1
|
García-Suastegui WA, Navarro-Mabarak C, Silva-Adaya D, Dolores-Raymundo HG, Alvarez-Gonzalez MY, León-Olea M, Ramos-Chávez LA. Neurotransmitter Systems Affected by PBDE Exposure: Insights from In Vivo and In Vitro Neurotoxicity Studies. TOXICS 2025; 13:316. [PMID: 40278631 PMCID: PMC12030920 DOI: 10.3390/toxics13040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 04/26/2025]
Abstract
Polybrominated diphenyl ethers (PBDEs) are synthetic halogen compounds, industrially used as flame retardants in many flammable products. PBDEs are environmentally persistent and bioaccumulative substances that were used from the 1970s and discontinued in the 1990s. PBDEs are present in air, soil, water, and food, where they remain stable for a long time. Chronic exposure to PBDEs is associated with adverse human health effects, including cancer, immunotoxicity, hepatotoxicity, reproductive and metabolic disorders, motor and hormonal impairments, and neurotoxicity, especially in children. It has been demonstrated that PBDE exposure can cause mitochondrial and DNA damage, apoptosis, oxidative stress, epigenetic modifications, and changes in calcium and neurotransmitter levels. Here, we conduct a comprehensive review of the molecular mechanisms of the neurotoxicity of PBDEs using different approaches. We discuss the main neurotransmitter pathways affected by exposure to PBDEs in vitro and in vivo in different mammalian models. Excitatory and inhibitory signaling pathways are the putative target where PBDEs carry out their neurotoxicity. Based on this evidence, environmental PBDEs are considered a risk to human public health and a hazard to biota, underscoring the need for environmental monitoring to mitigate exposure to PBDEs.
Collapse
Affiliation(s)
- Wendy Argelia García-Suastegui
- Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico; (W.A.G.-S.); (H.G.D.-R.)
| | - Cynthia Navarro-Mabarak
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City C.P. 04510, Mexico;
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico;
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico C.P. 14330, Mexico
| | - Heidy Galilea Dolores-Raymundo
- Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico; (W.A.G.-S.); (H.G.D.-R.)
| | - Mhar Yovavyn Alvarez-Gonzalez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico C.P. 14370, Mexico;
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico C.P. 14370, Mexico;
| | - Lucio Antonio Ramos-Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico C.P. 14370, Mexico;
| |
Collapse
|
2
|
L’Heureux JE, Corbett A, Ballard C, Vauzour D, Creese B, Winyard PG, Jones AM, Vanhatalo A. Oral microbiome and nitric oxide biomarkers in older people with mild cognitive impairment and APOE4 genotype. PNAS NEXUS 2025; 4:pgae543. [PMID: 39876877 PMCID: PMC11773611 DOI: 10.1093/pnasnexus/pgae543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/18/2024] [Indexed: 01/31/2025]
Abstract
Apolipoprotein E4 (APOE4) genotype and nitric oxide (NO) deficiency are risk factors for age-associated cognitive decline. The oral microbiome plays a critical role in maintaining NO bioavailability during aging. The aim of this study was to assess interactions between the oral microbiome, NO biomarkers, and cognitive function in 60 participants with mild cognitive impairment (MCI) and 60 healthy controls using weighted gene co-occurrence network analysis and to compare the oral microbiomes between APOE4 carriers and noncarriers in a subgroup of 35 MCI participants. Within the MCI group, a high relative abundance of Neisseria was associated with better indices of cognition relating to executive function (Switching Stroop, rs = 0.33, P = 0.03) and visual attention (Trail Making, rs = -0.30, P = 0.05), and in the healthy group, Neisseria correlated with working memory (Digit Span, rs = 0.26, P = 0.04). High abundances of Haemophilus (rs = 0.38, P = 0.01) and Haemophilus parainfluenzae (rs = 0.32, P = 0.03), that co-occurred with Neisseria correlated with better scores on executive function (Switching Stroop) in the MCI group. There were no differences in oral nitrate (P = 0.48) or nitrite concentrations (P = 0.84) between the MCI and healthy groups. Linear discriminant analysis Effect Size identified Porphyromonas as a predictor for MCI and Prevotella intermedia as a predictor of APOE4-carrier status. The principal findings of this study were that a greater prevalence of oral P. intermedia is linked to elevated genetic risk for dementia (APOE4 genotype) in individuals with MCI prior to dementia diagnosis and that interventions that promote the oral Neisseria-Haemophilus and suppress Prevotella-dominated modules have potential for delaying cognitive decline.
Collapse
Affiliation(s)
- Joanna E L’Heureux
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - Anne Corbett
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - Clive Ballard
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Byron Creese
- Department of Life Sciences, University of Brunel, London UB8 3PH, United Kingdom
| | - Paul G Winyard
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - Andrew M Jones
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - Anni Vanhatalo
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| |
Collapse
|
3
|
Sissons SM, Dotta BT. Brain structure alterations following neonatal exposure to low-frequency electromagnetic fields: A histological analysis. Int J Dev Neurosci 2024; 84:651-658. [PMID: 38967459 DOI: 10.1002/jdn.10361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Nitric oxide (NO) and electromagnetic fields (EMF) have been extensively studied for their roles in neurobiology, particularly in regulating cerebral functions and synaptic plasticity. This study investigates the impact of EMFs on NO modulation and its subsequent effects on neurodevelopment, building upon prior research examining EMF exposure's consequences on Wistar albino rats. Rats were exposed perinatally to either tap water, 1 g/L of L-arginine (LA) or 0.5 g/L of N-methylarginine (NMA). Half of the rats in each group were also exposed to a 7-Hz square-wave EMF at three separate intensities (5, 50 and 500 nT) for 2-14 days following birth. Animals were allowed to develop, and their brains were harvested later in adulthood (mean age = 568.17 days, SD = 162.73). Histological analyses were used to elucidate structural changes in key brain regions. All brains were stained with Toluidine Blue O (TBO), enabling the visualization of neurons. Neuronal counts were then conducted in specific regions of interest (e.g. hippocampus, cortices, amygdala and hypothalamus). Histological analyses revealed significant alterations in neuronal density in specific brain regions, particularly in response to EMF exposure and pharmacological interventions. Notable findings include a main EMF exposure effect where increased neuronal counts were observed in the secondary somatosensory cortex under low EMF intensities (p < 0.001) and sex-specific responses in the hippocampus, where a significant increase in neuronal counts was observed in the left CA3 region in female rats exposed to EMF compared to unexposed females (t(18) = 2.371, p = 0.029). Additionally, a significant increase in neuronal counts in the right entorhinal cortex was seen in male rats exposed to EMF compared to unexposed males (t(18) = 2.216, p = 0.040). These findings emphasize the complex interaction among sex, EMF exposure and pharmacological agents on neuronal dynamics across brain regions, highlighting the need for further research to identify underlying mechanisms and potential implications for cognitive function and neurological health in clinical and environmental contexts.
