1
|
Arokiaraj CM, Leone MJ, Kleyman M, Chamessian A, Noh MC, Phan BN, Lopes BC, Corrigan KA, Cherupally VK, Yeramosu D, Franusich ME, Podder R, Lele S, Shiers S, Kang B, Kennedy MM, Chen V, Chen Z, Mathys H, Dum RP, Lewis DA, Qadri Y, Price TJ, Pfenning AR, Seal RP. Spatial, transcriptomic, and epigenomic analyses link dorsal horn neurons to chronic pain genetic predisposition. Cell Rep 2024; 43:114876. [PMID: 39453813 PMCID: PMC11801220 DOI: 10.1016/j.celrep.2024.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 09/30/2024] [Indexed: 10/27/2024] Open
Abstract
Key mechanisms underlying chronic pain occur within the dorsal horn. Genome-wide association studies (GWASs) have identified genetic variants predisposed to chronic pain. However, most of these variants lie within regulatory non-coding regions that have not been linked to spinal cord biology. Here, we take a multi-species approach to determine whether chronic pain variants impact the regulatory genomics of dorsal horn neurons. First, we generate a large rhesus macaque single-nucleus RNA sequencing (snRNA-seq) atlas and integrate it with available human and mouse datasets to produce a single unified, species-conserved atlas of neuron subtypes. Cellular-resolution spatial transcriptomics in mouse shows the precise laminar location of these neuron subtypes, consistent with our analysis of neuron-subtype-selective markers in macaque. Using this cross-species framework, we generate a mouse single-nucleus open chromatin atlas of regulatory elements that shows strong and selective relationships between the neuron-subtype-specific chromatin regions and variants from major chronic pain GWASs.
Collapse
Affiliation(s)
- Cynthia M Arokiaraj
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael J Leone
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael Kleyman
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alexander Chamessian
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27708, USA; Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Myung-Chul Noh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - BaDoi N Phan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bettega C Lopes
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kelly A Corrigan
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Vijay Kiran Cherupally
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Deepika Yeramosu
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael E Franusich
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Riya Podder
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sumitra Lele
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Byungsoo Kang
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Meaghan M Kennedy
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Viola Chen
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ziheng Chen
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hansruedi Mathys
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Richard P Dum
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yawar Qadri
- Department of Anesthesiology, Emory University, Atlanta, GA 30038, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas R Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
2
|
Blank N, Weiner M, Patel S, Köhler S, Thaiss CA. Mind the GAPS: Glia associated with psychological stress. J Neuroendocrinol 2024:e13451. [PMID: 39384366 DOI: 10.1111/jne.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Glial cells are an integral component of the nervous system, performing crucial functions that extend beyond structural support, including modulation of the immune system, tissue repair, and maintaining tissue homeostasis. Recent studies have highlighted the importance of glial cells as key mediators of stress responses across different organs. This review focuses on the roles of glial cells in peripheral tissues in health and their involvement in diseases linked to psychological stress. Populations of glia associated with psychological stress ("GAPS") emerge as a promising target cell population in our basic understanding of stress-associated pathologies, highlighting their role as mediators of the deleterious effects of psychological stress on various health conditions. Ultimately, new insights into the impact of stress on glial cell populations in the periphery may support clinical efforts aimed at improving the psychological state of patients for improved health outcomes.
Collapse
Affiliation(s)
- Niklas Blank
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Molly Weiner
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shaan Patel
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah Köhler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Harbour K, Baccei ML. Influence of Early-Life Stress on the Excitability of Dynorphin Neurons in the Adult Mouse Dorsal Horn. THE JOURNAL OF PAIN 2024; 25:104609. [PMID: 38885917 PMCID: PMC11815514 DOI: 10.1016/j.jpain.2024.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
While early-life adversity has been associated with a higher risk of developing chronic pain in adulthood, the cellular and molecular mechanisms by which chronic stress during the neonatal period can persistently sensitize developing nociceptive circuits remain poorly understood. Here, we investigate the effects of early-life stress (ELS) on synaptic integration and intrinsic excitability in dynorphin-lineage (DYN) interneurons within the adult mouse superficial dorsal horn (SDH), which are important for inhibiting mechanical pain and itch. The administration of neonatal limited bedding between postnatal days (P)2 and P9 evoked sex-dependent effects on spontaneous glutamatergic signaling, as female SDH neurons exhibited a higher amplitude of miniature excitatory postsynaptic currents (mEPSCs) after ELS, while mEPSC frequency was reduced in DYN neurons of the male SDH. Furthermore, ELS decreased the frequency of miniature inhibitory postsynaptic currents selectively in female DYN neurons. As a result, ELS increased the balance of spontaneous excitation versus inhibition (E:I ratio) in mature DYN neurons of the female, but not male, SDH network. Nonetheless, ELS weakened the total primary afferent-evoked glutamatergic drive onto adult DYN neurons selectively in females, without modifying afferent-evoked inhibitory signaling onto the DYN population. Finally, ELS failed to significantly change the intrinsic membrane excitability of mature DYN neurons in either males or females. Collectively, these data suggest that ELS exerts a long-term influence on the properties of synaptic transmission onto DYN neurons within the adult SDH, which includes a reduction in the overall strength of sensory input onto this important subset of inhibitory interneurons. PERSPECTIVE: This study suggests that chronic stress during the neonatal period influences synaptic function within adult spinal nociceptive circuits in a sex-dependent manner. These findings yield new insight into the potential mechanisms by which early-life adversity might shape the maturation of pain pathways in the central nervous system (CNS).
Collapse
Affiliation(s)
- Kyle Harbour
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Mark L Baccei
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, Ohio.
| |
Collapse
|
4
|
Hu YY, Souza R, Muthuraman A, Knapp L, McIntyre C, Dussor G. Glucocorticoid signaling mediates stress-induced migraine-like behaviors in a preclinical mouse model. Cephalalgia 2024; 44:3331024241277941. [PMID: 39211943 PMCID: PMC11578425 DOI: 10.1177/03331024241277941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Stress is one of the most common precipitating factors in migraine and is identified as a trigger in nearly 70% of patients. Responses to stress include release of glucocorticoids as an adaptive mechanism, but this may also contribute to migraine attacks. Here, we investigated the role of glucocorticoids on stress-induced migraine-like behaviors. METHODS We have shown previously that repeated stress in mice evokes migraine-like behavioral responses and priming to a nitric oxide donor. Metyrapone, mifepristone, and corticosterone (CORT) were used to investigate whether CORT contributes to the stress-induced effects. Facial mechanical hypersensitivity was evaluated by von Frey testing and grimace scoring assessed the presence of non-evoked pain. We also measured serum CORT levels in control, stress, and daily CORT injected groups of both male and female mice. RESULTS Metyrapone blocked stress-induced responses and priming in male and female mice. However, repeated CORT injections in the absence of stress only led to migraine-like behaviors in females. Both female and male mice showed similar patterns of serum CORT in response to stress or exogenous administration. Finally, administration of mifepristone, the glucocorticoid receptor antagonist, prior to each stress session blocked stress-induced behavioral responses in male and female mice. CONCLUSIONS These findings demonstrate that while CORT synthesis and receptor activation is necessary for the behavioral responses triggered by repeated stress, it is only sufficient in females. Better understanding of how glucocorticoids contribute to migraine may lead to new therapeutic opportunities.
Collapse
Affiliation(s)
- Ya-Yu Hu
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
- The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
| | - Rimenez Souza
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Athithyaa Muthuraman
- The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
- Department of Biological Sciences, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX, USA
| | - Leela Knapp
- The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
- Department of Chemistry and Biochemistry, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX, USA
| | - Christa McIntyre
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
- The Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
5
|
Sant'Anna MB, Kimura LF, Vieira WF, Zambelli VO, Novaes LS, Hösch NG, Picolo G. Environmental factors and their impact on chronic pain development and maintenance. Phys Life Rev 2024; 48:176-197. [PMID: 38320380 DOI: 10.1016/j.plrev.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.
Collapse
Affiliation(s)
| | - Louise Faggionato Kimura
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Willians Fernando Vieira
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Leonardo Santana Novaes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
6
|
Karimi SA, Zahra FT, Martin LJ. IUPHAR review: Navigating the role of preclinical models in pain research. Pharmacol Res 2024; 200:107073. [PMID: 38232910 DOI: 10.1016/j.phrs.2024.107073] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Chronic pain is a complex and challenging medical condition that affects millions of people worldwide. Understanding the underlying mechanisms of chronic pain is a key goal of preclinical pain research so that more effective treatment strategies can be developed. In this review, we explore nociception, pain, and the multifaceted factors that lead to chronic pain by focusing on preclinical models. We provide a detailed look into inflammatory and neuropathic pain models and discuss the most used animal models for studying the mechanisms behind these conditions. Additionally, we emphasize the vital role of these preclinical models in developing new pain-relief drugs, focusing on biologics and the therapeutic potential of NMDA and cannabinoid receptor antagonists. We also discuss the challenges of TRPV1 modulation for pain treatment, the clinical failures of neurokinin (NK)- 1 receptor antagonists, and the partial success story of Ziconotide to provide valuable lessons for preclinical pain models. Finally, we highlight the overall success and limitations of current treatments for chronic pain while providing critical insights into the development of more effective therapies to alleviate the burden of chronic pain.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Fatama Tuz Zahra
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
7
|
Harbour K, Cappel Z, Baccei ML. Effects of Corticosterone on the Excitability of Glutamatergic and GABAergic Neurons of the Adolescent Mouse Superficial Dorsal Horn. Neuroscience 2023; 526:290-304. [PMID: 37437798 PMCID: PMC10530204 DOI: 10.1016/j.neuroscience.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Stress evokes age-dependent effects on pain sensitivity and commonly occurs during adolescence. However, the mechanisms linking adolescent stress and pain remain poorly understood, in part due to a lack of information regarding how stress hormones modulate the function of nociceptive circuits in the adolescent CNS. Here we investigate the short- and long-term effects of corticosterone (CORT) on the excitability of GABAergic and presumed glutamatergic neurons of the spinal superficial dorsal horn (SDH) in Gad1-GFP mice at postnatal days (P)21-P34. In situ hybridization revealed that glutamatergic SDH neurons expressed significantly higher mRNA levels of both glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) compared to adjacent GABAergic neurons. The incubation of spinal cord slices with CORT (90 min) evoked select long-term changes in spontaneous synaptic transmission across both cell types in a sex-dependent manner, without altering the intrinsic firing of either Gad1-GFP+ or GFP- neurons. Meanwhile, the acute bath application of CORT significantly decreased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), as well as the frequency of miniature inhibitory postsynaptic currents (mIPSCs), in both cell types leading to a net reduction in the balance of spontaneous excitation vs. inhibition (E:I ratio). This CORT-induced reduction in the E:I ratio was not prevented by selective antagonists of either GR (mifepristone) or MR (eplerenone), although eplerenone blocked the effect on mEPSC amplitude. Collectively, these data suggest that corticosterone modulates synaptic function within the adolescent SDH which could influence the overall excitability and output of the spinal nociceptive network.
