1
|
Gao Y, Tang X, Yao J, Sun T, Chen Y, Cheng C, Yang J, Wang B, Liu A, Yang L, Zhao M. Targeting the bile acid receptor TGR5 with Gentiopicroside to activate Nrf2 antioxidant signaling and mitigate Parkinson's disease in an MPTP mouse model. J Adv Res 2025:S2090-1232(25)00356-X. [PMID: 40414345 DOI: 10.1016/j.jare.2025.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/28/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is a common neurodegenerative disorder characterized by classical symptoms including bradykinesia, rest tremor and rigidity. Oxidative stress and mitochondrial dysfunction are recognized as pivotal factors in PD progression. Gentiopicroside (GPS), a secoiridoid derived from Gentiana manshurica Kitagawa, exhibits antioxidant and mitophagy induction properties. Nonetheless, the effects and mechanisms by which GPS mitigates neurodegeneration in PD remain to be thoroughly elucidated. OBJECTIVES The goal of this study was to investigate the neuroprotective effects and mechanisms of GPS in PD models. METHODS We established the MPTP/MPP+-induced PD models to measure the neuroprotection of GPS. Transcriptomic analysis, oxidative biochemical kits, western blot and cell immunofluorescence were conducted to elucidate the fundamental mechanisms at play. Subsequently, the targeting and activation of the transmembrane G protein-coupled receptor-5 (TGR5) by GPS were measured by molecular docking, cellular thermal shift assay, microscale thermophoresis (MST) and cyclic adenosine monophosphate (cAMP) quantitation. Finally, we verified whether the neuroprotective and antioxidant effects of GPS were dependent on TGR5 by using specific small interfering RNA (siRNA), pharmacological antagonist and knockout mice. RESULTS GPS significantly attenuated dopaminergic (DAergic) neuron loss and restored motor function in the MPTP-induced PD mouse model. Whole-genome RNA sequencing and subsequent mechanistic investigations revealed that GPS enhanced the expression and facilitated nuclear entry of factor erythroid-related 2-factor 2 (Nrf2), and reduced oxidative stress and mitochondrial dysfunction stimulated by neurotoxin. Additionally, GPS could target TGR5 and prevent its downregulation in PD model. TGR5's silencing or inhibition weakened the neuroprotective effect of GPS and blocked GPS-mediated activation of Nrf2 antioxidant signaling in PD model. Moreover, the therapeutic effect of GPS in mitigating motor deficits and neurodegeneration was also abolished in Tgr5 knockout mice. CONCLUSION These findings collectively indicated that GPS targeted TGR5 to activate Nrf2 antioxidant signaling and ultimately ameliorated the pathological progression of PD.
Collapse
Affiliation(s)
- Ying Gao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Xiuling Tang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Jingyue Yao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Ting Sun
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Yue Chen
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Caiyan Cheng
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Jingcheng Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - An Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China.
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China.
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Zhang Z, Zhang Y, Peng H, Yu Q, Kang X, Liu Y, Zheng Y, Cheng F, Wang X, Li F. Decoding TGR5: A comprehensive review of its impact on cerebral diseases. Pharmacol Res 2025; 213:107671. [PMID: 39988005 DOI: 10.1016/j.phrs.2025.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Currently, unraveling the enigmatic realm of drug targets for cerebral disorders poses a formidable challenge. Takeda G protein-coupled receptor 5 (TGR5), also known as G protein-coupled bile acid receptor 1, is a specific bile acid receptor. Widely distributed across various tissues, TGR5 orchestrates a myriad of biological functions encompassing inflammation, energy metabolism, fatty acid metabolism, immune responses, cellular proliferation, apoptosis, and beyond. Alongside its well-documented implications in liver diseases, obesity, type 2 diabetes, tumors, and cardiovascular diseases, a growing body of evidence accentuates the pivotal role of TGR5 in cerebral diseases. Thus, this comprehensive review aimed to scrutinize the current insights into the pathological mechanisms involving TGR5 in cerebral diseases, while contemplating its potential as a promising therapeutic target for cerebral diseases.
Collapse
Affiliation(s)
- Zehan Zhang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Yifei Zhang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Hongye Peng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Qingqian Yu
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Xiangdong Kang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Ying Liu
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Yuxiao Zheng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Fafeng Cheng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Xueqian Wang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Feng Li
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| |
Collapse
|
3
|
Li M, Ma C, Li Y, Wang H, Xiu X, Zhao X, Liu P, Yang H, Cheng M. Design, synthesis and biological evaluation of galantamine analogues for cognitive improvement in Alzheimer's disease. Eur J Med Chem 2025; 284:117198. [PMID: 39733484 DOI: 10.1016/j.ejmech.2024.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
Galantamine plays a crucial role in the management of brain disorders. In this study, a series of galantamine analogues were designed, synthesized and evaluated as potential therapeutic agents for Alzheimer's disease (AD). Compound C2, a dual inhibitor of cholinesterase, was obtained by introducing a benzylpyridine ring to the hydroxyl group of galantamine. Compared to galantamine (hAChE, IC50 = 1529 ± 6 nM), C2 exhibited excellent inhibitory activities against hAChE (IC50 = 513.90 ± 9.60 nM) and hBuChE (IC50 = 357.77 ± 10.24 nM). Further studies revealed that C2 possessed significant abilities to protect PC12 cells from H2O2-induced apoptosis and reactive oxygen species (ROS) production. The acute toxicity test in vivo indicated that C2 exhibited a remarkable safety profile. Whether in the acute memory impairment induced by the Aβ1-42 model or in the amnesia induced by the scopolamine model, oral administration of C2 demonstrated superior improvement on cognition and spatial memory. In summary, both in vitro and in vivo results suggest that C2 deserves to be further explored as an anti-AD agent.
Collapse
Affiliation(s)
- Mengzhen Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Yao Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Xiaomeng Xiu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Xueqi Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China.
| |
Collapse
|
4
|
Gao A, Lv J, Su Y. The Inflammatory Mechanism of Parkinson's Disease: Gut Microbiota Metabolites Affect the Development of the Disease Through the Gut-Brain Axis. Brain Sci 2025; 15:159. [PMID: 40002492 PMCID: PMC11853208 DOI: 10.3390/brainsci15020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Parkinson's disease is recognized as the second most prevalent neurodegenerative disorder globally, with its incidence rate projected to increase alongside ongoing population growth. However, the precise etiology of Parkinson's disease remains elusive. This article explores the inflammatory mechanisms linking gut microbiota to Parkinson's disease, emphasizing alterations in gut microbiota and their metabolites that influence the disease's progression through the bidirectional transmission of inflammatory signals along the gut-brain axis. Building on this mechanistic framework, this article further discusses research methodologies and treatment strategies focused on gut microbiota metabolites, including metabolomics detection techniques, animal model investigations, and therapeutic approaches such as dietary interventions, probiotic treatments, and fecal transplantation. Ultimately, this article aims to elucidate the relationship between gut microbiota metabolites and the inflammatory mechanisms underlying Parkinson's disease, thereby paving the way for novel avenues in the research and treatment of this condition.
Collapse
Affiliation(s)
| | | | - Yanwei Su
- Department of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (A.G.); (J.L.)
| |
Collapse
|
5
|
Choi HJ, Lee HL, Kim IY, Ju YH, Heo YM, Na HR, Lee JY, Choi SI, Heo HJ. Oral Administration of Lactobacillus gasseri and Lacticaseibacillus rhamnosus Ameliorates Amyloid Beta (Aβ)-Induced Cognitive Impairment by Improving Synaptic Function Through Regulation of TLR4/Akt Pathway. Antioxidants (Basel) 2025; 14:139. [PMID: 40002326 PMCID: PMC11851505 DOI: 10.3390/antiox14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigated the anti-amnesic effects of Lactobacillus gasseri (L. gasseri) MG4247 and Lacticaseibacillus rhamnosus (L. rhamnosus) MG4644 in amyloid beta (Aβ)-induced mice. We confirmed that oral administration of L. gasseri MG4247 and L. rhamnosus MG4644 ameliorated cognitive impairment in Aβ-induced mice using Y-maze, passive avoidance, and Morris water maze tests. Oral administration of L. gasseri MG4247 and L. rhamnosus MG4644 protected the antioxidant system by regulating superoxide dismutase levels, reduced glutathione levels, and reduced malondialdehyde contents. Similarly, they attenuated mitochondrial function by decreasing mitochondrial reactive oxygen species levels and increasing mitochondrial membrane potential and ATP levels. In addition, they regulated neuroinflammation and neurotoxicity by modulating the Toll-like receptor 4 (TLR4)/protein kinase B (Akt) pathway. As a result, they enhanced synaptic function by regulating acetylcholine contents, acetylcholinesterase activity, and the expression of synaptic-function-related proteins such as AChE, ChAT, SYP, PSD-95, and GAP-43. Furthermore, the administration of L. gasseri MG4247 and L. rhamnosus MG4644 improved dysbiosis by promoting the growth of beneficial bacteria while suppressing the growth of harmful bacteria. Therefore, these results suggest that L. gasseri MG4247 and L. rhamnosus MG4644 may be used as probiotics to prevent cognitive impairment.
Collapse
Affiliation(s)
- Hye Ji Choi
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.J.C.); (H.L.L.); (I.Y.K.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.J.C.); (H.L.L.); (I.Y.K.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| | - In Young Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.J.C.); (H.L.L.); (I.Y.K.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| | - Yeong Hyeon Ju
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.J.C.); (H.L.L.); (I.Y.K.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| | - Yu Mi Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.J.C.); (H.L.L.); (I.Y.K.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| | - Hwa Rang Na
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.J.C.); (H.L.L.); (I.Y.K.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| | - Ji Yeon Lee
- MEDIOGEN, Co., Ltd., Bioballey 1-ro, Jecheon-si 27159, Republic of Korea; (J.Y.L.); (S.-I.C.)
| | - Soo-Im Choi
- MEDIOGEN, Co., Ltd., Bioballey 1-ro, Jecheon-si 27159, Republic of Korea; (J.Y.L.); (S.-I.C.)
