1
|
Bavafa A, Izadpanahi M, Hosseini E, Hajinejad M, Abedi M, Forouzanfar F, Sahab-Negah S. Exosome: an overview on enhanced biogenesis by small molecules. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03762-9. [PMID: 39862264 DOI: 10.1007/s00210-024-03762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Exosomes are extracellular vesicles that received attention for their potential use in the treatment of various injuries. They communicate intercellularly by transferring genetic and bioactive molecules from parent cells. Although exosomes hold immense promise for treating neurodegenerative and oncological diseases, their actual clinical use is very limited because of their biogenesis and secretion. Recent studies have shown that small molecules can significantly enhance exosome biogenesis, thereby remarkably improving yield, functionality, and therapeutic effects. These molecules modulate critical pathways toward optimum exosome production in a mode that is either ESCRT dependent or ESCRT independent. Improved exosome biogenesis may provide new avenues for targeted cancer therapy, neuroprotection in neurodegenerative diseases, and regenerative medicine in wound healing. This review explores the role of small molecules in enhancing exosome biogenesis and secretion, highlights their underlying mechanisms, and discusses emerging clinical applications. By addressing current challenges and focusing on translational opportunities, this study provides a foundation for advancing cell-free therapies in regenerative medicine and beyond.
Collapse
Affiliation(s)
- Amir Bavafa
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Izadpanahi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Hajinejad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Abedi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
2
|
Wang N, Ma F, Song H, He N, Zhang H, Li J, Liu Q, Xu C. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Regenerative Applications and Radiotherapy. Cell Transplant 2025; 34:9636897241311019. [PMID: 39780320 PMCID: PMC11713979 DOI: 10.1177/09636897241311019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Tissue repair is an extremely crucial part of clinical treatment. During the course of disease treatment, surgery, chemotherapy, and radiotherapy cause tissue damage. On the other hand, Normal tissue from accidental or therapeutic exposure to high-dose radiation can cause severe tissue damage. There is an urgent need for developing medical countermeasures against radiation injury for tissue repair. Tissue repair involves the regeneration, proliferation, differentiation, and migration of tissue cells; imbalance of local tissue homeostasis, progressive chronic inflammation; decreased cell activity and stem cell function; and wound healing. Although many clinical treatments are currently available for tissue repair, they are expensive. The long recovery time and some unavoidable complications such as cell damage and the inflammatory reaction caused by radiotherapy have led to unsatisfactory results. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have similar tissue repair functions as MSCs. In tissue damage, EVs can be used as an alternative to stem cell therapy, thereby avoiding related complications such as immunological rejection. EVs play a major role in regulating tissue damage, anti-inflammation, pro-proliferation, and immune response, thus providing a diversified and efficient solution for the repair of disease- and radiotherapy-induced tissue damage. This article reviews the research progress of mesenchymal stem cell-derived EVs in promoting the repair of tissue including heart, lung, liver, intestine, skin, blood system, central nervous system, and tissue damage caused by radiotherapy, thereby aiming to offer new directions and ideas for the radiotherapy and regenerative applications.
Collapse
Affiliation(s)
- Ning Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
| | - Feifei Ma
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
| | - Huijuan Song
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Huanteng Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jianguo Li
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
| | - Qiang Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Chang Xu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
3
|
Rosenkrans ZT, Thickens AS, Kink JA, Aluicio-Sarduy E, Engle JW, Hematti P, Hernandez R. Investigating the In Vivo Biodistribution of Extracellular Vesicles Isolated from Various Human Cell Sources Using Positron Emission Tomography. Mol Pharm 2024; 21:4324-4335. [PMID: 39164886 PMCID: PMC11891749 DOI: 10.1021/acs.molpharmaceut.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Positron emission tomography (PET) is a powerful tool for investigating the in vivo behavior of drug delivery systems. We aimed to assess the biodistribution of extracellular vesicles (EVs), nanosized vesicles secreted by cells isolated from various human cell sources using PET. EVs were isolated from mesenchymal stromal cells (MSCs) (MSC EVs), human macrophages (Mϕ EVs), and a melanoma cell line (A375 EVs) by centrifugation and were conjugated with deferoxamine for radiolabeling with Zr-89. PET using conjugated and radiolabeled EVs evaluated their in vivo biodistribution and tissue tropisms. Our study also investigated differences in mouse models, utilizing immunocompetent and immunocompromised mice and an A375 xenograft tumor model. Lastly, we investigated the impact of different labeling techniques on the observed EV biodistribution, including covalent surface modification and membrane incorporation. PET showed that all tested EVs exhibited extended in vivo circulation and generally low uptake in the liver, spleen, and lungs. However, Mϕ EVs showed high liver uptake, potentially attributable to the intrinsic tissue tropism of these EVs from the surface protein composition. MSC EV biodistribution differed between immunocompetent and immunodeficient mice, with increased spleen uptake observed in the latter. PET using A375 xenografts demonstrated efficient tumor uptake of EVs, but no preferential tissue-specific tropism of A375 EVs was found. Biodistribution differences between labeling techniques showed that surface-conjugated EVs had preferential blood circulation and low liver, spleen, and lung uptake compared to membrane integration. This study demonstrates the potential of EVs as effective drug carriers for various diseases, highlights the importance of selecting appropriate cell sources for EV-based drug delivery, and suggests that EV tropism can be harnessed to optimize therapeutic efficacy. Our findings indicate that the cellular source of EVs, labeling technique, and animal model can influence the observed biodistribution.
Collapse
Affiliation(s)
- Zachary T. Rosenkrans
- Departments of Medical Physics and Radiology, University of
Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, United
States
| | - Anna S. Thickens
- Departments of Medical Physics and Radiology, University of
Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, United
States
- Department of Medicine, University of Wisconsin-Madison
School of Medicine and Public Health, 1685 Highland Ave., Madison, Wisconsin, 53705,
United States
| | - John A. Kink
- Department of Medicine, University of Wisconsin-Madison
School of Medicine and Public Health, 1685 Highland Ave., Madison, Wisconsin, 53705,
United States
- University of Wisconsin Carbone Cancer Center, University
of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792, United
States
| | - Eduardo Aluicio-Sarduy
- Departments of Medical Physics and Radiology, University of
Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, United
States
| | - Jonathan W. Engle
- Departments of Medical Physics and Radiology, University of
Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, United
States
- University of Wisconsin Carbone Cancer Center, University
of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792, United
States
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin-Madison
School of Medicine and Public Health, 1685 Highland Ave., Madison, Wisconsin, 53705,
United States
- University of Wisconsin Carbone Cancer Center, University
of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792, United
States
- Division of Hematology and Oncology, Medical College of
Wisconsin, 9200 W. Wisconsin Ave., Milwaukee, Wisconsin, 53226
| | - Reinier Hernandez
- Departments of Medical Physics and Radiology, University of
Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, United
States
- University of Wisconsin Carbone Cancer Center, University
of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792, United
States
| |
Collapse
|
4
|
Lin C, Xiang Y, Zhang Y, Yang Z, Chen N, Zhang W, Hu L, Chen J, Luo Y, Wang X, Xiao Y, Zhang Q, Ran X, Chen L, Dai J, Li Z, Ran Q. Interleukin-12 sustained release system promotes hematopoietic recovery after radiation injury. MedComm (Beijing) 2024; 5:e704. [PMID: 39268354 PMCID: PMC11391269 DOI: 10.1002/mco2.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 09/15/2024] Open
Abstract
The continuous production of mature blood cell lineages is maintained by hematopoietic stem cells but they are highly susceptible to damage by ionizing radiation (IR) that induces death. Thus, devising therapeutic strategies that can mitigate hematopoietic toxicity caused by IR would benefit acute radiation syndrome (ARS) victims and patients receiving radiotherapy. Herein, we describe the preparation of an injectable hydrogel formulation based on Arg-Gly-Asp-alginate (RGD-Alg) and Laponite using a simple mixing method that ensured a slow and sustained release of interleukin-12 (IL-12) (RGD-Alg/Laponite@IL-12). The local administration of RGD-Alg/Laponite@IL-12 increased survival rates and promoted the hematopoietic recovery of mice who had received sublethal-dose irradiation. Local intra-bone marrow (intra-BM) injection of RGD-Alg/Laponite@IL-12 hydrogel effectively stimulated IL12 receptor-phosphoinositide 3-kinase/protein kinase B (IL-12R-PI3K/AKT) signaling axis, which promoted proliferation and hematopoietic growth factors secretion of BM mesenchymal stem/stromal cells. This signaling axis facilitates the repair of the hematopoietic microenvironment and plays a pivotal role in hematopoietic reconstitution. In conclusion, we describe a biomaterial-sustained release of IL-12 for the treatment of irradiated hematopoietic injury and provide a new therapeutic strategy for hematopoietic ARS.