Collapse
Affiliation(s)
- Kyle Harbour
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Zoe Cappel
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Mark L Baccei
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
8
|
Lee YH, Suk C. Effects of self-perceived psychological stress on clinical symptoms, cortisol, and cortisol/ACTH ratio in patients with burning mouth syndrome. BMC Oral Health 2023; 23:513. [PMID: 37481556 PMCID: PMC10363315 DOI: 10.1186/s12903-023-03235-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Psychological stress is a crucial parameter in defining the symptoms of burning mouth syndrome (BMS). We hypothesized that the level of psychological stress in patients with BMS would correlate with severity of clinical symptoms, cortisol levels, and cortisol/ adrenocorticotropic hormone (ACTH) ratio. We aimed to comprehensively investigate the influence of clinical and hematologic parameters on the hypothalamic-pituitary-adrenal axis, particularly concerning the presence or absence of self-perceived psychological stress in patients with BMS. In addition, we aimed to identify parameters predicting psychological stress in these patients. METHODS One hundred and forty-one patients with BMS (117 women, 82.98%; 56.21 ± 13.92 years) were divided into psychological stress (n = 68; 55 females, 56.39 ± 12.89 years) and non-psychological stress groups (n = 73; 62 females, 56.03 ± 14.90 years), and inter- and intra-group statistical analyses were conducted. Significant predictors of psychological stress in patients with BMS were investigated through multiple logistic regression analysis. RESULTS The prevalence of xerostomia was significantly higher (67.6% vs. 34.2%, p < 0.001), while unstimulated salivary flow rate was lower (0.66 ± 0.59 vs. 0.91 ± 0.53 mL/min, p < 0.01) in the psychological stress group than in the non-psychological stress group. SCL-90R subscale values for somatization, hostility, anxiety, and depression, as well as cortisol and ACTH levels and the cortisol/ACTH ratio, were also higher in the psychological stress group (all p < 0.05). Above-mean values for cortisol (AUC = 0.980, 95%CI: 0.959-1.000) and cortisol/ACTH (AUC = 0.779; 95%CI, 0.701-0.856) were excellent predictors of psychological stress, with cortisol (r = 0.831, p < 0.01) and cortisol/ACTH (r = 0.482, p < 0.01) demonstrating substantial correlations. Above-average values for cortisol (OR = 446.73) and cortisol/ACTH (OR = 6.159) significantly increased incidence of psychological stress in patients with BMS (all p < 0.001). CONCLUSIONS Among patients with BMS, xerostomia, decreased salivary flow rate, increased cortisol levels, and cortisol/ACTH ratio were associated with psychological stress, highlighting the psycho-neuro-endocrinological features of this condition. Cortisol and cortisol/ACTH ratio were strong predictors of psychological stress in patients with BMS.
Collapse
Affiliation(s)
- Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University, Kyung Hee University Dental Hospital, #613 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, South Korea.
| | - Chon Suk
- Department of Endocrinology, Kyung Hee University, Kyung Hee University Medical Center, #613 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
9
|
Luo H, Zhang Y, Zhang J, Shao J, Ren X, Zang W, Cao J, Xu B. Glucocorticoid Receptor Contributes to Electroacupuncture-Induced Analgesia by Inhibiting Nav1.7 Expression in Rats With Inflammatory Pain Induced by Complete Freund's Adjuvant. Neuromodulation 2022; 25:1393-1402. [PMID: 34337820 DOI: 10.1111/ner.13499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND While electroacupuncture (EA) has been used traditionally for the treatment of chronic pain, its analgesic mechanisms have not been fully clarified. We observed in an earlier study that EA could reverse inflammatory pain and suppress high Nav1.7 expression. However, the molecular mechanism underlying Nav1.7 expression regulation is unclear. In this study, we studied the relationship between the glucocorticoid receptor (GR) and Nav1.7 and the role of these molecules in EA analgesia. MATERIALS AND METHODS In this study, we established an inflammatory pain model by intraplantar injection of complete Freund's adjuvant (CFA) in rats. EA stimulation was applied to the ipsilateral "Huantiao" (GB30) and "Zusanli" (ST36) acupoints in the rat model. Western blotting, real-time polymerase chain reaction, immunostaining, intrathecal injection, and chromatin immunoprecipitation (ChIP) assay were performed to determine whether the sodium channel protein Nav1.7 plays a role in CFA-induced pain and whether GR regulates Nav1.7 expression during analgesia following EA stimulation. RESULTS EA application significantly decreased the paw withdrawal threshold thresholds and thermal paw withdrawal latency and suppressed GR and Nav1.7 expression in the dorsal root ganglion. Moreover, treatment with a GR sense oligonucleotide (OND) markedly reversed these alterations. In contrast, treatment with a GR antisense OND along with EA application exerted a better analgesic effect, which was accompanied by the suppression of Nav1.7 and GR protein expression. The ChIP assay showed that the binding activity of GR to the Nav1.7 promoter was enhanced in CFA injected rats and suppressed in EA-treated rats. CONCLUSIONS The present study demonstrated that EA exerted anti-hyperalgesic effects by inhibiting GR expression, which led to Nav1.7 expression modulation in the rat model of CFA-induced inflammatory pain.
Collapse
Affiliation(s)
- Huiying Luo
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Yidan Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Jingjing Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Jinping Shao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.
| | - Bo Xu
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, China.
| |
Collapse
|
10
|
Bourke SL, Schlag AK, O'Sullivan SE, Nutt DJ, Finn DP. Cannabinoids and the endocannabinoid system in fibromyalgia: A review of preclinical and clinical research. Pharmacol Ther 2022; 240:108216. [PMID: 35609718 DOI: 10.1016/j.pharmthera.2022.108216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Characterised by chronic widespread musculoskeletal pain, generalised hyperalgesia, and psychological distress, fibromyalgia (FM) is a significant unmet clinical need. The endogenous cannabinoid system plays an important role in modulating both pain and the stress response. Here, we appraise the evidence, from preclinical and clinical studies, for a role of the endocannabinoid system in FM and the therapeutic potential of targeting the endocannabinoid system. While many animal models have been used to study FM, the reserpine-induced myalgia model has emerged as perhaps the most translatable to the clinical phenotype. Inhibition of fatty acid amide hydrolase (FAAH) has shown promise in preclinical studies, ameliorating pain- and anxiety-related behaviour . Clinically, there is evidence for alterations in the endocannabinoid system in patients with FM, including single nucleotide polymorphisms and increased levels of circulating endocannabinoids and related N-acylethanolamines. Single entity cannabinoids, cannabis, and cannabis-based medicines in patients with FM show promise therapeutically but limitations in methodology and lack of longitudinal studies to assess efficacy and tolerability preclude the current recommendation for their use in patients with FM. Gaps in the literature that warrant further investigation are discussed, particularly the need for further development of animal models with high validity for the multifaceted nature of FM, balanced studies to eliminate sex-bias in preclinical research, and ultimately, better translation between preclinical and clinical research.
Collapse
Affiliation(s)
- Stephanie L Bourke
- Pharmacology and Therapeutics, School of Medicine, Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Anne Katrin Schlag
- Drug Science, St. Peters House, Wood Street, London, UK; Faculty of Medicine, Department of Brain Sciences, Imperial College London, UK
| | | | - David J Nutt
- Drug Science, St. Peters House, Wood Street, London, UK; Faculty of Medicine, Department of Brain Sciences, Imperial College London, UK
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
11
|
Huang R, Han S, Qiu Y, Zhou T, Wu Y, Du H, Xu J, Wei X. Glucocorticoid regulation of lactate release from spinal astrocytes contributes to the induction of spinal LTP of C-fiber-evoked field potentials and the development of mechanical allodynia. Neuropharmacology 2022; 219:109253. [PMID: 36108796 DOI: 10.1016/j.neuropharm.2022.109253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
High-frequency stimulation (HFS) of the sciatic nerve leads to long-term potentiation (LTP) at C-fiber synapse and long-lasting pain hypersensitivity. The underlying mechanisms, however, are still unclear. In the present study, we investigated the involvement of astrocytes derived l-lactate in the spinal dorsal horn subsequent to glucocorticoid (GC) secretion into the plasma in this process using Sprague-Dawley rats and Aldh1L1-CreERT2 mice of either sex. We found that HFS increased l-lactate and monocarboxylate transporters 1/2 (MCT1/2) in the spinal dorsal horn. Inhibition of glycogenolysis or blocking lactate transport prevented the induction of spinal LTP following HFS. Furthermore, Chemogenetical inhibition of dorsal horn astrocytes, which were activated by HFS, prevented spinal LTP, alleviated the mechanical allodynia and the decreased the level l-lactate and GFAP expression in the dorsal horn following HFS. In contrast, Chemogenetics activation of dorsal horn astrocytes in naïve rats induced spinal LTP as well as mechanical allodynia, and increased GFAP expression and l-lactate. Application of l-lactate directly to the spinal cord of naïve rats induced spinal LTP, mechanical allodynia, and increased spinal expression of p-ERK. Importantly, HFS increased GC in the plasma and glucocorticoid receptor (GR) expression in spinal astrocytes, adrenalectomy or knocking down of GR in astrocytes by using Cre-Loxp system blocked the mechanical allodynia, prevented the spinal LTP and the enhancement of lactate after HFS. These results show that lactate released from spinal astrocytes following glucocorticoid release into the plasma enhance synaptic transmission at the C-fiber synapse and underlie pain chronicity.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuang Han
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxin Qiu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Taihe Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuning Wu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongchun Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Center for Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
12
|
Mack D, Yevugah A, Renner K, Burrell BD. Serotonin mediates stress-like effects on responses to non-nociceptive stimuli in Hirudo. J Exp Biol 2022; 225:275639. [PMID: 35510636 PMCID: PMC9234501 DOI: 10.1242/jeb.243404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
Noxious stimuli can elicit stress in animals that produce a variety of adaptations including changes in responses to nociceptive and non-nociceptive sensory input. One example is stress-induced analgesia that may be mediated, in part, by the endocannabinoid system. However, endocannabinoids can also have pro-nociceptive effects. In this study, the effects of electroshock, one experimental approach for producing acute stress, were examined on responses to non-nociceptive mechanical stimuli and nociceptive thermal stimuli in the medicinal leech (Hirudo verbana). The electroshock stimuli did not alter the leeches’ responses to nociceptive stimuli, but did cause sensitization to non-nociceptive stimuli, characterized by a reduction in response threshold. These experiments were repeated with drugs that either blocked synthesis of the endocannabinoid transmitter 2-arachidonoylglycerol (2-AG) or transient receptor potential vanilloid (TRPV) channel, which is known to act as an endocannabinoid receptor. Surprisingly, neither treatment had any effect on responses following electroshock. However, the electroshock stimuli reliably increased serotonin (5-hydroxytryptamine or 5HT) levels in the H. verbana CNS. Injection of 5HT mimicked the effects of the electroshocks, sensitizing responses to non-nociceptive stimuli and having no effect on responses to nociceptive stimuli. Injections of the 5HT receptor antagonist methysergide reduced the sensitization effect to non-nociceptive stimuli after electroshock treatment. These results indicate that electroshocks enhance response to non-nociceptive stimuli but do not alter responses to nociceptive stimuli. Furthermore, while 5HT appears to play a critical role in this shock-induced sensitizing effect, the endocannabinoid system seems to have no effect. Summary: The role of serotonin and endocannabinoids in mediating the effects of potentially stress-inducing stimuli on Hirudo verbana’s response to nociceptive and non-nociceptive input.