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.J.C.); (H.L.L.); (I.Y.K.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| |
Collapse
|
6
|
Qiao L, Yang G, Wang P, Xu C. The potential role of mitochondria in the microbiota-gut-brain axis: Implications for brain health. Pharmacol Res 2024; 209:107434. [PMID: 39332752 DOI: 10.1016/j.phrs.2024.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Mitochondria are crucial organelles that regulate cellular energy metabolism, calcium homeostasis, and oxidative stress responses, playing pivotal roles in brain development and neurodegeneration. Concurrently, the gut microbiota has emerged as a key modulator of brain physiology and pathology through the microbiota-gut-brain axis. Recent evidence suggests an intricate crosstalk between the gut microbiota and mitochondrial function, mediated by microbial metabolites that can influence mitochondrial activities in the brain. This review aims to provide a comprehensive overview of the emerging role of mitochondria as critical mediators in the microbiota-gut-brain axis, shaping brain health and neurological disease pathogenesis. We discuss how gut microbial metabolites such as short-chain fatty acids, secondary bile acids, tryptophan metabolites, and trimethylamine N-oxide can traverse the blood-brain barrier and modulate mitochondrial processes including energy production, calcium regulation, mitophagy, and oxidative stress in neurons and glial cells. Additionally, we proposed targeting the mitochondria through diet, prebiotics, probiotics, or microbial metabolites as a promising potential therapeutic approach to maintain brain health by optimizing mitochondrial fitness. Overall, further investigations into how the gut microbiota and its metabolites regulate mitochondrial bioenergetics, dynamics, and stress responses will provide valuable insights into the microbiota-gut-brain axis in both health and disease states.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ge Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Department of Psychiatry, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
7
|
Wang W, Bai X, Li J, Wang S, Zhao F, Qin X, Gao X. Low polarity fraction of Radix Bupleuri alleviates chronic unpredictable mild stress-induced depression in rats through FXR modulating bile acid homeostasis in liver, gut, and brain. J Pharm Biomed Anal 2024; 253:116523. [PMID: 39489929 DOI: 10.1016/j.jpba.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Radix Bupleuri (BR, Bupleurum chinense DC.) is a well-known traditional Chinese medicine (TCM) known for its effects on soothing the liver and alleviating depression, and is widely used in clinical settings to manage depressive symptoms. A dosage of 12.5 g crude drug/kg/d of the low-polarity fraction of Radix Bupleuri (LBR) demonstrated effectiveness in treating depression in our previous study. However, the mechanism through which BR ameliorates depression remains unclear. This study aimed to explore the polar fractions of BR and their mechanisms of action in the treatment of depression. Chronic unpredictable mild stress (CUMS) rats were continuously administered BR by oral gavage for 4 weeks. Behavioral and biochemical indicators were evaluated to assess the antidepressant effects of LBR, and transcriptomics was used to explore the relevant pathways. In addition, pseudo-targeted bile acid (BA) metabonomics was used to quantify the BA profiles. Molecular biology techniques have been used to investigate the underlying mechanisms. LBR serves as a more effective active fraction with antidepressant activity. Intervention with LBR, which is characterized by a clearly defined chemical composition, significantly ameliorated depression-like behavior and biochemical indicators in rats subjected to CUMS. Notably, marked improvements were observed in the levels of total bile acids (TBAs) in the blood, liver, and ileum. Mechanistically, liver transcriptome analysis suggested that bile secretion may be a crucial pathway for alleviating depression after LBR treatment. Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) BA metabonomics indicated that TCA, β-MCA, γ-MCA, Tβ-MCA, and UDCA in the liver, Tβ-MCA, TCA, βMCA, GHDCA, and GLCA in the ileum, and β-MCA, CA, and DCA in the hippocampus were the potential therapeutic targets. In addition, molecular biology experiments showed that LBR exerts antidepressant effects by regulating the FXR/SHP/CYP7A1 pathway in the liver, the FXR/FGF15/ASBT pathway in the ileum, and the FXR/CREB/BDNF pathway in the hippocampus. In conclusion, LBR attenuated depression by moderating BA homeostasis through FXR and related genes within the liver-gut-brain axis.
Collapse
Affiliation(s)
- Weiyu Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China
| | - Xue Bai
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China
| | - Jing Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China
| | - Shuheng Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China
| | - Fang Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
8
|
Zhao Y, Ma S, Liang L, Cao S, Fan Z, He D, Shi X, Zhang Y, Liu B, Zhai M, Wu S, Kuang F, Zhang H. Gut Microbiota-Metabolite-Brain Axis Reconstitution Reverses Sevoflurane-Induced Social and Synaptic Deficits in Neonatal Mice. RESEARCH (WASHINGTON, D.C.) 2024; 7:0482. [PMID: 39301264 PMCID: PMC11411162 DOI: 10.34133/research.0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Background: The mechanisms underlying social dysfunction caused by repeated sevoflurane in early life remain unclear. Whether the gut microbiota-metabolite-brain axis is involved in the mechanism of sevoflurane developmental neurotoxicity still lacks report. Methods: Mice received 3% sevoflurane at postnatal day (PND) 6, 7, and 8 for 2 h per day. Metagenomic sequencing and untargeted metabolomic analysis were applied to investigate the effects of sevoflurane on gut microbiota and metabolism. The animal social behavior and the synaptic development were analyzed during PND 35. Subsequently, fecal microbiota transplantation (FMT) from the control group and bile acid administration were performed to see the expected rescuing effect on socially related behaviors that were impaired by repeated sevoflurane exposure in the mice. Results: In the 3-chamber test, sevoflurane-exposed mice spent less time with stranger mice compared with the control group. The density of both the apical and basal spine decreased in mice exposed to sevoflurane. In addition, repeated sevoflurane exposure led to a notable alteration in the gut microbiota and metabolite synthesis, particularly bile acid. FMT reduced the production of intestinal bile acid and attenuated the effect of sevoflurane exposure on social function and synaptic development. Cholestyramine treatment mimics the protective effects of FMT. Conclusions: The gut microbiota-metabolite-brain axis underlies social dysfunction caused by sevoflurane exposure in early age, and bile acid regulation may be a promising intervention to this impairment.
Collapse
Affiliation(s)
- Youyi Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Sanxing Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Lirong Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Shuhui Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Ze Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Danyi He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Xiaotong Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Yao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Meiting Zhai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Fang Kuang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| |
Collapse
|
9
|
Cheng X, Dai Y, Shang B, Zhang S, Lin L, Wu Q, Zhan R, Li S, Liu S. Danggui Shaoyao San and disassembled prescription: neuroprotective effects via AMPK/mTOR-mediated autophagy in mice. BMC Complement Med Ther 2024; 24:298. [PMID: 39127649 PMCID: PMC11317013 DOI: 10.1186/s12906-024-04588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Danggui Shaoyao San (DSS), a frequently prescribed Chinese medicine formula, has demonstrated clinical efficacy in the treatment of Alzheimer's disease (AD). This study aims to explore the differences in therapeutic effects of DSS and its disassembled prescriptions, Suangan (SG) and Xingan (XG), in treating Alzheimer's Disease and the mechanism of DSS recovering autophagy in AD. METHODS A network pharmacology strategy was employed to delineate the bioactive constituents, associated targets, and regulatory mechanisms of DSS in AD, encompassing in silico target forecasting, the generation and scrutiny of PPI networks, alongside GO and KEGG-based pathway elucidation. An AD mouse model, induced by intracerebroventricular injection of Aβ1-42, was used to evaluate the therapeutic effects of DSS and its disassembled prescriptions on AD. Cognitive function was evaluated using the Morris water maze. Expression levels of inflammatory cytokines were quantified via RT-qPCR and ELISA. Western blotting was used to detect the expression of proteins related to AD pathological markers and the AMPK/mTOR signaling pathway. RESULTS 50 active compounds and 718 HUB genes were screened from relevant databases and literature. KEGG and GO analyses indicated that DSS's potential mechanisms against AD involved the AMPK/mTOR signaling pathway and mitophagy. In vivo animal model, the results demonstrated that DSS, SG, and XG treatments improved cognitive function and ameliorated neuroinflammation in mice. Additionally, they alleviated the pathological changes of neuronal cells. These treatments also increased the protein level of PSD-95, and decreased levels of APP and p-Tau. Among them, DSS exhibited the best efficacy. Furthermore, DSS, SG, and XG upregulated the expression of LC3, Beclin1, and p-AMPK, while decreasing the expression of P62 and p-mTOR. CONCLUSIONS DSS, SG, and XG were found to ameliorate AD-related pathological symptoms in Aβ1-42-injected mice, likely through the AMPK/mTOR autophagy signaling pathway.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Yuqiong Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Baoling Shang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Liting Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Qingguang Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Ruoting Zhan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqing Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
| | - Sijun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
10
|
Momen YS, Mishra J, Kumar N. Brain-Gut and Microbiota-Gut-Brain Communication in Type-2 Diabetes Linked Alzheimer's Disease. Nutrients 2024; 16:2558. [PMID: 39125436 PMCID: PMC11313915 DOI: 10.3390/nu16152558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
The gastrointestinal (GI) tract, home to the largest microbial population in the human body, plays a crucial role in overall health through various mechanisms. Recent advancements in research have revealed the potential implications of gut-brain and vice-versa communication mediated by gut-microbiota and their microbial products in various diseases including type-2 diabetes and Alzheimer's disease (AD). AD is the most common type of dementia where most of cases are sporadic with no clearly identified cause. However, multiple factors are implicated in the progression of sporadic AD which can be classified as non-modifiable (e.g., genetic) and modifiable (e.g. Type-2 diabetes, diet etc.). Present review focusses on key players particularly the modifiable factors such as Type-2 diabetes (T2D) and diet and their implications in microbiota-gut-brain (MGB) and brain-gut (BG) communication and cognitive functions of healthy brain and their dysfunction in Alzheimer's Disease. Special emphasis has been given on elucidation of the mechanistic aspects of the impact of diet on gut-microbiota and the implications of some of the gut-microbial products in T2D and AD pathology. For example, mechanistically, HFD induces gut dysbiosis with driven metabolites that in turn cause loss of integrity of intestinal barrier with concomitant colonic and systemic chronic low-grade inflammation, associated with obesity and T2D. HFD-induced obesity and T2D parallel neuroinflammation, deposition of Amyloid β (Aβ), and ultimately cognitive impairment. The review also provides a new perspective of the impact of diet on brain-gut and microbiota-gut-brain communication in terms of transcription factors as a commonly spoken language that may facilitates the interaction between gut and brain of obese diabetic patients who are at a higher risk of developing cognitive impairment and AD. Other commonality such as tyrosine kinase expression and functions maintaining intestinal integrity on one hand and the phagocytic clarence by migratory microglial functions in brain are also discussed. Lastly, the characterization of the key players future research that might shed lights on novel potential pharmacological target to impede AD progression are also discussed.