Collapse
Affiliation(s)
- Chuanchuan Lin
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Yang Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Yangyang Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Zhenxing Yang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Nanxi Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Weiwei Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Jianxin Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Ya Luo
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Xueying Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering Chongqing University Chongqing China
| | - Qing Zhang
- Institute of Respiratory Diseases The Second Affiliated Hospital, Army Medical University Chongqing China
| | - Xi Ran
- Department of Clinical Laboratory The Second Affiliated Hospital, Army Medical University Chongqing China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Jigang Dai
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
- Department of Thoracic Surgery The Second Affiliated Hospital, Army Medical University Chongqing China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| |
Collapse
|
5
|
Christy BA, Herzig MC, Wu X, Mohammadipoor A, McDaniel JS, Bynum JA. Cell Therapies for Acute Radiation Syndrome. Int J Mol Sci 2024; 25:6973. [PMID: 39000080 PMCID: PMC11241804 DOI: 10.3390/ijms25136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
The risks of severe ionizing radiation exposure are increasing due to the involvement of nuclear powers in combat operations, the increasing use of nuclear power, and the existence of terrorist threats. Exposure to a whole-body radiation dose above about 0.7 Gy results in H-ARS (hematopoietic acute radiation syndrome), which is characterized by damage to the hematopoietic system; higher doses result in further damage to the gastrointestinal and nervous systems. Only a few medical countermeasures for ARS are currently available and approved for use, although others are in development. Cell therapies (cells or products produced by cells) are complex therapeutics that show promise for the treatment of radiation injury and have been shown to reduce mortality and morbidity in animal models. Since clinical trials for ARS cannot be ethically conducted, animal testing is extremely important. Here, we describe cell therapies that have been tested in animal models. Both cells and cell products appear to promote survival and lessen tissue damage after whole-body irradiation, although the mechanisms are not clear. Because radiation exposure often occurs in conjunction with other traumatic injuries, animal models of combined injury involving radiation and future countermeasure testing for these complex medical problems are also discussed.
Collapse
Affiliation(s)
- Barbara A Christy
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Maryanne C Herzig
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Xiaowu Wu
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Arezoo Mohammadipoor
- Hemorrhage and Vascular Dysfunction, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Jennifer S McDaniel
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - James A Bynum
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
- Department of Surgery, UT Health San Antonio, San Antonio, TX 78229, USA
- Trauma Research and Combat Casualty Care Collaborative, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Wang H, Zhang N, Wang X, Tian J, Yi J, Yao L, Huang G. Emerging role of mesenchymal stem cell-derived exosome microRNA in radiation injury. Int J Radiat Biol 2024; 100:996-1008. [PMID: 38776447 DOI: 10.1080/09553002.2024.2347348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Radiation injury (RI) is a common occurrence in malignant tumors patients receiving radiation therapy. While killing tumor cells, normal tissue surrounding the target area is inevitably irradiated at a certain dose, which can cause varying results of radiation injury. Currently, there are limited clinical treatments available for radiation injuries. In recent years, the negative effects of stem cell therapy have been reported more clearly and non-cellular therapies such as exosomes have become a focus of attention for researchers. As a type of vesicle-like substances secreted by mesenchymal stem cells (MSC), MSC derived exosomes (MSC-exo) carry DNA, mRNA, microRNA (miRNAs), specific proteins, lipids, and other active substances involved in intercellular information exchange. miRNAs released by MSC-exo are capable of alleviating and repairing damaged tissues through anti-apoptosis, modulating immune response, regulating inflammatory response and promoting angiogenesis, which indicates that MSC-exo miRNAs have great potential for application in the prevention and treatment of radiation injury. Therefore, it is necessary to explore the underlying therapeutic mechanisms of MSC-exo miRNAs in this process, which may shed new lights on the treatment of radiation injury. CONCLUSIONS Increasing evidence confirms that MSC-exo has shown encouraging applications in tissue repair due to the anti-apoptotic, immunoreactive, and pro-angiogenesis effects of the miRNAs it carries as intercellular communication carriers. However, miRNA-based therapeutics are still in their infancy and many practical issues remain to be addressed for clinical applications.
Collapse
Affiliation(s)
- Huike Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Nini Zhang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Xue Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jia Tian
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jie Yi
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | | | - Guilin Huang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
7
|
Teryek M, Jadhav P, Bento R, Parekkadan B. 3D microcapsules for human bone marrow-derived mesenchymal stem cell biomanufacturing in a vertical-wheel bioreactor. BIOTECHNOL BIOPROC E 2024. [DOI: 10.1007/s12257-024-00069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/28/2023] [Indexed: 01/06/2025]
|
8
|
Kink JA, Bellio MA, Forsberg MH, Lobo A, Thickens AS, Lewis BM, Ong IM, Khan A, Capitini CM, Hematti P. Large-scale bioreactor production of extracellular vesicles from mesenchymal stromal cells for treatment of acute radiation syndrome. Stem Cell Res Ther 2024; 15:72. [PMID: 38475968 DOI: 10.1186/s13287-024-03688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Hematopoietic acute radiation syndrome (H-ARS) occurring after exposure to ionizing radiation damages bone marrow causing cytopenias, increasing susceptibility to infections and death. We and others have shown that cellular therapies like human mesenchymal stromal cells (MSCs), or monocytes/macrophages educated ex-vivo with extracellular vesicles (EVs) from MSCs were effective in a lethal H-ARS mouse model. However, given the complexity of generating cellular therapies and the potential risks of using allogeneic products, development of an "off-the-shelf" cell-free alternative like EVs may have utility in conditions like H-ARS that require rapid deployment of available therapeutics. The purpose of this study was to determine the feasibility of producing MSC-derived EVs at large scale using a bioreactor and assess critical quality control attributes like identity, sterility, and potency in educating monocytes and promoting survival in a lethal H-ARS mouse model. METHODS EVs were isolated by ultracentrifugation from unprimed and lipopolysaccharide (LPS)-primed MSCs grown at large scale using a hollow fiber bioreactor and compared to a small scale system using flasks. The physical identity of EVs included a time course assessment of particle diameter, yield, protein content and surface marker profile by flow-cytometry. Comparison of the RNA cargo in EVs was determined by RNA-seq. Capacity of EVs to generate exosome educated monocytes (EEMos) was determined by qPCR and flow cytometry, and potency was assessed in vivo using a lethal ARS model with NSG mice. RESULTS Physical identity of EVs at both scales were similar but yields by volume were up to 38-fold more using a large-scale bioreactor system. RNA-seq indicated that flask EVs showed upregulated let-7 family and miR-143 micro-RNAs. EEMos educated with LPS-EVs at each scale were similar, showing increased gene expression of IL-6, IDO, FGF-2, IL-7, IL-10, and IL-15 and immunophenotyping consistent with a PD-L1 high, CD16 low, and CD86 low cell surface expression. Treatment with LPS-EVs manufactured at both scales were effective in the ARS model, improving survival and clinical scores through improved hematopoietic recovery. EVs from unprimed MSCs were less effective than LPS-EVs, with flask EVs providing some improved survival while bioreactor EVs provide no survival benefit. CONCLUSIONS LPS-EVs as an effective treatment for H-ARS can be produced using a scale-up development manufacturing process, representing an attractive off-the-shelf, cell-free therapy.
Collapse
Affiliation(s)
- John A Kink
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, WIMR 4137, Madison, WI, USA
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Matthew H Forsberg
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Alexandra Lobo
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Anna S Thickens
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Bryson M Lewis
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Irene M Ong
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, WIMR 4137, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Christian M Capitini
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, WIMR 4137, Madison, WI, USA.
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, WIMR 4137, Madison, WI, USA.
