Further in vitro and in vivo experiments are required to validate these findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Moneera Saud Al-Bagmi
- Department of Biochemistry, College of Science, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Nouf Omar Alafaleq
- Department of Biochemistry, College of Science, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
9
|
Li S, Zhang H, Chen T, Zhang X, Shang G. Current treatment and novel insights regarding ROS1-targeted therapy in malignant tumors. Cancer Med 2024; 13:e7201. [PMID: 38629293 PMCID: PMC11022151 DOI: 10.1002/cam4.7201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 03/22/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The proto-oncogene ROS1 encodes an intrinsic type I membrane protein of the tyrosine kinase/insulin receptor family. ROS1 facilitates the progression of various malignancies via self-mutations or rearrangements. Studies on ROS1-directed tyrosine kinase inhibitors have been conducted, and some have been approved by the FDA for clinical use. However, the adverse effects and mechanisms of resistance associated with ROS1 inhibitors remain unknown. In addition, next-generation ROS1 inhibitors, which have the advantage of treating central nervous system metastases and alleviating endogenous drug resistance, are still in the clinical trial stage. METHOD In this study, we searched relevant articles reporting the mechanism and clinical application of ROS1 in recent years; systematically reviewed the biological mechanisms, diagnostic methods, and research progress on ROS1 inhibitors; and provided perspectives for the future of ROS1-targeted therapy. RESULTS ROS1 is most expressed in malignant tumours. Only a few ROS1 kinase inhibitors are currently approved for use in NSCLC, the efficacy of other TKIs for NSCLC and other malignancies has not been ascertained. There is no effective standard treatment for adverse events or resistance to ROS1-targeted therapy. Next-generation TKIs appear capable of overcoming resistance and delaying central nervous system metastasis, but with a greater incidence of adverse effects. CONCLUSIONS Further research on next-generation TKIs regarding the localization of ROS1 and its fusion partners, binding sites for targeted drugs, and coadministration with other drugs is required. The correlation between TKIs and chemotherapy or immunotherapy in clinical practice requires further study.
Collapse
Affiliation(s)
- Shizhe Li
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - He Zhang
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Ting Chen
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaowen Zhang
- Medical Research CenterShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Guanning Shang
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
10
|
Al-Qadhi MA, Allam HA, Fahim SH, Yahya TAA, Ragab FAF. Design and synthesis of certain 7-Aryl-2-Methyl-3-Substituted Pyrazolo{1,5-a}Pyrimidines as multikinase inhibitors. Eur J Med Chem 2023; 262:115918. [PMID: 37922829 DOI: 10.1016/j.ejmech.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Four new series 7a-e, 8a-e, 9a-e, and 10a-e of 7-aryl-3-substituted pyrazolo[1,5-a]pyrimidines were synthesized and tested for their RTK and STK inhibitory activity. Compound 7d demonstrated potent enzymatic inhibitory activity against TrkA and ALK2 with IC50 0.087and 0.105 μM, respectively, and potent antiproliferative activity against KM12 and EKVX cell lines with IC50 0.82 and 4.13 μM, respectively. Compound 10e showed good enzyme inhibitory activity against TrkA, ALK2, c-KIT, EGFR, PIM1, CK2α, CHK1, and CDK2 in submicromolar values. Additionally 10e revealed antiproliferative activity against MCF7, HCT116 and EKVX with IC50 3.36, 1.40 and 3.49 μM, respectively; with good safety profile. Moreover, 10e showed cell cycle arrest at the G1/S phase and G1 phase in MCF7 and HCT116 cells with good apoptotic effect. Molecular docking studies were fulfilled for compound 10e and illustrated good interaction with the hot spots of the active site of the tested enzymes.
Collapse
Affiliation(s)
- Mustafa A Al-Qadhi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt.
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| | - Tawfeek A A Yahya
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| |
Collapse
|
11
|
Myint KZ, Sueca-Comes M, Collier P, Balasubramanian B, Venkatraman S, Gordan J, Zaitoun AM, Mukherjee A, Arora A, Larbcharoensub N, Suriyonplengsaeng C, Wongprasert K, Janvilisri T, Gomez D, Grabowska AM, Tohtong R, Bates DO, Yacqub-Usman K. Preclinical evidence for anaplastic lymphoma kinase inhibitors as novel therapeutic treatments for cholangiocarcinoma. Front Oncol 2023; 13:1184900. [PMID: 38144528 PMCID: PMC10748508 DOI: 10.3389/fonc.2023.1184900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Bile duct cancer (cholangiocarcinoma, CCA) has a poor prognosis for patients, and despite recent advances in targeted therapies for other cancer types, it is still treated with standard chemotherapy. Anaplastic lymphoma kinase (ALK) has been shown to be a primary driver of disease progression in lung cancer, and ALK inhibitors are effective therapeutics in aberrant ALK-expressing tumors. Aberrant ALK expression has been documented in CCA, but the use of ALK inhibitors has not been investigated. Using CCA cell lines and close-to-patient primary cholangiocarcinoma cells, we investigated the potential for ALK inhibitors in CCA. Methods ALK, cMET, and ROS1 expression was determined in CCA patient tissue by immunohistochemistry and digital droplet polymerase chain reaction, and that in cell lines was determined by immunoblot and immunofluorescence. The effect on cell viability and mechanism of action of ALK, cMet, and ROS1 inhibitors was determined in CCA cell lines. To determine whether ceritinib could affect primary CCA cells, tissue was taken from four patients with biliary tract cancer, without ALK rearrangement, mutation, or overexpression, and grown in three-dimensional tumor growth assays in the presence or absence of humanized mesenchymal cells. Results ALK and cMet but not ROS were both upregulated in CCA tissues and cell lines. Cell survival was inhibited by crizotinib, a c-met/ALK/ROS inhibitor. To determine the mechanism of this effect, we tested c-Met-specific and ALK/ROS-specific inhibitors, capmatinib and ceritinib, respectively. Whereas capmatinib did not affect cell survival, ceritinib dose-dependently inhibited survival in all cell lines, with IC50 ranging from 1 to 9 µM and co-treatments with gemcitabine and cisplatin further sensitized cells, with IC50 ranging from IC50 0.60 to 2.32 µM. Ceritinib did not inhibit cMet phosphorylation but did inhibit ALK phosphorylation. ALK was not mutated in any of these cell lines. Only ceritinib inhibited 3D growth of all four patient samples below mean peak serum concentration, in the presence and absence of mesenchymal cells, whereas crizotinib and capmatinib failed to do this. Ceritinib appeared to exert its effect more through autophagy than apoptosis. Discussion These results indicate that ceritinib or other ALK/ROS inhibitors could be therapeutically useful in cholangiocarcinoma even in the absence of aberrant ALK/ROS1 expression.
Collapse
Affiliation(s)
- Kyaw Zwar Myint
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mireia Sueca-Comes
- Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Pamela Collier
- Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Brinda Balasubramanian
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Simran Venkatraman
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - John Gordan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Abed M. Zaitoun
- Department of Pathology, Nottingham Universities National Health Service (NHS) Hospital Trust, Queens Medical Centre, Nottingham, United Kingdom
| | - Abhik Mukherjee
- Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Pathology, Nottingham Universities National Health Service (NHS) Hospital Trust, Queens Medical Centre, Nottingham, United Kingdom
| | - Arvind Arora
- Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Medical Oncology, Nottingham Universities National Health Service (NHS) Hospital Trust, Queens Medical Centre, Nottingham, United Kingdom
| | - Noppadol Larbcharoensub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Dhanny Gomez
- Department of Hepatobiliary and Pancreatic Surgery, and National Institute of Health Care Research (NIHR) Nottingham Digestive Disease Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Anna M. Grabowska
- Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - David O. Bates
- Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Kiren Yacqub-Usman
- Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
12
|
Li Y, Lv Y, Zhang C, Fu B, Liu Y, Hu J. Recent advances in the development of dual ALK/ROS1 inhibitors for non-small cell lung cancer therapy. Eur J Med Chem 2023; 257:115477. [PMID: 37210839 DOI: 10.1016/j.ejmech.2023.115477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
As a member of the insulin-receptor superfamily, ALK plays an important role in regulating the growth, proliferation, and survival of cells. ROS1 is highly homologous with ALK, and can also regulate normal physiological activities of cells. The overexpression of both is closely related to the development and metastasis of tumors. Therefore, ALK and ROS1 may serve as important therapeutic targets in non-small cell lung cancer (NSCLC). Clinically, many ALK inhibitors have shown powerful therapeutic efficacy in ALK and ROS1-positive NSCLC patients. However, after some time, patients inevitably develop drug resistance, leading to treatment failure. There are no significant drug breakthroughs in solving the problem of drug-resistant mutations. In this review, we summarize the chemical structural features of several novel dual ALK/ROS1 inhibitors, their inhibitory effect on ALK and ROS1 kinases, and future treatment strategies for patients with ALK and ROS1 inhibitor-resistant mutations.
Collapse
Affiliation(s)
- Yingxue Li
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yanna Lv
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Cheng Zhang
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Binyu Fu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yue Liu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| | - Jinxing Hu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| |
Collapse
|
13
|
Shu Y, Wang Z, Shang H, Le W, Lei Y, Huang L, Tao L, Chen J, Li J. Case Report: Response to crizotinib treatment in a patient with advanced non-small cell lung cancer with LDLR-ROS1 fusion. Front Oncol 2023; 13:1169876. [PMID: 37152007 PMCID: PMC10157030 DOI: 10.3389/fonc.2023.1169876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
C-ros oncogene 1 (ROS1) fusion is a pathogenic driver gene in non-small cell lung cancer (NSCLC). Currently, clinical guidelines from the National Comprehensive Cancer Network (NCCN) have recommended molecular pathologic tests for patients with NSCLC, including the detection of the ROS1 gene. Crizotinib is a small molecule tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK), ROS1, and mesenchymal-epithelial transition (MET). In recent years, the efficacy of crizotinib in NSCLC patients with ROS1 fusion has been reported. Here, a 77-year-old woman was diagnosed with stage IVA lung adenocarcinoma harboring a novel low-density lipoprotein receptor (LDLR)-ROS1 fusion variant. This novel LDLR-ROS1 fusion was identified by targeted DNA next-generation sequencing (NGS) panel and then verified by RNA fusion panel based on amplicon sequencing. This patient benefited from subsequent crizotinib therapy and achieved progression-free survival of 15 months without significant toxic symptoms. Our case report recommended a promising targeted therapeutic option for patients with metastatic NSCLC with LDLR-ROS1 fusion and highlighted the importance of genetic testing for accurate treatment.