Collapse
Affiliation(s)
- Stephanie M Sissons
- Behavioural Neuroscience & Biology Programs, School of Natural Science, Laurentian University, Sudbury, Ontario, Canada
| | - Blake T Dotta
- Behavioural Neuroscience & Biology Programs, School of Natural Science, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
4
|
Owona PE, Mengue Ngadena YS, Bilanda DC, Ngoungouré MC, Mbolang Nguegan L, Bidingha A Goufani R, Kahou Tadah RB, Noubom M, Ella AF, Tcheutchoua YC, Ambamba Akamba BD, Bouguem Yandja PC, Keumedjio Teko P, Dzeufiet Djomeni PD, Kamtchouing P. Pterocarpus soyauxii (Fabaceae) aqueous extract to prevent neuropsychiatric disorders associated with menopause by triggering ROS-dependent oxidative damage and inhibiting acetylcholinesterase, GABA-transaminase, and monoamine oxidase A: In vitro, in vivo, and in silico approaches. Heliyon 2024; 10:e33843. [PMID: 39055825 PMCID: PMC11269881 DOI: 10.1016/j.heliyon.2024.e33843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Pterocarpus soyauxii (PS) is traditionally used in Cameroon medicine to alleviate postmenopausal symptoms. Previous research has shown that it has tissue-selective potential and estrogen-mimetic effects on vaginal atrophy. Phytoestrogens like 7-O-acetyl formononetin, khrinone A, and 3',5'-dimethoxy-4-stilbenol were found in its water extract by UHPLC, but there is no evidence of its effects on neurological disorders linked to post-menopause (ND-PO). The study aimed to investigate the phytochemical profile of PS aqueous extract, assess its neuroprotective potential in rats, and explore possible underlying pathways. We used colorimetric assays to study the phytochemical profile of PS extract. Effects of the extract on behavioral parameters, neuronal signaling, and integrity in an 84-day ovariectomized rat model. Molecular docking was performed to assess the ability of 7-O-acetyl formononetin, an isoflavone contained in PS, to cross the BBB and its binding affinity to the active sites of AChE, MAO-A, and GABA-T. Besides, the anti-AChE/BChE, antioxidant, and anti-inflammatory effects of PS were assessed by in vitro tests. PS aqueous extract contains polyphenols (656.58 ± 9.18 mgEAG/100gMS), flavonoids (201.25 ± 5.52 mgEQ/100gDW), and tannins (18.42 ± 1.25 mg/100gDW). It slows down anxiety, depressive disorders, cellular disorganization, and neuronal death in the hippocampus, dentate gyrus, and neocortex. In silico modeling was a powerful tool to assess the 7-O-acetylformononetin's ability to cross the BBB and strongly bind and inhibit AChE, MAO-A, and GABA-T. Thus, by combining GABAergic, cholinergic, and serotoninergic modulation, PS aqueous extract also possesses remarkable anti-AChE/BChE in vitro and induces antioxidant and anti-inflammatory potential in macrophages. Such estromimetics, antioxidant, anti-inflammatory, cholinergic, and monoaminergic modulators represent promising activities to develop neuroprotective drugs with optimal therapeutic profiles for menopausal women.
Collapse
Affiliation(s)
- Pascal Emmanuel Owona
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Yolande Sandrine Mengue Ngadena
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
- Neurosciences and psychogerontology axis, Laboratory of Development and Maldevelopment, Department of Psychology, Faculty of Arts, Letters, and Social Science, University of Yaoundé 1, P.O. Box. 755 Yaoundé, Cameroon
| | - Danielle Claude Bilanda
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Madeleine Chantal Ngoungouré
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Lohik Mbolang Nguegan
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Ronald Bidingha A Goufani
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Rivaldo Bernes Kahou Tadah
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Michel Noubom
- Department of Biological Sciences, Faculty of Medicine, University of Dschang, P.O. Box. 67, Dschang, Cameroon
| | - Armand Fils Ella
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Yannick Carlos Tcheutchoua
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Bruno Dupon Ambamba Akamba
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Paule Cynthia Bouguem Yandja
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Paulin Keumedjio Teko
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Paul Desire Dzeufiet Djomeni
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Pierre Kamtchouing
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| |
Collapse
|
5
|
Aquilani R, Cotta Ramusino M, Maestri R, Iadarola P, Boselli M, Perini G, Boschi F, Dossena M, Bellini A, Buonocore D, Doria E, Costa A, Verri M. Several dementia subtypes and mild cognitive impairment share brain reduction of neurotransmitter precursor amino acids, impaired energy metabolism, and lipid hyperoxidation. Front Aging Neurosci 2023; 15:1237469. [PMID: 37655338 PMCID: PMC10466813 DOI: 10.3389/fnagi.2023.1237469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Objective Dementias and mild cognitive impairment (MCI) are associated with variously combined changes in the neurotransmitter system and signaling, from neurotransmitter synthesis to synaptic binding. The study tested the hypothesis that different dementia subtypes and MCI may share similar reductions of brain availability in amino acid precursors (AAPs) of neurotransmitter synthesis and concomitant similar impairment in energy production and increase of oxidative stress, i.e., two important metabolic alterations that impact neurotransmission. Materials and methods Sixty-five demented patients (Alzheimer's disease, AD, n = 44; frontotemporal disease, FTD, n = 13; vascular disease, VaD, n = 8), 10 subjects with MCI and 15 control subjects (CTRL) were recruited for this study. Cerebrospinal fluid (CSF) and plasma levels of AAPs, energy substrates (lactate, pyruvate), and an oxidative stress marker (malondialdehyde, MDA) were measured in all participants. Results Demented patients and subjects with MCI were similar for age, anthropometric parameters, biohumoral variables, insulin resistance (HOMA index model), and CSF neuropathology markers. Compared to age-matched CTRL, both demented patients and MCI subjects showed low CSF AAP tyrosine (precursor of dopamine and catecholamines), tryptophan (precursor of serotonin), methionine (precursor of acetylcholine) limited to AD and FTD, and phenylalanine (an essential amino acid largely used for protein synthesis) (p = 0.03 to <0.0001). No significant differences were found among dementia subtypes or between each dementia subtype and MCI subjects. In addition, demented patients and MCI subjects, compared to CTRL, had similar increases in CSF and plasma levels of pyruvate (CSF: p = 0.023 to <0.0001; plasma: p < 0.002 to <0.0001) and MDA (CSF: p < 0.035 to 0.002; plasma: p < 0.0001). Only in AD patients was the CSF level of lactate higher than in CTRL (p = 0.003). Lactate/pyruvate ratios were lower in all experimental groups than in CTRL. Conclusion AD, FTD, and VaD dementia patients and MCI subjects may share similar deficits in AAPs, partly in energy substrates, and similar increases in oxidative stress. These metabolic alterations may be due to AAP overconsumption following high brain protein turnover (leading to phenylalanine reductions), altered mitochondrial structure and function, and an excess of free radical production. All these metabolic alterations may have a negative impact on synaptic plasticity and activity.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Mirella Boselli
- Neurorehabilitation Unit of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Anna Bellini
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Enrico Doria
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
The Effects of Intranasal Implantation of Mesenchymal Stem Cells on Nitric Monoxide Levels in the Hippocampus, Control of Cognitive Functions, and Motor Activity in a Model of Cerebral Ischemia in Rats. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
7
|
Sadeghi MA, Hemmati S, Nassireslami E, Yousefi Zoshk M, Hosseini Y, Abbasian K, Chamanara M. Targeting neuronal nitric oxide synthase and the nitrergic system in post-traumatic stress disorder. Psychopharmacology (Berl) 2022; 239:3057-3082. [PMID: 36029333 DOI: 10.1007/s00213-022-06212-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 12/22/2022]
Abstract
RATIONALE Current pharmacological approaches to treatment of post-traumatic stress disorder (PTSD) lack adequate effectiveness. As a result, identifying new molecular targets for drug development is necessary. Furthermore, fear learning and memory in PTSD can undergo different phases, such as fear acquisition, consolidation, and extinction. Each phase may involve different cellular pathways and brain regions. As a result, effective management of PTSD requires mindfulness of the timing of drug administration. One of the molecular targets currently under intense investigation is the N-methyl-D-aspartate (NMDA)-type glutamate receptor (NMDAR). However, despite the therapeutic efficacy of drugs targeting NMDAR, their translation into clinical use has been challenging due to their various side effects. One possible solution to this problem is to target signaling proteins downstream to NMDAR to improve targeting specificity. One of these proteins is the neuronal nitric oxide synthase (nNOS), which is activated following calcium influx through the NMDAR. OBJECTIVE In this paper, we review the literature on the pharmacological modulation of nNOS in animal models of PTSD to evaluate its therapeutic potential. Furthermore, we attempt to decipher the inconsistencies observed between the findings of these studies based on the specific phase of fear learning which they had targeted. RESULTS Inhibition of nNOS may inhibit fear acquisition and recall, while not having a significant effect on fear consolidation and extinction. However, it may improve extinction consolidation or reconsolidation blockade. CONCLUSIONS Modulation of nNOS has therapeutic potential against PTSD and warrants further development for use in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Amin Sadeghi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sara Hemmati