Collapse
Affiliation(s)
| | | | - Narendra Kumar
- Department of Pharmaceutical Sciences, ILR College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| |
Collapse
|
11
|
Li XJ, Fang C, Zhao RH, Zou L, Miao H, Zhao YY. Bile acid metabolism in health and ageing-related diseases. Biochem Pharmacol 2024; 225:116313. [PMID: 38788963 DOI: 10.1016/j.bcp.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong 510315, China
| | - Chu Fang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Rui-Hua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; National Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
12
|
Liu A, Li Y, Li L, Chen K, Tan M, Zou F, Zhang X, Meng X. Bile acid metabolism is altered in learning and memory impairment induced by chronic lead exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134360. [PMID: 38663295 DOI: 10.1016/j.jhazmat.2024.134360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
Lead is a neurotoxic contaminant that exists widely in the environment. Although lead neurotoxicity has been found to be tightly linked to gut microbiota disturbance, the effect of host metabolic disorders caused by gut microbiota disturbance on lead neurotoxicity has not been investigated. In this work, the results of new object recognition tests and Morris water maze tests showed that chronic low-dose lead exposure caused learning and memory dysfunction in mice. The results of 16 S rRNA sequencing of cecal contents and fecal microbiota transplantation showed that the neurotoxicity of lead could be transmitted through gut microbiota. The results of untargeted metabolomics and bile acid targeted metabolism analysis showed that the serum bile acid metabolism profile of lead-exposed mice was significantly changed. In addition, supplementation with TUDCA or INT-777 significantly alleviated chronic lead exposure-induced learning and memory impairment, primarily through inhibition of the NLRP3 inflammasome in the hippocampus to relieve neuroinflammation. In conclusion, our findings suggested that dysregulation of host bile acid metabolism may be one of the mechanisms of lead-induced neurotoxicity, and supplementation of specific bile acids may be a possible therapeutic strategy for lead-induced neurotoxicity.
Collapse
Affiliation(s)
- Anfei Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yunting Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lifan Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Kaiju Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Meitao Tan
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingmei Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
13
|
Li XY, Zhang SY, Hong YZ, Chen ZG, Long Y, Yuan DH, Zhao JJ, Tang SS, Wang H, Hong H. TGR5-mediated lateral hypothalamus-dCA3-dorsolateral septum circuit regulates depressive-like behavior in male mice. Neuron 2024; 112:1795-1814.e10. [PMID: 38518778 DOI: 10.1016/j.neuron.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Although bile acids play a notable role in depression, the pathological significance of the bile acid TGR5 membrane-type receptor in this disorder remains elusive. Using depression models of chronic social defeat stress and chronic restraint stress in male mice, we found that TGR5 in the lateral hypothalamic area (LHA) predominantly decreased in GABAergic neurons, the excitability of which increased in depressive-like mice. Upregulation of TGR5 or inhibition of GABAergic excitability in LHA markedly alleviated depressive-like behavior, whereas down-regulation of TGR5 or enhancement of GABAergic excitability facilitated stress-induced depressive-like behavior. TGR5 also bidirectionally regulated excitability of LHA GABAergic neurons via extracellular regulated protein kinases-dependent Kv4.2 channels. Notably, LHA GABAergic neurons specifically innervated dorsal CA3 (dCA3) CaMKIIα neurons for mediation of depressive-like behavior. LHA GABAergic TGR5 exerted antidepressant-like effects by disinhibiting dCA3 CaMKIIα neurons projecting to the dorsolateral septum (DLS). These findings advance our understanding of TGR5 and the LHAGABA→dCA3CaMKIIα→DLSGABA circuit for the development of potential therapeutic strategies in depression.
Collapse
Affiliation(s)
- Xu-Yi Li
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi-Ya Zhang
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Zhou Hong
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Gang Chen
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Long
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dan-Hua Yuan
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Jia Zhao
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Su-Su Tang
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Wang
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine/Nanhu Brain-Computer Interface Institute, Hangzhou 310013, China.
| | - Hao Hong
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
14
|
Jia W, Li Y, Cheung KCP, Zheng X. Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:865-878. [PMID: 37515688 DOI: 10.1007/s11427-023-2353-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/23/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BAs) play a crucial role in nutrient absorption and act as key regulators of lipid and glucose metabolism and immune homeostasis. Through the enterohepatic circulation, BAs are synthesized, metabolized, and reabsorbed, with a portion entering the vascular circulation and distributing systemically. This allows BAs to interact with receptors in all major organs, leading to organ-organ interactions that regulate both local and global metabolic processes, as well as the immune system. This review focuses on the whole-body effects of BA-mediated metabolic and immunological regulation, including in the brain, heart, liver, intestine, eyes, skin, adipose tissue, and muscle. Targeting BA synthesis and receptor signaling is a promising strategy for the development of novel therapies for various diseases throughout the body.
Collapse
Affiliation(s)
- Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Yitao Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Kenneth C P Cheung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
15
|
Mu R, Hou X, Liu Q, Wang W, Qin C, Li H. Up-regulation of GPR139 in the medial septum ameliorates cognitive impairment in two mouse models of Alzheimer's disease. Int Immunopharmacol 2024; 130:111786. [PMID: 38447415 DOI: 10.1016/j.intimp.2024.111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
G-protein coupled receptors (GPCRs) constitute the largest class of cell surface receptors and present prominent drug targets. GPR139 is an orphan GPCR detected in the septum of the brain. However, its roles in cognition are still unclear. Here we first established a mouse model of cognitive impairment by a single intracerebroventricular injection of aggregated amyloid-beta peptide 1-42 (Aβ1-42). RNA-sequencing data analysis showed that Aβ1-42 induced a significant decrease of GPR139 mRNA in the basal forebrain. Using GPR139 agonist JNJ-63533054 and behavioral tests, we found that GPR139 activation in the brain ameliorated Aβ1-42-induced cognitive impairment. Using western blot, TUNEL apoptosis and Golgi staining assays, we showed that GPR139 activation alleviated Aβ1-42-induced apoptosis and synaptotoxicity in the basal forebrain rather than prefrontal cortex and hippocampus. The further study identified that GPR139 was widely expressed in cholinergic neurons of the medial septum (MS). Using the overexpression virus and transgenic animal model, we showed that up-regulation of GPR139 in MS cholinergic neurons ameliorated cognitive impairment, apoptosis and synaptotoxicity in APP/PS1 transgenic mice. These findings reveal that GPR139 of MS cholinergic neurons could be a critical node in cognition and potentially provides insight into the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China; Department of Child Developmental Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaoying Hou
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Qi Liu
- Department of Child Developmental Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wan Wang
- Department of Child Developmental Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chi Qin
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huixian Li
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
16
|
Xu N, He Y, Zhang C, Zhang Y, Cheng S, Deng L, Zhong Y, Liao B, Wei Y, Feng J. TGR5 signalling in heart and brain injuries: focus on metabolic and ischaemic mechanisms. Neurobiol Dis 2024; 192:106428. [PMID: 38307367 DOI: 10.1016/j.nbd.2024.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
The heart and brain are the core organs of the circulation and central nervous system, respectively, and play an important role in maintaining normal physiological functions. Early neuronal and cardiac damage affects organ function. The relationship between the heart and brain is being continuously investigated. Evidence-based medicine has revealed the concept of the "heart- brain axis," which may provide new therapeutic strategies for certain diseases. Takeda protein-coupled receptor 5 (TGR5) is a metabolic regulator involved in energy homeostasis, bile acid homeostasis, and glucose and lipid metabolism. Inflammation is critical for the development and regeneration of the heart and brain during metabolic diseases. Herein, we discuss the role of TGR5 as a metabolic regulator of heart and brain development and injury to facilitate new therapeutic strategies for metabolic and ischemic diseases of the heart and brain.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yongqiang Zhang
- Department of Cardiology, Hejiang County People's Hospital, Luzhou, China
| | - Shengjie Cheng
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Li Deng
- Department of Rheumatology, The Afliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Yan Wei
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
17
|
Liu Y, Ma C, Li Y, Li M, Cui T, Zhao X, Li Z, Jia H, Wang H, Xiu X, Hu D, Zhang R, Wang N, Liu P, Yang H, Cheng M. Design, synthesis and biological evaluation of carbamate derivatives incorporating multifunctional carrier scaffolds as pseudo-irreversible cholinesterase inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2024; 265:116071. [PMID: 38157596 DOI: 10.1016/j.ejmech.2023.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
In this study, a series of carbamate derivatives incorporating multifunctional carrier scaffolds were designed, synthesized, and evaluated as potential therapeutic agents for Alzheimer's disease (AD). We used tacrine to modify the aliphatic substituent, and employed rivastigmine, indole and sibiriline fragments as carrier scaffolds. The majority of compounds exhibited good inhibitory activity for cholinesterase. Notably, compound C7 with sibiriline fragment exhibited potent inhibitory activities against human acetylcholinesterase (hAChE, IC50 = 30.35 ± 2.07 nM) and human butyrylcholinesterase (hBuChE, IC50 = 48.03 ± 6.41 nM) with minimal neurotoxicity. Further investigations have demonstrated that C7 exhibited a remarkable capacity to safeguard PC12 cells against H2O2-induced apoptosis and effectively suppressed the production of reactive oxygen species (ROS). Moreover, in an inflammation model of BV2 cells induced by lipopolysaccharide (LPS), C7 effectively attenuated the levels of pro-inflammatory cytokines. After 12 h of dialysis, C7 continued to exhibit an inhibitory effect on cholinesterase activity. An acute toxicity test in vivo demonstrated that C7 exhibited a superior safety profile and no hepatotoxicity compared to the parent nucleus tacrine. In the scopolamine-induced AD mouse model, C7 (20 mg/kg) significantly reduced cholinesterase activity in the brain of the mice. C7 was tested in a pharmacological AD mouse model induced by Aβ1-42 and attenuated memory deficits at doses as low as 5 mg/kg. The pseudo-irreversible cholinesterase inhibitory properties and multifunctional therapeutic attributes of C7 render it a promising candidate for further investigation in the treatment of AD.