Collapse
Affiliation(s)
- Yun Shu
- Department of Medical Oncology, Third People’s Hospital of Jiujiang City, Jiujiang, China
- *Correspondence: Yun Shu, ; Jing Li,
| | - Zhouyu Wang
- Department of Medical Affairs, Berry Oncology Corporation, Beijing, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Hongjuan Shang
- Department of Medical Oncology, Third People’s Hospital of Jiujiang City, Jiujiang, China
| | - Wei Le
- Department of Medical Oncology, Third People’s Hospital of Jiujiang City, Jiujiang, China
| | - Yan Lei
- Department of Medical Affairs, Berry Oncology Corporation, Beijing, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Longzhang Huang
- Department of Medical Oncology, Third People’s Hospital of Jiujiang City, Jiujiang, China
| | - Liming Tao
- Department of Medical Oncology, Third People’s Hospital of Jiujiang City, Jiujiang, China
| | - Jun Chen
- Department of Medical Oncology, Third People’s Hospital of Jiujiang City, Jiujiang, China
| | - Jing Li
- Department of Medical Affairs, Berry Oncology Corporation, Beijing, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
- *Correspondence: Yun Shu, ; Jing Li,
| |
Collapse
|
14
|
Tyler LC, Le AT, Chen N, Nijmeh H, Bao L, Wilson TR, Chen D, Simmons B, Turner KM, Perusse D, Kasibhatla S, Christiansen J, Dudek AZ, Doebele RC. MET gene amplification is a mechanism of resistance to entrectinib in ROS1+ NSCLC. Thorac Cancer 2022; 13:3032-3041. [PMID: 36101520 PMCID: PMC9626307 DOI: 10.1111/1759-7714.14656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND ROS1 tyrosine kinase inhibitors (TKIs) have demonstrated significant clinical benefit for ROS1+ NSCLC patients. However, TKI resistance inevitably develops through ROS1 kinase domain (KD) modification or another kinase driving bypass signaling. While multiple TKIs have been designed to target ROS1 KD mutations, less is known about bypass signaling in TKI-resistant ROS1+ lung cancers. METHODS Utilizing a primary, patient-derived TPM3-ROS1 cell line (CUTO28), we derived an entrectinib-resistant line (CUTO28-ER). We evaluated proliferation and signaling responses to TKIs, and utilized RNA sequencing, whole exome sequencing, and fluorescence in situ hybridization to detect transcriptional, mutational, and copy number alterations, respectively. We substantiated in vitro findings using a CD74-ROS1 NSCLC patient's tumor samples. Last, we analyzed circulating tumor DNA (ctDNA) from ROS1+ NSCLC patients in the STARTRK-2 entrectinib trial to determine the prevalence of MET amplification. RESULTS CUTO28-ER cells did not exhibit ROS1 KD mutations. MET TKIs inhibited proliferation and downstream signaling and MET transcription was elevated in CUTO28-ER cells. CUTO28-ER cells displayed extrachromosomal (ecDNA) MET amplification without MET activating mutations, exon 14 skipping, or fusions. The CD74-ROS1 patient samples illustrated MET amplification while receiving ROS1 TKI. Finally, two of 105 (1.9%) entrectinib-resistant ROS1+ NSCLC STARTRK-2 patients with ctDNA analysis at enrollment and disease progression displayed MET amplification. CONCLUSIONS Treatment with ROS1-selective inhibitors may lead to MET-mediated resistance. The discovery of ecDNA MET amplification is noteworthy, as ecDNA is associated with more aggressive cancers. Following progression on ROS1-selective inhibitors, MET gene testing and treatments targeting MET should be explored to overcome MET-driven resistance.
Collapse
Affiliation(s)
- Logan C. Tyler
- Department of Medicine—Division of Medical OncologyUniversity of Colorado—Anschutz Medical CampusAuroraColoradoUSA
| | - Anh T. Le
- Department of Medicine—Division of Medical OncologyUniversity of Colorado—Anschutz Medical CampusAuroraColoradoUSA
| | - Nan Chen
- Department of Medicine—Division of Medical OncologyUniversity of Colorado—Anschutz Medical CampusAuroraColoradoUSA
| | - Hala Nijmeh
- Department of PathologyUniversity of Colorado—Anschutz Medical CampusAuroraColoradoUSA
| | - Liming Bao
- Department of PathologyUniversity of Colorado—Anschutz Medical CampusAuroraColoradoUSA
| | | | - David Chen
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | | | | | | | | | - Arkadiusz Z. Dudek
- HealthPartners Cancer Center at Regions HospitalSt. PaulMinnesotaUSA,Department of Medicine—Division of Hematology, Oncologyand Transplantation University of MinnesotaMinneapolisMinnesotaUSA
| | - Robert C. Doebele
- Department of Medicine—Division of Medical OncologyUniversity of Colorado—Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
15
|
Yan N, Huang S, Li L, Guo Q, Geng D, Zhang H, Guo S, Li X. Case Report: Durable response to immuno-chemotherapy in a case of ROS1 fusion-positive advanced lung adenocarcinoma: A case report. Front Pharmacol 2022; 13:898623. [PMID: 36160430 PMCID: PMC9500430 DOI: 10.3389/fphar.2022.898623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have greatly transformed the treatment and improved the prognosis for patients with non-small cell lung cancer (NSCLC) without driver gene alterations. However, the effects of ICI combination therapy in ROS1 fusion-positive NSCLC remains unclear. Herein, we present a case with ROS1 fusion-positive NSCLC treated with ICI plus chemotherapy. The patient achieved a continuous partial response (PR) to ICI plus chemotherapy and a more than 35 months progression free survival. This case demonstrates that ICI plus chemotherapy is a promising option for patients with ROS1 fusion-positive NSCLC.
Collapse
Affiliation(s)
- Ningning Yan
- *Correspondence: Ningning Yan, ; Xingya Li, ; Sanxing Guo,
| | | | | | | | | | | | - Sanxing Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Kamalabadi-Farahani M, Atashi A, Jabbarpour Z, Aghayan SS. Expression of osteopontin-5 splice variant in the mouse primary and metastatic breast cancer cells. BMC Res Notes 2022; 15:286. [PMID: 36064446 PMCID: PMC9446537 DOI: 10.1186/s13104-022-06179-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Osteopontin (OPN) is a well-known glycoprotein involved in numerous pathobiological processes, including cancer. Despite having five splice variants for osteopontin in mice, the main focus of most studies has been on total OPN (tOPN). There are some studies on other splice variants, but the expression of osteopontin-5 (OPN5) has not been addressed in mouse cancer cells. Therefore, this study sought to evaluate OPN5 expression in mouse breast cancer cells. RESULTS The expression of OPN5 in primary and metastatic breast cancer cells of mice was confirmed in our study. These findings provided important insights regarding the OPN alternative splicing in mice for the first time. It is concluded that, like other OPN-SVs, OPN5 probably plays an essential role in tumor progression, which requires further investigation in different tumor models.
Collapse
Affiliation(s)
| | - Amir Atashi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Jabbarpour
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Sajjad Aghayan
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Yu ZQ, Wang M, Zhou W, Mao MX, Chen YY, Li N, Peng XC, Cai J, Cai ZQ. ROS1-positive non-small cell lung cancer (NSCLC): biology, diagnostics, therapeutics and resistance. J Drug Target 2022; 30:845-857. [PMID: 35658765 DOI: 10.1080/1061186x.2022.2085730] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
ROS1 is a proto-oncogene encoding a receptor tyrosine protein kinase (RTK), homologous to the v - Ros sequence of University of Manchester tumours virus 2 (UR2) sarcoma virus, whose ligands are still being investigated. ROS1 fusion genes have been identified in various types of tumours. As an oncoprotein, it promotes cell proliferation, activation and cell cycle progression by activating downstream signalling pathways, accelerating the development and progression of non-small cell lung cancer (NSCLC). Studies have demonstrated that ROS1 inhibitors are effective in patients with ROS1-positive NSCLC and are used for first-line clinical treatment. These small molecule inhibitors provide a rational therapeutic option for the treatment of ROS1-positive patients. Inevitably, ROS1 inhibitor resistance mutations occur, leading to tumours recurrence or progression. Here, we comprehensively review the identified biological properties and Differential subcellular localisation of ROS1 fusion oncoprotein promotes tumours progression. We summarise recently completed and ongoing clinical trials of the classic and new ROS1 inhibitors. More importantly, we classify the complex evolving tumours cell resistance mechanisms. This review contributes to our understanding of the biological properties of ROS1 and current therapeutic advances and resistant tumours cells, and the future directions to develop ROS1 inhibitors with durable effects.
Collapse
Affiliation(s)
- Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, Jingzhou, PR China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, PR China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Zhi-Qiang Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| |
Collapse
|
18
|
Roosen M, Odé Z, Bunt J, Kool M. The oncogenic fusion landscape in pediatric CNS neoplasms. Acta Neuropathol 2022; 143:427-451. [PMID: 35169893 PMCID: PMC8960661 DOI: 10.1007/s00401-022-02405-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023]
Abstract
Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion proteins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion proteins to date, the tumor entities they occur in and their proposed mode of action.
Collapse
Affiliation(s)
- Mieke Roosen
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Zelda Odé
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Jens Bunt
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands.