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Yasaman Hosseini
- Cognitive Neuroscience Center, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Kourosh Abbasian
- Management and Health Economics Department, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran. .,Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Tonoki A, Nagai S, Yu Z, Yue T, Lyu S, Hou X, Onuki K, Yabana K, Takahashi H, Itoh M. Nitric oxide-soluble guanylyl cyclase pathway as a contributor to age-related memory impairment in Drosophila. Aging Cell 2022; 21:e13691. [PMID: 35963012 PMCID: PMC9470885 DOI: 10.1111/acel.13691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Age-related changes in the transcriptome lead to memory impairment. Several genes have been identified to cause age-dependent memory impairment (AMI) by changes in their expression, but genetic screens to identify genes critical for AMI have not been performed. The fruit fly is a useful model for studying AMI due to its short lifespan and the availability of consistent techniques and environments to assess its memory ability. We generated a list of candidate genes that act as AMI regulators by performing a comprehensive analysis of RNAsequencing data from young and aged fly heads and genome-wide RNAi screening data to identify memory-regulating genes. A candidate screen using temporal and panneuronal RNAi expression was performed to identify genes critical for AMI. We identified the guanylyl cyclase β-subunit at 100B (gycβ) gene, which encodes a subunit of soluble guanylyl cyclase (sGC), the only intracellular nitric oxide (NO) receptor in fruit flies, as a negative regulator of AMI. RNAi knockdown of gycβ in neurons and NO synthase (NOS) in glia or neurons enhanced the performance of intermediate-term memory (ITM) without apparent effects on memory acquisition. We also showed that pharmacological inhibition of sGC and NOS enhanced ITM in aged individuals, suggesting the possibility that age-related enhancement of the NO-sGC pathway causes memory impairment.
Collapse
Affiliation(s)
- Ayako Tonoki
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Saki Nagai
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Zhihua Yu
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Tong Yue
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Sizhe Lyu
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Xue Hou
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Kotomi Onuki
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Kaho Yabana
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | | | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| |
Collapse
|
9
|
Al-Amin MM, Sullivan RKP, Alexander S, Carter DA, Bradford D, Burne THJ, Burne THJ. Impaired spatial memory in adult vitamin D deficient BALB/c mice is associated with reductions in spine density, nitric oxide, and neural nitric oxide synthase in the hippocampus. AIMS Neurosci 2022; 9:31-56. [PMID: 35434279 PMCID: PMC8941191 DOI: 10.3934/neuroscience.2022004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Vitamin D deficiency is prevalent in adults and is associated with cognitive impairment. However, the mechanism by which adult vitamin D (AVD) deficiency affects cognitive function remains unclear. We examined spatial memory impairment in AVD-deficient BALB/c mice and its underlying mechanism by measuring spine density, long term potentiation (LTP), nitric oxide (NO), neuronal nitric oxide synthase (nNOS), and endothelial NOS (eNOS) in the hippocampus. Adult male BALB/c mice were fed a control or vitamin D deficient diet for 20 weeks. Spatial memory performance was measured using an active place avoidance (APA) task, where AVD-deficient mice had reduced latency entering the shock zone compared to controls. We characterised hippocampal spine morphology in the CA1 and dentate gyrus (DG) and made electrophysiological recordings in the hippocampus of behaviourally naïve mice to measure LTP. We next measured NO, as well as glutathione, lipid peroxidation and oxidation of protein products and quantified hippocampal immunoreactivity for nNOS and eNOS. Spine morphology analysis revealed a significant reduction in the number of mushroom spines in the CA1 dendrites but not in the DG. There was no effect of diet on LTP. However, hippocampal NO levels were depleted whereas other oxidation markers were unaltered by AVD deficiency. We also showed a reduced nNOS, but not eNOS, immunoreactivity. Finally, vitamin D supplementation for 10 weeks to AVD-deficient mice restored nNOS immunoreactivity to that seen in in control mice. Our results suggest that lower levels of NO and reduced nNOS immunostaining contribute to hippocampal-dependent spatial learning deficits in AVD-deficient mice.
Collapse
Affiliation(s)
- Md. Mamun Al-Amin
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | | | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Queensland Centre for Mental Health Research, Wacol 4076, Australia
| | - David A. Carter
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - DanaKai Bradford
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Australian E-Health Research Centre, CSIRO, Pullenvale 4069, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Queensland Centre for Mental Health Research, Wacol 4076, Australia,* Correspondence: ; Tel: +61 733466371; Fax: +61 733466301
| | | | | | | |
Collapse
|
10
|
Justo AFO, Suemoto CK. The modulation of neuroinflammation by inducible nitric oxide synthase. J Cell Commun Signal 2022; 16:155-158. [PMID: 35031946 DOI: 10.1007/s12079-021-00663-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022] Open
Abstract
The accumulation and propagation of misfolded proteins in the brain is a pathological hallmark shared by many neurodegenerative diseases, such as the depositions of β-amyloid and hyperphosphorylated tau proteins in Alzheimer's disease. Initial evidence shows the role of nitric oxide synthases in the development of neurodegenerative diseases. A recent, in an exciting paper (Bourgognon et al. in Proc Natl Acad Sci USA 118, 1-11, 2021. 10.1073/pnas.2009579118) it was shown that the inducible nitric oxide synthase plays an important role in promoting oxidative and nitrergic stress leading to neuroinflammation and consequently neuronal function impairments and decline in synaptic strength in mouse prion disease. In this context, we reviewed the possible mechanisms of nitric oxide synthase in the generation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Fernando Oliveira Justo
- Physiopathology in Aging Laboratory, Department of Internal Medicine, University of São Paulo Medical School, Avenida Doutor Arnaldo, 455, Pacaembu, São Paulo, Brazil.
| | - Claudia Kimie Suemoto
- Physiopathology in Aging Laboratory, Department of Internal Medicine, University of São Paulo Medical School, Avenida Doutor Arnaldo, 455, Pacaembu, São Paulo, Brazil.,Division of Geriatrics, Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
11
|
Noroozi N, Shayan M, Maleki A, Eslami F, Rahimi N, Zakeri R, Abdolmaleki Z, Dehpour AR. Protective Effects of Dapsone on Scopolamine-Induced Memory Impairment in Mice: Involvement of Nitric Oxide Pathway. Dement Geriatr Cogn Dis Extra 2022; 12:43-50. [PMID: 35611148 PMCID: PMC9082200 DOI: 10.1159/000522163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The leading cause of memory impairment is dementia-related disorders. Since current treatments for memory impairment target the neuroinflammatory pathways, we selected dapsone, an anti-inflammatory agent, to evaluate its effects on scopolamine-induced memory impairment in mice and the underlying role of nitric oxide (NO). METHODS Scopolamine (1 mg/kg, intraperitoneal [i.p.]) was used for induction of memory impairment. The animals received various doses of dapsone (0.1, 0.3, 1, 5, and 10 mg/kg, i.p.). Duration and number of arms visits in the Y-maze and step-through latency in the passive-avoidance were documented. To evaluate the underlying signaling pathway, N(ω)-nitro-L-arginine methyl ester (a nonspecific NO synthase [NOS] inhibitor), aminoguanidine (a specific inducible NOS inhibitor), and 7-nitroindazole (a specific neuronal NOS inhibitor) were administered 30 min after dapsone administration. RESULTS Dapsone (5 mg/kg) substantially improved memory acquisition in scopolamine-induced memory impairment. Additionally, NOS inhibitors considerably reversed the observed neuroprotective effects of dapsone, accompanied by the elevation of NO levels. CONCLUSION Dapsone revealed a neuroprotective effect against scopolamine-induced memory impairment in mice, possibly through the nitrergic pathway.