- Medical College of Wisconsin, 9200 W. Wisconsin Ave, Milwaukee, WI, 53326, USA.
| |
Collapse
|
9
|
Wong C, Stoilova I, Gazeau F, Herbeuval JP, Fourniols T. Mesenchymal stromal cell derived extracellular vesicles as a therapeutic tool: immune regulation, MSC priming, and applications to SLE. Front Immunol 2024; 15:1355845. [PMID: 38390327 PMCID: PMC10881725 DOI: 10.3389/fimmu.2024.1355845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a dysfunction of the immune system. Mesenchymal stromal cell (MSCs) derived extracellular vesicles (EVs) are nanometer-sized particles carrying a diverse range of bioactive molecules, such as proteins, miRNAs, and lipids. Despite the methodological disparities, recent works on MSC-EVs have highlighted their broad immunosuppressive effect, thus driving forwards the potential of MSC-EVs in the treatment of chronic diseases. Nonetheless, their mechanism of action is still unclear, and better understanding is needed for clinical application. Therefore, we describe in this review the diverse range of bioactive molecules mediating their immunomodulatory effect, the techniques and possibilities for enhancing their immune activity, and finally the potential application to SLE.
Collapse
Affiliation(s)
- Christophe Wong
- EVerZom, Paris, France
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Ivana Stoilova
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Florence Gazeau
- Matière et Systèmes Complexes (MSC) UMR CNRS 7057, Université Paris Cité, Paris, France
| | - Jean-Philippe Herbeuval
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | | |
Collapse
|
10
|
dos Santos CC, Lopes-Pacheco M, English K, Rolandsson Enes S, Krasnodembskaya A, Rocco PRM. The MSC-EV-microRNAome: A Perspective on Therapeutic Mechanisms of Action in Sepsis and ARDS. Cells 2024; 13:122. [PMID: 38247814 PMCID: PMC10813908 DOI: 10.3390/cells13020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) have emerged as innovative therapeutic agents for the treatment of sepsis and acute respiratory distress syndrome (ARDS). Although their potential remains undisputed in pre-clinical models, this has yet to be translated to the clinic. In this review, we focused on the role of microRNAs contained in MSC-derived EVs, the EV microRNAome, and their potential contribution to therapeutic mechanisms of action. The evidence that miRNA transfer in MSC-derived EVs has a role in the overall therapeutic effects is compelling. However, several questions remain regarding how to reconcile the stochiometric issue of the low copy numbers of the miRNAs present in the EV particles, how different miRNAs delivered simultaneously interact with their targets within recipient cells, and the best miRNA or combination of miRNAs to use as therapy, potency markers, and biomarkers of efficacy in the clinic. Here, we offer a molecular genetics and systems biology perspective on the function of EV microRNAs, their contribution to mechanisms of action, and their therapeutic potential.
Collapse
Affiliation(s)
- Claudia C. dos Santos
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, ON M5B 1T8, Canada
- Keenan Center for Biomedical Research, Unity Health Toronto, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden;
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT9 7BL, UK;
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-599, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro 20020-000, Brazil
| |
Collapse
|
11
|
Xue Y, Riva N, Zhao L, Shieh JS, Chin YT, Gatt A, Guo JJ. Recent advances of exosomes in soft tissue injuries in sports medicine: A critical review on biological and biomaterial applications. J Control Release 2023; 364:90-108. [PMID: 37866405 DOI: 10.1016/j.jconrel.2023.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Sports medicine is generally associated with soft tissue injuries including muscle injuries, meniscus and ligament injuries, tendon ruptures, tendinopathy, rotator cuff tears, and tendon-bone healing during injuries. Tendon and ligament injuries are the most common sport injuries accounting for 30-40% of all injuries. Therapies for tendon injuries can be divided into surgical and non-surgical methods. Surgical methods mainly depend on the operative procedures, the surgeons and postoperative interventions. In non-surgical methods, cell therapy with stem cells and cell-free therapy with secretome of stem cell origin are current directions. Exosomes are the main paracrine factors of mesenchymal stem cells (MSCs) containing biological components such as proteins, nucleic acids and lipids. Compared with MSCs, MSC-exosomes (MSC-exos) possess the capacity to escape phagocytosis and achieve long-term circulation. In addition, the functions of exosomes from various cell sources in soft tissue injuries in sports medicine have been gradually revealed in recent years. Along with the biological and biomaterial advances in exosomes, exosomes can be designed as drug carriers with biomaterials and exosome research is providing promising contributions in cell biology. Exosomes with biomaterial have the potential of becoming one of the novel therapeutic modalities in regenerative researches. This review summarizes the derives of exosomes in soft tissue regeneration and focuses on the biological and biomaterial mechanism and advances in exosomal therapy in soft tissue injuries.
Collapse
Affiliation(s)
- Yulun Xue
- Department of Orthopaedic Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215006, Jiangsu, PR China; Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Nicoletta Riva
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Lingying Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Yu-Tang Chin
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Alexander Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Department of Haematology, Mater Dei Hospital, Msida, Malta
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China.
| |
Collapse
|
12
|
Harrell CR, Djonov V, Volarevic V. Mesenchymal stem cell-derived microRNAs: Friends or foes of tumor cells? Histol Histopathol 2023; 38:1373-1379. [PMID: 37306386 DOI: 10.14670/hh-18-633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mesenchymal stem cell (MSC)-dependent biological effects in the tumor microenvironment mainly rely on the activity of MSC-sourced microRNAs (MSC-miRNAs) which modulate protein synthesis in target tumor cells, endothelial cells and tumor-infiltrated immune cells, regulating their phenotype and function. Several MSC-sourced miRNAs (miR-221, miR-23b, miR-21-5p, miR-222/223, miR-15a miR-424, miR-30b, miR-30c) possess tumor-promoting properties and are able to enhance viability, invasiveness and metastatic potential of malignant cells, induce proliferation and sprouting of tumor endothelial cells and suppress effector functions of cytotoxic tumor-infiltrated immune cells, crucially contributing to the rapid growth and progression of tumor tissue. On the contrary, MSCs also produce "anti-tumorigenic" miRNAs (miR-100, miR-222-3p, miR-146b miR-302a, miR-338-5p, miR-100-5p and miR-1246) which suppress tumor growth and progression by: Up-regulating expression of chemoresistance-related genes in tumor cells, by suppressing neo-angiogenesis and by inducing generation of tumorotoxic phenotypes in tumor-infiltrated lymphocytes. In this review article, we summarize the current knowledge about molecular mechanisms that are responsible for MSC-miRNA-dependent alterations of intracellular signaling in tumor and immune cells and we discuss different insights regarding the therapeutic potential of MSC-derived miRNAs in cancer treatment.
Collapse
Affiliation(s)
| | | | - Vladislav Volarevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
13
|
Teryek M, Jadhav P, Bento R, Parekkadan B. High-Throughput Production of Microcapsules for Human Bone Marrow Derived Mesenchymal Stem Cell Biomanufacturing in a Vertical-Wheel Bioreactor. BIOTECHNOL BIOPROC E 2023; 28:528-544. [DOI: 10.1007/s12257-023-0020-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/28/2023] [Indexed: 01/06/2025]
|
14
|
Cieślik M, Bryniarski K, Nazimek K. Biodelivery of therapeutic extracellular vesicles: should mononuclear phagocytes always be feared? Front Cell Dev Biol 2023; 11:1211833. [PMID: 37476156 PMCID: PMC10354279 DOI: 10.3389/fcell.2023.1211833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
At present, extracellular vesicles (EVs) are considered key candidates for cell-free therapies, including treatment of allergic and autoimmune diseases. However, their therapeutic effectiveness, dependent on proper targeting to the desired cells, is significantly limited due to the reduced bioavailability resulting from their rapid clearance by the cells of the mononuclear phagocyte system (MPS). Thus, developing strategies to avoid EV elimination is essential when applying them in clinical practice. On the other hand, malfunctioning MPS contributes to various immune-related pathologies. Therapeutic reversal of these effects with EVs would be beneficial and could be achieved, for example, by modulating the macrophage phenotype or regulating antigen presentation by dendritic cells. Additionally, intended targeting of EVs to MPS macrophages for replication and repackaging of their molecules into new vesicle subtype can allow for their specific targeting to appropriate populations of acceptor cells. Herein, we briefly discuss the under-explored aspects of the MPS-EV interactions that undoubtedly require further research in order to accelerate the therapeutic use of EVs.