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany.
| |
Collapse
|
19
|
Liu M, Dai J, Wei M, Pan Q, Zhu W. An updated patent review of small-molecule ROS1 kinase inhibitors (2015-2021). Expert Opin Ther Pat 2022; 32:713-729. [PMID: 35343863 DOI: 10.1080/13543776.2022.2058872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION : C-ros oncogene 1 (ROS1) is the sole member of the ROS1 receptor tyrosine kinase (ROS1-RTK) family, which is involved in the formation of non-small cell lung cancer (NSCLC), gastric adenocarcinoma, colorectal cancer and other malignant tumors. At present, only crizotinib was approved for the treatment of advanced ROS1-positive NSCLC, and there have been reports of ROS1 mutations resulting in drug resistance. Consequently, it is necessary to develop new generations of inhibitors to overcome the existing problems. AREAS COVERED This review summarizes the inhibitors with ROS1 inhibitory activity which are undergoing clinical trials and recent advances in patented ROS1 small molecular inhibitors from 2015 to 2021. EXPERT OPINION ROS1 rearrangements have been found in approximately 1%-2% of patients with NSCLC. Since the approval of crizotinib as multi-targeted ALK/MET/ROS1 kinase inhibitor for ALK-mutated NSCLC therapy, the researchers are focusing on ROS1-mutated tumors, especially NSCLC. However, drug-resistant mutations have already been found in clinical application. Therefore, it is still urgent to develop new generation of ROS1 inhibitors.
Collapse
Affiliation(s)
- Meng Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jintian Dai
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Mudan Wei
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| |
Collapse
|
20
|
Gendarme S, Bylicki O, Chouaid C, Guisier F. ROS-1 Fusions in Non-Small-Cell Lung Cancer: Evidence to Date. Curr Oncol 2022; 29:641-658. [PMID: 35200557 PMCID: PMC8870726 DOI: 10.3390/curroncol29020057] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
The ROS-1 gene plays a major role in the oncogenesis of numerous tumors. ROS-1 rearrangement is found in 0.9–2.6% of non-small-cell lung cancers (NSCLCs), mostly lung adenocarcinomas, with a significantly higher rate of women, non-smokers, and a tendency to a younger age. It has been demonstrated that ROS-1 is a true oncogenic driver, and tyrosine kinase inhibitors (TKIs) targeting ROS-1 can block tumor growth and provide clinical benefit for the patient. Since 2016, crizotinib has been the first-line reference therapy, with two-thirds of the patients’ tumors responding and progression-free survival lasting ~20 months. More recently developed are ROS-1-targeting TKIs that are active against resistance mechanisms appearing under crizotinib and have better brain penetration. This review summarizes current knowledge on ROS-1 rearrangement in NSCLCs, including the mechanisms responsible for ROS-1 oncogenicity, epidemiology of ROS-1-positive tumors, methods for detecting rearrangement, phenotypic, histological, and molecular characteristics, and their therapeutic management. Much of this work is devoted to resistance mechanisms and the development of promising new molecules.
Collapse
Affiliation(s)
- Sébastien Gendarme
- INSERM, IMRB (Clinical Epidemiology and Ageing Unit), University Paris Est Créteil, F-94010 Créteil, France;
- Pneumology Department, Centre Hospitalier Intercommunal de Créteil, 40, Avenue de Verdun, F-94010 Créteil, France
- Correspondence:
| | - Olivier Bylicki
- Respiratory Disease Unit, HIA Sainte-Anne, 2, Boulevard Saint-Anne, F-83000 Toulon, France;
| | - Christos Chouaid
- INSERM, IMRB (Clinical Epidemiology and Ageing Unit), University Paris Est Créteil, F-94010 Créteil, France;
- Pneumology Department, Centre Hospitalier Intercommunal de Créteil, 40, Avenue de Verdun, F-94010 Créteil, France
| | - Florian Guisier
- Department of Pneumology, Rouen University Hospital, 1 Rue de Germont, F-76000 Rouen, France;
- Clinical Investigation Center, Rouen University Hospital, CIC INSERM 1404, 1 Rue de Germont, F-76000 Rouen, France
| |
Collapse
|
21
|
Pathak N, Chitikela S, Malik PS. Recent advances in lung cancer genomics: Application in targeted therapy. ADVANCES IN GENETICS 2021; 108:201-275. [PMID: 34844713 DOI: 10.1016/bs.adgen.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genomic characterization of lung cancer has not only improved our understanding of disease biology and carcinogenesis but also revealed several therapeutic opportunities. Targeting tumor dependencies on specific genomic alterations (oncogene addiction) has accelerated the therapeutic developments and significantly improved the outcomes even in advanced stage of disease. Identification of genomic alterations predicting response to specific targeted treatment is the key to success for this "personalized treatment" approach. Availability of multiple choices of therapeutic options for specific genomic alterations highlight the importance of optimum sequencing of drugs. Multiplex gene testing has become mandatory in view of constantly increasing number of therapeutic targets and effective treatment options. Influence of genomic characteristics on response to immunotherapy further makes comprehensive genomic profiling necessary before therapeutic decision making. A comprehensive elucidation of resistance mechanisms and directed treatments have made the continuum of care possible and transformed this deadly disease into a chronic condition. Liquid biopsy-based approach has made the dynamic monitoring of disease possible and enabled treatment optimizations accordingly. Current lung cancer management is the perfect example of "precision-medicine" in clinical oncology.
Collapse
Affiliation(s)
- Neha Pathak
- Department of Medical Oncology, Dr. B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Sindhura Chitikela
- Department of Medical Oncology, Dr. B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
22
|
Cheng Y, Zhang T, Xu Q. Therapeutic advances in non-small cell lung cancer: Focus on clinical development of targeted therapy and immunotherapy. MedComm (Beijing) 2021; 2:692-729. [PMID: 34977873 PMCID: PMC8706764 DOI: 10.1002/mco2.105] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Lung cancer still contributes to nearly one-quarter cancer-related deaths in the past decades, despite the rapid development of targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC). The development and availability of comprehensive genomic profiling make the classification of NSCLC more precise and personalized. Most treatment decisions of advanced-stage NSCLC have been made based on the genetic features and PD-L1 expression of patients. For the past 2 years, more than 10 therapeutic strategies have been approved as first-line treatment for certain subgroups of NSCLC. However, some major challenges remain, including drug resistance and low rate of overall survival. Therefore, we discuss and review the therapeutic strategies of NSCLC, and focus on the development of targeted therapy and immunotherapy in advanced-stage NSCLC. Based on the latest guidelines, we provide an updated summary on the standard treatment for NSCLC. At last, we discussed several potential therapies for NSCLC. The development of new drugs and combination therapies both provide promising therapeutic effects on NSCLC.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Qing Xu
- Department of OncologyShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
23
|
Guaitoli G, Bertolini F, Bettelli S, Manfredini S, Maur M, Trudu L, Aramini B, Masciale V, Grisendi G, Dominici M, Barbieri F. Deepening the Knowledge of ROS1 Rearrangements in Non-Small Cell Lung Cancer: Diagnosis, Treatment, Resistance and Concomitant Alterations. Int J Mol Sci 2021; 22:12867. [PMID: 34884672 PMCID: PMC8657497 DOI: 10.3390/ijms222312867] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
ROS proto-oncogene 1 (ROS1) rearrangements are reported in about 1-2% of non-squamous non-small-cell lung cancer (NSCLC). After efficacy of crizotinib was demonstrated, identification of ROS1 translocations in advanced disease became fundamental to give patients the chance of specific and effective treatment. Different methods are available for detection of rearrangements, and probably the real prevalence of ROS1 rearrangements is higher than that reported in literature, as our capacity to detect gene rearrangements is improving. In particular, with next generation sequencing (NGS) techniques, we are currently able to assess multiple genes simultaneously with increasing sensitivity. This is leading to overcome the "single oncogenic driver" paradigm, and in the very near future, the co-existence of multiple drivers will probably emerge more frequently and represent a therapeutic issue. Since recently, crizotinib has been the only available therapy, but today, many other tyrosine kinase inhibitors (TKI) are emerging and seem promising both in first and subsequent lines of treatment. Indeed, novel inhibitors are also able to overcome resistance mutations to crizotinib, hypothesizing a possible sequential strategy also in ROS1-rearranged disease. In this review, we will focus on ROS1 rearrangements, dealing with diagnostic aspects, new therapeutic options, resistance issues and the coexistence of ROS1 translocations with other molecular alterations.
Collapse
Affiliation(s)
- Giorgia Guaitoli
- Ph.D. Program Clinical and Experimental Medicine (CEM), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Oncology and Hematology, Modena University Hospital, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.T.); (M.D.)
| | - Federica Bertolini
- Oncology and Hematology, Modena University Hospital, 41125 Modena, Italy; (F.B.); (M.M.); (F.B.)
| | - Stefania Bettelli
- Molecular Pathology, Modena University Hospital, 41125 Modena, Italy; (S.B.); (S.M.)
| | - Samantha Manfredini
- Molecular Pathology, Modena University Hospital, 41125 Modena, Italy; (S.B.); (S.M.)
| | - Michela Maur
- Oncology and Hematology, Modena University Hospital, 41125 Modena, Italy; (F.B.); (M.M.); (F.B.)
| | - Lucia Trudu
- Oncology and Hematology, Modena University Hospital, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.T.); (M.D.)
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 47121 Forlì, Italy;
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, University-Hospital of Modena and Reggio Emilia, Department of Medical and Surgical Sciences for Children & Adults, 41125 Modena, Italy; (V.M.); (G.G.)
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, University-Hospital of Modena and Reggio Emilia, Department of Medical and Surgical Sciences for Children & Adults, 41125 Modena, Italy; (V.M.); (G.G.)
| | - Massimo Dominici
- Oncology and Hematology, Modena University Hospital, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.T.); (M.D.)