Collapse
Affiliation(s)
- Danielle Mack
- Division of Basic Biomedical Sciences, University of South Dakota, USA.,Center for Brain and Behavior Research, University of South Dakota, USA
| | | | - Kenneth Renner
- Department of Biology, University of South Dakota, USA.,Center for Brain and Behavior Research, University of South Dakota, USA
| | - Brian D Burrell
- Division of Basic Biomedical Sciences, University of South Dakota, USA.,Center for Brain and Behavior Research, University of South Dakota, USA
| |
Collapse
|
13
|
Jiang M, Huang Y, Hu L, Wu H, Liu Y, Ni K, Zhang X, Sun Y, Gu X. The transcription factor CCAAT/enhancer-binding protein β in spinal microglia contributes to pre-operative stress-induced prolongation of postsurgical pain. Mol Pain 2022; 18:17448069221099360. [PMID: 35451875 PMCID: PMC9257637 DOI: 10.1177/17448069221099360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prolongation of postsurgical pain caused by pre-operative stress is a clinically significant problem, although the mechanisms are not fully understood. Stress can promote the pro-inflammatory activation of microglia, and the transcription factor CCAAT/enhancer-binding protein (C/EBP) β regulates pro-inflammatory gene expression in microglia. Therefore, we speculated that C/EBPβ in spinal microglia may have critical roles in the development of chronic postsurgical pain. Accordingly, in this study, we used a single prolonged stress (SPS) procedure and plantar incisions to evaluate the roles of C/EBPβ in postsurgical pain. Our experiments showed that SPS exposure prolonged mechanical allodynia, increased the expression of C/EBPβ and pro-inflammatory cytokines, and potentiated the activation of spinal microglia. Subsequently, microinjection of C/EBPβ siRNA attenuated the duration of SPS-prolonged postoperative mechanical allodynia and inhibited microglial activation in the spinal cord. Conversely, mimicking this increase in C/EBPβ promoted microglial activation via pretreatment with a pre-injection of AAV5-C/EBPβ, leading to prolongation of postsurgical pain. Overall, these results suggested that spinal microglia may play key roles in prolongation of postsurgical pain induced by pre-operative stress and that C/EBPβ may be a potential target for disease treatment.
Collapse
Affiliation(s)
- Ming Jiang
- Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Yulin Huang
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Lijun Hu
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Hao Wu
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Yue Liu
- Department of Anesthesiology66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Kun Ni
- Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Xiaokun Zhang
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Yu'e Sun
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Xiaoping Gu
- Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| |
Collapse
|
14
|
Gerum M, Simonin F. Behavioral characterization, potential clinical relevance and mechanisms of latent pain sensitization. Pharmacol Ther 2021; 233:108032. [PMID: 34763010 DOI: 10.1016/j.pharmthera.2021.108032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Chronic pain is a debilitating disorder that can occur as painful episodes that alternates with bouts of remission and occurs despite healing of the primary insult. Those episodes are often triggered by stressful events. In the last decades, a similar situation has been evidenced in a wide variety of rodent models (including inflammatory pain, neuropathy and opioid-induced hyperalgesia) where animals develop a chronic latent hyperalgesia that silently persists after behavioral signs of pain resolution. This state, referred as latent pain sensitization, is due to the compensatory activation of antinociceptive systems, such as the opioid system or NPY and its receptors. A transitory phase of hyperalgesia can then be reinstated by pharmacological or genetic blockade of these antinociceptive systems or by submitting animals to acute stress. Those observations reveal that there is a constant endogenous analgesia responsible for chronic pain inhibition that might paradoxically contribute to maintain this maladaptive state and could then participate to the transition from acute to chronic pain. Thus, demonstration of the existence of this phenomenon in humans and a better understanding of the mechanisms by which latent pain sensitization develops and maintains over long periods of time will be of particular interest to help identifying new therapeutic strategies and targets for chronic pain treatment. The present review aims to recapitulate behavioral expression, potential clinical relevance, cellular mechanisms and intracellular signaling pathways involved so far in latent pain sensitization.
Collapse
Affiliation(s)
- Manon Gerum
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Illkirch-Graffenstaden, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Illkirch-Graffenstaden, France.
| |
Collapse
|
15
|
Okuda T, Osako Y, Hidaka C, Nishihara M, Young LJ, Mitsui S, Yuri K. Separation from a bonded partner alters neural response to inflammatory pain in monogamous rodents. Behav Brain Res 2021; 418:113650. [PMID: 34748865 DOI: 10.1016/j.bbr.2021.113650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 11/02/2022]
Abstract
Pain experience is known to be modified by social factors, but the brain mechanisms remain unspecified. We recently established an animal model of social stress-induced hyperalgesia (SSIH) using a socially monogamous rodent, the prairie vole, in which males separated from their female partners (loss males) became anxious and displayed exacerbated inflammatory pain behaviors compared to males with partners (paired males). In the present study, to explore the neural pathways involved in SSIH, a difference in neuronal activation in pain-related brain regions, or "pain matrix", during inflammatory pain between paired and loss males was detected using Fos immunoreactivity (Fos-ir). Males were paired with a female and pair bonding was confirmed in all subjects using a partner preference test. During formalin-induced inflammatory pain, both paired and loss males showed a significant induction of Fos-ir throughout the analyzed pain matrix components compared to basal condition (without injection), and no group differences in immunoreactivity were found among the injected males in many brain regions. However, the loss males had significantly lower Fos-ir following inflammatory pain in the medial prefrontal cortex and nucleus accumbens shell than the paired males, even though base Fos-ir levels were comparable between groups. Notably, both regions with different Fos-ir are major components of the dopamine and oxytocin systems, which play critical roles in both pair bonding and pain regulation. The present results suggest the possibility that pain exacerbation by social stress emerges through alteration of signaling in social brain circuitry.
Collapse
Affiliation(s)
- Takahiro Okuda
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan; Department of Physical Therapy, Tosa Rehabilitation College, Otsu, Ohtsu, Kochi 781-5103, Japan.
| | - Yoji Osako
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Chiharu Hidaka
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Centre, Aichi Medical University, School of Medicine, 21 Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Center, Emory University School of Medicine, 954 Gatewood Rd. Atlanta, GA 30322, USA; Center for Social Neural Networks, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Kazunari Yuri
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
16
|
Tse YC, Nath M, Larosa A, Wong TP. Opposing Changes in Synaptic and Extrasynaptic N-Methyl-D-Aspartate Receptor Function in Response to Acute and Chronic Restraint Stress. Front Mol Neurosci 2021; 14:716675. [PMID: 34690693 PMCID: PMC8531402 DOI: 10.3389/fnmol.2021.716675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
A pertinent mechanism by which stress impacts learning and memory is through stress-induced plastic changes in glutamatergic transmission in the hippocampus. For instance, acute stress has been shown to alter the expression, binding, and function of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR). However, the consequences of chronic stress, which could lead to various stress-related brain disorders, on NMDAR function remain unclear. While most studies on NMDARs focused on these receptors in synapses (synaptic NMDARs or sNMDARs), emerging findings have revealed functional roles of NMDARs outside synapses (extrasynaptic NMDARs or exNMDARs) that are distinct from those of sNMDARs. Using a restraint stress paradigm in adult rats, the objective of the current study is to examine whether sNMDARs and exNMDARs in the hippocampus are differentially regulated by acute and chronic stress. We examined sNMDAR and exNMDAR function in dorsal CA1 hippocampal neurons from brain slices of adult rats that were acutely (1 episode) or chronically (21 daily episodes) stressed by restraint (30 min). We found that acute stress increases sNMDAR but suppresses exNMDAR function. Surprisingly, we only observed a reduction in exNMDAR function after chronic stress. Taken together, our findings suggest that sNMDARs and exNMDARs may be differentially regulated by acute and chronic stress. Most importantly, the observed suppression in exNMDAR function by both acute and chronic stress implies crucial but overlooked roles of hippocampal exNMDARs in stress-related disorders.
Collapse
Affiliation(s)
- Yiu Chung Tse
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada
| | - Moushumi Nath
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Tavakoli P, Vollmer-Conna U, Hadzi-Pavlovic D, Grimm MC. A Review of Inflammatory Bowel Disease: A Model of Microbial, Immune and Neuropsychological Integration. Public Health Rev 2021; 42:1603990. [PMID: 34692176 PMCID: PMC8386758 DOI: 10.3389/phrs.2021.1603990] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Objective: Inflammatory bowel diseases (IBDs) are complex chronic inflammatory disorders of the gastro-intestinal (GI) tract with uncertain etiology. IBDs comprise two idiopathic disorders: Crohn's disease (CD) and ulcerative colitis (UC). The aetiology, severity and progression of such disorders are still poorly understood but thought to be influenced by multiple factors (including genetic, environmental, immunological, physiological, psychological factors and gut microbiome) and their interactions. The overarching aim of this review is to evaluate the extent and nature of the interrelationship between these factors with the disease course. A broader conceptual and longitudinal framework of possible neuro-visceral integration, core microbiome analysis and immune modulation assessment may be useful in accurately documenting and characterizing the nature and temporal continuity of crosstalk between these factors and the role of their interaction (s) in IBD disease activity. Characterization of these interactions holds the promise of identifying novel diagnostic, interventions, and therapeutic strategies. Material and Methods: A search of published literature was conducted by exploring PubMed, EMBASE, MEDLINE, Medline Plus, CDSR library databases. Following search terms relating to key question were set for the search included: "Inflammatory bowel diseases," "gut microbiota," "psychological distress and IBD," "autonomic reactivity and IBD," "immune modulation," "chronic inflammation," "gut inflammation," "enteric nervous system," "gut nervous system," "Crohn's disease," "Ulcerative colitis", "depression and IBD", "anxiety and IBD", "quality of life in IBD patients," "relapse in IBDs," "remission in IBDs," "IBD disease activity," "brain-gut-axis," "microbial signature in IBD," "validated questionnaires in IBD," "IBD activity indices," "IBD aetiology," "IBDs and stress," "epidemiology of IBDs", "autonomic nervous system and gut inflammation", "IBD and environment," "genetics of IBDs," "pathways of immune response in IBDs," "sleep disturbances in IBD," "hypothalamic-pituitary-adrenal axis (HPA)," "sympatho-adrenal axis," "CNS and its control of gut function" "mucosal immune response," "commensal and pathogenic bacteria in the gut," "innate and adaptive immunity." Studies evaluating any possible associations between gut microbiome, psychological state, immune modulation, and autonomic function with IBDs were identified. Commonly cited published literatures with high quality research methodology/results and additional articles from bibliographies of recovered papers were examined and included where relevant. Results: Although there is a substantial literature identifying major contributing factors with IBD, there has been little attempt to integrate some factors over time and assess their interplay and relationship with IBD disease activity. Such contributing factors include genetic and environmental factors, gut microbiota composition and function, physiological factors, psychological state and gut immune response. Interdependences are evident across psychological and biological factors and IBD disease activity. Although from the available evidence, it is implausible that a single explanatory model could elucidate the interplay between such factors and the disease course as well as the sequence of the effect during the pathophysiology of IBD. Conclusion: Longitudinal monitoring of IBD patients and integrating data related to the contributing/risk factors including psychological state, physiological conditions, inflammatory/immune modulations, and microbiome composition/function, could help to explain how major factors associate and interrelate leading to exacerbation of symptoms and disease activity. Identifying the temporal trajectory of biological and psychosocial disturbances may also help to assess their effects and interdependence on individuals' disease status. Moreover, this allows greater insight into understanding the temporal progressions of subclinical events as potential ground for disease severity in IBD. Furthermore, understanding the interaction between these risk factors may help better interventions in controlling the disease, reducing the costs related to disease management, further implications for clinical practice and research approaches in addition to improving patients' mental health and quality of life.