Collapse
Affiliation(s)
- Nafise Noroozi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Adeleh Maleki
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Eslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Robab Zakeri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Cieślik P, Kalinowski L, Wierońska JM. Procognitive activity of nitric oxide inhibitors and donors in animal models. Nitric Oxide 2021; 119:29-40. [PMID: 34896554 DOI: 10.1016/j.niox.2021.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/17/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Nitric oxide is a small gaseous molecule that plays important roles in the majority of biological functions. Impairments of NO-related pathways contribute to the majority of neurological disorders, such as Alzheimer's disease (AD), and mental disorders, such as schizophrenia. Cognitive decline is one of the most serious impairments accompanying both AD and schizophrenia. In the present study, the activities of NO donors, slow (spermine NONOate) or fast (DETANONOate) releasers, and selective inhibitor of neuronal nitric oxide synthase N(ω)-propyl-l-arginine (NPLA) were investigated in pharmacological models of schizophrenia and AD. Cognitive impairments were induced by administration of MK-801 or scopolamine and were measured in novel object recognition (NOR) and Y-maze tests. The compounds were investigated at doses of 0.05-0.5 mg/kg. The dose-dependent effectiveness of all the compounds was observed in the NOR test, while only the highest doses of spermine NONOate and NPLA were active in the Y-maze test. DETANONOate was not active in the Y-maze test. The impact of the investigated compounds on motor coordination was tested at doses of 0.5 and 1 mg/kg. Only NPLA at a dose of 1 mg/kg slightly disturbed motor coordination in animals.
Collapse
Affiliation(s)
- Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343, Kraków, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, 7 Dębinki Street, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Consortium Poland (BBMRI.pl), Poland; BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343, Kraków, Poland.
| |
Collapse
|
13
|
Siervo M, Shannon OM, Llewellyn DJ, Stephan BC, Fontana L. Mediterranean diet and cognitive function: From methodology to mechanisms of action. Free Radic Biol Med 2021; 176:105-117. [PMID: 34562607 DOI: 10.1016/j.freeradbiomed.2021.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The traditional Mediterranean diet (MedDiet), rich in minimally processed plant foods and fish, has been widely recognized to be one of the healthiest diets. Data from multiple randomized clinical trials have demonstrated its powerful effect against oxidative stress, inflammation and the development and progression of cardiovascular disease, type 2 diabetes, and other metabolic conditions that play a crucial role in the pathogenesis of neurodegenerative diseases. The protecting effects of the MedDiet against cognitive decline have been investigated in several observational and experimental studies. Data from observational studies suggest that the MedDiet may represent an effective dietary strategy for the early prevention of dementia, although these findings require further substantiation in clinical trials which have so far produced inconclusive results. Moreover, as we discuss in this review, accumulating data emphasizes the importance of: 1) maintaining an optimal nutritional and metabolic status for the promotion of healthy cognitive aging, and 2) implementing cognition-sparing dietary and lifestyle interventions during early time-sensitive windows before the pathological cascades turn into an irreversible state. In summary, components of the MedDiet pattern, such as essential fatty acids, polyphenols and vitamins, have been associated with reduced oxidative stress and the current evidence from observational studies seems to assign to the MedDiet a beneficial role in promoting brain health; however, results from clinical trials have been inconsistent. While we advocate for longitudinal analyses and for larger and longer clinical trials to be conducted, we assert our interim support to the use of the MedDiet as a protective dietary intervention for cognitive function based on its proven cardiovascular and metabolic benefits.
Collapse
Affiliation(s)
- Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.
| | - Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK; Alan Turing Institute, London, UK
| | - Blossom Cm Stephan
- Institute of Mental Health, The University of Nottingham Medical School, Nottingham, UK
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy
| |
Collapse
|
14
|
Zarrindast MR, Fazli-Tabaei S, Khakpai F. Synergistic effect between quinpirole and L-NAME as well as sulpiride and L-arginine on the modulation of anxiety and memory processes in the 6-OHDA mouse model of Parkinson's disease: An isobologram analysis. Neurobiol Learn Mem 2021; 186:107538. [PMID: 34737042 DOI: 10.1016/j.nlm.2021.107538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
We evaluated interactions between dopamine D2 receptor and nitric oxide (NO) actions on the regulation of anxiety and memory in the 6-hydroxydopamine (6-OHDA) mouse model of Parkinson's disease (PD). A unilateral guide cannula was stereotaxically implanted over the right striatum. Elevated plus-maze test (EPM) test-retest protocol was employed to evaluate anxiety and memory in mice. The results revealed that injection of L-NAME (9 mg/kg) induced anxiolytic and amnesic effects, while L-arginine (9 mg/kg) produced anxiogenic and memory-improvement effects in the 6-OHDA mouse model of PD. Administration of sulpiride (20 mg/kg) induced anxiogenic and memory-improvement effects, whereas quinpirole (20 mg/kg) caused anxiolytic and amnesic effects in PD mice. Co-injection of sulpiride (5, 10, and 20 mg/kg) plus L-NAME (3 mg/kg) induced anxiolytic and amnesic effects. Co-injection of sulpiride (20 mg/kg) plus L-arginine (3 mg/kg) induced anxiogenic and memory-improvement effects. Co-administrations of quinpirole (20 mg/kg) and L-NAME (3 mg/kg) induced anxiolytic effect, but co-administration of quinpirole (20 mg/kg) plus L-arginine (3 mg/kg) caused anxiogenic and memory-improvement effects. The isobologram analysis revealed that there is a synergistic effect between sulpiride and L-arginine as well as quinpirole and L-NAME upon induction of anxiogenic and anxiolytic effects, respectively in PD mice. Our results suggested: (1) NO and dopamine D2 receptor mechanisms affect anxiety and memory in PD mice; (2) L-NAME reversed anxiogenic and memory-improvement effect induced by sulpiride; (3) Anxiolytic and amnesic effects induced by quinpirole reversed by L-arginine; (4) There is a synergistic effect between dopamine D2 receptor and NO systems on the modulation of anxiety and memory.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Fazli-Tabaei
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Asgharzade S, Sewell RDE, Rabiei Z, Forouzanfar F, Kazemi Sheikhshabani S, Rafieian-Kopaei M. Hydroalcoholic Extract of Anchusa Italica Protects Global Cerebral Ischemia-Reperfusion Injury Via a Nitrergic Mechanism. Basic Clin Neurosci 2020; 11:323-332. [PMID: 32963725 PMCID: PMC7502191 DOI: 10.32598/bcn.11.2.1665.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 07/20/2019] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION In stroke models, Inducible Nitric Oxide Synthase (iNOS) expression initiates cellular toxicity due to excessive Nitric Oxide (NO) generation. Anchusa italica is a medicinal herb with anti-inflammatory, antioxidant and neuroprotective properties. This study evaluated the antioxidant activity and NOS mRNA expression of the Hydroalcoholic Extract Of Anchusa Italica (HEAI) in an experimental stroke model in rats. METHODS The stroke model was induced by bilateral occlusion of both common carotid arteries for 60 min. Twenty-four hours after surgery, HEAI (50 and 100 mg/kg i.p.) was injected daily for 10 consecutive days. mRNA expression levels of NOS subtypes and hippocampal Brain-Derived Neurotrophic Factor (BDNF) were studied using real-time PCR. Besides, hippocampal tissue plus serum concentrations of NO and Malondialdehyde (MDA) were measured. RESULTS HEAI decreased MDA in both serum and hippocampal tissue and also reduced serum NO levels. Additionally, in the HEAI-treated groups, a down-regulation of iNOS mRNA expression, and an up-regulation of BDNF mRNA expression were observed. CONCLUSION The results indicated that the administration of HEAI even after the onset of ischemia protects the brain from free radical injury and inflammation via a down-regulation of iNOS expression inhibiting NO production and an up-regulation of BDNF mRNA.