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, University-Hospital of Modena and Reggio Emilia, Department of Medical and Surgical Sciences for Children & Adults, 41125 Modena, Italy; (V.M.); (G.G.)
| | - Fausto Barbieri
- Molecular Pathology, Modena University Hospital, 41125 Modena, Italy; (S.B.); (S.M.)
| |
Collapse
|
24
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
25
|
The Impact of PTPRK and ROS1 Polymorphisms on the Preeclampsia Risk in Han Chinese Women. Int J Hypertens 2021; 2021:3275081. [PMID: 34646579 PMCID: PMC8505056 DOI: 10.1155/2021/3275081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023] Open
Abstract
Objective Preeclampsia (PE) is a severe complication in pregnancy and a leading cause of maternal and infant mortality. However, the exact underlying etiology of PE remains unknown. Emerging evidence indicates that the cause of PE is associated with genetic factors. Therefore, the aim of this study is to identify susceptibility genes to PE. Materials and Methods Human Exome BeadChip assays were conducted using 370 cases and 482 controls and 21 loci were discovered. A further independent set of 958 cases and 1007 controls were recruited for genotyping to determine whether the genes of interest ROS1 and PTPRK are associated with PE. Immunohistochemistry was used for localization. Both qPCR and Western blotting were utilized to investigate the levels of PTPRK in placentas of 20 PE and 20 normal pregnancies. Results The allele frequency of PTPRK rs3190930 differed significantly between PE and controls and was particularly significant in severe PE subgroup and early-onset PE subgroup. PTPRK is primarily localized in placental trophoblast cells. The mRNA and protein levels of PTPRK in PE were significantly higher than those in controls. Conclusion These results suggest that PTPRK appears to be a previously unrecognized susceptibility gene for PE in Han Chinese women, and its expression is also associated with PE, while ROS1 rs9489124 has no apparent correlation with PE risk.
Collapse
|
26
|
Handy DE, Joseph J, Loscalzo J. Selenium, a Micronutrient That Modulates Cardiovascular Health via Redox Enzymology. Nutrients 2021; 13:nu13093238. [PMID: 34579115 PMCID: PMC8471878 DOI: 10.3390/nu13093238] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Selenium (Se) is a trace nutrient that promotes human health through its incorporation into selenoproteins in the form of the redox-active amino acid selenocysteine (Sec). There are 25 selenoproteins in humans, and many of them play essential roles in the protection against oxidative stress. Selenoproteins, such as glutathione peroxidase and thioredoxin reductase, play an important role in the reduction of hydrogen and lipid hydroperoxides, and regulate the redox status of Cys in proteins. Emerging evidence suggests a role for endoplasmic reticulum selenoproteins, such as selenoproteins K, S, and T, in mediating redox homeostasis, protein modifications, and endoplasmic reticulum stress. Selenoprotein P, which functions as a carrier of Se to tissues, also participates in regulating cellular reactive oxygen species. Cellular reactive oxygen species are essential for regulating cell growth and proliferation, protein folding, and normal mitochondrial function, but their excess causes cell damage and mitochondrial dysfunction, and promotes inflammatory responses. Experimental evidence indicates a role for individual selenoproteins in cardiovascular diseases, primarily by modulating the damaging effects of reactive oxygen species. This review examines the roles that selenoproteins play in regulating vascular and cardiac function in health and disease, highlighting their antioxidant and redox actions in these processes.
Collapse
Affiliation(s)
- Diane E. Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.J.); (J.L.)
- Correspondence: ; Tel.: +1-617-525-4845
| | - Jacob Joseph
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.J.); (J.L.)
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.J.); (J.L.)
| |
Collapse
|
27
|
Wiśniewska M, Wiśniewski M, Lewandowska MA. Personalized and targeted therapies. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2019-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biomarker is defined as indicator of normal or pathogenic biological process or response to an intervention or exposure. There are several categories of biomarkers but predictive biomarkers play the most important role in the treatment of neoplasms. In some cancers there may be more than one potential biomarker, and their identification determines the treatment of the patient. Identification of predictive biomarkers allows the development of novel targeted therapies resulting in tailored treatment. In this chapter we discuss most important predictive biomarkers used in contemporary oncology for which there is approved therapies.
Collapse
Affiliation(s)
- Magdalena Wiśniewska
- Department of Oncology and Brachytherapy , Collegium Medicum Bydgoszcz, Nicolaus Copernicus University , Toruń , Poland
- Department of Clinical Oncology , Oncology Centre , Bydgoszcz , Poland
| | - Michał Wiśniewski
- Outpatient Chemotherapy Department , Oncology Centre , Bydgoszcz , Poland
| | - Marzena A. Lewandowska
- Department of Thoracic Surgery and Tumors , Collegium Medicum Bydgoszcz, Nicolaus Copernicus University , Toruń , Poland
- Oncology Centre , Bydgoszcz , Poland
- Department of Molecular Oncology and Genetics , Innovative Medical Forum Oncology Centre , Bydgoszcz , Poland
| |
Collapse
|
28
|
Fois SS, Paliogiannis P, Zinellu A, Fois AG, Cossu A, Palmieri G. Molecular Epidemiology of the Main Druggable Genetic Alterations in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:E612. [PMID: 33435440 PMCID: PMC7827915 DOI: 10.3390/ijms22020612] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of death for malignancy worldwide. Its molecular profiling has enriched our understanding of cancer initiation and progression and has become fundamental to provide guidance on treatment with targeted therapies. Testing the presence of driver mutations in specific genes in lung tumors has thus radically changed the clinical management and outcomes of the disease. Numerous studies performed with traditional sequencing methods have investigated the occurrence of such mutations in lung cancer, and new insights regarding their frequency and clinical significance are continuously provided with the use of last generation sequencing technologies. In this review, we discuss the molecular epidemiology of the main druggable genetic alterations in non-small cell lung cancer, namely EGFR, KRAS, BRAF, MET, and HER2 mutations or amplification, as well as ALK and ROS1 fusions. Furthermore, we investigated the predictive impact of these alterations on the outcomes of modern targeted therapies, their global prognostic significance, and their mutual interaction in cases of co-occurrence.
Collapse
Affiliation(s)
- Sara S. Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (S.S.F.); (A.G.F.); (A.C.)
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (S.S.F.); (A.G.F.); (A.C.)
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
| | - Alessandro G. Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (S.S.F.); (A.G.F.); (A.C.)
| | - Antonio Cossu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (S.S.F.); (A.G.F.); (A.C.)
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Traversa La Crucca 3, 07100 Sassari, Italy;
| |
Collapse
|
29
|
Drilon A, Jenkins C, Iyer S, Schoenfeld A, Keddy C, Davare MA. ROS1-dependent cancers - biology, diagnostics and therapeutics. Nat Rev Clin Oncol 2021; 18:35-55. [PMID: 32760015 PMCID: PMC8830365 DOI: 10.1038/s41571-020-0408-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
The proto-oncogene ROS1 encodes a receptor tyrosine kinase with an unknown physiological role in humans. Somatic chromosomal fusions involving ROS1 produce chimeric oncoproteins that drive a diverse range of cancers in adult and paediatric patients. ROS1-directed tyrosine kinase inhibitors (TKIs) are therapeutically active against these cancers, although only early-generation multikinase inhibitors have been granted regulatory approval, specifically for the treatment of ROS1 fusion-positive non-small-cell lung cancers; histology-agnostic approvals have yet to be granted. Intrinsic or extrinsic mechanisms of resistance to ROS1 TKIs can emerge in patients. Potential factors that influence resistance acquisition include the subcellular localization of the particular ROS1 oncoprotein and the TKI properties such as the preferential kinase conformation engaged and the spectrum of targets beyond ROS1. Importantly, the polyclonal nature of resistance remains underexplored. Higher-affinity next-generation ROS1 TKIs developed to have improved intracranial activity and to mitigate ROS1-intrinsic resistance mechanisms have demonstrated clinical efficacy in these regards, thus highlighting the utility of sequential ROS1 TKI therapy. Selective ROS1 inhibitors have yet to be developed, and thus the specific adverse effects of ROS1 inhibition cannot be deconvoluted from the toxicity profiles of the available multikinase inhibitors. Herein, we discuss the non-malignant and malignant biology of ROS1, the diagnostic challenges that ROS1 fusions present and the strategies to target ROS1 fusion proteins in both treatment-naive and acquired-resistance settings.
Collapse
Affiliation(s)
- Alexander Drilon
- Early Drug Development and Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Chelsea Jenkins
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Sudarshan Iyer
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Adam Schoenfeld
- Early Drug Development and Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Clare Keddy
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Monika A Davare
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
30
|
Chang YJ, Chen KW, Chen L. Mitochondrial ROS1 Increases Mitochondrial Fission and Respiration in Oral Squamous Cancer Carcinoma. Cancers (Basel) 2020; 12:cancers12102845. [PMID: 33019722 PMCID: PMC7599653 DOI: 10.3390/cancers12102845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The clinical efficacy of anti-epidermal growth factor receptor (EGFR) antibody cetuximab for oral squamous cell carcinomas (OSCCs) is low. We previously reported that an increased oncogenic ROS proto-oncogene 1 (ROS1) is responsible for the invasiveness and metastasis of OSCC. This study demonstrates for the first time that ROS1, a receptor tyrosine kinase, can localize to mitochondria. Mitochondrial ROS1 in the highly invasive OSCC promotes mitochondrial fission, enhances mitochondrial oxidative phosphorylation and ATP production but reduces mitochondrial biogenesis. These findings highlight the novel function of ROS1 in mitochondrial morphogenesis and metabolic adaptation to promote OSCC invasiveness. Abstract Increased ROS proto-oncogene 1 (ROS1) expression has been implicated in the invasiveness of human oral squamous cell carcinoma (OSCC). The cellular distribution of ROS1 has long-been assumed at the plasma membrane. However, a previous work reported a differential cellular distribution of mutant ROS1 derived from chromosomal translocation, resulting in increased carcinogenesis. We thus hypothesized that cellular distribution of upregulated ROS1 in OSCC may correlate with invasiveness. We found that ROS1 can localize to mitochondria in the highly invasive OSCC and identified a mitochondria-targeting signal sequence in ROS1. We also demonstrated that ROS1 targeting to mitochondria is required for mitochondrial fission phenotype in the highly invasive OSCC cells. OSCC cells expressing high levels of ROS1 consumed more oxygen and had increased levels of cellular ATP levels. Our results also revealed that ROS1 regulates mitochondrial biogenesis and cellular metabolic plasticity. Together, these findings demonstrate that ROS1 targeting to mitochondria enhances OSCC invasion through regulating mitochondrial morphogenesis and cellular respiratory.