Collapse
Affiliation(s)
- P. Tavakoli
- St George and Sutherland Clinical School, Sydney, NSW, Australia
| | - U. Vollmer-Conna
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - D. Hadzi-Pavlovic
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - M. C. Grimm
- St George and Sutherland Clinical School, Sydney, NSW, Australia
| |
Collapse
|
18
|
Carbone MG, Campo G, Papaleo E, Marazziti D, Maremmani I. The Importance of a Multi-Disciplinary Approach to the Endometriotic Patients: The Relationship between Endometriosis and Psychic Vulnerability. J Clin Med 2021; 10:jcm10081616. [PMID: 33920306 PMCID: PMC8069439 DOI: 10.3390/jcm10081616] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Endometriosis is a chronic inflammatory condition, which is distinguished by the presence of the endometrial-like glands and stroma outside the uterine cavity. Pain and infertility are the most commonly expressed symptoms, occurring in 60% and 40% of cases, respectively. Women with endometriosis, especially those with pelvic pain, also have a greater vulnerability to several psychiatric disorders. There is, in particular, a tendency to contract affective or anxiety disorders as well as panic-agoraphobic and substance use disorders. Endometriosis with pelvic pain, infertility and psychic vulnerability usually leads to disability and a markedly lower quality of life for women of reproductive age. Thus, the burden of endometriosis is not limited to the symptoms and dysfunctions of the disease; it extends to the social, working and emotional spheres, leading to a severe impairment of global functioning. An analysis of scientific literature revealed a close relationship between specific temperamental traits, the expression of several psychiatric symptoms, chronicity of pain, risk of substance use and lower probability of a positive outcome. Endometriosis symptoms and the impact of related psychological consequences, increased vulnerability and the possible onset of psychiatric symptoms may influence coping strategies and weaken resilience, so triggering a vicious cycle leading to a marked deterioration in the quality of life. A multidisciplinary approach consisting of a medical team composed of gynecologists, psychologists, psychiatrists, experts in Dual Disorder, algologists and sexologists, would guarantee the setting of a target and taking the best decision on a personalized treatment plan. That approach would allow the prompt detection of any psychopathological symptoms and improve the endometriosis-related physical symptoms, bringing a healthier quality of life and a greater likelihood of a positive outcome.
Collapse
Affiliation(s)
- Manuel Glauco Carbone
- PISA-School of Experimental and Clinical Psychiatry, 56100 Pisa, Italy;
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| | - Giovanni Campo
- Obstetrics and Gynecology Department, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.C.); (E.P.)
| | - Enrico Papaleo
- Obstetrics and Gynecology Department, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.C.); (E.P.)
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Donatella Marazziti
- 1st Psychiatric Unit, Department of Clinical and Experimental Medicine, Santa Chiara University Hospital, University of Pisa, 56100 Pisa, Italy;
- Saint Camillus International University of Health and Medical Sciences-UniCamillus, 00131 Rome, Italy
| | - Icro Maremmani
- Saint Camillus International University of Health and Medical Sciences-UniCamillus, 00131 Rome, Italy
- Association for the Application of Neuroscientific Knowledge to Social Aims (AU-CNS), 55045 Pietrasanta, Lucca, Italy
- Vincent P. Dole Dual Disorder Unit, 2nd Psychiatric Unit, Santa Chiara University Hospital, University of Pisa, 56100 Pisa, Italy
- G. De Lisio Institute of Behavioral Sciences, 56100 Pisa, Italy
- Correspondence: ; Tel.: +39-050-993045
| |
Collapse
|
19
|
Low catechol-O-methyltransferase and stress potentiate functional pain and depressive behavior, especially in female mice. Pain 2021; 161:446-458. [PMID: 31972854 DOI: 10.1097/j.pain.0000000000001734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Low levels of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, and stress, which potentiates catecholamine release from sympathetic nerves, are fundamental to chronic functional pain syndromes and comorbid depression, which predominantly affect females. Here, we sought to examine the independent and joint contributions of low COMT and stress to chronic functional pain and depression at the behavioral and molecular level. Male and female C57BL/6 mice received sustained systemic delivery of the COMT inhibitor OR486 over 14 days and underwent a swim stress paradigm on days 8 to 10. Pain and depressive-like behavior were measured over 14 days, and brain-derived neurotrophic factor (BDNF; a factor involved in nociception and depression) and glucocorticoid receptor (GR; a stress-related receptor) expression were measured on day 14. We found that stress potentiates the effect of low COMT on functional pain and low COMT potentiates the effect of stress on depressive-like behavior. The joint effects of low COMT and stress on functional pain and depressive-like behavior were significantly greater in females vs males. Consistent with behavioral data, we found that stress potentiates COMT-dependent increases in spinal BDNF and low COMT potentiates stress-dependent decreases in hippocampal BDNF in females, but not males. Although low COMT increases spinal GR and stress increases hippocampal GR expression, these increases are not potentiated in the OR486 + stress group and are not sex-specific. These results suggest that genetic and environmental factors that enhance catecholamine bioavailability cause abnormalities in BDNF signaling and increase risk of comorbid functional pain and depression, especially among females.
Collapse
|
20
|
Wang M, Thyagarajan B. Pain pathways and potential new targets for pain relief. Biotechnol Appl Biochem 2020; 69:110-123. [PMID: 33316085 DOI: 10.1002/bab.2086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
Pain is an unpleasant sensory and emotional experience that affects a sizable percentage of people on a daily basis. Sensory neurons known as nociceptors built specifically to detect damaging stimuli can be found throughout the body. They transmit information about noxious stimuli from mechanical, thermal, and chemical sources to the central nervous system and higher brain centers via electrical signals. Nociceptors express various channels and receptors such as voltage-gated sodium and calcium channels, transient receptor potential channels, and opioid receptors that allow them to respond in a highly specific manner to noxious stimuli. Attenuating the pain response can be achieved by inhibiting or altering the expression of these pain targets. Achieving a deeper understanding of how these receptors can be affected at the molecular level can lead to the development of novel pain therapies. This review will discuss the mechanisms of pain, introduce the various receptors that are responsible for detecting pain, and future directions in pharmacological therapies.
Collapse
Affiliation(s)
- Menglan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Baskaran Thyagarajan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
21
|
Physiopathological Role of Neuroactive Steroids in the Peripheral Nervous System. Int J Mol Sci 2020; 21:ijms21239000. [PMID: 33256238 PMCID: PMC7731236 DOI: 10.3390/ijms21239000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral neuropathy (PN) refers to many conditions involving damage to the peripheral nervous system (PNS). Usually, PN causes weakness, numbness and pain and is the result of traumatic injuries, infections, metabolic problems, inherited causes, or exposure to chemicals. Despite the high prevalence of PN, available treatments are still unsatisfactory. Neuroactive steroids (i.e., steroid hormones synthesized by peripheral glands as well as steroids directly synthesized in the nervous system) represent important physiological regulators of PNS functionality. Data obtained so far and here discussed, indeed show that in several experimental models of PN the levels of neuroactive steroids are affected by the pathology and that treatment with these molecules is able to exert protective effects on several PN features, including neuropathic pain. Of note, the observations that neuroactive steroid levels are sexually dimorphic not only in physiological status but also in PN, associated with the finding that PN show sex dimorphic manifestations, may suggest the possibility of a sex specific therapy based on neuroactive steroids.
Collapse
|
22
|
Filaretova L, Podvigina T, Yarushkina N. Physiological and Pharmacological Effects of Glucocorticoids on the Gastrointestinal Tract. Curr Pharm Des 2020; 26:2962-2970. [PMID: 32436822 DOI: 10.2174/1381612826666200521142746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
The review considers the data on the physiological and pharmacological effects of glucocorticoids on
the gastric mucosa and focuses on the gastroprotective role of stress-produced glucocorticoids as well as on the
transformation of physiological gastroprotective effects of glucocorticoids to pathological proulcerogenic consequences.
The results of experimental studies on the re-evaluation of the traditional notion that stress-produced
glucocorticoids are ulcerogenic led us to the opposite conclusion suggested that these hormones play an important
role in the maintenance of the gastric mucosal integrity. Exogenous glucocorticoids may exert both gastroprotective
and proulcerogenic effects. Initially, gastroprotective effect of dexamethasone but not corticosterone, cortisol
or prednisolone can be transformed into proulcerogenic one. The most significant factor for the transformation is
the prolongation of its action rather the dose. Gastrointestinal injury can be accompanied by changes in somatic
pain sensitivity and glucocorticoids contribute to these changes playing a physiological and pathological role.
Collapse
Affiliation(s)
- Ludmila Filaretova
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Tatiana Podvigina
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Natalia Yarushkina
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|
23
|
Adrienne McGinn M, Edwards KN, Edwards S. Chronic inflammatory pain alters alcohol-regulated frontocortical signaling and associations between alcohol drinking and thermal sensitivity. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100052. [PMID: 33005820 PMCID: PMC7509777 DOI: 10.1016/j.ynpai.2020.100052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing psychiatric disorder that is characterized by the emergence of negative affective states. The transition from recreational, limited intake to uncontrolled, escalated intake is proposed to involve a transition from positive to negative reinforcement mechanisms for seeking alcohol. Past work has identified the emergence of significant hyperalgesia/allodynia in alcohol-dependent animals, which may serve as a key negative reinforcement mechanism. Chronic pain has been associated with enhanced extracellular signal-regulated kinase (ERK) activity in cortical and subcortical nociceptive areas. Additionally, both pain and AUD have been associated with increased activity of the glucocorticoid receptor (GR), a key mediator of stress responsiveness. The objectives of the current study were to first determine relationships between thermal nociceptive sensitivity and alcohol drinking in male Wistar rats. While inflammatory pain induced by complete Freund's adjuvant (CFA) administration did not modify escalation of home cage drinking in animals over four weeks, the relationship between drinking levels and hyperalgesia symptoms reversed between acute (1 week) and chronic (3-4 week) periods post-CFA administration, suggesting that either the motivational or analgesic effects of alcohol may be altered over the time course of chronic pain. We next examined ERK and GR phosphorylation in pain-related brain areas (including the central amygdala and prefrontal cortex subregions) in animals experiencing acute withdrawal from binge alcohol administration (2 g/kg, 6 h withdrawal) and CFA administration (four weeks) to model the neurobiological consequences of binge alcohol exposure in the context of pain. We observed a significant interaction between alcohol and pain state, whereby alcohol withdrawal increased ERK phosphorylation across all four frontocortical areas examined, although this effect was absent in animals experiencing chronic inflammatory pain. Alcohol withdrawal also increased GR phosphorylation across all four frontocortical areas, but these changes were not altered by CFA. Interestingly, we observed significant inter-brain regional correlations in GR phosphorylation between the insula and other regions investigated only in animals exposed to both alcohol and CFA, suggesting coordinated activity in insula circuitry and glucocorticoid signaling in this context. The results of these studies provide a greater understanding of the neurobiology of AUD and will contribute to the development of effective treatment strategies for comorbid AUD and pain.