Collapse
Affiliation(s)
| | | | - Katarzyna Nazimek
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
15
|
Yamaguchi M, Kashiwakura I. The Acute Radiation Syndrome-Mitigator Romiplostim and Secreted Extracellular Vesicles Improved Survival in Mice Acutely Exposed to Myelosuppressive Doses of Ionizing Radiation. Biomolecules 2023; 13:biom13050837. [PMID: 37238707 DOI: 10.3390/biom13050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In cases of accidental high-dose total-body irradiation (TBI), acute radiation syndrome (ARS) can cause death. We reported that the thrombopoietin receptor agonist romiplostim (RP) has the potential to completely rescue mice exposed to lethal TBI. Extracellular vesicles (EVs) are involved in cell-to-cell communication, and the mechanism of RP action may be related to EVs that reflect the radio-mitigative information. We investigated the radio-mitigative effects of EVs on mice with severe ARS. C57BL/6 mice exposed to lethal TBI were treated with RP, and the EVs were isolated from the serum and intraperitoneally injected into other mice with severe ARS. The 30-day survival rate of lethal TBI mice drastically improved by 50-100% with the administration of EVs in the sera collected weekly from the mice in which radiation damage was alleviated and mortality was avoided by the administration of RP. Four responsive miRNAs, namely, miR-144-5p, miR-3620-5p, miR-6354, and miR-7686-5p showed significant expression changes in an array analysis. In particular, miR-144-5p was expressed only in the EVs of RP-treated TBI mice. Specific EVs may exist in the circulating blood of mice that escaped mortality with an ARS mitigator, and their membrane surface and endogenous molecules may be the key to the survival of mice with severe ARS.
Collapse
Affiliation(s)
- Masaru Yamaguchi
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| | - Ikuo Kashiwakura
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| |
Collapse
|
16
|
Hess NJ, Kink JA, Hematti P. Exosomes, MDSCs and Tregs: A new frontier for GVHD prevention and treatment. Front Immunol 2023; 14:1143381. [PMID: 37063900 PMCID: PMC10090348 DOI: 10.3389/fimmu.2023.1143381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The development of graft versus host disease (GVHD) represents a long-standing complication of allogeneic hematopoietic cell transplantation (allo-HCT). Different approaches have been used to control the development of GVHD with most relying on variations of chemotherapy drugs to eliminate allo-reactive T cells. While these approaches have proven effective, it is generally accepted that safer, and less toxic GVHD prophylaxis drugs are required to reduce the health burden placed on allo-HCT recipients. In this review, we will summarize the emerging concepts revolving around three biologic-based therapies for GVHD using T regulatory cells (Tregs), myeloid-derived-suppressor-cells (MDSCs) and mesenchymal stromal cell (MSC) exosomes. This review will highlight how each specific modality is unique in its mechanism of action, but also share a common theme in their ability to preferentially activate and expand Treg populations in vivo. As these three GVHD prevention/treatment modalities continue their path toward clinical application, it is imperative the field understand both the biological advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - John A. Kink
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Peiman Hematti
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
17
|
Teryek M, Jadhav P, Bento R, Parekkadan B. 3D Microcapsules for Human Bone Marrow Derived Mesenchymal Stem Cell Biomanufacturing in a Vertical-Wheel Bioreactor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528656. [PMID: 36824906 PMCID: PMC9949076 DOI: 10.1101/2023.02.16.528656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Microencapsulation of human mesenchymal stromal cells (MSCs) via electrospraying has been well documented in tissue engineering and regenerative medicine. Herein, we report the use of microencapsulation, via electrospraying, for MSC expansion using a commercially available hydrogel that is durable, optimized to MSC culture, and enzymatically degradable for cell recovery. Critical parameters of the electrospraying encapsulation process such as seeding density, correlation of microcapsule output with hydrogel volume, and applied voltage were characterized to consistently fabricate cell-laden microcapsules of uniform size. Upon encapsulation, we then verified ~ 10x expansion of encapsulated MSCs within a vertical-wheel bioreactor and the preservation of critical quality attributes such as immunophenotype and multipotency after expansion and cell recovery. Finally, we highlight the genetic manipulation of encapsulated MSCs as an example of incorporating bioactive agents in the capsule material to create new compositions of MSCs with altered phenotypes.
Collapse
Affiliation(s)
- Matthew Teryek
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Pankaj Jadhav
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Raphaela Bento
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
18
|
Liu X, Wei Q, Lu L, Cui S, Ma K, Zhang W, Ma F, Li H, Fu X, Zhang C. Immunomodulatory potential of mesenchymal stem cell-derived extracellular vesicles: Targeting immune cells. Front Immunol 2023; 14:1094685. [PMID: 36860847 PMCID: PMC9968735 DOI: 10.3389/fimmu.2023.1094685] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Various intractable inflammatory diseases caused by disorders of immune systems have pressed heavily on public health. Innate and adaptive immune cells as well as secreted cytokines and chemokines are commanders to mediate our immune systems. Therefore, restoring normal immunomodulatory responses of immune cells is crucial for the treatment of inflammatory diseases. Mesenchymal stem cell derived extracellular vesicles (MSC-EVs) are nano-sized double-membraned vesicles acting as paracrine effectors of MSCs. MSC-EVs, containing a variety of therapeutic agents, have shown great potential in immune modulation. Herein, we discuss the novel regulatory functions of MSC-EVs from different sources in the activities of innate and adaptive immune cells like macrophages, granulocytes, mast cells, natural killer (NK) cells, dendritic cells (DCs) and lymphocytes. Then, we summarize the latest clinical trials of MSC-EVs in inflammatory diseases. Furthermore, we prospect the research trend of MSC-EVs in the field of immune modulation. Despite the fact that the research on the role of MSC-EVs in regulating immune cells is in infancy, this cell-free therapy based on MSC-EVs still offers a promising solution for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lu Lu
- Institute of NBC Defence, PLA Army, Beijing, China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, China Academy of Chinese Medical Science, Xiyuan Hospital, Beijing, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Ma
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Haihong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
20
|
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol 2022; 13:1010399. [PMID: 36211399 PMCID: PMC9537745 DOI: 10.3389/fimmu.2022.1010399] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Considering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells. Enhancement and retention of persistent therapeutic effects of the cells remain a challenge to overcome in MSC-based therapy. In this review, we summarized various approaches to enhance the clinical outcomes of MSC-based therapy as well as revised current and future perspectives for the creation of cellular products with improved potential for diverse clinical applications.
Collapse
Affiliation(s)
- Madina Sarsenova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bexultan Kazybay
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: Arman Saparov,
| |
Collapse
|
21
|
Lin Z, Wu Y, Xu Y, Li G, Li Z, Liu T. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential. Mol Cancer 2022; 21:179. [PMID: 36100944 PMCID: PMC9468526 DOI: 10.1186/s12943-022-01650-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be obtained from various human tissues and organs. They can differentiate into a wide range of cell types, including osteoblasts, adipocytes and chondrocytes, thus exhibiting great potential in regenerative medicine. Numerous studies have indicated that MSCs play critical roles in cancer biology. The crosstalk between tumour cells and MSCs has been found to regulate many tumour behaviours, such as proliferation, metastasis and epithelial-mesenchymal transition (EMT). Multiple lines of evidence have demonstrated that MSCs can secrete exosomes that can modulate the tumour microenvironment and play important roles in tumour development. Notably, very recent works have shown that mesenchymal stem cell-derived exosomes (MSC-derived exosomes) are critically involved in cancer resistance to chemotherapy agents, targeted-therapy drugs, radiotherapy and immunotherapy. In this review, we systematically summarized the emerging roles and detailed molecular mechanisms of MSC-derived exosomes in mediating cancer therapy resistance, thus providing novel insights into the clinical applications of MSC-derived exosomes in cancer management.