Collapse
Affiliation(s)
- Yu-Jung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Correspondence: (Y.-J.C.); (L.C.); Tel.: +886-3-571-5131#33473 (Y.-J.C.); +886-3-574-2775 (L.C.); Fax: +886-3-571-5934 (L.C.)
| | - Kuan-Wei Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: (Y.-J.C.); (L.C.); Tel.: +886-3-571-5131#33473 (Y.-J.C.); +886-3-574-2775 (L.C.); Fax: +886-3-571-5934 (L.C.)
| |
Collapse
|
31
|
RASAL1 and ROS1 Gene Variants in Hereditary Breast Cancer. Cancers (Basel) 2020; 12:cancers12092539. [PMID: 32906649 PMCID: PMC7563829 DOI: 10.3390/cancers12092539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Breast cancer is the second leading cause of death in women. Identifying novel genetic factors conferring BC predisposition is crucial to predict who is at increased risk of developing the disease, allowing for early detection and therapy, and optimized patient management. We identified germline pathogenic variants in familial breast cancer patients in ROS1 and RASAL1 genes. Further analysis in independent patient group will help understanding the role of these novel genes in breast cancer predisposition. Abstract Breast cancer (BC) is the second leading cause of death in women. BC patients with family history or clinical features suggestive of inherited predisposition are candidate to genetic testing to determine whether a hereditary cancer syndrome is present. We aimed to identify new predisposing variants in familial BC patients using next-generation sequencing approaches. We performed whole exome sequencing (WES) in first-degree cousin pairs affected by hereditary BC negative at the BRCA1/2 (BReast CAncer gene 1/2) testing. Targeted analysis, for the genes resulting mutated via WES, was performed in additional 131 independent patients with a suspected hereditary predisposition (negative at the BRCA1/2 testing). We retrieved sequencing data for the mutated genes from WES of 197 Italian unrelated controls to perform a case-controls collapsing analysis. We found damaging variants in NPL (N-Acetylneuraminate Pyruvate Lyase), POLN (DNA Polymerase Nu), RASAL1 (RAS Protein Activator Like 1) and ROS1 (ROS Proto-Oncogene 1, Receptor Tyrosine Kinase), shared by the corresponding cousin pairs. We demonstrated that the splice site alterations identified in NPL and ROS1 (in two different pairs, respectively) impaired the formation of the correct transcripts. Target analysis in additional patients identified novel and rare damaging variants in RASAL1 and ROS1, with a significant allele frequency increase in cases. Moreover, ROS1 achieved a significantly higher proportion of variants among cases in comparison to our internal control database of Italian subjects (p = 0.0401). Our findings indicate that germline variants in ROS1 and RASAL1 might confer susceptibility to BC.
Collapse
|
32
|
Sartore-Bianchi A, Pizzutilo EG, Marrapese G, Tosi F, Cerea G, Siena S. Entrectinib for the treatment of metastatic NSCLC: safety and efficacy. Expert Rev Anticancer Ther 2020; 20:333-341. [PMID: 32223357 DOI: 10.1080/14737140.2020.1747439] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Introduction: Gene fusions are strong driver alterations in various cancers, increasingly diagnosed with multiple testing techniques. ROS1 fusions can be found in 1-2% of non-small cell lung cancer (NSCLC) and several tyrosine kinase inhibitors (TKIs) have been tested in this oncogene-driven disease. NTRK fusions are characteristic of a few rare types of cancer, also infrequently seen in some common cancers including NSCLC. Entrectinib is a newer ROS1 and NTRK inhibitor developed across different tumor types harboring rearrangements in these genes. Entrectinib was granted FDA accelerated approval in August 2019 for the treatment of ROS1+ NSCLC and NTRK-driven solid tumors.Areas covered: This review covers the mechanism of action, safety, and efficacy of entrectinib in patients with metastatic NSCLC.Expert opinion: Entrectinib is an orally bioavailable TKI of TrkA, TrkB, TrkC, and ROS1, with the ability to cross the blood-brain barrier. Entrectinib was effective and well-tolerated in patients harboring ROS1- or NTRK-rearranged NSCLC treated within phase I and II studies. Entrectinib appears to be the most appropriate treatment choice for TKIs-naïve patients, especially in those presenting brain metastasis. Conversely, in case of systemic progression with the evidence of acquired resistance mutations in ROS1 or Trk proteins, a sequential therapy with entrectinib could not be successful.
Collapse
Affiliation(s)
- Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, Milan, Italy
| | - Elio Gregory Pizzutilo
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, Milan, Italy
| | - Giovanna Marrapese
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, Milan, Italy
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
33
|
Liu YM, Kuo CN, Liou JP. Anaplastic lymphoma kinase inhibitors: an updated patent review (2014-2018). Expert Opin Ther Pat 2020; 30:351-373. [PMID: 32125908 DOI: 10.1080/13543776.2020.1738389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Introduction: Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase, has been discovered in several cancers, including anaplastic large-cell lymphoma, non-small cell lung cancer, and inflammatory myofibroblastic tumors. The deregulation of ALK activities, such as translocation and point mutation, results in human carcinogenesis. The use of ALK inhibitors in clinical cancer treatment has been shown to be efficacious, and the issue of resistance to ALK inhibitors has been reported. Consequently, the development of a new generation of ALK inhibitors is necessary.Areas covered: This paper provides a comprehensive review of the patent literature from 2014 to 2018 including small molecule ALK inhibitors and their use as anticancer agents. The approved and developing ALK inhibitors are described.Expert commentary: The available three generations of ALK inhibitors have shown a good anticancer effect in ALK-positive non-small cell lung cancer. An urgent issue in this field is ALK resistance development. The development of new ALK inhibitors through structure modification of currently available ALK inhibitors is proceeding, such as the synthesis of macrocyclic compounds. This article arranges the ALK inhibitors that have published in the patent in recent years. It may help in the investigation of a new generation of ALK inhibitors, which can overcome the resistance issue and development of novel drug candidates in the future.
Collapse
Affiliation(s)
- Yi-Min Liu
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan.,Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Chun-Nan Kuo
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacy, Taipei Medical University, Taipei Municipal Wanfang Hospital, Taipei, Taiwan
| | - Jing-Ping Liou
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
34
|
Liu C, Yu H, Chang J, Chen H, Li Y, Zhao W, Zhao K, Zhu Z, Sun S, Fan M, Wang J. Crizotinib in Chinese Patients with ROS1-Rearranged Advanced Non‒Small-Cell Lung Cancer in Routine Clinical Practice. Target Oncol 2020; 14:315-323. [PMID: 30976989 PMCID: PMC6602983 DOI: 10.1007/s11523-019-00636-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Approximately 1–2% of patients with non‒small-cell lung cancer (NSCLC) harbor ROS1 rearrangements. Crizotinib, an oral small-molecule tyrosine kinase inhibitor (TKI) that targets anaplastic lymphoma kinase (ALK), MET, and ROS1, has shown marked antitumor activity in patients with ROS1-positive advanced NSCLC. Objective Our objective was to analyze the efficacy and safety of crizotinib treatment in Chinese patients with advanced NSCLC with ROS1 rearrangement in real-world clinical practice. Methods We included 35 patients with ROS1-positive NSCLC in this retrospective analysis. All received crizotinib 250 mg twice daily between March 2016 and April 2018 at the Fudan University Shanghai Cancer Center. All had histologically or cytologically confirmed locally advanced or metastatic NSCLC with ROS1 rearrangements, which were identified by fluorescence in situ hybridization, reverse transcriptase polymerase chain reaction, or next-generation sequencing. The main outcome measures were progression-free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR), and adverse events. Results The median age of the patients was 51.0 years; 23 (65.7%) were female and 28 (80.0%) were never smokers. All were diagnosed as having adenocarcinoma; eight patients (22.9%) had brain metastases at baseline. The ORR and DCR were 71.4% and 94.3%, respectively. The estimated median PFS was 11.0 months (95% confidence interval [CI] 7.8–14.2). The estimated median OS was 41.0 months (95% CI 22.5–59.5). Elevated transaminases (54.3%), vision disorder (25.7%), elevated blood creatinine (22.9%), diarrhea (20.0%), and vomiting (20.0%) were the most commonly reported adverse effects. Conclusion Crizotinib was effective and well tolerated in Chinese patients with ROS1-positive advanced NSCLC in real-world clinical practice. The progression sites and patterns, as well as treatments after first disease progression on crizotinib were diverse. Crizotinib beyond progressive disease and local therapy after failure of crizotinib treatment were feasible and effective in clinical practice.
Collapse
Affiliation(s)
- Chang Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong-An Road, Shanghai, 200032, China
| | - Hui Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong-An Road, Shanghai, 200032, China
| | - Jianhua Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong-An Road, Shanghai, 200032, China
| | - Haiquan Chen
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong-An Road, Shanghai, 200032, China.,Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 20032, China
| | - Yuan Li
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong-An Road, Shanghai, 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Weixin Zhao
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong-An Road, Shanghai, 200032, China.,Department of Radiotherapy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Kuaile Zhao
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong-An Road, Shanghai, 200032, China.,Department of Radiotherapy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Zhengfei Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong-An Road, Shanghai, 200032, China.,Department of Radiotherapy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Si Sun
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong-An Road, Shanghai, 200032, China
| | - Min Fan
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong-An Road, Shanghai, 200032, China.,Department of Radiotherapy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jialei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong-An Road, Shanghai, 200032, China.
| |
Collapse
|
35
|
Guo Y, Cao R, Zhang X, Huang L, Sun L, Zhao J, Ma J, Han C. Recent Progress in Rare Oncogenic Drivers and Targeted Therapy For Non-Small Cell Lung Cancer. Onco Targets Ther 2019; 12:10343-10360. [PMID: 31819518 PMCID: PMC6886531 DOI: 10.2147/ott.s230309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/09/2019] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is frequently associated with oncogenic driver mutations, which play an important role in carcinogenesis and cancer progression. Targeting epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase rearrangements has become standard therapy for patients with these aberrations because of the greater improvement of survival, tolerance, and quality-of-life compared to chemotherapy. Clinical trials for emerging therapies that target other less common driver genes are generating mixed results. Here, we review the literature on rare drivers in NSCLC with frequencies lower than 5% (e.g., ROS1, RET, MET, BRAF, NTRK, HER2, NRG1, FGFR1, PIK3CA, DDR2, and EGFR exon 20 insertions). In summary, targeting rare oncogenic drivers in NSCLC has achieved some success. With the development of new inhibitors that target these rare drivers, the spectrum of targeted therapy has been expanded, although acquired resistance is still an unavoidable problem.