Collapse
Affiliation(s)
- Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB. Wales, U.K
| | - Zahra Rabiei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sedigheh Kazemi Sheikhshabani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
16
|
Abstract
Some dopaminergic neurons release both dopamine and nitric oxide to increase the flexibility of olfactory memories.
Collapse
Affiliation(s)
- Daniel Je Green
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
17
|
Chong PS, Poon CH, Fung ML, Guan L, Steinbusch HWM, Chan YS, Lim WL, Lim LW. Distribution of neuronal nitric oxide synthase immunoreactivity in adult male Sprague-Dawley rat brain. Acta Histochem 2019; 121:151437. [PMID: 31492421 DOI: 10.1016/j.acthis.2019.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/22/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Neuronal NOS (nNOS) accounts for most of the NO production in the nervous system that modulates synaptic transmission and neuroplasticity. Although previous studies have selectively described the localisation of nNOS in specific brain regions, a comprehensive distribution profile of nNOS in the brain is lacking. Here we provided a detailed morphological characterization on the rostro-caudal distribution of neurons and fibres exhibiting positive nNOS-immunoreactivity in adult Sprague-Dawley rat brain. Our results demonstrated that neurons and fibres in the brain regions that exhibited high nNOS immunoreactivity include the olfactory-related areas, intermediate endopiriform nucleus, Islands of Calleja, subfornical organ, ventral lateral geniculate nucleus, parafascicular thalamic nucleus, superior colliculus, lateral terminal nucleus, pedunculopontine tegmental nucleus, periaqueductal gray, dorsal raphe nucleus, supragenual nucleus, nucleus of the trapezoid body, and the cerebellum. Moderate nNOS immunoreactivity was detected in the cerebral cortex, caudate putamen, hippocampus, thalamus, hypothalamus, amygdala, and the spinal cord. Finally, low NOS immunoreactivity were found in the corpus callosum, fornix, globus pallidus, anterior commissure, and the dorsal hippocampal commissure. In conclusion, this study provides a comprehensive view of the morphology and localisation of nNOS immunoreactivity in the brain that would contribute to a better understanding of the role played by nNOS in the brain.
Collapse
Affiliation(s)
- Pit Shan Chong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Li Guan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Harry W M Steinbusch
- Department of Neuroscience and European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Wei Ling Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; Department of Biological Sciences, Sunway University, Selangor, Malaysia.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; Department of Biological Sciences, Sunway University, Selangor, Malaysia.
| |
Collapse
|
18
|
González-Sánchez H, Tovar-Díaz J, Morin JP, Roldán-Roldán G. NMDA receptor and nitric oxide synthase activity in the central amygdala is involved in the acquisition and consolidation of conditioned odor aversion. Neurosci Lett 2019; 707:134327. [PMID: 31200091 DOI: 10.1016/j.neulet.2019.134327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/22/2019] [Accepted: 06/09/2019] [Indexed: 01/15/2023]
Abstract
Rats readily learn to avoid a tasteless odorized solution if they experience visceral malaise after consuming it. This phenomenon is referred to as conditioned odor aversion (COA). Several studies have shown that COA depends on the functional integrity of the amygdala, with most studies focusing on the basolateral nucleus. On the other hand, the role of the central amygdala (CeA) which is known to be involved in the consolidation of conditioned taste aversion (CTA) remains to be established. To address this issue, we evaluated the effect of inhibiting NMDA receptor activity in this structure on COA memory formation. Intra-CeA infusions of non-competitive NMDA receptor inhibitor MK-801 prevented memory formation both when administered before and up to 15 min after COA conditioning, while no effect of this drug was observed when given before long-term memory test. We next evaluated the role of one of the main downstream effectors of brain NMDA receptor signaling, nitric oxide synthase (NOS), known to play a key role in a wide variety learning tasks including some types of olfactory conditioning. Similar results were obtained with inhibition of either NOS or neuron-specific NOS; which proved to be required both during and after COA training, though for a shorter time span than NMDA receptors. Also, neither isoform showed to be required to memory retrieval. These results suggest that the US signaling during acquisition and the initial consolidation step of COA depends on glutamate-NO system activation in the CeA.
Collapse
Affiliation(s)
- Héctor González-Sánchez
- Department of Physiology, Faculty of Medicine, National Autonomous University Mexico, Mexico City, Mexico
| | - Jorge Tovar-Díaz
- Department of Physiology, Faculty of Medicine, National Autonomous University Mexico, Mexico City, Mexico; Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana, BC, Mexico
| | - Jean-Pascal Morin
- Department of Physiology, Faculty of Medicine, National Autonomous University Mexico, Mexico City, Mexico
| | - Gabriel Roldán-Roldán
- Department of Physiology, Faculty of Medicine, National Autonomous University Mexico, Mexico City, Mexico.
| |
Collapse
|
19
|
Al-Amin MM, Chowdury MIA, Saifullah ARM, Alam MN, Jain P, Hossain M, Alam MA, Kazi M, Ahmad A, Raish M, Alqahtani A, Reza HM. Levocarnitine Improves AlCl 3-Induced Spatial Working Memory Impairment in Swiss albino Mice. Front Neurosci 2019; 13:278. [PMID: 30971884 PMCID: PMC6444114 DOI: 10.3389/fnins.2019.00278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/08/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Aluminum, a neurotoxic substance, causes oxidative stress induced-neurodegenerative diseases. Several lines of evidence suggest that levocarnitine has an antioxidant effect and also plays an important role in beta-oxidation of fatty acids. However, the role of levocarnitine in aluminum-induced neurotoxicity has not been well documented. Here we aimed to investigate the effect of levocarnitine on aluminum chloride (AlCl3)-induced oxidative stress and memory dysfunction. Methods: Male Swiss albino mice (n = 30) were treated with either control (saline) or AlCl3 or AlCl3 plus levocarnitine or levocarnitine or astaxanthin plus AlCl3 or astaxanthin alone. The spatial working memory was determined by radial arm maze (RAM). In addition, we measured the lipid peroxidation (MDA), glutathione (GSH), advanced oxidation of protein products (AOPP), nitric oxide (NO) and activity of superoxide dismutase (SOD) in the various brain regions including prefrontal cortex (PFC), striatum (ST), parietal cortex (PC), hippocampus (HIP) hypothalamus (HT) and cerebellum (CB). We used astaxanthin as a standard antioxidant to compare the antioxidant activity of levocarnitine. Results: The RAM data showed that AlCl3 treatment (50 mg/kg) for 2 weeks resulted in a significant deficit in spatial learning in mice. Moreover, aluminum exposure significantly (p < 0.05) increased the level of oxidative stress markers such as MDA, GSH, AOPP and NO in the various brain regions compared to the controls. In addition, combined administration of levocarnitine and AlCl3 significantly (p < 0.05) lowered the MDA, AOPP, GSH and NO levels in mice. Conclusion: Our results demonstrate that levocarnitine could serve as a potential therapeutic agent in the treatment of oxidative stress associated diseases as well as in memory impairment.