Collapse
|
22
|
Li C, Qin T, Zhao J, He R, Wen H, Duan C, Lu H, Cao Y, Hu J. Bone Marrow Mesenchymal Stem Cell-Derived Exosome-Educated Macrophages Promote Functional Healing After Spinal Cord Injury. Front Cell Neurosci 2021; 15:725573. [PMID: 34650405 PMCID: PMC8506031 DOI: 10.3389/fncel.2021.725573] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 01/17/2023] Open
Abstract
The spinal cord injury is a site of severe central nervous system (CNS) trauma and disease without an effective treatment strategy. Neurovascular injuries occur spontaneously following spinal cord injury (SCI), leading to irreversible loss of motor and sensory function. Bone marrow mesenchymal stem cell (BMSC)-derived exosome-educated macrophages (EEM) have great characteristics as therapeutic candidates for SCI treatment. It remains unknown whether EEM could promote functional healing after SCI. The effect of EEM on neurovascular regeneration after SCI needs to be further explored. We generated M2-like macrophages using exosomes isolated from BMSCs, which were known as EEM, and directly used these EEM for SCI treatment. We aimed to investigate the effects of EEM using a spinal cord contusive injury mouse model in vivo combined with an in vitro cell functional assay and compared the results to those of a normal spinal cord without any biological intervention, or PBS treatment or macrophage alone (MQ). Neurological function measurements and histochemical tests were performed to evaluate the effect of EEM on angiogenesis and axon regrowth. In the current study, we found that treatment with EEM effectively promoted the angiogenic activity of HUVECs and axonal growth in cortical neurons. Furthermore, exogenous administration of EEM directly into the injured spinal cord could promote neurological functional healing by modulating angiogenesis and axon growth. EEM treatment could provide a novel strategy to promote healing after SCI and various other neurovascular injury disorders.
Collapse
Affiliation(s)
- Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Tian Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Haicheng Wen
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
23
|
Foo JB, Looi QH, Chong PP, Hassan NH, Yeo GEC, Ng CY, Koh B, How CW, Lee SH, Law JX. Comparing the Therapeutic Potential of Stem Cells and their Secretory Products in Regenerative Medicine. Stem Cells Int 2021; 2021:2616807. [PMID: 34422061 PMCID: PMC8378970 DOI: 10.1155/2021/2616807] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cell therapy involves the transplantation of human cells to replace or repair the damaged tissues and modulate the mechanisms underlying disease initiation and progression in the body. Nowadays, many different types of cell-based therapy are developed and used to treat a variety of diseases. In the past decade, cell-free therapy has emerged as a novel approach in regenerative medicine after the discovery that the transplanted cells exerted their therapeutic effect mainly through the secretion of paracrine factors. More and more evidence showed that stem cell-derived secretome, i.e., growth factors, cytokines, and extracellular vesicles, can repair the injured tissues as effectively as the cells. This finding has spurred a new idea to employ secretome in regenerative medicine. Despite that, will cell-free therapy slowly replace cell therapy in the future? Or are these two modes of treatment still needed to address different diseases and conditions? This review provides an indepth discussion about the values of stem cells and secretome in regenerative medicine. In addition, the safety, efficacy, advantages, and disadvantages of using these two modes of treatment in regenerative medicine are also critically reviewed.
Collapse
Affiliation(s)
- Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Qi Hao Looi
- My Cytohealth Sdn Bhd, Bandar Seri Petaling, 57000 Kuala Lumpur, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Hidayah Hassan
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Medical Science Technology, Universiti Kuala Lumpur, 43000 Kajang, Selangor, Malaysia
| | - Genieve Ee Chia Yeo
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sau Har Lee
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Forsberg MH, Kink JA, Thickens AS, Lewis BM, Childs CJ, Hematti P, Capitini CM. Exosomes from primed MSCs can educate monocytes as a cellular therapy for hematopoietic acute radiation syndrome. Stem Cell Res Ther 2021; 12:459. [PMID: 34407878 PMCID: PMC8371870 DOI: 10.1186/s13287-021-02491-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Acute radiation syndrome (ARS) is caused by acute exposure to ionizing radiation that damages multiple organ systems but especially the bone marrow (BM). We have previously shown that human macrophages educated with exosomes from human BM-derived mesenchymal stromal cells (MSCs) primed with lipopolysaccharide (LPS) prolonged survival in a xenogeneic lethal ARS model. The purpose of this study was to determine if exosomes from LPS-primed MSCs could directly educate human monocytes (LPS-EEMos) for the treatment of ARS. METHODS Human monocytes were educated by exosomes from LPS-primed MSCs and compared to monocytes educated by unprimed MSCs (EEMos) and uneducated monocytes to assess survival and clinical improvement in a xenogeneic mouse model of ARS. Changes in surface molecule expression of exosomes and monocytes after education were determined by flow cytometry, while gene expression was determined by qPCR. Irradiated human CD34+ hematopoietic stem cells (HSCs) were co-cultured with LPS-EEMos, EEMos, or uneducated monocytes to assess effects on HSC survival and proliferation. RESULTS LPS priming of MSCs led to the production of exosomes with increased expression of CD9, CD29, CD44, CD146, and MCSP. LPS-EEMos showed increases in gene expression of IL-6, IL-10, IL-15, IDO, and FGF-2 as compared to EEMos generated from unprimed MSCs. Generation of LPS-EEMos induced a lower percentage of CD14+ monocyte subsets that were CD16+, CD73+, CD86+, or CD206+ but a higher percentage of PD-L1+ cells. LPS-EEMos infused 4 h after lethal irradiation significantly prolonged survival, reducing clinical scores and weight loss as compared to controls. Complete blood counts from LPS-EEMo-treated mice showed enhanced hematopoietic recovery post-nadir. IL-6 receptor blockade completely abrogated the radioprotective survival benefit of LPS-EEMos in vivo in female NSG mice, but only loss of hematopoietic recovery was noted in male NSG mice. PD-1 blockade had no effect on survival. Furthermore, LPS-EEMos also showed benefits in vivo when administered 24 h, but not 48 h, after lethal irradiation. Co-culture of unprimed EEMos or LPS-EEMos with irradiated human CD34+ HSCs led to increased CD34+ proliferation and survival, suggesting hematopoietic recovery may be seen clinically. CONCLUSION LPS-EEMos are a potential counter-measure for hematopoietic ARS, with a reduced biomanufacturing time that facilitates hematopoiesis.
Collapse
Affiliation(s)
- Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4137, Madison, WI, 53705, USA
| | - John A Kink
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA
| | - Anna S Thickens
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA
| | - Bryson M Lewis
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA
| | - Charlie J Childs
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA
| | - Peiman Hematti
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA.
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4137, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
25
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
26
|
Nguyen-Truong M, Hematti P, Wang Z. Current status of myocardial restoration via the paracrine function of mesenchymal stromal cells. Am J Physiol Heart Circ Physiol 2021; 321:H112-H127. [PMID: 34085844 DOI: 10.1152/ajpheart.00217.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal stromal cells (MSCs) have been studied for nearly two decades as a therapy for myocardial restoration. An emerging direction to repair myocardium is through their paracrine function, which includes the utilization of MSC-derived conditioned medium or extracellular vesicles. In this review, we go over the unique characteristics of MSCs that make it suitable for "off the shelf," cell-free regenerative therapy, current MSC-derived cell-free approaches including their advantages and disadvantages, and the known mechanisms of action of the paracrine effect of MSCs. With a summary of the clinical trials and preclinical studies of MSC-derived cell-free therapy, we classify the aforementioned mechanisms into angiogenesis, immunomodulation, extracellular matrix remodeling, antiapoptosis, and antioxidation. Particularly, we discuss on ways researchers have worked toward enhancing these desired properties to improve the therapeutic outcomes and the investigation of mechanobiology involved in MSC paracrine function. Lastly, we bring up the remaining challenges in this arising field and suggestions for future directions to improve our understanding and control over the potential of MSC paracrine function for myocardial restoration.
Collapse
Affiliation(s)
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
27
|
Abstract
[Figure: see text].
Collapse
|
28
|
Therapeutic Applications of Stem Cells and Extracellular Vesicles in Emergency Care: Futuristic Perspectives. Stem Cell Rev Rep 2021; 17:390-410. [PMID: 32839921 PMCID: PMC7444453 DOI: 10.1007/s12015-020-10029-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine (RM) is an interdisciplinary field that aims to repair, replace or regenerate damaged or missing tissue or organs to function as close as possible to its physiological architecture and functions. Stem cells, which are undifferentiated cells retaining self-renewal potential, excessive proliferation and differentiation capacity into offspring or daughter cells that form different lineage cells of an organism, are considered as an important part of the RM approaches. They have been widely investigated in preclinical and clinical studies for therapeutic purposes. Extracellular vesicles (EVs) are the vital mediators that regulate the therapeutic effects of stem cells. Besides, they carry various types of cargo between cells which make them a significant contributor of intercellular communication. Given their role in physiological and pathological conditions in living cells, EVs are considered as a new therapeutic alternative solution for a variety of diseases in which there is a high unmet clinical need. This review aims to summarize and identify therapeutic potential of stem cells and EVs in diseases requiring acute emergency care such as trauma, heart diseases, stroke, acute respiratory distress syndrome and burn injury. Diseases that affect militaries or societies including acute radiation syndrome, sepsis and viral pandemics such as novel coronavirus disease 2019 are also discussed. Additionally, featuring and problematic issues that hamper clinical translation of stem cells and EVs are debated in a comparative manner with a futuristic perspective. Graphical Abstract.