Collapse
Affiliation(s)
- Yijia Guo
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Rui Cao
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Xiangyan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Jietao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
36
|
Fei J, Sun Y, Duan Y, Xia J, Yu S, Ouyang P, Wang T, Zhang G. Low concentration of rutin treatment might alleviate the cardiotoxicity effect of pirarubicin on cardiomyocytes via activation of PI3K/AKT/mTOR signaling pathway. Biosci Rep 2019; 39:BSR20190546. [PMID: 31138757 PMCID: PMC6591567 DOI: 10.1042/bsr20190546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/26/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer is the leading cause of deaths around the world, especially in low- and middle- income countries. Pirarubicin (THP) is an effective drug for treatment of cancer, however, there still exists cardiotoxic effects of THP. Rutin is a kind of antioxidative compound extracted from plants, and might be a protective compound for cardiomyocytes. Phosphatidylinositol 3-hydroxy kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is critical for cellular survival, proliferation and metabolism, and thus we speculated rutin might perform a protective role in cardiomyocytes via PI3K/AKT/mTOR signaling pathway. And in this experiment, we first established a cardiotoxicity model of THP in mice model and cell models, and then found that rutin treatment could increase the proliferation of cells at low concentration. Then we explored the possible mechanism of the protective effect of rutin using Western blotting, quantitative polymerase chain reaction (qPCR) and ELISA methods, and found that the activation of PI3K/AKT/mTOR/nuclear factor-κB (NF-κB) signaling pathway was increased, and expression of downstream molecules involved in antioxidative stress were also increased. We further noticed that concentration of angiogenesis promoting factors were also increased in medium of cultured cells. Thus, we speculated that rutin could increase the activation of PI3K/AKT/mTOR signaling pathway, further decrease the oxidative stress level via increasing the expression of antioxidative stress enzymes with the increasing concentration of angiogenesis promoting factors, resulting in the protective role in cardiomyocytes and cardiac function.
Collapse
Affiliation(s)
- Junjie Fei
- Department of Cardiovascular Surgery, Affiliated Cardiovascular Hospital of Kunming Medical University, Yunnan 650032, China
| | - Yi Sun
- Department of Cardiovascular Surgery, Affiliated Cardiovascular Hospital of Kunming Medical University, Yunnan 650032, China
| | - Yuyin Duan
- Department of Cardiovascular Surgery, Affiliated Cardiovascular Hospital of Kunming Medical University, Yunnan 650032, China
| | - Jianming Xia
- Department of Cardiovascular Surgery, Affiliated Cardiovascular Hospital of Kunming Medical University, Yunnan 650032, China
| | - Songhua Yu
- Department of Cardiovascular Surgery, Affiliated Cardiovascular Hospital of Kunming Medical University, Yunnan 650032, China
| | - Peigang Ouyang
- Department of Cardiovascular Surgery, Affiliated Cardiovascular Hospital of Kunming Medical University, Yunnan 650032, China
| | - Teng Wang
- Department of Cardiovascular Surgery, Affiliated Cardiovascular Hospital of Kunming Medical University, Yunnan 650032, China
| | - Guimin Zhang
- Department of Cardiovascular Surgery, Affiliated Cardiovascular Hospital of Kunming Medical University, Yunnan 650032, China
| |
Collapse
|
37
|
Tessier-Cloutier B, Cai E, Schaeffer DF. Off-label use of common predictive biomarkers in gastrointestinal malignancies: a critical appraisal. Diagn Pathol 2019; 14:62. [PMID: 31221175 PMCID: PMC6587260 DOI: 10.1186/s13000-019-0843-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
The use of immunohistochemistry (IHC) as a companion diagnostic is an increasingly important part of the case workup by pathologists and is often central to clinical decision making. New predictive molecular markers are constantly sought for to improve treatment stratification parallel to drug development. Unfortunately, official biomarker guidelines lag behind, and pathologists are often left hesitating when medical oncologists request off-labelled biomarker testing. We performed a literature review of five commonly requested off-label IHC predictive biomarkers in gastrointestinal tract (GIT) malignancies: HER2, mismatch repair (MMR), PD-L1, BRAF V600E and ROS1. We found that HER2 amplification is rare and poorly associated to IHC overexpression in extracolonic and extragastric GIT cancers; however in KRAS wild type colorectal cancers, which fail conventional treatment, HER2 IHC may be useful and should be considered. For MMR testing, more evidence is needed to recommend reflex testing in GIT cancers for treatment purposes. MMR testing should not be discouraged in patients considered for second line checkpoint inhibitor therapy. With the exception of gastric tumors, PD-L1 IHC is a weak predictor of checkpoint inhibitor response in the GIT and should be replaced by MMR in this context. BRAF inhibitors showed activity in BRAF V600E mutated cholangiocarcinomas and pancreatic carcinomas in non-first line settings. ROS1 translocation is extremely rare and poorly correlated to ROS1 IHC expression in the GIT; currently there is no role for ROS1 IHC testing in GIT cancers. Overall, the predictive biomarker literature has grown exponentially, and official guidelines need to be updated more regularly to support pathologists’ testing decisions.
Collapse
Affiliation(s)
- Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, Vancouver General Hospital, 910 West 10th Ave, Vancouver, BC, Canada
| | - Ellen Cai
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, Vancouver General Hospital, 910 West 10th Ave, Vancouver, BC, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada. .,Department of Pathology and Laboratory Medicine, Vancouver General Hospital, 910 West 10th Ave, Vancouver, BC, Canada.
| |
Collapse
|
38
|
Cai H, Jing C, Chang X, Ding D, Han T, Yang J, Lu Z, Hu X, Liu Z, Wang J, Shang L, Wu S, Meng P, Lin L, Zhao J, Nie M, Yin K. Mutational landscape of gastric cancer and clinical application of genomic profiling based on target next-generation sequencing. J Transl Med 2019; 17:189. [PMID: 31164161 PMCID: PMC6549266 DOI: 10.1186/s12967-019-1941-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/29/2019] [Indexed: 11/10/2022] Open
Abstract
Background Gastric cancer (GC) is a leading cause of cancer deaths, and an increased number of GC patients adopt to next-generation sequencing (NGS) to identify tumor genomic alterations for precision medicine. Methods In this study, we established a hybridization capture-based NGS panel including 612 cancer-associated genes, and collected sequencing data of tumors and matched bloods from 153 gastric cancer patients. We performed comprehensive analysis of these sequencing and clinical data. Results 35 significantly mutated genes were identified such as TP53, AKAP9, DRD2, PTEN, CDH1, LRP2 et al. Among them, 29 genes were novel significantly mutated genes compared with TCGA study. TP53 is the top frequently mutated gene, and tends to mutate in male (p = 0.025) patients and patients whose tumor located in cardia (p = 0.011). High tumor mutation burden (TMB) gathered in TP53 wild-type tumors (p = 0.045). TMB was also significantly associated with DNA damage repair (DDR) genes genotype (p = 0.047), Lauren classification (p = 1.5e−5), differentiation (1.9e−7), and HER2 status (p = 0.023). 38.31% of gastric cancer patients harbored at least one actionable alteration according to OncoKB database. Conclusions We drew a comprehensive mutational landscape of 153 gastric tumors and demonstrated utility of target next-generation sequencing to guide clinical management. Electronic supplementary material The online version of this article (10.1186/s12967-019-1941-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Cai
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Xusheng Chang
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Dan Ding
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Ting Han
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Junchi Yang
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Xuguang Hu
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Zhaorui Liu
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Shouxin Wu
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Peng Meng
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Ling Lin
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Jiangman Zhao
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China. .,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China.
| | - Mingming Nie
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| | - Kai Yin
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
39
|
He Y, Sheng W, Hu W, Lin J, Liu J, Yu B, Mao X, Zhang L, Huang J, Wang G. Different Types of ROS1 Fusion Partners Yield Comparable Efficacy to Crizotinib. Oncol Res 2019; 27:901-910. [PMID: 30940295 PMCID: PMC7848361 DOI: 10.3727/096504019x15509372008132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ROS1 rearrangements define a distinct molecular subset of non-small-cell lung cancer (NSCLC), which can be treated effectively with crizotinib, a tyrosine kinase inhibitor (TKI) targeting ROS1/MET/ALK rearrangements. Diverse efficacy was observed in ROS1-rearranged NSCLC patients. Because of its rareness, very limited studies have investigated the correlation between different fusion partners and response to crizotinib. In this study, we retrospectively screened 6,235 advanced NSCLC patients (stage IIIB to IV) from five hospitals and identified 106 patients with ROS1 rearrangements based on either plasma or tumor tissue testing using capture-based targeted sequencing. The most frequently occurring fusion partners included cluster of differentiation 74 (CD74), ezrin (EZR), syndecan 4 (SDC4), and tropomyosin 3 (TPM3), occurring in 49.1%, 17%, 14.2%, and 4.7% of patients, respectively. Among them, 38 patients were treated with crizotinib. Seventeen patients were treatment naive, and the remaining were previously treated with pemetrexed-based chemotherapy. Collectively, there was no significant difference among patients with various types of ROS1 fusion partners in overall survival (OS) and progression-free survival (PFS). Patients who were treated with crizotinib as first-line therapy showed comparable PFS (p = 0.26) to patients who were previously treated with pemetrexed-based chemotherapy. For treatment-naive patients, patients with low baseline ROS1 allelic fraction (AF) had a statistically significant longer OS than those with high ROS1 AF (184 vs. 110 days, p = 0.048). Collectively, our study demonstrates that ROS1+ patients with various fusion partners show comparable efficacy to crizotinib.