Collapse
Affiliation(s)
- M. Adrienne McGinn
- Neurobiology of Addiction Section, National Institute on Drug Abuse IRP, United States
| | - Kimberly N. Edwards
- Department of Physiology, LSU Health-New Orleans, United States
- Alcohol & Drug Abuse Center of Excellence, LSU Health-New Orleans, United States
| | - Scott Edwards
- Department of Physiology, LSU Health-New Orleans, United States
- Alcohol & Drug Abuse Center of Excellence, LSU Health-New Orleans, United States
- Neuroscience Center of Excellence, LSU Health-New Orleans, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health-New Orleans, United States
| |
Collapse
|
24
|
Salberg S, Sgro M, Brady RD, Noel M, Mychasiuk R. The Development of Adolescent Chronic Pain following Traumatic Brain Injury and Surgery: The Role of Diet and Early Life Stress. Dev Neurosci 2020; 42:2-11. [PMID: 32653883 DOI: 10.1159/000508663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022] Open
Abstract
Pain is evolutionarily necessary for survival in that it reduces tissue damage by signaling the body to respond to a harmful stimulus. However, in many circumstances, acute pain becomes chronic, and this is often dysfunctional. Adolescent chronic pain is a growing epidemic with an unknown etiology and limited effective treatment options. Given that the relationship between acute pain and chronic pain is not straightforward, there is a need to better understand the factors that contribute to the chronification of pain. Since early life factors are critical to a variety of outcomes in the developmental and adolescent periods, they pose promise as potential mechanisms that may underlie the transition from acute to chronic pain. This review examines two early life factors: poor diet and adverse childhood experiences (ACEs); they may increase susceptibility to the development of chronic pain following surgical procedures or traumatic brain injury (TBI). Beyond their high prevalence, surgical procedures and TBI are ideal models to prospectively understand mechanisms underlying the transition from acute to chronic pain. Common themes that emerged from the examination of poor diet and ACEs as mechanisms underlying this transition included: prolonged inflammation and microglia activation leading to sensitization of the pain system, and stress-induced alterations to hypothalamic-pituitary-adrenal axis function, where cortisol is likely playing a role in the development of chronic pain. These areas provide promising targets for interventions, the development of diagnostic biomarkers, and suggest that biological treatment strategies should focus on regulating the neuroinflammatory and stress responses in an effort to modulate and prevent the development of chronic pain.
Collapse
Affiliation(s)
- Sabrina Salberg
- Department of Neuroscience, Central Clinical School/Monash University, Melbourne, Victoria, Australia
| | - Marissa Sgro
- Department of Neuroscience, Central Clinical School/Monash University, Melbourne, Victoria, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School/Monash University, Melbourne, Victoria, Australia
| | - Melanie Noel
- Department of Psychology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute/The University of Calgary, Calgary, Alberta, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School/Monash University, Melbourne, Victoria, Australia,
| |
Collapse
|
25
|
Ji Y, Hu B, Klontz C, Li J, Dessem D, Dorsey SG, Traub RJ. Peripheral mechanisms contribute to comorbid visceral hypersensitivity induced by preexisting orofacial pain and stress in female rats. Neurogastroenterol Motil 2020; 32:e13833. [PMID: 32155308 PMCID: PMC7319894 DOI: 10.1111/nmo.13833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stress exacerbates many chronic pain syndromes including irritable bowel syndrome (IBS). Among these patient populations, many suffer from comorbid or chronic overlapping pain conditions and are predominantly female. Nevertheless, basic studies investigating chronic psychological stress-induced changes in pain sensitivity have been mostly carried out in male rodents. Our laboratory developed a model of comorbid pain hypersensitivity (CPH) (stress in the presence of preexisting orofacial pain inducing chronic visceral pain hypersensitivity that significantly outlasts transient stress-induced pain hypersensitivity (SIH)) facilitating the study of pain associated with IBS. Since CPH and SIH are phenotypically similar until SIH resolves and CPH persists, it is unclear if underlying mechanisms are similar. METHODS In the present study, the visceromotor response (VMR) to colorectal distention was recorded in the SIH and CPH models in intact females and ovariectomized rats plus estradiol replacement (OVx + E2). Over several months, rats were determined to be susceptible or resilient to stress and the role of peripheral corticotrophin-releasing factor (CRF) underlying in the pain hypersensitivity was examined. KEY RESULTS Stress alone induced transient (3-4 weeks) visceral hypersensitivity, though some rats were resilient. Comorbid conditions increased susceptibility to stress prolonging hypersensitivity beyond 13 weeks. Both models had robust peripheral components; hypersensitivity was attenuated by the CRF receptor antagonist astressin and the mast cell stabilizer disodium cromoglycate (DSCG). However, DSCG was less effective in the CPH model compared to the SIH model. CONCLUSIONS AND INFERENCES The data indicate many similarities but some differences in mechanisms contributing to comorbid pain conditions compared to transient stress-induced pain.
Collapse
Affiliation(s)
- Yaping Ji
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Bo Hu
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,Present address:
Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchXi’an Jiao Tong University College of StomatologyXi’anShaanxiChina
| | - Charles Klontz
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Jiyun Li
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Dean Dessem
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Susan G. Dorsey
- UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA,Department of Pain and Translational Symptom ScienceSchool of NursingUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Richard J. Traub
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA
| |
Collapse
|
26
|
Early exposure to environmental enrichment protects male rats against neuropathic pain development after nerve injury. Exp Neurol 2020; 332:113390. [PMID: 32598929 DOI: 10.1016/j.expneurol.2020.113390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/30/2022]
Abstract
Because environmental elements modify chronic pain development and endogenous mechanisms of pain control are still a great therapeutic source, we investigated the effects of an early exposure to environmental enrichment (EE) in a translational model of neuropathic pain. Young male rats born and bred in an enriched environment, which did not count on running wheel, underwent chronic constriction injury (CCI) of sciatic nerve. EE abolished neuropathic pain behavior 14 days after CCI. Opioid receptors' antagonism reversed EE-analgesic effect. β-endorphin and met-enkephalin serum levels were increased only in EE-CCI group. Blockade of glucocorticoid receptors did not alter EE-analgesic effect, although corticosterone circulating levels were increased in EE animals. In the spinal cord, EE controlled CCI-induced serotonin increase. In DRG, EE blunted the expression of ATF-3 after CCI. Surprisingly, EE-CCI group showed a remarkable preservation of sciatic nerve fibers compared to NE-CCI group. This work demonstrated global effects induced by an EE protocol that explain, in part, the protective role of EE upon chronic noxious stimulation, reinforcing the importance of endogenous mechanisms in the prevention of chronic pain development.
Collapse
|
27
|
Wu H, Huang Y, Tian X, Zhang Z, Zhang Y, Mao Y, Wang C, Yang S, Liu Y, Zhang W, Ma Z. Preoperative anxiety-induced glucocorticoid signaling reduces GABAergic markers in spinal cord and promotes postoperative hyperalgesia by affecting neuronal PAS domain protein 4. Mol Pain 2020; 15:1744806919850383. [PMID: 31041873 PMCID: PMC6537253 DOI: 10.1177/1744806919850383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Preoperative anxiety is common in patients undergoing elective surgery and is
closely related to postoperative hyperalgesia. In this study, a single prolonged
stress model was used to induce preoperative anxiety-like behavior in rats 24 h
before the surgery. We found that single prolonged stress exacerbated the
postoperative pain and elevated the level of serum corticosterone. Previous
studies have shown that glucocorticoid is associated with synaptic plasticity,
and decreased spinal GABAergic activity can cause hyperalgesia in rodents. Here,
single prolonged stress rats’ lumbar spinal cord showed reduced glutamic acid
decarboxylase-65, glutamic acid decarboxylase-67, GABA type A receptor alpha 1
subunit, and GABA type A receptor gamma 2 subunit, indicating an impairment of
GABAergic system. Furthermore, neuronal PAS domain protein 4 was also reduced in
rats after single prolonged stress stimulation, which has been reported to
promote GABAergic synapse development. Then, intraperitoneal injection of RU486
(a glucocorticoid receptor antagonist) rather than spironolactone (a
mineralocorticoid receptor antagonist) was found to relieve single prolonged
stress-induced hyperalgesia and reverse neuronal PAS domain protein 4 reduction
and the impairment of GABAergic system. Furthermore, overexpressing neuronal PAS
domain protein 4 could also restore the damage of GABAergic system caused by
single prolonged stress while interfering with neuronal PAS domain protein 4
caused an opposite effect. Finally, after stimulation of rat primary spinal cord
neurons with exogenous corticosterone in vitro, neuronal PAS domain protein 4
and GABAergic markers were also downregulated, and RU486 reversed that.
Together, our results demonstrated that preoperative anxiety led to GABAergic
system impairment in spinal cord and thus caused hyperalgesia due to
glucocorticoid-induced downregulation of neuronal PAS domain protein 4.
Collapse
Affiliation(s)
- Hao Wu
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yulin Huang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Xinyu Tian
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Zuoxia Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Ying Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yanting Mao
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Chenchen Wang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Shuai Yang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yue Liu
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Wei Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Sawicki CM, Humeidan ML, Sheridan JF. Neuroimmune Interactions in Pain and Stress: An Interdisciplinary Approach. Neuroscientist 2020; 27:113-128. [PMID: 32441204 DOI: 10.1177/1073858420914747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mounting evidence indicates that disruptions in bidirectional communication pathways between the central nervous system (CNS) and peripheral immune system underlie the etiology of pathologic pain conditions. The purpose of this review is to focus on the cross-talk between these two systems in mediating nociceptive circuitry under various conditions, including nervous system disorders. Elevated and prolonged proinflammatory signaling in the CNS is argued to play a role in psychiatric illnesses and chronic pain states. Here we review current research on the dynamic interplay between altered nociceptive mechanisms, both peripheral and central, and physiological and behavioral changes associated with CNS disorders.
Collapse
Affiliation(s)
- Caroline M Sawicki
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Michelle L Humeidan
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.,Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
29
|
Stroemel-Scheder C, Kundermann B, Lautenbacher S. The effects of recovery sleep on pain perception: A systematic review. Neurosci Biobehav Rev 2020; 113:408-425. [PMID: 32275917 DOI: 10.1016/j.neubiorev.2020.03.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/13/2020] [Accepted: 03/29/2020] [Indexed: 01/04/2023]
Abstract
Experimental studies highlight profound effects of sleep disruptions on pain, showing that sleep deprivation (SD) leads to hyperalgesic pain changes. On the other hand, given that sleep helps normalizing bodily functions, a crucial role of restorative sleep in the overnight restoration of the pain system seems likely. Thus, a systematic review of experimental studies on effects of recovery sleep (RS; subsequently to SD) on pain was performed with the aim to check whether RS resets hyperalgesic pain changes occurring due to SD. Empirical animal and human studies including SD-paradigms, RS and pain assessments were searched in three databases (PubMed, Web of Science, PsycINFO) using a predefined algorithm. 29 studies were included in this review. Most results indicated a reset of enhanced pain sensitivity and vulnerability following RS, especially when total SD was implemented and pressure pain or painful symptoms (human studies) were assessed. Further research should focus on whether and how recovery is altered in chronic pain patients, as this yields implications for pain treatment by enhancing or stabilizing RS.