Collapse
|
29
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
30
|
Therapeutic Potential of Mesenchymal Stromal Cells and Extracellular Vesicles in the Treatment of Radiation Lesions-A Review. Cells 2021; 10:cells10020427. [PMID: 33670501 PMCID: PMC7922519 DOI: 10.3390/cells10020427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Ionising radiation-induced normal tissue damage is a major concern in clinic and public health. It is the most limiting factor in radiotherapy treatment of malignant diseases. It can also cause a serious harm to populations exposed to accidental radiation exposure or nuclear warfare. With regard to the clinical use of radiation, there has been a number of modalities used in the field of radiotherapy. These includes physical modalities such modified collimators or fractionation schedules in radiotherapy. In addition, there are a number of pharmacological agents such as essential fatty acids, vasoactive drugs, enzyme inhibitors, antioxidants, and growth factors for the prevention or treatment of radiation lesions in general. However, at present, there is no standard procedure for the treatment of radiation-induced normal tissue lesions. Stem cells and their role in tissue regeneration have been known to biologists, in particular to radiobiologists, for many years. It was only recently that the potential of stem cells was studied in the treatment of radiation lesions. Stem cells, immediately after their successful isolation from a variety of animal and human tissues, demonstrated their likely application in the treatment of various diseases. This paper describes the types and origin of stem cells, their characteristics, current research, and reviews their potential in the treatment and regeneration of radiation induced normal tissue lesions. Adult stem cells, among those mesenchymal stem cells (MSCs), are the most extensively studied of stem cells. This review focuses on the effects of MSCs in the treatment of radiation lesions.
Collapse
|
31
|
Hu W, Song X, Yu H, Sun J, Wang H, Zhao Y. Clinical Translational Potentials of Stem Cell-Derived Extracellular Vesicles in Type 1 Diabetes. Front Endocrinol (Lausanne) 2021; 12:682145. [PMID: 35095751 PMCID: PMC8789747 DOI: 10.3389/fendo.2021.682145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an organ-specific disease characterized by the deficiency of insulin caused by the autoimmune destruction of pancreatic islet β cells. Stem cell-based therapies play essential roles in immunomodulation and tissue regeneration, both of which hold great promise for treating many autoimmune dysfunctions. However, their clinical translational potential has been limited by ethical issues and cell transplant rejections. Exosomes are small extracellular vesicles (EVs) released by almost all types of cells, performing a variety of cell functions through the delivery of their molecular contents such as proteins, DNAs, and RNAs. Increasing evidence suggests that stem cell-derived EVs exhibit similar functions as their parent cells, which may represent novel therapeutic agents for the treatment of autoimmune diseases including T1D. In this review, we summarize the current research progresses of stem cell-derived EVs for the treatment of T1D.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Jingyu Sun
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Hongjun Wang
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Throne Biotechnologies Inc., Paramus, NJ, United States
- *Correspondence: Yong Zhao,
| |
Collapse
|
32
|
Pu X, Ma S, Gao Y, Xu T, Chang P, Dong L. Mesenchymal Stem Cell-Derived Exosomes: Biological Function and Their Therapeutic Potential in Radiation Damage. Cells 2020; 10:cells10010042. [PMID: 33396665 PMCID: PMC7823972 DOI: 10.3390/cells10010042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced damage is a common occurrence in cancer patients who undergo radiotherapy. In this setting, radiation-induced damage can be refractory because the regeneration responses of injured tissues or organs are not well stimulated. Mesenchymal stem cells have become ideal candidates for managing radiation-induced damage. Moreover, accumulating evidence suggests that exosomes derived from mesenchymal stem cells have a similar effect on repairing tissue damage mainly because these exosomes carry various bioactive substances, such as miRNAs, proteins and lipids, which can affect immunomodulation, angiogenesis, and cell survival and proliferation. Although the mechanisms by which mesenchymal stem cell-derived exosomes repair radiation damage have not been fully elucidated, we intend to translate their biological features into a radiation damage model and aim to provide new insight into the management of radiation damage.
Collapse
Affiliation(s)
- Xiaoyu Pu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Siyang Ma
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Yan Gao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Tiankai Xu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Pengyu Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China
- Correspondence: (P.C.); (L.D.); Tel.: +86-431-8878-3840 (P.C. & L.D.)
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
- National Health Commission Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: (P.C.); (L.D.); Tel.: +86-431-8878-3840 (P.C. & L.D.)
| |
Collapse
|
33
|
Atkinson SP. A preview of selected articles. Stem Cells 2020. [DOI: 10.1002/stem.3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Zorina TD. New Insights on the Role of the Mesenchymal-Hematopoietic Stem Cell Axis in Autologous and Allogeneic Hematopoiesis. Stem Cells Dev 2020; 30:2-16. [PMID: 33231142 DOI: 10.1089/scd.2020.0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoreductive protocols are integral both as conditioning regimens for bone marrow (BM) transplantation and as part of therapies for malignancies, but their associated comorbidities represent a long-standing clinical problem. In particular, they cause myeloablation that debilitates the physiological role of mesenchymal stem and precursor cells (MSPCs) in sustaining hematopoiesis. This review addresses the damaging impact of cytoreductive regimens on MSPCs. In addition, it discusses prospects for alleviating the resulting iatrogenic comorbidities. New insights into the structural and functional dynamics of hematopoietic stem cell (HSC) niches reveal the existence of "empty" niches and the ability of the donor-derived healthy HSCs to outcompete the defective HSCs in occupying these niches. These findings support the notion that conditioning regimens, conventionally used to ablate the recipient hematopoiesis to create space for engraftment of the donor-derived HSCs, may not be a necessity for allogeneic BM transplantation. In addition, the capacity of the MSPCs to cross-talk with HSCs, despite major histocompatibility complex disparity, and suppress graft versus host disease indicates the possibility for development of a conditioning-free, MSPCs-enhanced protocol for BM transplantation. The clinical advantage of supplementing cytoreductive protocols with MSPCs to improve autologous hematopoiesis reconstitution and alleviate cytopenia associated with chemo and radiation therapies for cancer is also discussed.
Collapse
Affiliation(s)
- Tatiana D Zorina
- Department of Medical Laboratory Science and Biotechnology, Jefferson College of Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Russell KA, Garbin LC, Wong JM, Koch TG. Mesenchymal Stromal Cells as Potential Antimicrobial for Veterinary Use-A Comprehensive Review. Front Microbiol 2020; 11:606404. [PMID: 33335522 PMCID: PMC7736177 DOI: 10.3389/fmicb.2020.606404] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of “superbugs” resistant to antimicrobial medications threatens populations both veterinary and human. The current crisis has come about from the widespread use of the limited number of antimicrobials available in the treatment of livestock, companion animal, and human patients. A different approach must be sought to find alternatives to or enhancements of present conventional antimicrobials. Mesenchymal stromal cells (MSC) have antimicrobial properties that may help solve this problem. In the first part of the review, we explore the various mechanisms at work across species that help explain how MSCs influence microbial survival. We then discuss the findings of recent equine, canine, and bovine studies examining MSC antimicrobial properties in which MSCs are found to have significant effects on a variety of bacterial species either alone or in combination with antibiotics. Finally, information on the influence that various antimicrobials may have on MSC function is reviewed. MSCs exert their effect directly through the secretion of various bioactive factors or indirectly through the recruitment and activation of host immune cells. MSCs may soon become a valuable tool for veterinarians treating antimicrobial resistant infections. However, a great deal of work remains for the development of optimal MSC production conditions and testing for efficacy on different indications and species.