Collapse
Affiliation(s)
- Yueming He
- Department of Respiration, Quanzhou First Hospital, Fujian Medical University, Quanzhou, P.R. China
| | - Wang Sheng
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, P.R. China
| | - Weiguo Hu
- Center of Oncology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Jing Lin
- Burning Rock Biotech, Guangzhou, P.R. China
| | - Junjun Liu
- Burning Rock Biotech, Guangzhou, P.R. China
| | - Bing Yu
- Burning Rock Biotech, Guangzhou, P.R. China
| | - Xinru Mao
- Burning Rock Biotech, Guangzhou, P.R. China
| | - Lu Zhang
- Burning Rock Biotech, Guangzhou, P.R. China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Guangsuo Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Affiliated Hospital, Medical College of Ji'nan University, Shenzhen, P.R. China
| |
Collapse
|
40
|
Venur VA, Cohen JV, Brastianos PK. Targeting Molecular Pathways in Intracranial Metastatic Disease. Front Oncol 2019; 9:99. [PMID: 30886831 PMCID: PMC6409309 DOI: 10.3389/fonc.2019.00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
The discovery and clinical application of agents targeting pivotal molecular pathways in malignancies such as lung, breast, renal cell carcinoma, and melanoma have led to impressive improvements in clinical outcomes. Mutations in epidermal growth factor receptor (EGFR), and rearrangements of anaplastic lymphoma kinase (ALK) are targetable in lung cancer, while BRAF mutations have been successfully targeted in metastatic melanoma. Targeting estrogen receptors, cyclin dependent kinases, and HER2 (Human Epidermal Receptor) have resulted in improvement in survival in breast cancer. Major strides have been made in the management of metastatic renal cell carcinoma by targeting the vascular endothelial growth factor (VEGF) pathway. However, intracranial metastases remain a major hurdle in the setting of targeted therapies. Traditional treatment options for brain metastases include surgery, whole brain radiation therapy (WBRT), and stereotactic radiosurgery (SRS). Surgery is effective in symptomatic patients with dominant lesions or solitary intracranial metastases, however, recovery time can be prolonged, often requiring an interruption in systemic treatment. WBRT and SRS provide symptomatic relief and local control but data on improving overall survival is limited. Most targeted therapies which provide extracranial control have limited penetration through the blood brain barrier. Given the limited therapeutic options and increasing prevalence of brain metastases, finding new strategies for the management of intracranial metastatic disease is critical. Genomic analysis of brain metastases has led to a better understanding of variations in the driver mutations compared to the primary malignancy. Furthermore, newer generations of targeted agents have shown promising intracranial activity. In this review, we will discuss the major molecular alterations in brain metastases from melanoma, lung, breast, and renal cell carcinoma. We will provide an in-depth review of the completed and ongoing clinical trials of drugs targeting the molecular pathways enriched in brain metastases.
Collapse
Affiliation(s)
| | | | - Priscilla K. Brastianos
- Divisions of Neuro-Oncology and Hematology/Oncology, Departments of Neurology and Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
41
|
Neel DS, Allegakoen DV, Olivas V, Mayekar MK, Hemmati G, Chatterjee N, Blakely CM, McCoach CE, Rotow JK, Le A, Karachaliou N, Rosell R, Riess JW, Nichols R, Doebele RC, Bivona TG. Differential Subcellular Localization Regulates Oncogenic Signaling by ROS1 Kinase Fusion Proteins. Cancer Res 2018; 79:546-556. [PMID: 30538120 DOI: 10.1158/0008-5472.can-18-1492] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/16/2018] [Accepted: 12/06/2018] [Indexed: 01/15/2023]
Abstract
Chromosomal rearrangements involving receptor tyrosine kinases (RTK) are a clinically relevant oncogenic mechanism in human cancers. These chimeric oncoproteins often contain the C-terminal kinase domain of the RTK joined in cis to various N-terminal, nonkinase fusion partners. The functional role of the N-terminal fusion partner in RTK fusion oncoproteins is poorly understood. Here, we show that distinct N-terminal fusion partners drive differential subcellular localization, which imparts distinct cell signaling and oncogenic properties of different, clinically relevant ROS1 RTK fusion oncoproteins. SDC4-ROS1 and SLC34A2-ROS1 fusion oncoproteins resided on endosomes and activated the MAPK pathway. CD74-ROS1 variants that localized instead to the endoplasmic reticulum (ER) showed compromised activation of MAPK. Forced relocalization of CD74-ROS1 from the ER to endosomes restored MAPK signaling. ROS1 fusion oncoproteins that better activate MAPK formed more aggressive tumors. Thus, differential subcellular localization controlled by the N-terminal fusion partner regulates the oncogenic mechanisms and output of certain RTK fusion oncoproteins. SIGNIFICANCE: ROS1 fusion oncoproteins exhibit differential activation of MAPK signaling according to subcellular localization, with ROS1 fusions localized to endosomes, the strongest activators of MAPK signaling.
Collapse
Affiliation(s)
- Dana S Neel
- Department of Medicine, University of California at San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - David V Allegakoen
- Department of Medicine, University of California at San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Victor Olivas
- Department of Medicine, University of California at San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Manasi K Mayekar
- Department of Medicine, University of California at San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Golzar Hemmati
- Department of Medicine, University of California at San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Nilanjana Chatterjee
- Department of Medicine, University of California at San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Collin M Blakely
- Department of Medicine, University of California at San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Caroline E McCoach
- Department of Medicine, University of California at San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Julia K Rotow
- Department of Medicine, University of California at San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Anh Le
- Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Niki Karachaliou
- Cancer Biology and Precision Medicine Program Catalan Institute of Oncology Hospital Germans Trias i Pujol Badalona, Barcelona, Spain
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program Catalan Institute of Oncology Hospital Germans Trias i Pujol Badalona, Barcelona, Spain
| | - Jonathan W Riess
- University of California Davis School of Medicine, Sacramento, California.,Comprehensive Cancer Center, Sacramento, California
| | | | - Robert C Doebele
- Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Trever G Bivona
- Department of Medicine, University of California at San Francisco, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| |
Collapse
|
42
|
Tzeng YDT, Liu PF, Li JY, Liu LF, Kuo SY, Hsieh CW, Lee CH, Wu CH, Hsiao M, Chang HT, Shu CW. Kinome-Wide siRNA Screening Identifies Src-Enhanced Resistance of Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells. Front Pharmacol 2018; 9:1285. [PMID: 30473665 PMCID: PMC6238227 DOI: 10.3389/fphar.2018.01285] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022] Open
Abstract
Background: Chemotherapy is the main treatment for triple-negative breast cancer (TNBC), which lack molecular markers for diagnosis and therapy. Cancer cells activate chemoresistant pathways and lead to therapeutic failure for patients with TNBC. Several kinases have been identified as chemoresistant genes. However, the involvement of kinases in the chemoresistance in TNBC cells is not fully understood. Methods: We employed a kinome siRNA library to screen whether targeting any kinases could increase the chemosensitivity of TNBC cell lines. The effects of kinase on cell viability in various breast cancer cells were validated with ATP level and colony formation. Protein expression and phosphorylation were determined by immunoblotting. The Cancer Genome Atlas (TCGA) dataset was collected to analyze the correlation of Src expression with prognosis of TNBC patients. Results: Primary screening and validation for the initial hits showed that Src kinase was a potential doxorubicin-resistant kinase in the TNBC cell lines MDA-MB-231 and Hs578T. Both siRNA against Src and the Src inhibitor dasatinib enhanced the cytotoxic effects of doxorubicin in TNBC cells. Moreover, phosphorylation of AKT and signal transducer and activator of transcription 3 (STAT3), downstream effectors of Src, were accordingly decreased in Src-silenced or -inhibited TNBC cells. Additionally, TCGA data analysis indicated that Src expression levels in tumor tissues were higher than those in tumor-adjacent normal tissues in patients with TNBC. High co-expression level of Src and STAT3 was also significantly correlated with poor prognosis in patients. Conclusion: Our results showed that Src-STAT3 axis might be involved in chemoresistance of TNBC cells.
Collapse
Affiliation(s)
- Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Feng Liu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Ju-Yueh Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Li-Feng Liu
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan.,Institute of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan
| | - Soong-Yu Kuo
- Department of Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Chiao-Wei Hsieh
- Institute of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Hsin Lee
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Hsuan Wu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
43
|
Pacenta HL, Macy ME. Entrectinib and other ALK/TRK inhibitors for the treatment of neuroblastoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3549-3561. [PMID: 30425456 PMCID: PMC6204873 DOI: 10.2147/dddt.s147384] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RTK plays important roles in many cellular signaling processes involved in cancer growth and development. ALK, TRKA, TRKB, TRKC, and ROS1 are RTKs involved in several canonical pathways related to oncogenesis. These proteins can be genetically altered in malignancies, leading to receptor activation and constitutive signaling through their respective downstream pathways. Neuroblastoma (NB) is the most common extracranial solid tumor in childhood, and despite intensive therapy, there is a high mortality rate in cases with a high-risk disease. Alterations of ALK and differential expression of TRK proteins are reported in a proportion of NB. Several inhibitors of ALK or TRKA/B/C have been evaluated both preclinically and clinically in the treatment of NB. These agents have had variable success and are not routinely used in the treatment of NB. Entrectinib (RXDX-101) is a pan-ALK, TRKA, TRKB, TRKC, and ROS1 inhibitor with activity against tumors with ALK, NTRK1, NTRK2, NTRK3, and ROS1 alterations in Phase I clinical trials in adults. Entrectinib’s activity against both ALK and TRK proteins suggests a possible role in NB treatment, and it is currently under investigation in both pediatric and adult oncology patients.