Collapse
Affiliation(s)
| | - Bernd Kundermann
- Vitos Clinic for Psychiatry and Psychotherapy Giessen, Giessen, Germany; Department of Psychiatry and Psychotherapy, Philipps-University of Marburg, Marburg, Germany.
| | | |
Collapse
|
30
|
Insights into the Therapeutic Potential of Glucocorticoid Receptor Modulators for Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21062137. [PMID: 32244957 PMCID: PMC7139912 DOI: 10.3390/ijms21062137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids are crucial for stress-coping, resilience, and adaptation. However, if the stress hormones become dysregulated, the vulnerability to stress-related diseases is enhanced. In this brief review, we discuss the role of glucocorticoids in the pathogenesis of neurodegenerative disorders in both human and animal models, and focus in particular on amyotrophic lateral sclerosis (ALS). For this purpose, we used the Wobbler animal model, which mimics much of the pathology of ALS including a dysfunctional hypothalamic–pituitary–adrenal axis. We discuss recent studies that demonstrated that the pathological cascade characteristic for motoneuron degeneration of ALS is mimicked in the genetically selected Wobbler mouse and can be attenuated by treatment with the selective glucocorticoid receptor antagonist (GRA) CORT113176. In long-term treatment (3 weeks) GRA attenuated progression of the behavioral, inflammatory, excitatory, and cell-death-signaling pathways while increasing the survival signal of serine–threonine kinase (pAkt). The action mechanism of the GRA may be either by interfering with GR deactivation or by restoring the balance between pro- and anti-inflammatory signaling pathways driven by the complementary mineralocorticoid receptor (MR)- and GR-mediated actions of corticosterone. Accordingly, GR antagonism may have clinical relevance for the treatment of neurodegenerative diseases.
Collapse
|
31
|
|
32
|
Kolos EA, Korzhevskii DE. Spinal Cord Microglia in Health and Disease. Acta Naturae 2020; 12:4-17. [PMID: 32477594 PMCID: PMC7245960 DOI: 10.32607/actanaturae.10934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
The review summarizes data of recent experimental studies on spinal microglia, the least explored cells of the spinal cord. It focuses on the origin and function of microglia in mammalian spinal cord embryogenesis. The main approaches to the classification of microgliocytes based on their structure, function, and immunophenotypic characteristics are analyzed. We discuss the results of studies conducted on experimental models of spinal cord diseases such as multiple sclerosis, amyotrophic lateral sclerosis, systemic inflammation, and some others, with special emphasis on the key role of microglia in the pathogenesis of these diseases. The review highlights the need to detect the new microglia-specific marker proteins expressed at all stages of ontogeny. New sensitive and selective microglial markers are necessary in order to improve identification of spinal cord microgliocytes in normal and pathological conditions. Possible morphometric methods to assess the functional activity of microglial cells are presented.
Collapse
Affiliation(s)
- E. A. Kolos
- Institute of Experimental Medicine, St. Petersburg, 197376 Russia
| | | |
Collapse
|
33
|
Meyer M, Kruse MS, Garay L, Lima A, Roig P, Hunt H, Belanoff J, de Kloet ER, Deniselle MCG, De Nicola AF. Long-term effects of the glucocorticoid receptor modulator CORT113176 in murine motoneuron degeneration. Brain Res 2019; 1727:146551. [PMID: 31726042 DOI: 10.1016/j.brainres.2019.146551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023]
Abstract
The Wobbler mouse spinal cord shows vacuolated motoneurons, glial reaction, inflammation and abnormal glutamatergic parameters. Wobblers also show deficits of motor performance. These conditions resemble amyotrophic lateral sclerosis (ALS). Wobbler mice also show high levels of corticosterone in blood, adrenals and brain plus adrenal hypertrophy, suggesting that chronically elevated glucocorticoids prime spinal cord neuroinflammation. Therefore, we analyzed if treatment of Wobbler mice with the glucocorticoid receptor (GR) antagonist CORT113176 mitigated the mentioned abnormalities. 30 mg/kg CORT113176 given daily for 3 weeks reduced motoneuron vacuolation, decreased astro and microgliosis, lowered the inflammatory mediators high mobility group box 1 protein (HMGB1), toll-like receptor 4, myeloid differentiation primary response 88 (MyD88), p50 subunit of nuclear factor kappa B (NFκB), tumor necrosis factor (TNF) receptor, and interleukin 18 (IL18) compared to untreated Wobblers. CORT113176 increased the survival signal pAKT (serine-threonine kinase) and decreased the death signal phosphorylated Junk-N-terminal kinase (pJNK), symptomatic of antiapoptosis. There was a moderate positive effect on glutamine synthase and astrocyte glutamate transporters, suggesting decreased glutamate excitotoxicity. In this pre-clinical study, Wobblers receiving CORT113176 showed enhanced resistance to fatigue in the rota rod test and lower forelimb atrophy at weeks 2-3. Therefore, long-term treatment with CORT113176 attenuated degeneration and inflammation, increased motor performance and decreased paw deformity. Antagonism of the GR may be of potential therapeutic value for neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Sol Kruse
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Laura Garay
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Analia Lima
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Hazel Hunt
- CORCEPT Therapeutics, 149 Commonwealth Dr, Menlo Park, CA 94025, USA
| | - Joseph Belanoff
- CORCEPT Therapeutics, 149 Commonwealth Dr, Menlo Park, CA 94025, USA
| | - E Ronald de Kloet
- Division of Endocrinology, Dept. of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Maria Claudia Gonzalez Deniselle
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Physiology, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina.
| |
Collapse
|
34
|
Goto T, Nakagami G, Minematsu T, Tomida S, Shinoda M, Iwata K, Sanada H. Topically injected adrenocorticotropic hormone induces mechanical hypersensitivity on a full‐thickness cutaneous wound model in rats. Exp Dermatol 2019; 28:1010-1016. [DOI: 10.1111/exd.13994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/01/2019] [Accepted: 06/19/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Taichi Goto
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
- Global Leadership Initiative for an Age‐Friendly Society The University of Tokyo Bunkyo‐ku Tokyo Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
- Division of Care Innovation, Global Nursing Research Center, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
| | - Takeo Minematsu
- Division of Care Innovation, Global Nursing Research Center, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
- Department of Skincare Science, Graduate School of Medicine The University of Tokyo, Bunkyo‐ku Tokyo Japan
| | - Sanai Tomida
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
| | - Masamichi Shinoda
- Department of Physiology Nihon University School of Dentistry Chiyoda‐ku Tokyo Japan
| | - Koichi Iwata
- Department of Physiology Nihon University School of Dentistry Chiyoda‐ku Tokyo Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
- Division of Care Innovation, Global Nursing Research Center, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
| |
Collapse
|
35
|
PGE2/EP4 receptor and TRPV1 channel are involved in repeated restraint stress-induced prolongation of sensitization pain evoked by subsequent PGE2 challenge. Brain Res 2019; 1721:146335. [PMID: 31302096 DOI: 10.1016/j.brainres.2019.146335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023]
Abstract
Prevalence of prior stressful experience is linked to high incidence of chronic pain. Stress, particularly repeated stress, is known to induce maladaptive neuroplasticity along peripheral and central pain transmission pathways. These maladaptive neuroplastic events facilitate sensitization of nociceptive neurons and transition from acute to chronic pain. Pro-inflammatory and pain mediators are involved in inducing neuroplasticity. Pain mediators such as prostaglandin E2 (PGE2), EP4 receptor and transient receptor potential vanilloid-1 (TRPV1) contribute to the genesis of chronic pain. In this study, we examined the role of PGE2/EP4 signaling and TRPV1 signaling in repeated restraint stress-induced prolongation of sensitization pain, a model for transition from acute to chronic pain, in both in vivo and in vitro models. We found that pre-exposure to single restraint stress induced analgesia that masked sensitization pain evoked by subsequent PGE2 challenge. However, pre-exposure to 3d consecutive restraint stress not only prolonged sensitization pain, but also increased stress hormone corticosterone (CORT) in serum, COX2 levels in paw skin, and EP4 and TRPV1 levels in dorsal root ganglion (DRG) and paw skin. Pre-exposure to CORT for 3d, not 1d, also prolonged sensitization pain evoked by PGE2. Co-injection of glucocorticoid receptor (GR) antagonist RU486, COX2 inhibitor NS-398, EP4 receptor antagonist L161,982 or TRPV1 antagonist capsazepine prevented 3d restraint stress prolonged sensitization pain evoked by PGE2. In DRG cultures, CORT increased EP4 and TRPV1 protein levels through GR activation. These data suggest that PGE2/EP4 signaling and TRPV1 signaling in peripheral pain pathway contribute to repeated stress-predisposed transition from acute to chronic pain.
Collapse
|
36
|
Sun R, Liu Y, Hou B, Lei Y, Bo J, Zhang W, Sun Y, Zhang Y, Zhang Z, Liu Z, Huo W, Mao Y, Ma Z, Gu X. Perioperative activation of spinal α7 nAChR promotes recovery from preoperative stress-induced prolongation of postsurgical pain. Brain Behav Immun 2019; 79:294-308. [PMID: 30797046 DOI: 10.1016/j.bbi.2019.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/20/2019] [Accepted: 02/20/2019] [Indexed: 12/01/2022] Open
Abstract
Preoperative stress could delay the recovery of postoperative pain and has been reported to be a risk factor for chronic postsurgical pain. As stress could facilitate the proinflammatory activation of microglia, we hypothesized that these cells may play a vital role in the development of preoperative stress-induced pain chronification after surgery. Our experiments were conducted in a rat model that consists of a single prolonged stress (SPS) procedure and plantar incision. A previous SPS exposure induced anxiety-like behaviors, prolonged incision-induced mechanical allodynia, and potentiated the activation of spinal microglia. Based on the results from ex vivo experiments, spinal microglia isolated from SPS-exposed rats secreted more proinflammatory cytokines upon challenge with LPS. Our results also demonstrated that microglia played a more important role than astrocytes in the initiation of SPS-induced prolongation of postsurgical pain. We further explored the therapeutic potential of agonism of α7 nAChR, an emerging anti-inflammatory target, for SPS-induced prolongation of postsurgical pain. Multiple intrathecal (i.t.) injections of PHA-543613 (an α7 nAChR agonist) or PNU-120596 (a type II positive allosteric modulator) during the perioperative period shortened the duration of postsurgical pain after SPS and suppressed SPS-potentiated microglia activation, but their effects were abolished by pretreatment with methyllycaconitine (an α7 nAChR antagonist; i.t.). Based on the results from ex vivo experiments, the anti-inflammatory effects of PHA-543613 and PNU-120596 may have been achieved by the direct modulation of microglia. In conclusion, stress-induced priming of spinal microglia played a key role in the initiation of preoperative stress-induced prolongation of postsurgical pain, and PHA-543613 and PNU-120596 may be potential candidates for preventing pain chronification after surgery.
Collapse
Affiliation(s)
- Rao Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Liu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Bailing Hou
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yishan Lei
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jinhua Bo
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Wei Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yu'E Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ying Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Zuoxia Zhang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Zhe Liu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Wenwen Huo
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yanting Mao
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Zhengliang Ma
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
37
|
Goich M, Bascuñán A, Faúndez P, Valdés A. Multimodal analgesia for treatment of allodynia and hyperalgesia after major trauma in a cat. JFMS Open Rep 2019; 5:2055116919855809. [PMID: 31245022 PMCID: PMC6582303 DOI: 10.1177/2055116919855809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Case summary A 2-year-old polytraumatized male cat was admitted to a teaching hospital for correction of a defective inguinal herniorrhaphy. Upon arrival, the cat showed signs of neuropathic pain, including allodynia and hyperalgesia. Analgesic therapy was initiated with methadone and metamizole; however, 24 h later, the signs of pain continued. Reparative surgery was performed, and a multimodal analgesic regimen was administered (methadone, ketamine, wound catheter and epidural anesthesia). Postoperatively, the cat showed signs of severe pain, assessed using the UNESP-Botucatu multidimensional composite pain scale. Rescue analgesia was initiated, which included methadone, bupivacaine (subcutaneous wound-diffusion catheter) and transversus abdominis plane block. Because the response was incomplete, co-adjuvant therapy (pregabalin and electroacupuncture) was then implemented. Fourteen days after admission, the patient was discharged with oral tramadol and pregabalin for at-home treatment. Relevance and novel information Neuropathic pain is caused by a primary lesion or dysfunction in the nervous system and is a well-described complication following trauma, surgical procedures such as hernia repair, and inadequate analgesia. The aims of this report are to: (1) describe a presentation of neuropathic pain to highlight the recognition of clinical signs such as allodynia and hyperalgesia in cats; and (2) describe treatment of multi-origin, severe, long-standing, ‘mixed’ pain (acute inflammatory with a neuropathic component). The patient was managed using multiple analgesic strategies (multimodal analgesia), including opioids, non-steroidal anti-inflammatory drugs, locoregional anesthesia, co-adjuvant drugs and non-pharmacological therapy (electroacupuncture).