Collapse
Affiliation(s)
- Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Livia C Garbin
- Clinical Veterinary Sciences Department, School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, West Indies
| | - Jonathan M Wong
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
36
|
Chamberlain CS, Kink JA, Wildenauer LA, McCaughey M, Henry K, Spiker AM, Halanski MA, Hematti P, Vanderby R. Exosome-educated macrophages and exosomes differentially improve ligament healing. STEM CELLS (DAYTON, OHIO) 2020; 39:55-61. [PMID: 33141458 PMCID: PMC7821004 DOI: 10.1002/stem.3291] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Recently, our group used exosomes from mesenchymal stromal/stem cells (MSCs) to simulate an M2 macrophage phenotype, that is, exosome-educated macrophages (EEMs). These EEMs, when delivered in vivo, accelerated healing in a mouse Achilles tendon injury model. For the current study, we first tested the ability of EEMs to reproduce the beneficial healing effects in a different rodent model, that is, a rat medial collateral ligament (MCL) injury model. We hypothesized that treatment with EEMs would reduce inflammation and accelerate ligament healing, similar to our previous tendon results. Second, because of the translational advantages of a cell-free therapy, exosomes alone were also examined to promote MCL healing. We hypothesized that MSC-derived exosomes could also alter ligament healing to reduce scar formation. Similar to our previous Achilles tendon results, EEMs improved mechanical properties in the healing ligament and reduced inflammation, as indicated via a decreased endogenous M1/M2 macrophage ratio. We also showed that exosomes improved ligament remodeling as indicated by changes in collagen production and organization, and reduced scar formation but without improved mechanical behavior in healing tissue. Overall, our findings suggest EEMs and MSC-derived exosomes improve healing but via different mechanisms. EEMs and exosomes each have attractive characteristics as therapeutics. EEMs as a cell therapy are terminally differentiated and will not proliferate or differentiate. Alternatively, exosome therapy can be used as a cell free, shelf-stable therapeutic to deliver biologically active components. Results herein further support using EEMs and/or exosomes to improve ligament healing by modulating inflammation and promoting more advantageous tissue remodeling.
Collapse
Affiliation(s)
- Connie S Chamberlain
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - John A Kink
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Linzie A Wildenauer
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - Maxwell McCaughey
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - Katie Henry
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrea M Spiker
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - Matthew A Halanski
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Ray Vanderby
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
37
|
Carlson K, Kink J, Hematti P, Al-Adra DP. Extracellular Vesicles as a Novel Therapeutic Option in Liver Transplantation. Liver Transpl 2020; 26:1522-1531. [PMID: 32844568 DOI: 10.1002/lt.25874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/09/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Longterm liver graft dysfunction and immunological rejection remain common adverse events, in part due to early acute rejection episodes initiated by ischemia/reperfusion injury (IRI) immediately following transplantation. Novel treatment methods are therefore required to ameliorate liver IRI and to promote longterm allograft acceptance. Extracellular vesicles (EVs) derived from tolerogenic phenotype cells may serve as a novel therapeutic option in liver transplantation due to their immunomodulatory and proregenerative effects. Studies of hepatic IRI along with animal liver allograft models have demonstrated that EVs isolated from mesenchymal stem/stromal cells, immature dendritic cells, and hepatocytes can reduce graft injury through mechanisms including enhancement of mitochondrial autophagy, inhibition of immune response, and promotion of tissue regeneration. These preclinical models may soon move translationally into clinical practice, necessitating the generation of robust methods to generate clinical-grade EVs. These methods must address issues of reproducibility and ability to scale up the tolerogenic cell cultivation, EV isolation, and EV characterization. Once generated, the efficient delivery of EVs to the donor organ prior to transplantation remains an issue that could be resolved through the novel organ storage method ex vivo machine perfusion (EVMP). In this review, we summarize studies that have used tolerogenic cell-derived EVs to ameliorate hepatic IRI and promote liver allograft acceptance, discuss the steps toward generation of clinical-grade EVs, and introduce EVMP as a novel method to efficiently deliver EVs.
Collapse
Affiliation(s)
- Kristin Carlson
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - John Kink
- Carbone Cancer Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Peiman Hematti
- Carbone Cancer Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - David P Al-Adra
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
38
|
Obrador E, Salvador R, Villaescusa JI, Soriano JM, Estrela JM, Montoro A. Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines 2020; 8:E461. [PMID: 33142986 PMCID: PMC7692399 DOI: 10.3390/biomedicines8110461] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The development of protective agents against harmful radiations has been a subject of investigation for decades. However, effective (ideal) radioprotectors and radiomitigators remain an unsolved problem. Because ionizing radiation-induced cellular damage is primarily attributed to free radicals, radical scavengers are promising as potential radioprotectors. Early development of such agents focused on thiol synthetic compounds, e.g., amifostine (2-(3-aminopropylamino) ethylsulfanylphosphonic acid), approved as a radioprotector by the Food and Drug Administration (FDA, USA) but for limited clinical indications and not for nonclinical uses. To date, no new chemical entity has been approved by the FDA as a radiation countermeasure for acute radiation syndrome (ARS). All FDA-approved radiation countermeasures (filgrastim, a recombinant DNA form of the naturally occurring granulocyte colony-stimulating factor, G-CSF; pegfilgrastim, a PEGylated form of the recombinant human G-CSF; sargramostim, a recombinant granulocyte macrophage colony-stimulating factor, GM-CSF) are classified as radiomitigators. No radioprotector that can be administered prior to exposure has been approved for ARS. This differentiates radioprotectors (reduce direct damage caused by radiation) and radiomitigators (minimize toxicity even after radiation has been delivered). Molecules under development with the aim of reaching clinical practice and other nonclinical applications are discussed. Assays to evaluate the biological effects of ionizing radiations are also analyzed.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Rosario Salvador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - José M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain;
- Joint Research Unit in Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute IISLaFe, 46026 Valencia, Spain
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
39
|
Roy S, Spinali K, Schmuck EG, Kink JA, Hematti P, Raval AN. Cardiac fibroblast derived matrix-educated macrophages express VEGF and IL-6, and recruit mesenchymal stromal cells. ACTA ACUST UNITED AC 2020; 10. [PMID: 33564732 DOI: 10.1016/j.regen.2020.100033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The polarization of monocytes into macrophages that possess anti-inflammatory and pro-angiogenic properties could provide a novel therapeutic strategy for patients who are at a high risk for developing heart failure following myocardial infarction (MI). Here in, we describe a novel method of "educating" monocytes into a distinct population of macrophages that exhibit anti-inflammatory and pro-angiogenic features through a 3-day culture on fibronectin-rich cardiac matrix (CX) manufactured using cultured human cardiac fibroblasts. Our data suggest that CX can educate monocytes into a unique macrophage population termed CX educated macrophages (CXMq) that secrete high levels of VEGF and IL-6. In vitro, CXMq also demonstrate the ability to recruit mesenchymal stromal cells (MSC) with known anti-inflammatory properties. Selective inhibition of fibronectin binding to αVβ3 surface integrins on CXMq prevented MSC recruitment. This suggests that insoluble fibronectin within CX is, at least in part, responsible for CXMq conversion.
Collapse
Affiliation(s)
- Sushmita Roy
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Keith Spinali
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Eric G Schmuck
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John A Kink
- Division of Hematology/Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Peiman Hematti
- Division of Hematology/Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Amish N Raval
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
40
|
Wang J, Xia J, Huang R, Hu Y, Fan J, Shu Q, Xu J. Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization. Stem Cell Res Ther 2020; 11:424. [PMID: 32993783 PMCID: PMC7522905 DOI: 10.1186/s13287-020-01937-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stromal cells that reside in virtually all postnatal tissues. Due to their regenerative and immunomodulatory capacities, MSCs have attracted growing attention during the past two decades. MSC-derived extracellular vesicles (MSC-EVs) are able to duplicate the effects of their parental cells by transferring functional proteins and genetic materials to recipient cells without cell-to-cell contact. MSC-EVs also target macrophages, which play an essential role in innate immunity, adaptive immunity, and homeostasis. Recent studies have demonstrated that MSC-EVs reduce M1 polarization and/or promote M2 polarization in a variety of settings. In this review, we discuss the mechanisms of macrophage polarization and roles of MSC-EV-induced macrophage polarization in the outcomes of cardiovascular, pulmonary, digestive, renal, and central nervous system diseases. In conclusion, MSC-EVs may become a viable alternative to MSCs for the treatment of diseases in which inflammation and immunity play a critical role.