Collapse
Affiliation(s)
- Holly L Pacenta
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA,
| | - Margaret E Macy
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA,
| |
Collapse
|
44
|
Brastianos PK, Ippen FM, Hafeez U, Gan HK. Emerging Gene Fusion Drivers in Primary and Metastatic Central Nervous System Malignancies: A Review of Available Evidence for Systemic Targeted Therapies. Oncologist 2018; 23:1063-1075. [PMID: 29703764 PMCID: PMC6192601 DOI: 10.1634/theoncologist.2017-0614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Primary and metastatic tumors of the central nervous system present a difficult clinical challenge, and they are a common cause of disease progression and death. For most patients, treatment consists primarily of surgery and/or radiotherapy. In recent years, systemic therapies have become available or are under investigation for patients whose tumors are driven by specific genetic alterations, and some of these targeted treatments have been associated with dramatic improvements in extracranial and intracranial disease control and survival. However, the success of other systemic therapies has been hindered by inadequate penetration of the drug into the brain parenchyma. Advances in molecular characterization of oncogenic drivers have led to the identification of new gene fusions driving oncogenesis in some of the most common sources of intracranial tumors. Systemic therapies targeting many of these alterations have been approved recently or are in clinical development, and the ability to penetrate the blood-brain barrier is now widely recognized as an important property of such drugs. We review this rapidly advancing field with a focus on recently uncovered gene fusions and brain-penetrant systemic therapies targeting them. IMPLICATIONS FOR PRACTICE Driver gene fusions involving receptor tyrosine kinases have been identified across a wide range of tumor types, including primary central nervous system (CNS) tumors and extracranial solid tumors that are associated with high rates of metastasis to the CNS (e.g., lung, breast, melanoma). This review discusses the systemic therapies that target emerging gene fusions, with a focus on brain-penetrant agents that will target the intracranial disease and, where present, also extracranial disease.
Collapse
Affiliation(s)
- Priscilla K Brastianos
- Department of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Franziska Maria Ippen
- Department of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Umbreen Hafeez
- Medical Oncology, Austin Hospital, Heidelberg, Melbourne, Australia
| | - Hui K Gan
- Medical Oncology, Austin Hospital, Heidelberg, Melbourne, Australia
- La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
45
|
Zhu YC, Wang WX, Xu CW, Zhuang W, Song ZB, Du KQ, Chen G, Lv TF, Song Y. A novel co-existing ZCCHC8-ROS1 and de-novo MET amplification dual driver in advanced lung adenocarcinoma with a good response to crizotinib. Cancer Biol Ther 2018; 19:1097-1101. [PMID: 30095326 PMCID: PMC6301800 DOI: 10.1080/15384047.2018.1491506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/22/2018] [Accepted: 06/17/2018] [Indexed: 01/06/2023] Open
Abstract
In non-small cell lung cancer (NSCLC), driver gene alterations, such as EGFR, ALK, MET, and ROS1, are usually mutually exclusive. Few clinical cases with co-existing ROS1 fusion and de-novo MET amplification have been reported. In addition, the efficacy of crizotinib in Chinese patients with driver co-existing alterations is uncertain. A 65-year-old female was diagnosed with lung adenocarcinoma metastatic to the brain. She had sufficient tumor tissue for detection of the target gene; however, common driver gene mutations, such as EGFR-wild and ALK-negative, were not initially detected. The patient was ultimately shown to have both ZCCHC8-ROS1 and de-novo MET gene amplification through next-generation sequencing with sensitivity to the targeted therapy of crizotinib. Unfortunately, the progression-free survival was only 6 months in length. We report here the first patient with co-existing ROS1 fusion and de-novo MET amplification to receive crizotinib in China. Treatment of our patient was effective with targeted therapy based on a precise diagnosis. Advanced or metastatic NSCLC patients with co-existing ROS1 fusion and de-novo MET amplification are sensitive to crizotinib. These uncommon driver gene mutations may be missed using the current first-generation detection assay. We must be aware of the incidence of concomitant ROS1 fusion and de-novo MET amplification because NSCLC patients could benefit from targeted therapy.
Collapse
Affiliation(s)
- You-cai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center Zhejiang Rongjun Hospital, Jiaxing, Zhejiang, People’s Republic of China
| | - Wen-xian Wang
- Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Chun-wei Xu
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Wu Zhuang
- Department of Medical Thoracic Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Zheng-bo Song
- Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Kai-qi Du
- Department of Thoracic Disease Diagnosis and Treatment Center Zhejiang Rongjun Hospital, Jiaxing, Zhejiang, People’s Republic of China
| | - Gang Chen
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Tang-feng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Jiangsu, People’s Republic of China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Jiangsu, People’s Republic of China
| |
Collapse
|
46
|
Sehgal K, Patell R, Rangachari D, Costa DB. Targeting ROS1 rearrangements in non-small cell lung cancer with crizotinib and other kinase inhibitors. Transl Cancer Res 2018; 7:S779-S786. [PMID: 30327756 DOI: 10.21037/tcr.2018.08.11] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kartik Sehgal
- Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rushad Patell
- Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Deepa Rangachari
- Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel B Costa
- Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Yan C, Zhang W, Shi X, Zheng J, Jin X, Huo J. MiR-760 suppresses non-small cell lung cancer proliferation and metastasis by targeting ROS1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18385-18391. [PMID: 29372517 DOI: 10.1007/s11356-017-1138-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) have been shown to be critical regulators in many types of tumors. The aim of our study was to investigate the role of miR-760 in non-small cell lung cancer (NSCLC). We demonstrated that the expression of miR-760 was downregulated in NSCLC tissues compared with the adjacent normal tissues. We also demonstrated that the expression of miR-760 was downregulated in the NSCLC cell lines. Overexpression of miR-760 suppressed the NSCLC cell proliferation, cell cycle, and migration. Moreover, we identified that ROS1 was a direct target of miR-760 in the NSCLC cell. Elevated expression of miR-760 suppressed ROS1 expression in the NSCLC cell. We also demonstrated that the expression of ROS1 was higher in the NSCLC tissues than in the adjacent lung tissues. MiR-760 expression level was reversely associated with the expression level of ROS1 in the NSCLC tissues. In summary, we showed that miR-760 suppressed the NSCLC cell proliferation, cell cycle, and migration through regulating the ROS1 expression. These data suggested that miR-760 may act as a tumor suppressor gene in the NSCLC partly through regulating ROS1 expression.
Collapse
Affiliation(s)
- Chunhua Yan
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Wei Zhang
- Department of Respiratory, The first Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xiaodong Shi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Jiaolin Zheng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xiaoming Jin
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Jianmin Huo
- Department of Respiratory, The first Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
48
|
Lacerda-Abreu MA, Russo-Abrahão T, Monteiro RDQ, Rumjanek FD, Meyer-Fernandes JR. Inorganic phosphate transporters in cancer: Functions, molecular mechanisms and possible clinical applications. Biochim Biophys Acta Rev Cancer 2018; 1870:291-298. [PMID: 29753110 DOI: 10.1016/j.bbcan.2018.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/20/2018] [Accepted: 05/09/2018] [Indexed: 01/06/2023]
Abstract
Inorganic phosphate is one of the most essential nutrients for the maintenance of cell life. Because of its essential role in nutrient supplementation, the study of plasma membrane inorganic phosphate transporters in cancer biology has received much attention in recent years. Several studies suggest that these transporters are up-regulated in tumor cells and thus have been considered to be important promoters of tumor progression. Altered expression levels of inorganic phosphate transporters, such as NaPi-IIb (SLC34A2) and PiT-1 (SLC20A1), have been demonstrated. The purpose of this review article was to gather the relevant experimental records on inorganic phosphate transporters in tumors and to demonstrate the importance of these proteins in clinical applications. In this work, we demonstrate that for decades, the potential use of the inorganic phosphate transporter as an antigen for the diagnosis of tumor subtypes remained unknown. With the advancement in molecular biology techniques, phosphate transporters have been identified as being associated with cancer. In addition to their altered expression in cancer, several studies have demonstrated other functions of inorganic phosphate transporters, such as transceptors, rearrangements with oncogenes and modifications in the expression of ABC transporters, aiding in the process of proliferation and drug resistance.
Collapse
Affiliation(s)
- Marco Antônio Lacerda-Abreu
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil
| | - Thais Russo-Abrahão
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil
| | | | - Franklin David Rumjanek
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
49
|
Camp E, Anderson PJ, Zannettino ACW, Glackin CA, Gronthos S. Tyrosine kinase receptor c‐ros‐oncogene 1 inhibition alleviates aberrant bone formation of TWIST‐1 haploinsufficient calvarial cells from Saethre–Chotzen syndrome patients. J Cell Physiol 2018; 233:7320-7332. [DOI: 10.1002/jcp.26563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/23/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Esther Camp
- Mesenchymal Stem Cell LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Cancer ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - Peter J. Anderson
- Cancer ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Australian Craniofacial UnitWomen's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Andrew C. W. Zannettino
- Cancer ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Myeloma Research LaboratoryAdelaide Medical School, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Carlotta A. Glackin
- Molecular Medicine and NeurosciencesCity of Hope National Medical Center and Beckman Research InstituteDuarteCalifornia
| | - Stan Gronthos
- Mesenchymal Stem Cell LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Cancer ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| |
Collapse
|
50
|
Bossé Y, Amos CI. A Decade of GWAS Results in Lung Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:363-379. [PMID: 28615365 PMCID: PMC6464125 DOI: 10.1158/1055-9965.epi-16-0794] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies (GWAS) were successful to identify genetic factors robustly associated with lung cancer. This review aims to synthesize the literature in this field and accelerate the translation of GWAS discoveries into results that are closer to clinical applications. A chronologic presentation of published GWAS on lung cancer susceptibility, survival, and response to treatment is presented. The most important results are tabulated to provide a concise overview in one read. GWAS have reported 45 lung cancer susceptibility loci with varying strength of evidence and highlighted suspected causal genes at each locus. Some genetic risk loci have been refined to more homogeneous subgroups of lung cancer patients in terms of histologic subtypes, smoking status, gender, and ethnicity. Overall, these discoveries are an important step for future development of new therapeutic targets and biomarkers to personalize and improve the quality of care for patients. GWAS results are on the edge of offering new tools for targeted screening in high-risk individuals, but more research is needed if GWAS are to pay off the investment. Complementary genomic datasets and functional studies are needed to refine the underlying molecular mechanisms of lung cancer preliminarily revealed by GWAS and reach results that are medically actionable. Cancer Epidemiol Biomarkers Prev; 27(4); 363-79. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|