Collapse
Affiliation(s)
- Md Mamun Al-Amin
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | - A R M Saifullah
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mohammed Nazmul Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Preeti Jain
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ajaz Ahmad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmohsen Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
20
|
Cross state-dependency of learning between tramadol and MK-801 in the mouse dorsal hippocampus: involvement of nitric oxide (NO) signaling pathway. Psychopharmacology (Berl) 2018; 235:1987-1999. [PMID: 29679289 DOI: 10.1007/s00213-018-4897-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
RATIONALE Tramadol, an atypical μ-opioid receptor agonist, as a psychoactive drug, is frequently abused by human beings. Understanding the neurobiological mechanisms of drug-associated learning and memory formation may help prevent drug addiction and relapse. Previous study revealed that dorsal hippocampus (CA1) plays a crucial role in the retrieval of tramadol-associated memory and that its role depends on the expression of CA1 N-methyl-D-aspartate (NMDA) receptors (Jafari-Sabet et al. Can J Physiol Pharmacol 96:45-50, 2018). OBJECTIVE To clarify the exact mechanisms involved, the activation of CA1 nitric oxide (NO) signaling pathway by L-arginine (a nitric oxide precursor) on the interaction between tramadol and MK-801 in memory retrieval was examined. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated and a single-trial step-down inhibitory avoidance apparatus was used for the assessment of memory retrieval. RESULTS Post-training and/or pre-test microinjection of tramadol (0.5 and 1 μg/mouse) and/or a non-competitive NMDA receptor antagonist, MK-801 (0.25 and 0.5 μg/mouse), induced amnesia which were reversed when the same doses of the drugs were administered 24 h later in a pre-test session, suggesting tramadol state-dependent learning (SDL) and MK-801 SDL. The amnesia induced by post-training microinjection of tramadol (1 μg/mouse) was reversed by pre-test microinjection of MK-801 (0.25 and 0.5 μg/mouse). Pre-test microinjection of MK-801 (0.125 and 0.25 μg/mouse) with an ineffective dose of tramadol (0.25 μg/mouse) potentiated tramadol SDL. The amnesia induced by post-training microinjection of MK-801 (0.5 μg/mouse) was reversed by pre-test microinjection of tramadol (0.5 and 1 μg/mouse). Pre-test microinjection of tramadol (0.25 and 0.5 μg/mouse) with an ineffective dose of MK-801 (0.125 μg/mouse) potentiated MK-801 SDL. Pre-test microinjection of ineffective doses of L-arginine (0.125, 025, and 0.5 μg/mouse) improved amnesia induced by the co-administration of tramadol and MK-801. Pre-test microinjection of L-arginine (0.125, 025, and 0.5 μg/mouse) could not reverse amnesia induced by post-training microinjection of tramadol while same doses of L-arginine improved MK-801 response on tramadol SDL. CONCLUSION The results strongly propose that activation of CA1 NO signaling pathway has a pivotal role in cross SDL among tramadol and MK-801.
Collapse
|
21
|
Hosseini M, Anaeigoudari A, Beheshti F, Soukhtanloo M, Nosratabadi R. Protective effect against brain tissues oxidative damage as a possible mechanism for beneficial effects of L-arginine on lipopolysaccharide induced memory impairment in rats. Drug Chem Toxicol 2018; 41:175-181. [PMID: 28640652 DOI: 10.1080/01480545.2017.1336173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/24/2017] [Indexed: 01/08/2023]
Abstract
L-Arginine (LA) and nitric oxide (NO) have been suggested to have some effects on learning, memory, brain tissues oxidative damage, and neuroinflammation. In this study, protective effect against brain tissues oxidative damage as a possible mechanism for beneficial effects of LA on lipopolysaccharide (LPS) induced memory impairment was investigated. The rats were grouped into and treated by (1) control (saline), (2) LPS (1 mg/kg, IP), (3) LA (200 mg/kg) - LPS (4) LA. In passive avoidance (PA) test, LPS administration shortened the latency to enter the dark compartment in LPS group compared to control (p < .001) which was accompanied with a high level of malondialdehyde (MDA) and NO metabolite concentrations in the hippocampal tissues (p < .001and p < .05, respectively). Pretreatment with LA prolonged the latency in LA-LPS group compared with LPS group (p < .01-.001) and re-stored MDA and NO metabolites in the hippocampal tissues (p < .05). LPS also reduced superoxide dismutase (SOD) and catalase (CAT) activities and thiol content in the hippocampal tissues in LPS group compared to control (p < .05 and p < .001, respectively) which improved by LA when it was administered before LPS in LA-LPS group (p < .05 and p < .001). Finally, the serum TNFα level of LPS group was higher than the control (p < .01) while, in LA-LPS group it was lower than LPS group (p < .01). It seems that the beneficial effects of LA on memory impairment of LPS-treated rats may be due to its protective effects against brain tissues oxidative damage.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- a Division of Neurocognitive Sciences , Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Akbar Anaeigoudari
- b Department of Physiology, School of Medicine , Jiroft University of medical Sciences , Jiroft , Iran
| | - Farimah Beheshti
- c Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Soukhtanloo
- d Department of Biochemistry, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Reza Nosratabadi
- e Immunology of Infectious Diseases Research Center , Rafsanjan University of Medical Sciences , Rafsanjan , Iran
| |
Collapse
|
22
|
Effect of Hypoxic Injury in Mood Disorder. Neural Plast 2017; 2017:6986983. [PMID: 28717522 PMCID: PMC5498932 DOI: 10.1155/2017/6986983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Hypoxemia is a common complication of the diseases associated with the central nervous system, and neurons are highly sensitive to the availability of oxygen. Neuroplasticity is an important property of the neural system controlling breathing, memory, and cognitive ability. However, the underlying mechanism has not yet been clearly elucidated. In recent years, several pieces of evidence have highlighted the effect of hypoxic injury on neuronal plasticity in the pathogenesis and treatment of mood disorder. Therefore, the present study reviewed the relevant articles regarding hypoxic injury and neuronal plasticity and discussed the pathological changes and physiological functions of neurons in hypoxemia in order to provide a translational perspective to the relevance of hypoxic injury and mood disorder.
Collapse
|
23
|
Todorova V, Blokland A. Mitochondria and Synaptic Plasticity in the Mature and Aging Nervous System. Curr Neuropharmacol 2017; 15:166-173. [PMID: 27075203 PMCID: PMC5327446 DOI: 10.2174/1570159x14666160414111821] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/23/2016] [Accepted: 04/11/2016] [Indexed: 01/11/2023] Open
Abstract
Synaptic plasticity in the adult brain is believed to represent the cellular mechanisms of learning and memory. Mitochondria are involved in the regulation of the complex processes of synaptic plasticity. This paper reviews the current knowledge on the regulatory roles of mitochondria in the function and plasticity of synapses and the implications of mitochondrial dysfunctions in synaptic transmission. First, the importance of mitochondrial distribution and motility for maintenance and strengthening of dendritic spines, but also for new spines/synapses formation is presented. Secondly, the major mitochondrial functions as energy supplier and calcium buffer organelles are considered as possible explanation for their essential and regulatory roles in neuronal plasticity processes. Thirdly, the effects of synaptic potentiation on mitochondrial gene expression are discussed. And finally, the relation between age-related alterations in synaptic plasticity and mitochondrial dysfunctions is considered. It appears that memory loss and neurodegeneration during aging are related to mitochondrial (dys)function. Although, it is clear that mitochondria are essential for synaptic plasticity, further studies are indicated to scrutinize the intracellular and molecular processes that regulate the functions of mitochondria in synaptic plasticity.