Collapse
Affiliation(s)
- Jiangmei Wang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Jie Xia
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Ruoqiong Huang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Yaoqin Hu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Jiajie Fan
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Qiang Shu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Jianguo Xu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| |
Collapse
|
41
|
Wang Y, Han B, Wang Y, Wang C, Zhang H, Xue J, Wang X, Niu T, Niu Z, Chen Y. Mesenchymal stem cell-secreted extracellular vesicles carrying TGF-β1 up-regulate miR-132 and promote mouse M2 macrophage polarization. J Cell Mol Med 2020; 24:12750-12764. [PMID: 32965772 PMCID: PMC7686990 DOI: 10.1111/jcmm.15860] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
The effects of mesenchymal stem cells (MSCs) on different types of diseases are controversial, and the inner mechanisms remain unknown, which retards the utilization of MSCs in disease therapy. In this study, we aimed to elucidate the mechanisms of MSCs-extracellular vesicles (EVs) carrying transforming growth factor-beta 1 (TGF-β1) in M2 polarization in mouse macrophages via the microRNA-132 (miR-132)/E3 ubiquitin ligase myc binding protein 2 (Mycbp2)/tuberous sclerosis complex 2 (TSC2) axis. Mouse MSCs were isolated for adipogenic and osteogenic induction, followed by co-culture with mouse macrophages RAW264.7. Besides, mouse macrophages RAW264.7 were co-cultured with MSCs-EVs in vitro, where the proportion of macrophages and inflammation were detected by flow cytometry and ELISA. The experimental data revealed that MSCs-EVs promoted M2 polarization of macrophages, and elevated interleukin (IL)-10 expression and inhibited levels of IL-1β, tumour necrosis factor (TNF)-α and IL-6. MSC-EV-treated macrophages RAW264.7 increased TGF-β1 expression, thus elevating miR-132 expression. MiR-132 directly bound to Mycbp2, as confirmed by luciferase activity assay. Meanwhile, E3 ubiquitin ligase Mycbp2 could ubiquitinate TSC2 protein. Furthermore, silencing TGF-β1 inhibited M2 polarization of MSC-EV-treated macrophages. Taken conjointly, this study provides evidence reporting that MSC-secreted EVs carry TGF-β1 to promote M2 polarization of macrophages via modulation of the miR-132/Mycbp2/TSC2 axis.
Collapse
Affiliation(s)
- Yongqi Wang
- Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou, China
| | - Biao Han
- Department of Thoracic Surgery, the First Hospital of Lanzhou University, Lanzhou, China
| | - Yingbin Wang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chunai Wang
- Department of Anesthesiology, Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Hong Zhang
- Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou, China
| | - Jianjun Xue
- Department of Anesthesiology, Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Xiaoqing Wang
- Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou, China
| | - Tingting Niu
- The First School of Clinical Medicine, the First Hospital of Lanzhou University, Lanzhou, China
| | - Zhen Niu
- The First School of Clinical Medicine, the First Hospital of Lanzhou University, Lanzhou, China
| | - Yuhe Chen
- The First School of Clinical Medicine, the First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
42
|
Lee BC, Kang KS. Functional enhancement strategies for immunomodulation of mesenchymal stem cells and their therapeutic application. Stem Cell Res Ther 2020; 11:397. [PMID: 32928306 PMCID: PMC7491075 DOI: 10.1186/s13287-020-01920-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have recently been considered a promising alternative treatment for diverse immune disorders due to their unique biomedical potentials including the immunomodulatory property and ability to promote tissue regeneration. However, despite many years of pre-clinical studies in the research field, results from clinical trials using these cells have been diverse and conflicting. This discrepancy is caused by several factors such as poor engraftment, low survival rate, and donor-dependent variation of the cells. Enhancement of consistency and efficacy of MSCs remains a challenge to overcome the current obstacles to MSC-based therapy and subsequently achieve an improved therapeutic outcome. In this review, we investigated function enhancement strategies by categorizing as preconditioning, genetic manipulation, usage of supportive materials, and co-administration with currently used drugs. Preconditioning prior to MSC application makes up a large proportion of improvement strategies and preconditioning reagents include bioactive substances (cytokines, growth factors, and innate immune receptor agonists), hypoxia, and modification in culture method. With the piled results from previous studies using each method, disease- or patient-specific therapy has become more important than ever. On the other hand, genetic manipulation targeting therapeutic-associated factors or co-administration of biocompatible materials has also arisen as other therapeutic strategies. Thus, we summarized several specialized tactics by analyzing up-to-date results in the field and proposed some promising enhancement methods to improve the clinical outcomes for MSC therapy.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
43
|
Chinnadurai R, Forsberg MH, Kink JA, Hematti P, Capitini CM. Use of MSCs and MSC-educated macrophages to mitigate hematopoietic acute radiation syndrome. CURRENT STEM CELL REPORTS 2020; 6:77-85. [PMID: 32944493 DOI: 10.1007/s40778-020-00176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Innovative and minimally toxic treatment approaches are sorely needed for the prevention and treatment of hematopoietic acute radiation syndrome (H-ARS). Cell therapies have been increasingly studied for their potential use as countermeasures for accidental and intentional ionizing radiation exposures which can lead to fatal ARS. Mesenchymal stem/stromal cells (MSCs) are a cell therapy that have shown promising results in preclinical studies of ARS, and are being developed in clinical trials specifically for H-ARS. MSCs, MSC-educated macrophages (MEMs) and MSC-exosome educated macrophages (EEMs) all have the potential to be used as adoptive cell therapies for H-ARS. Here we review how MSCs have been reported to mitigate inflammation from radiation injury while also stimulating hematopoiesis during ARS. Recent findings We discuss emerging work with immune cell subsets educated by MSCs, including MEMs and EEMs, in promoting hematopoiesis in xenogeneic models of ARS. We also discuss the first placental-derived MSC product to enter phase I trials, PLX-R18, and the challenges faced by bringing MSC and other cell therapies into the clinic for treating ARS. Summary Although MSCs, MEMs and EEMs are potential cell therapy candidates in promoting hematopoietic HRS, challenges persist in translational clinical development of these products to the clinic. Whether any of these cellular therapies will be sufficient as stand-alone therapies to mitigate H-ARS or if they will be a bridging therapy that insures survival until a curative allogeneic hematopoietic stem cell transplant can be performed are the key questions that will have to be answered.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - John A Kink
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
44
|
Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal Stromal Cells and Exosomes: Progress and Challenges. Front Cell Dev Biol 2020; 8:665. [PMID: 32766255 PMCID: PMC7379234 DOI: 10.3389/fcell.2020.00665] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Due to their robust immunomodulatory capabilities, mesenchymal stem/stromal cells (MSCs) have been used as a cellular therapy for a number of human diseases. Part of the mechanism of action of MSCs is the production of extracellular vesicles (EVs) that contain proteins, nucleic acids, and lipids that transmit signals to recipient cells that change their biologic behavior. This review briefly summarizes the development of MSCs as a treatment for human diseases as well as describes our present understanding of exosomes; how they exert their effects on target cells, and how they are differentiated from other EVs. The current treatment paradigm for acute radiation syndrome (ARS) is discussed, and how MSCs and MSC derived exosomes are emerging as treatment options for treating patients after radiation exposure. Other conditions such as graft-versus-host disease and cardiovascular disease/stroke are discussed as examples to highlight the immunomodulatory and regenerative capacity of MSC-exosomes. Finally, a consideration is given to how these cell-based therapies could possibly be deployed in the event of a catastrophic radiation exposure event.
Collapse
Affiliation(s)
- Matthew H Forsberg
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - John A Kink
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Christian M Capitini
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
45
|
Current Knowledge and Future Perspectives on Mesenchymal Stem Cell-Derived Exosomes as a New Therapeutic Agent. Int J Mol Sci 2020; 21:ijms21030727. [PMID: 31979113 PMCID: PMC7036914 DOI: 10.3390/ijms21030727] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are on the cusp of regenerative medicine due to their differentiation capacity, favorable culture conditions, ability to be manipulated in vitro, and strong immunomodulatory activity. Recent studies indicate that the pleiotropic effects of MSCs, especially their immunomodulatory potential, can be largely attributed to paracrine factors. Exosomes, vesicles that are 30-150 nanometers in diameter that function in cell-cell communication, are one of the key paracrine effectors. MSC-derived exosomes are enriched with therapeutic miRNAs, mRNAs, cytokines, lipids, and growth factors. Emerging evidences support the compelling possibility of using MSC-derived exosomes as a new form of therapy for treating several different kinds of disease such as heart, kidney, immune diseases, neural injuries, and neurodegenerative disease. This review provides a summary of current knowledge and discusses engineering of MSC-derived exosomes for their use in translational medicine.
Collapse
|