Collapse
Affiliation(s)
- Yaoyang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Yingbo Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Mengzhen Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Tao Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xueqi Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Zhenli Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Hongwei Jia
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Xiaomeng Xiu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Dexiang Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Ruiwen Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Ningwei Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China.
| |
Collapse
|
18
|
Zhang F, Deng Y, Wang H, Fu J, Wu G, Duan Z, Zhang X, Cai Y, Zhou H, Yin J, He Y. Gut microbiota-mediated ursodeoxycholic acids regulate the inflammation of microglia through TGR5 signaling after MCAO. Brain Behav Immun 2024; 115:667-679. [PMID: 37989444 DOI: 10.1016/j.bbi.2023.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
Ischemic stroke has been demonstrated to cause an imbalance of gut microbiota. However, the change in gut microbiota-mediated bile acids (BAs) metabolites remains unclear. Here, we observed a decrease in gut microbiota-mediated BAs, especially ursodeoxycholic acid (UDCA), in the serum of stroke patients as well as in the intestine, serum and brain of stroke mice. Restoration of UDCA could decrease the area of infarction and improve the neurological function and cognitive function in mice in association with inhibition of NLRP3-related pro-inflammatory cytokines through TGR5/PKA pathway. Furthermore, knocking out TGR5 and inhibiting PKA activity reduce the protective effect of UDCA. Taken together, our results suggest that microbiota-mediated UDCA plays an important role in alleviating inflammatory responses and might be a promising therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Feng Zhang
- Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, PR China; Department of Neurosurgery, Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, PR China
| | - Yiting Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Huidi Wang
- Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Jingxiang Fu
- Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Guangyan Wu
- Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Zhuo Duan
- Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Xiru Zhang
- Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Yijia Cai
- Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Hongwei Zhou
- Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, PR China; Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, Guangdong 510033, PR China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Yan He
- Microbiome Medicine Centre, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, PR China; Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, Guangdong 510033, PR China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|
19
|
Liang Y, Kang X, Zhang H, Xu H, Wu X. Knockdown and inhibition of hippocampal GPR17 attenuates lipopolysaccharide-induced cognitive impairment in mice. J Neuroinflammation 2023; 20:271. [PMID: 37990234 PMCID: PMC10662506 DOI: 10.1186/s12974-023-02958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Previously we reported that inhibition of GPR17 prevents amyloid β 1-42 (Aβ1-42)-induced cognitive impairment in mice. However, the role of GPR17 on cognition is still largely unknown. METHODS Herein, we used a mouse model of cognitive impairment induced by lipopolysaccharide (LPS) to further investigate the role of GPR17 in cognition and its potential mechanism. The mice were pretreated with GPR17 shRNA lentivirus and cangrelor by microinjection into the dentate gyrus (DG) region of the hippocampus. After 21 days, LPS (0.25 mg/kg, i.p.) was administered for 7 days. Animal behavioral tests as well as pathological and biochemical assays were performed to evaluate the cognitive function in mice. RESULTS LPS exposure resulted in a significant increase in GPR17 expression at both protein and mRNA levels in the hippocampus. Gene reduction and pharmacological blockade of GPR17 improved cognitive impairment in both the Morris water maze and novel object recognition tests. Knockdown and inhibition of GPR17 inhibited Aβ production, decreased the expression of NF-κB p65, increased CREB phosphorylation and elevated BDNF expression, suppressed the accumulation of pro-inflammatory cytokines, inhibited Glial cells (microglia and astrocytes) activation, and increased Bcl-2, PSD-95, and SYN expression, reduced Bax expression as well as decreased caspase-3 activity and TUNEL-positive cells in the hippocampus of LPS-treated mice. Notably, knockdown and inhibition of GPR17 not only provided protective effects against cholinergic dysfunction but also facilitated the regulation of oxidative stress. In addition, cangrelor pretreatment can effectively inhibit the expression of inflammatory cytokines by suppressing NF-κB/CREB/BDNF signaling in BV-2 cells stimulated by LPS. However, activation of hippocampal GPR17 with MDL-29951 induced cognitive impairment in normal mice. CONCLUSIONS These observations indicate that GPR17 may possess a neuroprotective effect against LPS-induced cognition deficits, and neuroinflammation by modulation of NF-κB/CREB/BDNF signaling in mice, indicating that GPR17 may be a promising new target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yusheng Liang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xu Kang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Haiwang Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Heng Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xian Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
20
|
Huang F, Mariani N, Pariante CM, Borsini A. From dried bear bile to molecular investigation of differential effects of bile acids in ex vivo and in vitro models of myocardial dysfunction: Relevance for neuroinflammation. Brain Behav Immun Health 2023; 32:100674. [PMID: 37593199 PMCID: PMC10430170 DOI: 10.1016/j.bbih.2023.100674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Bile acids have been known to have both beneficial and detrimental effects on heart function, and as a consequence this can affect the brain. Inflammation is a key factor linking the heart and the brain, bile acids can reduce inflammation in the heart and, as a consequence, neuroinflammation, which may be due to the activation of different peripheral and central cellular and molecular mechanisms. Herein, we compile data published so far and summarise evidence demonstrating the effects of bile acids on myocardial cell viability and function, and its related mechanisms, in ex vivo and in vitro studies conducted in homeostatic state or in models of cardiovascular diseases. Studies show that ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA) do not affect the viability or contraction of cardiomyocytes in homeostatic state, and while UDCA has the capability to prevent the effect of hypoxia on reduced cell viability and beating rate, TUDCA can protect endoplasmic reticulum (ER) stress-induced apoptosis and cardiac contractile dysfunction. In contrast, deoxycholic acid (DCA) decreases contraction rate in homeostatic state, but it also prevents hypoxia-induced inflammation and oxidative stress, whereas lithocholic acid (LCA) can rescue doxazosin-induced apoptosis. Moreover, glycodeoxycholic acid (GDCA), cholic acid (CA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA) and taurodeoxycholic acid (TDCA) decrease contraction, whereas CDCA decreases cell viability in homeostatic conditions. The mechanisms underlying the aforementioned contrasting effects involve a differential regulation of the TGR5, M2R and FXR receptors, as well as the cAMP signalling pathway. Overall, this review confirms the therapeutic potential of certain types of bile acids: UDCA, TUDCA, and potentially LCA, in cardiovascular diseases. By reducing inflammation in the heart, bile acids can improve heart-brain communication and promote overall health. Additional investigations are required to better elucidate mechanisms of action and more personalized clinical therapeutic doses.
Collapse
Affiliation(s)
- Fei Huang
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, PR China
| | - Nicole Mariani
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Carmine M. Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| |
Collapse
|
21
|
Chen X, Gao R, Song Y, Xu T, Jin L, Zhang W, Chen Z, Wang H, Wu W, Zhang S, Zhang G, Zhang N, Chang L, Liu H, Li H, Wu Y. Astrocytic AT1R deficiency ameliorates Aβ-induced cognitive deficits and synaptotoxicity through β-arrestin2 signaling. Prog Neurobiol 2023; 228:102489. [PMID: 37355221 DOI: 10.1016/j.pneurobio.2023.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Alzheimer's disease (AD) seriously influences human health, and there is no effective treatment to prevent or cure AD. Recent studies have shown that angiotensin II type 1 receptor (AT1R) blockers significantly reduce the prevalence of AD, while the precise role and mechanism of AT1R in AD remain obscure. In this study, for the first time, we identified that astrocytic but not neuronal AT1R levels were significantly increased in AD model rats and found that astrocyte-specific knockout of AT1R significantly ameliorated amyloid β (Aβ)-induced cognitive deficits and synaptotoxicity. Pretreating astrocytes with an AT1R blocker also alleviated Aβ-induced synaptotoxicity in the coculture system of hippocampal neurons and astrocytes. Moreover, AT1R could directly bind to Aβ1-42 and activate the astrocytic β-arrestin2 pathway in a biased manner, and biased inhibition of the astrocytic AT1R/β-arrestin2 pathway relieved Aβ-induced neurotoxicity. Furthermore, we demonstrated that astrocytic AT1R/β-arrestin2 pathway-mediated synaptotoxicity was associated with the aggregation of autophagosomes, which triggered the disordered degradation of Aβ. Our findings reveal a novel molecular mechanism of astrocytic AT1R in Aβ-induced neurodegeneration and might contribute to establishing new targets for AD prevention and therapy.
Collapse
Affiliation(s)
- Xinyue Chen
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ruiqi Gao
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yizhi Song
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tao Xu
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Liangyun Jin
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing 100069, China
| | - Wanning Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ziyan Chen
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hongqi Wang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Wenxing Wu
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Suli Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Guitao Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lirong Chang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Huirong Liu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hui Li
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Yan Wu
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
22
|
Choi H, Mook-Jung I. Functional effects of gut microbiota-derived metabolites in Alzheimer's disease. Curr Opin Neurobiol 2023; 81:102730. [PMID: 37236067 DOI: 10.1016/j.conb.2023.102730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
The precise causation of Alzheimer's disease (AD) is unknown, and the factors that contribute to its etiology are highly complicated. Numerous research has been conducted to investigate the potential impact of various factors to the risk of AD development or prevention against it. A growing body of evidence suggests to the importance of the gut microbiota-brain axis in the modulation of AD, which is characterized by altered gut microbiota composition. These changes can alter the production of microbial-derived metabolites, which may play a detrimental role in disease progression by being involved in cognitive decline, neurodegeneration, neuroinflammation, and accumulation of Aβ and tau. The focus of this review is on the relationship between the key metabolic products of the gut microbiota and AD pathogenesis in the brain. Understanding the action of microbial metabolites can open up new avenues for the development of AD treatment targets.
Collapse
Affiliation(s)
- Hyunjung Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Luxenburger A, Harris LD, Ure EM, Jiao W, Woolhouse AD, Cameron SA, Weymouth-Wilson A, Furneaux RH, Pitman JL, Hinkley SFR. The discovery of 12β-methyl-17-epi-18-nor-bile acids as potent and selective TGR5 agonists. Eur J Med Chem 2023; 250:115143. [PMID: 36841086 DOI: 10.1016/j.ejmech.2023.115143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Recent discoveries have demonstrated that the physiological function of bile acids extends to the regulation of diverse signaling processes through interactions with nuclear and G protein-coupled receptors, most notably the Farnesoid-X nuclear receptor (FXR) and the G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5). Targeting such signaling pathways pharmacologically, i.e. with bile acid-derived therapeutics, presents great potential for the treatment of various metabolic, inflammatory immune, liver, and neurodegenerative diseases. Here we report the discovery of two potent and selective TGR5 agonists (NZP196 and 917). These compounds are the taurine conjugates of 6α-ethyl-substituted 12β-methyl-18-nor-bile acids with the side chain being located on the α-face of the steroid scaffold. The compounds emerged from a screening effort of a diverse library of 12β-methyl-18-nor-bile acids that were synthesized from 12β-methyl-18-nor-chenodeoxycholic acid and its C17-epimer. Upon testing for FXR activity, both compounds were found to be inactive, thus revealing selectivity for TGR5.
Collapse
Affiliation(s)
- Andreas Luxenburger
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand.
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Elizabeth M Ure
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Anthony D Woolhouse
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Scott A Cameron
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | | | - Richard H Furneaux
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6012, New Zealand
| | - Simon F R Hinkley
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| |
Collapse
|
24
|
Ren XQ, Huang X, Xing SY, Long Y, Yuan DH, Hong H, Tang SS. Neuroprotective effects of novel compound FMDB on cognition, neurogenesis and apoptosis in APP/PS1 transgenic mouse model of Alzheimer's disease. Neurochem Int 2023; 165:105510. [PMID: 36893915 DOI: 10.1016/j.neuint.2023.105510] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/02/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
Clinical and experimental studies have shown that the sharp reduction of estrogen is one of the important reasons for the high incidence of Alzheimer's disease (AD) in elderly women, but there is currently no such drug for treatment of AD. Our group first designed and synthesized a novel compound R-9-(4fluorophenyl)-3-methyl-10,10,-Hydrogen-6-hydrogen-benzopyran named FMDB. In this study, our aim is to investigate the neuroprotective effects and mechanism of FMDB in APP/PS1 transgenic mice. 6 months old APP/PS1 transgenic mice were intragastrical administered with FMDB (1.25, 2.5 and 5 mg/kg) every other day for 8 weeks. LV-ERβ-shRNA was injected bilaterally into the hippocampus of APP/PS1 mice to knockdown estrogen receptor β (ERβ). We found that FMDB ameliorated cognitive impairment in the Morris water maze and novel object recognition tests, increased hippocampal neurogenesis and prevented hippocampal apoptotic responses in APP/PS1 mice. Importantly, FMDB activated nuclear ERβ mediated CBP/p300, CREB and brain-derived neurotrophic factor (BDNF) signaling, and membrane ERβ mediated PI3K/Akt, CREB and BDNF signaling in the hippocampus. Our study demonstrated the contributions and mechanism of FMDB to cognition, neurogenesis and apoptosis in APP/PS1 mice. These lay the experimental foundation for the development of new anti-AD drugs.