Collapse
Affiliation(s)
- Vyara Todorova
- Institute II for Anatomy, Medical Faculty, University of Cologne, Cologne, Germany
| | | |
Collapse
|
24
|
Wang XX, Zha YY, Yang B, Chen L, Wang M. Suppression of synaptic plasticity by fullerenol in rat hippocampus in vitro. Int J Nanomedicine 2016; 11:4947-4955. [PMID: 27729790 PMCID: PMC5047730 DOI: 10.2147/ijn.s104856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fullerenol, a water-soluble fullerene derivative, has attracted much attention due to its bioactive properties, including the antioxidative properties and free radical scavenging ability. Due to its superior nature, fullerenol represents a promising diagnostic, therapeutic, and protective agent. Therefore, elucidation of the possible side effects of fullerenol is important in determining its potential role. In the present study, we investigated the acute effects of 5 μM fullerenol on synaptic plasticity in hippocampal brain slices of rats. Incubation with fullerenol for 20 minutes significantly decreased the peak of paired-pulse facilitation and long-term potentiation, indicating that fullerenol suppresses the short- and long-term synaptic plasticity of region I of hippocampus. We found that fullerenol depressed the activity and the expression of nitric oxide (NO) synthase in hippocampus. In view of the important role of NO in synaptic plasticity, the inhibition of fullerenol on NO synthase may contribute to the suppression of synaptic plasticity. These findings may facilitate the evaluation of the side effects of fullerenol.
Collapse
Affiliation(s)
- Xin-Xing Wang
- CAS Key Laboratory of Brain Function and Diseases; Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ying-Ying Zha
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Bo Yang
- CAS Key Laboratory of Brain Function and Diseases
| | - Lin Chen
- CAS Key Laboratory of Brain Function and Diseases; Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ming Wang
- CAS Key Laboratory of Brain Function and Diseases; Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
25
|
Anaeigoudari A, Soukhtanloo M, Reisi P, Beheshti F, Hosseini M. Inducible nitric oxide inhibitor aminoguanidine, ameliorates deleterious effects of lipopolysaccharide on memory and long term potentiation in rat. Life Sci 2016; 158:22-30. [PMID: 27341994 DOI: 10.1016/j.lfs.2016.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
AIM An interaction between nitric oxide (NO) and neuro-inflammation has been considered to modulate learning and memory. In the present study, the effect of an inducible NO synthase (iNOS) inhibitor, aminoguanidine (AG) on lipopolysaccharide (LPS)-induced memory impairment was evaluated. MATERIALS AND METHODS The rats were divided and treated: Control (Saline), LPS, AG - LPS and AG, before behavioral and electrophysiological experiments. RESULTS The escape latency in Morris water maze (MWM) test and the latency to enter the dark compartment in Passive avoidance (PA) test in LPS group were significantly higher than in control (P<0.001) whereas, in AG-LPS group they were shorter than LPS group (P<0.001). The amplitude and slope of field excitatory post synaptic potential (fEPSP) decreased in LPS group compared to control group (P<0.05 and P<0.01) whereas, in AG-LPS group they were higher than LPS group (P<0.05). Malondialdehyde (MDA) and NO metabolites concentrations in the hippocampus and serum TNFα level of LPS group were higher than control group (P<0.001, P<0.05 and 0.01 respectively) while, in AG- LPS group they were lower than LPS group (P<0.001and P<0.01 respectively). The thiol content and the activities of superoxide dismutase (SOD) and catalase (CAT) in the hippocampus of LPS group reduced compared to control group (P<0.001 and P<0.05 respectively) while, in AG - LPS group they enhanced compared to LPS (P<0.001 and P<0.05 respectively). CONCLUSION It is suggested that increased NO has a role in LPS-induced learning and LTP impairments and the brain tissues oxidative damage which are preventable by iNOS inhibitor aminoguanidine.
Collapse
Affiliation(s)
- Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farimah Beheshti
- Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Shen F, Wang XW, Ge FF, Li YJ, Cui CL. Essential role of the NO signaling pathway in the hippocampal CA1 in morphine-associated memory depends on glutaminergic receptors. Neuropharmacology 2016; 102:216-28. [DOI: 10.1016/j.neuropharm.2015.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/06/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
27
|
Al-Amin MM, Sultana R, Sultana S, Rahman MM, Reza HM. Astaxanthin ameliorates prenatal LPS-exposed behavioral deficits and oxidative stress in adult offspring. BMC Neurosci 2016; 17:11. [PMID: 26856812 PMCID: PMC4746928 DOI: 10.1186/s12868-016-0245-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Prenatal maternal lipopolysaccharide (LPS) exposure leads to behavioral deficits such as depression, anxiety, and schizophrenia in the adult lives. LPS-exposure resulted in the production of cytokines and oxidative damage. On the contrary, astaxanthin is a carotenoid compound, showed neuroprotective properties via its antioxidant capacity. This study examines the effect of astaxanthin on the prenatal maternal LPS-induced postnatal behavioral deficit in mice. RESULTS We found that prenatal LPS-exposed mice showed extensive immobile phase in the tail suspension test, higher frequent head dipping in the hole-board test and greater hypolocomotion in the open field test. All these values were statistically significant (p < 0.05). In addition, a marked elevation of the level of lipid peroxidation, advanced protein oxidation product, nitric oxide, while a pronounced depletion of antioxidant enzymes (superoxide dismutase, catalase and glutathione) were observed in the adult offspring mice that were prenatally exposed to LPS. To the contrary, 6-weeks long treatment with astaxanthin significantly improved all behavioral deficits (p < 0.05) and diminished prenatal LPS-induced oxidative stress markers in the brain and liver. CONCLUSIONS Taken together, these results suggest that prenatal maternal LPS-exposure leads to behavioral deficits in the adults, while astaxanthin ameliorates the behavioral deficits presumably via its antioxidant property.
Collapse
Affiliation(s)
- Md Mamun Al-Amin
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
- The Queensland Brain Institute, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| | - Rabeya Sultana
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| | - Sharmin Sultana
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
28
|
Shamsaei N, Khaksari M, Erfani S, Rajabi H, Aboutaleb N. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia. Neural Regen Res 2015; 10:1245-50. [PMID: 26487851 PMCID: PMC4590236 DOI: 10.4103/1673-5374.162756] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral ischemic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction through occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic exercise significantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.
Collapse
Affiliation(s)
- Nabi Shamsaei
- Department of Physical Education & Sports Science, Faculty of Literature and Humanities, Ilam University, Ilam, Iran
| | - Mehdi Khaksari
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sohaila Erfani
- Department of Animal Physiology, Faculty of Biology, Kharazmi University, Tehran, Iran
| | - Hamid Rajabi
- Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Colocalization of cannabinoid receptor 1 with somatostatin and neuronal nitric oxide synthase in rat brain hippocampus. Brain Res 2015; 1622:114-26. [DOI: 10.1016/j.brainres.2015.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023]
|
30
|
Al-Amin MM, Akhter S, Hasan AT, Alam T, Nageeb Hasan SM, Saifullah ARM, Shohel M. The antioxidant effect of astaxanthin is higher in young mice than aged: a region specific study on brain. Metab Brain Dis 2015; 30:1237-46. [PMID: 26116165 DOI: 10.1007/s11011-015-9699-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/08/2015] [Indexed: 01/14/2023]
Abstract
Astaxanthin is a potential antioxidant which shows neuroprotective property. We aimed to investigate the age-dependent and region-specific antioxidant effects of astaxanthin in mice brain. Animals were divided into 4 groups; treatment young (3 months, n = 6) (AY), treatment old (16 months, n = 6) (AO), placebo young (3 months, n = 6) (PY) and placebo old (16 months, n = 6) (PO) groups. Treatment group was given astaxanthin (2 mg/kg/day, body weight), and placebo group was given 100 μl of 0.9% normal saline orally to the healthy Swiss albino mice for 4 weeks. The level of non-enzymatic oxidative markers namely malondialdehyde (MDA); nitric oxide (NO); advanced protein oxidation product (APOP); glutathione (GSH) and the activity of enzymatic antioxidants i.e.; catalase (CAT) and superoxide dismutase (SOD) were determined from the isolated brain regions. Treatment with astaxanthin significantly (p < 0.05) reduces the level of MDA, APOP, NO in the cortex, striatum, hypothalamus, hippocampus and cerebellum in both age groups. Astaxanthin markedly (p < 0.05) enhances the activity of CAT and SOD enzymes while improves the level of GSH in the brain. Overall, improvement of oxidative markers was significantly greater in the young group than the aged animal. In conclusion, we report that the activity of astaxanthin is age-dependent, higher in young in compared to the aged brain.