Collapse
Affiliation(s)
- Mariela Goich
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la vida, Universidad Andres Bello
| | | | | | | |
Collapse
|
38
|
Busceti CL, Ferese R, Bucci D, Ryskalin L, Gambardella S, Madonna M, Nicoletti F, Fornai F. Corticosterone Upregulates Gene and Protein Expression of Catecholamine Markers in Organotypic Brainstem Cultures. Int J Mol Sci 2019; 20:ijms20122901. [PMID: 31197099 PMCID: PMC6627138 DOI: 10.3390/ijms20122901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are produced by the adrenal cortex and regulate cell metabolism in a variety of organs. This occurs either directly, by acting on specific receptors in a variety of cells, or by stimulating catecholamine expression within neighbor cells of the adrenal medulla. In this way, the whole adrenal gland may support specific metabolic requirements to cope with stressful conditions from external environment or internal organs. In addition, glucocorticoid levels may increase significantly in the presence of inappropriate secretion from adrenal cortex or may be administered at high doses to treat inflammatory disorders. In these conditions, metabolic alterations and increased blood pressure may occur, although altered sleep-waking cycle, anxiety, and mood disorders are frequent. These latter symptoms remain unexplained at the molecular level, although they overlap remarkably with disorders affecting catecholamine nuclei of the brainstem reticular formation. In fact, the present study indicates that various doses of glucocorticoids alter the expression of genes and proteins, which are specific for reticular catecholamine neurons. In detail, corticosterone administration to organotypic mouse brainstem cultures significantly increases Tyrosine hydroxylase (TH) and Dopamine transporter (DAT), while Phenylethanolamine N-methyltransferase (PNMT) is not affected. On the other hand, Dopamine Beta-Hydroxylase (DBH) increases only after very high doses of corticosterone.
Collapse
Affiliation(s)
| | | | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
| | | | | | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy.
- Department of Physiology and Pharmacology, University Sapienza, 00185 Roma, Italy.
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy.
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
39
|
Kurian R, Raza K, Shanthanna H. A systematic review and meta-analysis of memantine for the prevention or treatment of chronic pain. Eur J Pain 2019; 23:1234-1250. [PMID: 30848504 DOI: 10.1002/ejp.1393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/10/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE N-methyl-D-aspartate (NMDA) receptors are involved in pain signalling and neuroplasticity. Memantine has been shown to have analgesic properties in pre-clinical and small clinical studies. We conducted a systematic review and meta-analysis to assess the efficacy of memantine to prevent or reduce chronic pain. DATABASES AND DATA TREATMENT MEDLINE, EMBASE and CENTRAL databases were searched for comparative trials using memantine, either against placebo or active medications, for chronic pain in adults. Pain relief was considered our primary outcome. Meta-analyses were conducted if outcomes were reported in two or more studies. Outcomes were reported as mean differences (MD) or risk ratios (RR) with 95% confidence intervals (CI). Quality was assessed using the GRADE approach. RESULTS Among 454 citations, 15 studies were included with populations predominantly consisting of neuropathic conditions and fibromyalgia. Overall, we observed unclear reporting of randomization and allocation methods, apart from potential for publication bias. Among the 11 studies looking at chronic pain treatment, the difference in end pain score with memantine was not significant: MD = -0.58 units (95% CI -1.31, 0.14); I2 = 82% (low quality). In two surgical studies using memantine for pain prevention, memantine decreased pain intensity: MD = -1.02 units (95% CI -1.38, -0.66); I2 = 0%. Dizziness was significantly more common with memantine: RR = 4.90 (95% CI 1.26, 18.99); I2 = 52% (moderate quality). CONCLUSION The current evidence regarding the use of memantine for chronic pain is limited and uncertain. Despite its potential, pain relief achieved in clinical studies is small and is associated with an increase in dizziness. SIGNIFICANCE Despite a sound rationale, the benefit of using memantine for chronic pain is unclear. Our systematic review and meta-analysis show that memantine may have the potential to decrease pain. However, it can also increase common adverse effects. Considering the small number of studies with potential for bias and inconclusive evidence, there was low to very low certainty. Hence, no clear recommendations can be made about its routine clinical use until larger and more definitive studies are conducted.
Collapse
Affiliation(s)
- Rouvin Kurian
- McMaster School of Interdisciplinary Science, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Kazim Raza
- Department of Anesthesiology, Michael DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Harsha Shanthanna
- Department of Anesthesiology, Michael DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
40
|
Chen W, Taché Y, Marvizón JC. Corticotropin-Releasing Factor in the Brain and Blocking Spinal Descending Signals Induce Hyperalgesia in the Latent Sensitization Model of Chronic Pain. Neuroscience 2019; 381:149-158. [PMID: 29776484 DOI: 10.1016/j.neuroscience.2018.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
Abstract
Latent sensitization is a model of chronic pain in which an injury triggers a period of hyperalgesia followed by an apparent recovery, but in which pain sensitization persists but is suppressed by opioid and adrenergic receptors. One important characteristic of latent sensitization is that hyperalgesia can be triggered by acute stress. To determine whether the effect of stress is mimicked by the activation of corticotropin-releasing factor (CRF) signaling in the brain, rats with latent sensitization induced by injecting complete Freund's adjuvant (CFA, 50 μl) in one hind paw were given an intracerebroventricular (i.c.v.) injection of CRF. The i.c.v. injection of CRF (0.6 μg, 10 μl), but not saline, induced bilateral mechanical hyperalgesia in rats with latent sensitization. In contrast, CRF i.c.v. did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). To determine whether descending pain inhibition mediates the suppression of hyperalgesia in latent sensitization, rats with CFA-induced latent sensitization received an intrathecal injection of lidocaine (10%, 1 μl) at the cervical-thoracic spinal cord to produce a spinal block. Lidocaine-injected rats, but not rats injected intrathecally with saline, developed bilateral mechanical hyperalgesia. Intrathecal lidocaine did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). These results show that i.c.v. CRF mimicked the hyperalgesic response triggered by stress during latent sensitization, possibly by blocking inhibitory spinal descending signals that suppress hyperalgesia.
Collapse
Affiliation(s)
- Wenling Chen
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Yvette Taché
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Juan Carlos Marvizón
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
41
|
Pan H, Oliveira B, Saher G, Dere E, Tapken D, Mitjans M, Seidel J, Wesolowski J, Wakhloo D, Klein-Schmidt C, Ronnenberg A, Schwabe K, Trippe R, Mätz-Rensing K, Berghoff S, Al-Krinawe Y, Martens H, Begemann M, Stöcker W, Kaup FJ, Mischke R, Boretius S, Nave KA, Krauss JK, Hollmann M, Lühder F, Ehrenreich H. Uncoupling the widespread occurrence of anti-NMDAR1 autoantibodies from neuropsychiatric disease in a novel autoimmune model. Mol Psychiatry 2019; 24:1489-1501. [PMID: 29426955 PMCID: PMC6756099 DOI: 10.1038/s41380-017-0011-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
Autoantibodies of the IgG class against N-methyl-D-aspartate-receptor subunit-NR1 (NMDAR1-AB) were considered pathognomonic for anti-NMDAR encephalitis. This view has been challenged by the age-dependent seroprevalence (up to >20%) of functional NMDAR1-AB of all immunoglobulin classes found in >5000 individuals, healthy or affected by different diseases. These findings question a merely encephalitogenic role of NMDAR1-AB. Here, we show that NMDAR1-AB belong to the normal autoimmune repertoire of dogs, cats, rats, mice, baboons, and rhesus macaques, and are functional in the NMDAR1 internalization assay based on human IPSC-derived cortical neurons. The age dependence of seroprevalence is lost in nonhuman primates in captivity and in human migrants, raising the intriguing possibility that chronic life stress may be related to NMDAR1-AB formation, predominantly of the IgA class. Active immunization of ApoE-/- and ApoE+/+ mice against four peptides of the extracellular NMDAR1 domain or ovalbumin (control) leads to high circulating levels of specific AB. After 4 weeks, the endogenously formed NMDAR1-AB (IgG) induce psychosis-like symptoms upon MK-801 challenge in ApoE-/- mice, characterized by an open blood-brain barrier, but not in their ApoE+/+ littermates, which are indistinguishable from ovalbumin controls. Importantly, NMDAR1-AB do not induce any sign of inflammation in the brain. Immunohistochemical staining for microglial activation markers and T lymphocytes in the hippocampus yields comparable results in ApoE-/- and ApoE+/+ mice, irrespective of immunization against NMDAR1 or ovalbumin. These data suggest that NMDAR1-AB of the IgG class shape behavioral phenotypes upon access to the brain but do not cause brain inflammation on their own.