Collapse
Affiliation(s)
- Xiao-Qian Ren
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xin Huang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Shu-Yun Xing
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yan Long
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Dan-Hua Yuan
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Su-Su Tang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
25
|
Ehtezazi T, Rahman K, Davies R, Leach AG. The Pathological Effects of Circulating Hydrophobic Bile Acids in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:173-211. [PMID: 36994114 PMCID: PMC10041467 DOI: 10.3233/adr-220071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Recent clinical studies have revealed that the serum levels of toxic hydrophobic bile acids (deoxy cholic acid, lithocholic acid [LCA], and glycoursodeoxycholic acid) are significantly higher in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) when compared to control subjects. The elevated serum bile acids may be the result of hepatic peroxisomal dysfunction. Circulating hydrophobic bile acids are able to disrupt the blood-brain barrier and promote the formation of amyloid-β plaques through enhancing the oxidation of docosahexaenoic acid. Hydrophobic bile acid may find their ways into the neurons via the apical sodium-dependent bile acid transporter. It has been shown that hydrophobic bile acids impose their pathological effects by activating farnesoid X receptor and suppressing bile acid synthesis in the brain, blocking NMDA receptors, lowering brain oxysterol levels, and interfering with 17β-estradiol actions such as LCA by binding to E2 receptors (molecular modelling data exclusive to this paper). Hydrophobic bile acids may interfere with the sonic hedgehog signaling through alteration of cell membrane rafts and reducing brain 24(S)-hydroxycholesterol. This article will 1) analyze the pathological roles of circulating hydrophobic bile acids in the brain, 2) propose therapeutic approaches, and 3) conclude that consideration be given to reducing/monitoring toxic bile acid levels in patients with AD or aMCI, prior/in combination with other treatments.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rhys Davies
- The Walton Centre, NHS Foundation Trust, Liverpool, UK
| | - Andrew G Leach
- School of Pharmacy, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Huat TJ, Onraet T, Camats-Perna J, Newcombe EA, Ngo KC, Sue AN, Mirzaei M, LaFerla FM, Medeiros R. Deletion of MyD88 in astrocytes prevents β-amyloid-induced neuropathology in mice. Glia 2023; 71:431-449. [PMID: 36271704 PMCID: PMC9970273 DOI: 10.1002/glia.24285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
As the understanding of immune responses in Alzheimer's disease (AD) is in its early phases, there remains an urgency to identify the cellular and molecular processes driving chronic inflammation. In AD, a subpopulation of astrocytes acquires a neurotoxic phenotype which prompts them to lose typical physiological features. While the underlying molecular mechanisms are still unknown, evidence suggests that myeloid differentiation primary response 88 (MyD88) adaptor protein may play a role in coordinating these cells' immune responses in AD. Herein, we combined studies in human postmortem samples with a conditional genetic knockout mouse model to investigate the link between MyD88 and astrocytes in AD. In silico analyses of bulk and cell-specific transcriptomic data from human postmortem brains demonstrated an upregulation of MyD88 expression in astrocytes in AD versus non-AD individuals. Proteomic studies revealed an increase in glial fibrillary acidic protein in multiple brain regions of AD subjects. These studies also showed that although overall MyD88 steady-state levels were unaffected by AD, this protein was enriched in astrocytes near amyloid plaques and neurofibrillary tangles. Functional studies in mice indicated that the deletion of astrocytic MyD88 protected animals from the acute synaptic toxicity and cognitive impairment caused by the intracerebroventricular administration of β-amyloid (Aβ). Lastly, unbiased proteomic analysis revealed that loss of astrocytic MyD88 resulted in altered astrocyte reactivity, lower levels of immune-related proteins, and higher expression of synaptic-related proteins in response to Aβ. Our studies provide evidence of the pivotal role played by MyD88 in the regulation of astrocytes response to AD.
Collapse
Affiliation(s)
- Tee Jong Huat
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland. Brisbane, QLD, Australia
- Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland. Brisbane, QLD, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland. Brisbane, QLD, Australia
| | - Judith Camats-Perna
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland. Brisbane, QLD, Australia
| | - Estella A. Newcombe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland. Brisbane, QLD, Australia
| | - Kim C. Ngo
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine. Irvine, CA, USA
| | - Ashley N. Sue
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine. Irvine, CA, USA
| | - Mehdi Mirzaei
- Clinical Medicine Department, Faculty of Medicine, Health and Human Sciences, Macquarie University. Sydney, NSW, Australia
| | - Frank M. LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine. Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine. Irvine, CA, USA
| | - Rodrigo Medeiros
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland. Brisbane, QLD, Australia
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine. Irvine, CA, USA
- Correspondence: Rodrigo Medeiros, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA 92697-4545.
| |
Collapse
|
27
|
Luo J, Zeng L, Li J, Xu S, Zhao W. Oxidative DNA Damage-induced PARP-1-mediated Autophagic Flux Disruption Contributes to Bupivacaine-induced Neurotoxicity During Pregnancy. Curr Neuropharmacol 2023; 21:2134-2150. [PMID: 37021417 PMCID: PMC10556365 DOI: 10.2174/1570159x21666230404102122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 04/07/2023] Open
Abstract
OBJECTIVE Severe neurologic complications after spinal anesthesia are rare but highly distressing, especially in pregnant women. Bupivacaine is widely used in spinal anesthesia, but its neurotoxic effects have gained attention. METHODS Furthermore, the etiology of bupivacaine-mediated neurotoxicity in obstetric patients remains unclear. Female C57BL/6 mice were intrathecally injected with 0.75% bupivacaine on the 18th day of pregnancy. We used immunohistochemistry to examine DNA damage after bupivacaine treatment in pregnant mice and measured γ-H2AX (Ser139) and 8-OHdG in the spinal cord. A PARP-1 inhibitor (PJ34) and autophagy inhibitor (3-MA) were administered with bupivacaine in pregnant mice. Parp-1flox/flox mice were crossed with Nes-Cre transgenic mice to obtain neuronal conditional knockdown mice. Then, LC3B and P62 staining were performed to evaluate autophagic flux in the spinal cords of pregnant wild-type (WT) and Parp-1-/- mice. We performed transmission electron microscopy (TEM) to evaluate autophagosomes. RESULTS The present study showed that oxidative stress-mediated DNA damage and neuronal injury were increased after bupivacaine treatment in the spinal cords of pregnant mice. Moreover, PARP-1 was significantly activated, and autophagic flux was disrupted. Further studies revealed that PARP-1 knockdown and autophagy inhibitors could alleviate bupivacaine-mediated neurotoxicity in pregnant mice. CONCLUSION Bupivacaine may cause neuronal DNA damage and PARP-1 activation in pregnant mice. PARP-1 further obstructed autophagic flux and ultimately led to neurotoxicity.
Collapse
Affiliation(s)
- Jiaming Luo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Lei Zeng
- Division of Laboratory Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Ji Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
28
|
Dopamine D2 receptor agonist Bromocriptine ameliorates Aβ 1-42-induced memory deficits and neuroinflammation in mice. Eur J Pharmacol 2022; 938:175443. [PMID: 36470446 DOI: 10.1016/j.ejphar.2022.175443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease, which lacks disease-modifying therapeutics so far. Studies have shown that the dysfunction of the dopaminergic system is related to a variety of pathophysiology of AD, and the expression of Dopamine D2 receptor (DRD2) in the brains of AD patients and animal models is significantly downregulated, suggesting that DRD2 may represent a therapeutic target for AD. However, the strategy of targeting DRD2 for AD treatment still lacks some key experimental evidences. Here we show that DRD2 agonist Bromocriptine improved Aβ1-42 induced neuroinflammation, neuronal apoptosis, and memory deficits in mice. For animal study, the mice have injected intracerebroventricularly (i.c.v.) with Aβ1-42(410 pmol/5 μl) to induced AD cognitive deficit model (Mazzola et al., 2003; van der Stelt et al., 2006). After 7 days, Bromocriptine (2.5 mg/kg, 5 mg/kg and 10 mg/kg) or normal saline was administered intragastrically once a day for 30 days. Behavioral tests about the Y maze and Morris water maze in mice were initiated on the twenty-fourth day of drug administration for 7 days. In vivo and in vitro mechanism research revealed that Bromocriptine, via activating DRD2, promoted the recruitment of PP2A and JNK by scaffold protein β-arrestin 2, that repressed JNK-mediated transcription of proinflammatory cytokines and activation of NLRP3 inflammasome in microglia. Collectively, our findings suggest that Bromocriptine can ameliorate Aβ1-42 induced neuroinflammation and memory deficits in mice through DRD2/β-arrestin 2/PP2A/JNK signaling axis, which provides an experimental basis for the development of Bromocriptine as a drug for AD.
Collapse
|
29
|
Bile acids and neurological disease. Pharmacol Ther 2022; 240:108311. [PMID: 36400238 DOI: 10.1016/j.pharmthera.2022.108311] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
This review will focus on how bile acids are being used in clinical trials to treat neurological diseases due to their central involvement with the gut-liver-brain axis and their physiological and pathophysiological roles in both normal brain function and multiple neurological diseases. The synthesis of primary and secondary bile acids species and how the regulation of the bile acid pool may differ between the gut and brain is discussed. The expression of several bile acid receptors in brain and their currently known functions along with the tools available to manipulate them pharmacologically are examined, together with discussion of the interaction of bile acids with the gut microbiome and their lesser-known effects upon brain glucose and lipid metabolism. How dysregulation of the gut microbiome, aging and sex differences may lead to disruption of bile acid signalling and possible causal roles in a number of neurological disorders are also considered. Finally, we discuss how pharmacological treatments targeting bile acid receptors are currently being tested in an array of clinical trials for several different neurodegenerative diseases.
Collapse
|
30
|
Ren ZL, Li CX, Ma CY, Chen D, Chen JH, Xu WX, Chen CA, Cheng FF, Wang XQ. Linking Nonalcoholic Fatty Liver Disease and Brain Disease: Focusing on Bile Acid Signaling. Int J Mol Sci 2022; 23:13045. [PMID: 36361829 PMCID: PMC9654021 DOI: 10.3390/ijms232113045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/01/2023] Open
Abstract
A metabolic illness known as non-alcoholic fatty liver disease (NAFLD), affects more than one-quarter of the world's population. Bile acids (BAs), as detergents involved in lipid digestion, show an abnormal metabolism in patients with NAFLD. However, BAs can affect other organs as well, such as the brain, where it has a neuroprotective effect. According to a series of studies, brain disorders may be extrahepatic manifestations of NAFLD, such as depression, changes to the cerebrovascular system, and worsening cognitive ability. Consequently, we propose that NAFLD affects the development of brain disease, through the bile acid signaling pathway. Through direct or indirect channels, BAs can send messages to the brain. Some BAs may operate directly on the central Farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) by overcoming the blood-brain barrier (BBB). Furthermore, glucagon-like peptide-1 (GLP-1) and the fibroblast growth factor (FGF) 19 are released from the intestine FXR and GPBAR1 receptors, upon activation, both of which send signals to the brain. Inflammatory, systemic metabolic disorders in the liver and brain are regulated by the bile acid-activated receptors FXR and GPBAR1, which are potential therapeutic targets. From a bile acid viewpoint, we examine the bile acid signaling changes in NAFLD and brain disease. We also recommend the development of dual GPBAR1/FXR ligands to reduce side effects and manage NAFLD and brain disease efficiently.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Yang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Dan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Hui Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Wen-Xiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
31
|
Lirong W, Mingliang Z, Mengci L, Qihao G, Zhenxing R, Xiaojiao Z, Tianlu C. The clinical and mechanistic roles of bile acids in depression, Alzheimer's disease, and stroke. Proteomics 2022; 22:e2100324. [PMID: 35731901 DOI: 10.1002/pmic.202100324] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
The burden of neurological and neuropsychiatric disorders continues to grow with significant impacts on human health and social economy worldwide. Increasing clinical and preclinical evidences have implicated that bile acids (BAs) are involved in the onset and progression of neurological and neuropsychiatric diseases. Here, we summarized recent studies of BAs in three types of highly prevalent brain disorders, depression, Alzheimer's disease, and stroke. The shared and specific BA profiles were explored and potential markers associated with disease development and progression were summarized. The mechanistic roles of BAs were reviewed with focuses on inflammation, gut-brain-microbiota axis, cellular apoptosis. We also discussed future perspectives for the prevention and treatment of neurological and neuropsychiatric disorders by targeting BAs and related molecules and gut microbiota. Our understanding of BAs and their roles in brain disorders is still evolving. A large number of questions still need to be addressed on the emerging crosstalk among central, peripheral, intestine and their contribution to brain and mental health. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wu Lirong
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhao Mingliang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Li Mengci
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Guo Qihao
- Department of gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ren Zhenxing
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zheng Xiaojiao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chen Tianlu
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
32
|
Dai W, Liu J, Qiu Y, Teng Z, Li S, Yuan H, Huang J, Xiang H, Tang H, Wang B, Chen J, Wu H. Gut Microbial Dysbiosis and Cognitive Impairment in Bipolar Disorder: Current Evidence. Front Pharmacol 2022; 13:893567. [PMID: 35677440 PMCID: PMC9168430 DOI: 10.3389/fphar.2022.893567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies have reported that the gut microbiota influences mood and cognitive function through the gut-brain axis, which is involved in the pathophysiology of neurocognitive and mental disorders, including Parkinson’s disease, Alzheimer’s disease, and schizophrenia. These disorders have similar pathophysiology to that of cognitive dysfunction in bipolar disorder (BD), including neuroinflammation and dysregulation of various neurotransmitters (i.e., serotonin and dopamine). There is also emerging evidence of alterations in the gut microbial composition of patients with BD, suggesting that gut microbial dysbiosis contributes to disease progression and cognitive impairment in BD. Therefore, microbiota-centered treatment might be an effective adjuvant therapy for BD-related cognitive impairment. Given that studies focusing on connections between the gut microbiota and BD-related cognitive impairment are lagging behind those on other neurocognitive disorders, this review sought to explore the potential mechanisms of how gut microbial dysbiosis affects cognitive function in BD and identify potential microbiota-centered treatment.
Collapse
Affiliation(s)
- Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Yuan
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
33
|
Pharmacological Activation of GPR55 Improved Cognitive Impairment Induced by Lipopolysaccharide in Mice. J Mol Neurosci 2022; 72:1656-1669. [PMID: 35596056 DOI: 10.1007/s12031-022-02020-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
Our previous research found that activation of GPR55 can alleviate cognitive impairment induced by amyloid-beta 1-42 (Aβ1-42) and streptozotocin in mice, but the role of GPR55 in the pathogenesis of cognitive impairment remains unknown. Here, we used a lipopolysaccharide (LPS) mouse model to further investigate the role and mechanism of O-1602, a GPR55 agonist, on cognitive dysfunction. ICR mice were treated with an intracerebroventricular (i.c.v.) injection of LPS, followed by cognitive function tests. The expression of GPR55, NF-κB p65, caspase-3, Bax, and Bcl-2 in the hippocampus was examined by Western blotting. Inflammatory cytokines and microglia were detected by ELISA kit and immunohistochemical analyses, respectively. The levels of MDA, GSH, SOD, and CAT were examined by assay kits. Furthermore, TUNEL-staining was used to detect neuronal apoptosis. Our results showed that i.c.v. injection of LPS in mice exhibited impaired performance in the behavior tests, which were ameliorated by O-1602 treatment (2.0 or 4.0 μg/mouse, i.c.v.). Importantly, we found that O-1602 treatment reversed GPR55 downregulation, decreased the expression of NF-κB p65, suppressed the accumulation of proinflammatory cytokines and microglia activation, increased the anti-inflammatory cytokines, and reduced the levels of MDA, increased the levels of GSH, SOD, and CAT in the hippocampus. In addition, O-1602 treatment also significantly reduced Bax and increased Bcl-2 expression as well as decreased caspase-3 activity and TUNEL-positive cells in the hippocampus. These observations indicate that O-1602 may ameliorate LPS-induced cognition deficits via inhibiting neuroinflammation, oxidative stress, and apoptosis mediated by the NF-κB pathway in mice.
Collapse
|
34
|
Activation of TGR5 Ameliorates Streptozotocin-Induced Cognitive Impairment by Modulating Apoptosis, Neurogenesis, and Neuronal Firing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3716609. [PMID: 35464765 PMCID: PMC9033389 DOI: 10.1155/2022/3716609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is the first known G protein-coupled receptor specific for bile acids and is recognized as a new and critical target for type 2 diabetes and metabolic syndrome. It is expressed in many brain regions associated with memory such as the hippocampus and frontal cortex. Here, we hypothesize that activation of TGR5 may ameliorate streptozotocin- (STZ-) induced cognitive impairment. The mouse model of cognitive impairment was established by a single intracerebroventricular (ICV) injection of STZ (3.0 mg/kg), and we found that TGR5 activation by its agonist INT-777 (1.5 or 3.0 μg/mouse, ICV injection) ameliorated spatial memory impairment in the Morris water maze and Y-maze tests. Importantly, INT-777 reversed STZ-induced downregulation of TGR5 and glucose usage deficits. Our results further showed that INT-777 suppressed neuronal apoptosis and improved neurogenesis which were involved in tau phosphorylation and CREB-BDNF signaling. Moreover, INT-777 increased action potential firing of excitatory pyramidal neurons in the hippocampal CA3 and medial prefrontal cortex of ICV-STZ groups. Taken together, these findings reveal that activation of TGR5 has a neuroprotective effect against STZ-induced cognitive impairment by modulating apoptosis, neurogenesis, and neuronal firing in the brain and TGR5 might be a novel and potential target for Alzheimer's disease.
Collapse
|
35
|
Islam J, Cho JA, Kim JY, Park KS, Koh YJ, Chung CY, Lee EJ, Nam SJ, Lee K, Kim SH, Park SH, Lee DY, Kim BC, Lee KH, Seong SY. GPCR19 Regulates P2X7R-Mediated NLRP3 Inflammasomal Activation of Microglia by Amyloid β in a Mouse Model of Alzheimer's Disease. Front Immunol 2022; 13:766919. [PMID: 35464490 PMCID: PMC9019633 DOI: 10.3389/fimmu.2022.766919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Amyloid β (Aβ) and/or ATP activate the NLRP3 inflammasome (N3I) via P2X7R in microglia, which is crucial in neuroinflammation in Alzheimer's disease (AD). Due to polymorphisms, subtypes, and ubiquitous expression of P2X7R, inhibition of P2X7R has not been effective for AD. We first report that taurodeoxycholate (TDCA), a GPCR19 ligand, inhibited the priming phase of N3I activation, suppressed P2X7R expression and P2X7R-mediated Ca++ mobilization and N3I oligomerization, which is essential for production of IL-1β/IL-18 by microglia. Furthermore, TDCA enhanced phagocytosis of Aβ and decreased the number of Aβ plaques in the brains of 5x Familial Alzheimer's disease (5xFAD) mice. TDCA also reduced microgliosis, prevented neuronal loss, and improved memory function in 5xFAD mice. The pleiotropic roles of GPCR19 in P2X7R-mediated N3I activation suggest that targeting GPCR19 might resolve neuroinflammation in AD patients.
Collapse
Affiliation(s)
- Jahirul Islam
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Ah Cho
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ju-yong Kim
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung-Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Jae Koh
- Department of Inflammation, Shaperon Inc. Ltd, Seoul, South Korea
| | - Chu Young Chung
- Department of Inflammation, Shaperon Inc. Ltd, Seoul, South Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, Seoul, South Korea
| | - Kyoungyul Lee
- Department of Pathology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seoung-Heon Kim
- Department of Neurology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, South Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital and Medical School, Gwangju, South Korea
| | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Inflammation, Shaperon Inc. Ltd, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
36
|
Weng ZB, Chen YR, Lv JT, Wang MX, Chen ZY, Zhou W, Shen XC, Zhan LB, Wang F. A Review of Bile Acid Metabolism and Signaling in Cognitive Dysfunction-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4289383. [PMID: 35308170 PMCID: PMC8933076 DOI: 10.1155/2022/4289383] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Bile acids are commonly known as one of the vital metabolites derived from cholesterol. The role of bile acids in glycolipid metabolism and their mechanisms in liver and cholestatic diseases have been well studied. In addition, bile acids also serve as ligands of signal molecules such as FXR, TGR5, and S1PR2 to regulate some physiological processes in vivo. Recent studies have found that bile acids signaling may also play a critical role in the central nervous system. Evidence showed that some bile acids have exhibited neuroprotective effects in experimental animal models and clinical trials of many cognitive dysfunction-related diseases. Besides, alterations in bile acid metabolisms well as the expression of different bile acid receptors have been discovered as possible biomarkers for prognosis tools in multiple cognitive dysfunction-related diseases. This review summarizes biosynthesis and regulation of bile acids, receptor classification and characteristics, receptor agonists and signaling transduction, and recent findings in cognitive dysfunction-related diseases.