Collapse
Affiliation(s)
- Hong Pan
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Bárbara Oliveira
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Gesine Saher
- 0000 0001 0668 6902grid.419522.9Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ekrem Dere
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Daniel Tapken
- 0000 0004 0490 981Xgrid.5570.7Department of Biochemistry I—Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Marina Mitjans
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jan Seidel
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Janina Wesolowski
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Debia Wakhloo
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Christina Klein-Schmidt
- 0000 0004 0490 981Xgrid.5570.7Department of Biochemistry I—Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Anja Ronnenberg
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kerstin Schwabe
- 0000 0000 9529 9877grid.10423.34Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Ralf Trippe
- 0000 0004 0490 981Xgrid.5570.7Department of Biochemistry I—Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Kerstin Mätz-Rensing
- Department of Pathology, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stefan Berghoff
- 0000 0001 0668 6902grid.419522.9Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Yazeed Al-Krinawe
- 0000 0000 9529 9877grid.10423.34Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Martin Begemann
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Winfried Stöcker
- Institute for Experimental Immunology, affiliated to Euroimmun, Lübeck, Germany
| | - Franz-Josef Kaup
- Department of Pathology, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Reinhard Mischke
- 0000 0001 0126 6191grid.412970.9Small Animal Clinic, University of Veterinary Medicine, Hannover, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Klaus-Armin Nave
- 0000 0001 0668 6902grid.419522.9Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany ,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Joachim K. Krauss
- 0000 0000 9529 9877grid.10423.34Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Michael Hollmann
- 0000 0004 0490 981Xgrid.5570.7Department of Biochemistry I—Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Fred Lühder
- 0000 0001 0482 5331grid.411984.1Department of Neuroimmunology, Institute for Multiple Sclerosis Research and Hertie Foundation, University Medicine Göttingen, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
42
|
Microglia Promote Increased Pain Behavior through Enhanced Inflammation in the Spinal Cord during Repeated Social Defeat Stress. J Neurosci 2018; 39:1139-1149. [PMID: 30559153 DOI: 10.1523/jneurosci.2785-18.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022] Open
Abstract
Clinical studies indicate that psychosocial stress contributes to adverse chronic pain outcomes in patients, but it is unclear how this is initiated or amplified by stress. Repeated social defeat (RSD) is a mouse model of psychosocial stress that activates microglia, increases neuroinflammatory signaling, and augments pain and anxiety-like behaviors. We hypothesized that activated microglia within the spinal cord facilitate increased pain sensitivity following RSD. Here we show that mechanical allodynia in male mice was increased with exposure to RSD. This stress-induced behavior corresponded with increased mRNA expression of several inflammatory genes, including IL-1β, TNF-α, CCL2, and TLR4 in the lumbar spinal cord. While there were several adhesion and chemokine-related genes increased in the lumbar spinal cord after RSD, there was no accumulation of monocytes or neutrophils. Notably, there was evidence of microglial activation selectively within the nociceptive neurocircuitry of the dorsal horn of the lumbar cord. Elimination of microglia using the colony stimulating factor 1 receptor antagonist PLX5622 from the brain and spinal cord prevented the development of mechanical allodynia in RSD-exposed mice. Microglial elimination also attenuated RSD-induced IL-1β, CCR2, and TLR4 mRNA expression in the lumbar spinal cord. Together, RSD-induced allodynia was associated with microglia-mediated inflammation within the dorsal horn of the lumbar spinal cord.SIGNIFICANCE STATEMENT Mounting evidence indicates that psychological stress contributes to the onset and progression of adverse nociceptive conditions. We show here that repeated social defeat stress causes increased pain sensitivity due to inflammatory signaling within the nociceptive circuits of the spinal cord. Studies here mechanistically tested the role of microglia in the development of pain by stress. Pharmacological ablation of microglia prevented stress-induced pain sensitivity. These findings demonstrate that microglia are critical mediators in the induction of pain conditions by stress. Moreover, these studies provide a proof of principle that microglia can be targeted as a therapeutic strategy to mitigate adverse pain conditions.
Collapse
|
43
|
Dagilgan S, Erdogan S, Aksu F. Tramadol Reverses the Effects of Neuropathic Pain on Oocyte Maturation and Copulation Ratio in Mice. Eurasian J Med 2018; 50:182-186. [PMID: 30515040 PMCID: PMC6263226 DOI: 10.5152/eurasianjmed.2018.17199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/16/2017] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVE Neuropathic pain (NP) is an inescapable stressor that significantly affects both the nervous and endocrine system functions. In this study, we investigated the effect of NP on female reproductive function using the number of oocytes as an index as well as the copulation rates of female mice, with and without males. We also examined whether NP symptoms stopped after injecting tramadol, an opioid analgesic. MATERIALS AND METHODS The partial sciatic nerve was tightly ligated to produce neuropathy, and allodynia was assessed using the cold-plate test. A superovulation protocol was applied to control, sham, neuropathy, and neuropathy+tramadol groups. Each group was divided into two subgroups according to two housing conditions: female alone and female with a male. After inducing superovulation, oocytes/zygotes were isolated from the ampulla of female mice. Total number of oocytes, oocyte maturation, and copulation rates were determined. RESULTS The results showed that allodynia, which is a prominent NP symptom, was detected in all neuropathic mice, but tramadol (50 mg/kg, i.p.) stopped these symptoms. The results also showed that NP decreased oocyte maturation and copulation rates of mice, and tramadol reversed all these effects. CONCLUSION In conclusion, we suggest that NP affects reproductive performance by altering the regulation of neuroendocrine mechanisms. Prospective studies that determine the levels of cortisol, fertility hormone, cytokine, and other potential endogenous substances in NP animals are needed to clarify the mechanisms.
Collapse
Affiliation(s)
- Senay Dagilgan
- Department of Physiology, Çukurova University School of Medicine, Adana, Turkey
| | - Seref Erdogan
- Department of Physiology, Çukurova University School of Medicine, Adana, Turkey
| | - Fazilet Aksu
- Department of Pharmacology, Çukurova University School of Medicine, Adana, Turkey
| |
Collapse
|
44
|
Sun J, Chen F, Braun C, Zhou YQ, Rittner H, Tian YK, Cai XY, Ye DW. Role of curcumin in the management of pathological pain. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:129-140. [PMID: 30195871 DOI: 10.1016/j.phymed.2018.04.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/12/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pathological pain conditions can be triggered after peripheral nerve injury and/or inflammation. It is a major clinical problem that is poorly treated with available therapeutics. Curcumin is a phenolic compound derived from Curcuma longa, being widely used for its antioxidant, anti-inflammatory and immunomodulatory effects. PURPOSE This review systematically summarized updated information on the traditional uses of curcumin in order to explore antinociceptive effects in pathological pain and evaluate future therapeutic opportunities clinically. Moreover, some structure-activity relationships would greatly enrich the opportunity of finding new and promising lead compounds and promote the reasonable development of curcumin. METHODS PubMed were searched and the literature from the year 1976 to January 2018 was retrieved using keywords pain and curcumin. RESULTS This review systematically summarized updated information on the traditional uses, chemical constituents and bioactivities of curcumin, and highlights the recent development of the mechanisms of curcumin in the pathological pain by sciatic nerve injury, spinal cord injury, diabetic neuropathy, alcoholic neuropathy, chemotherapy induced peripheral neuroinflammtion, complete Freund's adjuvant (CFA) injection or carrageenan injection. Importantly, the clinical studies provide a compelling justification for its use as a dietary adjunct for pain relief. And we also present multiple approaches to improve bioavailability of curcumin for the treatment of pathological pain. CONCLUSION This review focuses on pre-clinical and clinical studies in the treatment of pathological pain. Although the mechanisms of pain mitigating effects are not very clear, there is compelling evidence proved that curcumin plays an essential role. However, further high-quality clinical studies should be undertaken to establish the clinical effectiveness of curcumin in patients suffering from pathological pain. Potential methods of increase the water solubility and bioavailability of curcumin still need to be studied. These approaches will help in establishing it as remedy for pathological pain.
Collapse
Affiliation(s)
- Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, China; Department of Oncology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - Cody Braun
- UMKC School of Medicine, Kansas City, United States
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heike Rittner
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu-Yu Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, China.
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
45
|
Glucocorticoid receptor inhibit the activity of NF-κB through p38 signaling pathway in spinal cord in the spared nerve injury rats. Life Sci 2018; 208:268-275. [DOI: 10.1016/j.lfs.2018.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/06/2018] [Accepted: 07/14/2018] [Indexed: 02/07/2023]
|
46
|
Kiso T, Sekizawa T, Uchino H, Tsukamoto M, Kakimoto S. Analgesic effects of ASP3662, a novel 11β-hydroxysteroid dehydrogenase 1 inhibitor, in rat models of neuropathic and dysfunctional pain. Br J Pharmacol 2018; 175:3784-3796. [PMID: 30006998 DOI: 10.1111/bph.14448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Glucocorticoids are a major class of stress hormones known to participate in stress-induced hyperalgesia. Although 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) is a key enzyme in the intracellular regeneration of glucocorticoids in the CNS, its role in pain perception has not been assessed. Here, we examined the effects of ASP3662, a novel 11β-HSD1 inhibitor, on neuropathic and dysfunctional pain. EXPERIMENTAL APPROACH The enzyme inhibitory activities and pharmacokinetics of ASP3662 were examined, and its antinociceptive effects were evaluated in models of neuropathic pain, fibromyalgia and inflammatory pain in Sprague-Dawley rats. KEY RESULTS ASP3662 inhibited human, mouse and rat 11β-HSD1 but not human 11β-HSD2, in vitro. ASP3662 had no significant effect on 87 other possible targets (enzymes, transporters and receptors). ASP3662 inhibited in vitro conversion of glucocorticoid from its inactive to active form in extracts of rat brain and spinal cord. Pharmacokinetic analysis in Sprague-Dawley rats showed that ASP3662 has CNS-penetrability and long-lasting pharmacokinetic properties. Single oral administration of ASP3662 ameliorated mechanical allodynia in spinal nerve ligation (SNL) and streptozotocin-induced diabetic rats and thermal hyperalgesia in chronic constriction nerve injury rats. ASP3662 also restored muscle pressure thresholds in reserpine-induced myalgia rats. Intrathecal administration of ASP3662 was also effective in SNL rats. However, ASP3662 had no analgesic effects in adjuvant-induced arthritis rats. CONCLUSIONS AND IMPLICATIONS ASP3662 is a potent, selective and CNS-penetrable inhibitor of 11β-HSD1. The effects of ASP3662 suggest that selective inhibition of 11β-HSD1 may be an attractive approach for the treatment of neuropathic and dysfunctional pain, as observed in fibromyalgia.
Collapse
Affiliation(s)
- Tetsuo Kiso
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Toshihiro Sekizawa
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Hiroshi Uchino
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Mina Tsukamoto
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Shuichiro Kakimoto
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
47
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
48
|
Lian YN, Lu Q, Chang JL, Zhang Y. The role of glutamate and its receptors in central nervous system in stress-induced hyperalgesia. Int J Neurosci 2017; 128:283-290. [DOI: 10.1080/00207454.2017.1387112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan-Na Lian
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Qi Lu
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Jin-Long Chang
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Ying Zhang
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
49
|
Balsevich G, Petrie GN, Hill MN. Endocannabinoids: Effectors of glucocorticoid signaling. Front Neuroendocrinol 2017; 47:86-108. [PMID: 28739508 DOI: 10.1016/j.yfrne.2017.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023]
Abstract
For decades, there has been speculation regarding the interaction of cannabinoids with glucocorticoid systems. Given the functional redundancy between many of the physiological effects of glucocorticoids and cannabinoids, it was originally speculated that the biological mechanisms of cannabinoids were mediated by direct interactions with glucocorticoid systems. With the discovery of the endocannabinoid system, additional research demonstrated that it was actually the opposite; glucocorticoids recruit endocannabinoid signaling, and that the engagement of endocannabinoid signaling mediated many of the neurobiological and physiological effects of glucocorticoids. With the development of advances in pharmacology and genetics, significant advances in this area have been made, and it is now clear that functional interactions between these systems are critical for a wide array of physiological processes. The current review acts a comprehensive summary of the contemporary state of knowledge regarding the biological interactions between glucocorticoids and endocannabinoids, and their potential role in health and disease.
Collapse
Affiliation(s)
- Georgia Balsevich
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
50
|
Pickering G, Morel V. Memantine for the treatment of general neuropathic pain: a narrative review. Fundam Clin Pharmacol 2017; 32:4-13. [DOI: 10.1111/fcp.12316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/04/2017] [Accepted: 08/10/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Gisèle Pickering
- CHU Clermont-Ferrand; Centre de Pharmacologie Clinique; F-63003 Clermont-Ferrand France
- Inserm, CIC 1405; Neurodol 1107 F-63003 Clermont-Ferrand France
- Laboratoire de Pharmacologie; Faculté de Médecine; Clermont Université; F-63001 Clermont-Ferrand France
| | - Véronique Morel
- CHU Clermont-Ferrand; Centre de Pharmacologie Clinique; F-63003 Clermont-Ferrand France
- Inserm, CIC 1405; Neurodol 1107 F-63003 Clermont-Ferrand France
| |
Collapse
|