Collapse
Affiliation(s)
- Ze-Bin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan-Rong Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jin-Tao Lv
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min-Xin Wang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zheng-Yuan Chen
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Chun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Li-Bin Zhan
- The Innovation Engineering Technology Center of Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
37
|
Huang R, Gao Y, Chen J, Duan Q, He P, Zhang J, Huang H, Zhang Q, Ma G, Zhang Y, Nie K, Wang L. TGR5 agonist INT-777 alleviates inflammatory neurodegeneration in parkinson’s disease mouse model by modulating mitochondrial dynamics in microglia. Neuroscience 2022; 490:100-119. [DOI: 10.1016/j.neuroscience.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
|
38
|
Neuroprotective effect of exosomes derived from bone marrow mesenchymal stem cells via activating TGR5 and suppressing apoptosis. Biochem Biophys Res Commun 2022; 593:13-19. [DOI: 10.1016/j.bbrc.2022.01.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/24/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022]
|
39
|
Xiang X, Wang X, Jin S, Hu J, Wu Y, Li Y, Wu X. Activation of GPR55 attenuates cognitive impairment and neurotoxicity in a mouse model of Alzheimer's disease induced by Aβ 1-42 through inhibiting RhoA/ROCK2 pathway. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110423. [PMID: 34363866 DOI: 10.1016/j.pnpbp.2021.110423] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/11/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022]
Abstract
The accumulation of amyloid-β (Aβ) peptides in the brain is considered to be the initial event in the Alzheimer's disease (AD). Neurotoxicity mediated by Aβ has been demonstrated to damage the cognitive function. In the present study, we sought to determine the effects of O-1602, a specific G-protein coupled receptor 55 (GPR55) agonist, on the impairment of learning and memory induced by intracerebroventricular (i.c.v.) of Aβ1-42 (400 pmol/mouse) in mice. Our results showed that i.c.v. injection of aggregated Aβ1-42 into the brain of mice resulted in cognitive impairment and neurotoxicity. In contrast, O-1602 (2.0 or 4.0 μg/mouse, i.c.v.) can improve memory impairment induced by Aβ1-42 in the Morris water maze (MWM), and novel object recognition (NOR) tests. Besides, we found that O-1602 reduced the activity of β-secretase 1 (BACE1) and the level of soluble Aβ1-42 in the hippocampus and frontal cortex. Importantly, O-1602 treatment reversed Aβ1-42-induced GPR55 down-regulation, decreased pro-inflammatory cytokines, and the level of malondialdehyde (MDA), increased the levels of glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), as well as suppressed apoptosis as indicated by decreased TUNEL-positive cells, and increased the ratio of Bcl-2/Bax. O-1602 treatment also pronouncedly ameliorated synaptic dysfunction by promoting the upregulation of PSD-95 and synaptophysin (SYN) proteins. Moreover, O-1602 concurrently down regulated the protein levels of RhoA, and ROCK2, the critical proteins in the RhoA/ROCK2 pathway. This study indicates that O-1602 may reverse Aβ1-42-induced cognitive impairment and neurotoxicity in mice by inhibiting RhoA/ROCK2 pathway. Taken together, these findings suggest that GPR55 could be a novel and promising target for the treatment of AD.
Collapse
Affiliation(s)
- XiaoTong Xiang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Xin Wang
- West Anhui Health Vocational College, Luan 237000, China
| | - ShiYu Jin
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Jie Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - YuMei Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - YueYue Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Xian Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China.
| |
Collapse
|
40
|
Zou Y, Gan CL, Xin Z, Zhang HT, Zhang Q, Lee TH, Pan X, Chen Z. Programmed Cell Death Protein 1 Blockade Reduces Glycogen Synthase Kinase 3β Activity and Tau Hyperphosphorylation in Alzheimer's Disease Mouse Models. Front Cell Dev Biol 2022; 9:769229. [PMID: 34977020 PMCID: PMC8716757 DOI: 10.3389/fcell.2021.769229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022] Open
Abstract
Alzheimer’s disease (AD) is a central nervous system degenerative disease, with no effective treatment to date. Administration of immune checkpoint inhibitors significantly reduces neuronal damage and tau hyperphosphorylation in AD, but the specific mechanism is unclear. Here, we found that programmed cell death-receptor 1 (PD1) and its ligand PDL1 were induced by an intracerebroventricular injection of amyloid-β; they were significantly upregulated in the brains of APP/PS1, 5×FAD mice and in SH-SY5Y-APP cell line compared with control. The PD1 and PDL1 levels positively correlated with the glycogen synthase kinase 3 beta (GSK3β) activity in various AD mouse models, and the PDL1-GSK3β immune complex was found in the brain. The application of PD1-blocking antibody reduced tau hyperphosphorylation and GSK3β activity and prevented memory impairments. Mechanistically, we identified PD1 as a critical regulator of GSK3β activity. These results suggest that the immune regulation of the PD1/PDL1 axis is closely involved in AD.
Collapse
Affiliation(s)
- Yulian Zou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Chen-Ling Gan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhiming Xin
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Hai-Tao Zhang
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, National Health Commission, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qi Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhou Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
41
|
Luxenburger A, Ure EM, Harris L, Cameron SA, Weymouth-Wilson A, Furneaux RH, Pitman J, Hinkley SF. The Synthesis of 12β-Methyl-18-nor-Avicholic Acid Analogues as Potential TGR5 Agonists†. Org Biomol Chem 2022; 20:3511-3527. [DOI: 10.1039/d1ob02401a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the quest for new modulators of the Farnesoid-X (FXR) and Takeda G-protein-coupled (TGR5) receptors, bile acids are a popular candidate for drug development. Recently, bile acids endowed with a...
Collapse
|
42
|
From dried bear bile to molecular investigation: A systematic review of the effect of bile acids on cell apoptosis, oxidative stress and inflammation in the brain, across pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Brain Behav Immun 2022; 99:132-146. [PMID: 34601012 DOI: 10.1016/j.bbi.2021.09.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 02/08/2023] Open
Abstract
Bile acids, mainly ursodeoxycholic acid (UDCA) and its conjugated species glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) have long been known to have anti-apoptotic, anti-oxidant and anti-inflammatory properties. Due to their beneficial actions, recent studies have started to investigate the effect of UDCA, GUDCA, TUDCA on the same mechanisms in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders, where increased cell apoptosis, oxidative stress and inflammation in the brain are often observed. A total of thirty-five pre-clinical studies were identified through PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the UDCA, GUDCA and TUDCA in the regulation of brain apoptosis, oxidative stress and inflammation, in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Findings show that UDCA reduces apoptosis, reactive oxygen species (ROS) and tumour necrosis factor (TNF)-α production in neurodegenerative models, and reduces nitric oxide (NO) and interleukin (IL)-1β production in neuropsychiatric models; GUDCA decreases lactate dehydrogenase, TNF-α and IL-1β production in neurological models, and also reduces cytochrome c peroxidase production in neurodegenerative models; TUDCA decreases apoptosis in neurological models, reduces ROS and IL-1β production in neurodegenerative models, and decreases apoptosis and TNF-α production, and increases glutathione production in neuropsychiatric models. In addition, findings suggest that all the three bile acids would be equally beneficial in models of Huntington's disease, whereas UDCA and TUDCA would be more beneficial in models of Parkinson's disease and Alzheimer's disease, while GUDCA in models of bilirubin encephalopathy and TUDCA in models of depression. Overall, this review confirms the therapeutic potential of UDCA, GUDCA and TUDCA in neurological, neurodegenerative and neuropsychiatric disorders, proposing bile acids as potential alternative therapeutic approaches for patients suffering from these disorders.
Collapse
|
43
|
Activation of GPR55 attenuates cognitive impairment, oxidative stress, neuroinflammation, and synaptic dysfunction in a streptozotocin-induced Alzheimer's mouse model. Pharmacol Biochem Behav 2022; 214:173340. [DOI: 10.1016/j.pbb.2022.173340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
|
44
|
So SY, Savidge TC. Gut feelings: the microbiota-gut-brain axis on steroids. Am J Physiol Gastrointest Liver Physiol 2022; 322:G1-G20. [PMID: 34730020 PMCID: PMC8698538 DOI: 10.1152/ajpgi.00294.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/31/2023]
Abstract
The intricate connection between central and enteric nervous systems is well established with emerging evidence linking gut microbiota function as a significant new contributor to gut-brain axis signaling. Several microbial signals contribute to altered gut-brain communications, with steroids representing an important biological class that impacts central and enteric nervous system function. Neuroactive steroids contribute pathologically to neurological disorders, including dementia and depression, by modulating the activity of neuroreceptors. However, limited information is available on the influence of neuroactive steroids on the enteric nervous system and gastrointestinal function. In this review, we outline how steroids can modulate enteric nervous system function by focusing on their influence on different receptors that are present in the intestine in health and disease. We also highlight the potential role of the gut microbiota in modulating neuroactive steroid signaling along the gut-brain axis.
Collapse
Affiliation(s)
- Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
45
|
Fang SC, Wang JJ, Chen F, Tang SS, Mu RH, Yuan DH, Zhao JJ, Hong H, Long Y. Hippocampal CysLT1R overexpression or activation accelerates memory deficits, synaptic dysfunction, and amyloidogenesis in young APP/PS1 transgenic mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1531. [PMID: 34790737 PMCID: PMC8576703 DOI: 10.21037/atm-21-4518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/02/2021] [Indexed: 11/12/2022]
Abstract
Background Our previous studies demonstrated that cysteinyl leukotrienes receptor 1 (CysLT1R) knockout, pharmacological blockade, or hippocampus knockdown produced beneficial effects against Alzheimer’s disease (AD); however, whether CysLT1R upregulation has deleterious effects on AD remains elusive. Methods In this study, we investigated the changes in behaviors, hippocampal amyloidogenesis, and synapse plasticity after CysLT1R overexpression by microinfusion of the lentiviral vector, containing its coding sequence of mouse (LV-CysLT1R), into the bilateral dentate gyri (DG) of the hippocampus or CysLT1R activation by repeated systemic administration of its agonist YM-17690 (0.1 mg/kg, once a day, i.p., for 28 d). Results The behavior data showed that overexpression of CysLT1R in hippocampal DG or administration of YM-17690 deteriorated behavioral performance in Morris water maze (MWM), Y-maze tests, and novel object recognition (NOR) in young APP/PS1 mice. The further studies showed that these treatments significantly destroyed synaptic function, as evidenced by impaired hippocampal long-term potentiation (LTP), decreased spine density, low number of synapses, and decreased postsynaptic protein (PSD95), and promoted the generation of amyloid β (Aβ) through increased expression of BACE1 and PS1 in the hippocampus of young APP/PS1 mice. Conclusions Together, our results indicate that CysLT1R upregulation accelerates memory impairment in young APP/PS1 mice, which is associated with promoting synaptic dysfunction and amyloidogenesis in the hippocampus.
Collapse
Affiliation(s)
- Shun-Chang Fang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Jun-Jie Wang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Fang Chen
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Su-Su Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Rong-Hao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Dan-Hua Yuan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Jia-Jia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
46
|
Jin S, Wang X, Xiang X, Wu Y, Hu J, Li Y, Lin Dong Y, Tan Y, Wu X. Inhibition of GPR17 with cangrelor improves cognitive impairment and synaptic deficits induced by Aβ 1-42 through Nrf2/HO-1 and NF-κB signaling pathway in mice. Int Immunopharmacol 2021; 101:108335. [PMID: 34781121 DOI: 10.1016/j.intimp.2021.108335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
The accumulation of amyloid beta (Aβ) in the brain is thought to be associated with cognitive deficits in Alzheimer's disease (AD). However, current methods to combat Aβ neurotoxicity are still lacking. G protein-coupled receptor 17 (GPR17) has become a target for treating inflammation in brain diseases, but it is unclear whether it has a role in AD. Here, we investigated the effects of cangrelor, a GPR17 antagonist, on neurotoxicity and memory impairment induced by intracerebroventricular (i.c.v.) injection of Aβ1-42 in mice. The behavior results showed that cangrelor (2.0 or 4.0 μg/mouse, i.c.v.) treatment reversed the deficits in memory and learning ability induced by Aβ1-42 in mice. Importantly, we demonstrated for the first time that GPR17 expression in the hippocampus and frontal cortex is increased in response to Aβ1-42 exposures. We also found that cangrelor treatment reduced the activity of β-secretase 1 (BACE1) and the levels of soluble Aβ1-42 in the hippocampus and frontal cortex. Meanwhile, cangrelor treatment suppressed oxidative stress induced by Aβ1-42, as proved by reduced production of malondialdehyde (MDA), and increased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and promoted the expression of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Furthermore, cangrelor also suppressed Aβ1-42-induced neuroinflammation, characterized by suppressed activation of microglia, decreased the levels of pro-inflammatory cytokines, and nuclear translocation of NF-κB p65, as well as ameliorated synaptic deficits by promoting the upregulation of synaptic proteins, and increasing the number of Golgi-Cox stained dendritic spines. These results suggest that cangrelor may reverse Aβ1-42-induced cognition deficits via inhibiting oxidative stress, neuroinflammation, and synaptic dysfunction mediated by Nrf2/HO-1 and NF-κB signaling.
Collapse
Affiliation(s)
- ShiYu Jin
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xin Wang
- West Anhui Health Vocational College, Luan 237000, China
| | - XiaoTong Xiang
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - YuMei Wu
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jie Hu
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - YueYue Li
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yue Lin Dong
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - YueQiang Tan
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xian Wu
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
47
|
Jiang P, Chen L, Xu J, Liu W, Feng F, Qu W. Neuroprotective Effects of Rhynchophylline Against Aβ 1-42-Induced Oxidative Stress, Neurodegeneration, and Memory Impairment Via Nrf2-ARE Activation. Neurochem Res 2021; 46:2439-2450. [PMID: 34170454 DOI: 10.1007/s11064-021-03343-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023]
Abstract
Extensive studies have shown that oxidative stress is a crucial pathogenic factor in Alzheimer's disease (AD). Nuclear factor E2-related factor 2 (Nrf2) is a master cytoprotective regulator against oxidative stress, and thus represents an attractive therapeutic target in AD. The goal of our study is to investigate the contribution of Nrf2 in Rhynchophylline (Rhy)-induced neuroprotection in AD. The data showed that intraperitoneal administration of Rhy (10 or 20 mg/kg) could ameliorate Aβ1-42-induced cognitive impairment, evidenced by performance improvement in memory tests. The result of Antioxidant response element (ARE)-luciferase activity assay indicated that Rhy treatment improved ARE promoter activity. The results of reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione (GSH) assessment in the frontal cortex and hippocampus showed that Rhy treatment could attenuate Aβ1-42-induced oxidative stress to some extent, evidenced by reversion of these cytokines compared to Aβ1-42 + Veh group. Rhy treatment also restored expression of Nrf2 and its downstream protein heme oxygenase-1 (HO-1), NAD(P)H/quinone oxidoreductase 1 (NOQ1), and recombinant glutamate cysteine ligase, modifier subunit (GCLM) in the frontal cortex and hippocampus of Aβ1-42-treated mice. In addition, to investigate whether activation of Nrf2-mediated pathway is responsible for the neuroprotection of Rhy, Nrf2 siRNA was used in human neuroblastoma cells (SH-SY5Y). Interestingly, the results showed that the protective effects of Rhy, including anti-oxidative, anti-apoptosis and elevation of Nrf2 and its downstream proteins, were abolished in Nrf2 siRNA-transfected cells. These findings indicate that Rhynchophylline is protective against Aβ1-42-induced neurotoxicity via Nrf2-ARE activation, and suggest that Rhy may serve as a potential candidate and promising Nrf2 activator for management of AD.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
- Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, People's Republic of China
| | - Lei Chen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
- Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, People's Republic of China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
48
|
Ferrell JM, Chiang JY. Bile acid receptors and signaling crosstalk in the liver, gut and brain. LIVER RESEARCH 2021; 5:105-118. [PMID: 39957847 PMCID: PMC11791822 DOI: 10.1016/j.livres.2021.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Bile acids are physiological detergents derived from cholesterol that aid in digestion and nutrient absorption, and they play roles in glucose, lipid, and energy metabolism and in gut microbiome and metabolic homeostasis. Bile acids mediate crosstalk between the liver and gut through bactericidal modulation of the gut microbiome, while gut microbes influence the composition of the circulating bile acid pool. Recent research indicates bile acids may also be important mediators of neurological disease by acting as peripheral signaling molecules that activate bile acid receptors in the blood-brain barrier and in the brain itself. This review highlights the role of bile acids in maintaining liver and gut microbe homeostasis, as well as their function as mediators of cellular signaling in the liver-gut-brain axis.
Collapse
Affiliation(s)
- Jessica M. Ferrell
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - John Y.L. Chiang
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
49
|
Qian XH, Song XX, Liu XL, Chen SD, Tang HD. Inflammatory pathways in Alzheimer's disease mediated by gut microbiota. Ageing Res Rev 2021; 68:101317. [PMID: 33711509 DOI: 10.1016/j.arr.2021.101317] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
In the past decade, numerous studies have demonstrated the close relationship between gut microbiota and the occurrence and development of Alzheimer's disease (AD). However, the specific mechanism is still unclear. Both the neuroinflammation and systemic inflammation serve as the key hubs to accelerate the process of AD by promoting pathology and damaging neuron. What's more, the gut microbiota is also crucial for the regulation of inflammation. Therefore, this review focused on the role of gut microbiota in AD through inflammatory pathways. Firstly, this review summarized the relationship and interaction among gut microbiota, inflammation, and AD. Secondly, the direct and indirect regulatory effects of gut microbiota on AD through inflammatory pathways were described. These effects were mainly mediated by the component of the gut microbiota (lipopolysaccharides (LPS) and amyloid peptides), the metabolites of bacteria (short-chain fatty acids, branched amino acids, and neurotransmitters) and functional by-products (bile acids). In addition, potential treatments (fecal microbiota transplantation, antibiotics, probiotics, prebiotics, and dietary interventions) for AD were also discussed through these mechanisms. Finally, according to the current research status, the key problems to be solved in the future studies were proposed.
Collapse
Affiliation(s)
- Xiao-Hang Qian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiao-Xuan Song
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiao-Li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201406, China.
| | - Sheng-di Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hui-Dong Tang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
50
|
Yang X, Zhi J, Leng H, Chen Y, Gao H, Ma J, Ji J, Hu Q. The piperine derivative HJ105 inhibits Aβ 1-42-induced neuroinflammation and oxidative damage via the Keap1-Nrf2-TXNIP axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153571. [PMID: 33994056 DOI: 10.1016/j.phymed.2021.153571] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Piperine is a great lead compound, as a phytopharmaceutical with reported neuroprotective effects in neurodegenerative diseases. HJ105, a piperine derivative with high affinity to Keap1 receptor, attracts increasing attention in Alzheimer's disease (AD) treatment. PURPOSE This work mainly aimed to study HJ105's therapeutic effects on Aβ1-42-associated AD and the underpinning mechanisms. METHODS In the in vivo part, a rat model of AD was established by bilateral intra-hippocampal administration of aggregated Aβ1-42, followed by a month of intragastric HJ105 or donepezil administration. Spatial and learning memories were detected by the Morris water maze assay, passive avoidance learning as well as Y-maze test. The morphology of hippocampal neurons was assessed by hematoxylin-eosin (H&E) staining. In addition, the amounts of the IL-1β and TNF-α were obtained with specific ELISA kits. More importantly, apoptosis-related proteins and factors involved in Nrf2/TXNIP/NLPR3 pathways were detected by Western blot, while the interaction between Keap1 and Nrf2 was assessed by co-immunoprecipitation. In the in vitro part, human neuroblastoma (SH-SY5Y) cells were applied to evaluate the role of HJ105 on Aβ1-42-induced neuronal damage. RESULTS Treatment of HJ105 not only reversed memory impairment, but also protected neurons in the hippocampus by inhibiting Bax/Bcl2 ratio increase. HJ105 decreased TXNIP expression, suppressing NLRP3 inflammasome activation in the hippocampus, which in turn counteracted the upregulation of IL-1β and TNF-α. Notably, HJ105 exerted an inhibitory effect on Keap1-Nrf2 interaction and upregulated nuclear Nrf2, which conversely increased the expression levels of superoxide dismutase, catalase and glutathione peroxidase and downregulated malondialdehyde. Additionally, neurotoxicity induced by Aβ1-42 in SH-SY5Y cells was alleviated by HJ105. CONCLUSION Overall, HJ105 exerts neuroprotective effects in SH-SY5Y cells induced by Aβ1-42 as well as in experimental rats with AD by decreasing apoptosis, oxidative stress and neuroinflammation, partly via suppression of Keap1-Nrf2 complex generation. HJ105 might represent a promising compound for AD treatment.
Collapse
Affiliation(s)
- Xiping Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jingke Zhi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Haifeng Leng
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Haoran Gao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jinming Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, PR China.
| | - Qinghua Hu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|