Collapse
Affiliation(s)
- Md Mamun Al-Amin
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh,
| | | | | | | | | | | | | |
Collapse
|
31
|
Anaeigoudari A, Shafei MN, Soukhtanloo M, Sadeghnia HR, Reisi P, Nosratabadi R, Behradnia S, Hosseini M. The effects of L-arginine on spatial memory and synaptic plasticity impairments induced by lipopolysaccharide. Adv Biomed Res 2015; 4:202. [PMID: 26601090 PMCID: PMC4620614 DOI: 10.4103/2277-9175.166138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/06/2015] [Indexed: 01/07/2023] Open
Abstract
Background: An important role of nitric oxide (NO) in neuroinflammation has been suggested. It is also suggested that NO has a critical role in learning and memory. Neuro-inflammation induced by lipopolysaccharide (LPS) has been reported that deteriorates learning and memory. The effect of L-arginine (LA) as a precursor of NO on LPS-induced spatial learning and memory and neuronal plasticity impairment was evaluated. Materials and Methods: The animals were grouped into: (1) Control, (2) LPS, (3) LA-LPS, and (4) LA. The rats received intraperitoneally LPS (1 mg/kg) 2 h before experiments and LA (200 mg/kg) 30 min before LPS. The animals were examined in Morris water maze (MWM). Long-term potentiation (LTP) from CA1 area of the hippocampus was also assessed by 100 Hz stimulation in the ipsilateral Schaffer collateral pathway. Results: In MWM, time latency and traveled path were higher in LPS group than the control group (P < 0.001) whereas in LA-LPS group they were shorter than LPS group (P < 0.001). The amplitude and slope of field excitatory postsynaptic potential (fEPSP) decreased in LPS group compared to control group (P < 0.05 and P < 0.01) whereas, there was not any significant difference in these parameters between LPS and LA-LPS groups. Conclusion: Administration of LPS impaired spatial memory and synaptic plasticity. Although LA ameliorated deleterious effects of LPS on learning of spatial tasks, it could not restore LPS-induced LTP impairment.
Collapse
Affiliation(s)
- Akbar Anaeigoudari
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Nosratabadi
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepehr Behradnia
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Possible interaction of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II on reversal of spatial memory impairment induced by morphine. Eur J Pharmacol 2015; 751:99-111. [DOI: 10.1016/j.ejphar.2015.01.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/24/2023]
|
33
|
Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav Brain Res 2015; 286:112-21. [PMID: 25732953 DOI: 10.1016/j.bbr.2015.02.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/15/2015] [Accepted: 02/20/2015] [Indexed: 12/28/2022]
Abstract
Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (p<0.05) improved the behavioral disorder and reduced the oxidative stress in brain and liver. In conclusion, prenatal exposure to valproic day in pregnant mice leads to the development of autism-like features. Astaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity.
Collapse
|
34
|
Nott A, Cho S, Seo J, Tsai LH. HDAC2 expression in parvalbumin interneurons regulates synaptic plasticity in the mouse visual cortex. ACTA ACUST UNITED AC 2015; 1:34-40. [PMID: 25705589 DOI: 10.1016/j.nepig.2014.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An experience-dependent postnatal increase in GABAergic inhibition in the visual cortex is important for the closure of a critical period of enhanced synaptic plasticity. Although maturation of the subclass of Parvalbumin (Pv)-expressing GABAergic interneurons is known to contribute to critical period closure, the role of epigenetics on cortical inhibition and synaptic plasticity has not been explored. The transcription regulator, histone deacetylase 2 (HDAC2), has been shown to modulate synaptic plasticity and learning processes in hippocampal excitatory neurons. We found that genetic deletion of HDAC2 specifically from Pv-interneurons reduces inhibitory input in the visual cortex of adult mice, and coincides with enhanced long-term depression (LTD) that is more typical of young mice. These findings show that HDAC2 loss in Pv-interneurons leads to a delayed closure of the critical period in the visual cortex and supports the hypothesis that HDAC2 is a key negative regulator of synaptic plasticity in the adult brain.
Collapse
Affiliation(s)
- Alexi Nott
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Sukhee Cho
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jinsoo Seo
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
35
|
Shahrzad P, Nasser N. GABA<sub>b</sub> Receptor Antagonist (CGP<sub>35348</sub>) Improves Testosterone Induced Spatial Acquisition Impairment in Adult Male Rat. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbbs.2015.511047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Prakash A, Kalra J, Mani V, Ramasamy K, Majeed ABA. Pharmacological approaches for Alzheimer’s disease: neurotransmitter as drug targets. Expert Rev Neurother 2014; 15:53-71. [DOI: 10.1586/14737175.2015.988709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Al-Amin MM, Hasan SMN, Alam T, Hasan AT, Hossain I, Didar RR, Alam MA, Rahman MM. Tadalafil enhances working memory, and reduces hippocampal oxidative stress in both young and aged mice. Eur J Pharmacol 2014; 745:84-90. [PMID: 25446565 DOI: 10.1016/j.ejphar.2014.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
Tadalafil, a type-5 phosphodiesterase enzyme inhibitor with long half-life used to treat erectile dysfunction. Recently it has been reported that tadalafil improves cognitive function. Here, we aimed to investigate the age dependent effects of tadalafil on memory, locomotor, behavior, and oxidative stress in the hippocampus. Tadalafil was orally administered everyday (5 mg/kg) to young (2 months) and old (16 months) healthy mice for 4 weeks. Control mice from each group received equal volume of 0.9% normal saline for the same duration. Memory and locomotor activity were tested using radial arm maze and open field test respectively. The level of malondialdehyde (MDA), nitric oxide (NO), and advanced protein oxidation product (APOP) was analyzed and catalase activity was determined from the isolated hippocampus. Treatment with tadalafil in aged mice improves working memory than the corresponding tadalafil treated young mice in radial arm maze test. Tadalafil treated mice traveled less distance in the center and the mean speed of tadalafil treated aged mice was significantly lower than the tadalafil treated young mice in open field test. Tadalafil treatment elicited a decrease of MDA level in the hippocampus of aged mice than that of young mice. APOP level was decreased only in aged mice treated with tadalafil. Treatment with tadalafil decreased NO and increased catalase activity in both young and aged mice. On the basis of previous and our findings, we conclude that tadalafil treatment reduces oxidative stress while increased cGMP level in the hippocampus might be responsible for memory enhancement.
Collapse
Affiliation(s)
- Md Mamun Al-Amin
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh.
| | - S M Nageeb Hasan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Tanzir Alam
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Ahmed Tasdid Hasan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Imran Hossain
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Rohini Rowshan Didar
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| |
Collapse
|
38
|
Wang S, Pan DX, Wang D, Wan P, Qiu DL, Jin QH. Nitric oxide facilitates active avoidance learning via enhancement of glutamate levels in the hippocampal dentate gyrus. Behav Brain Res 2014; 271:177-83. [DOI: 10.1016/j.bbr.2014.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 12/28/2022]
|
39
|
Tsai LH, Gräff J. On the resilience of remote traumatic memories against exposure therapy-mediated attenuation. EMBO Rep 2014; 15:853-61. [PMID: 25027989 DOI: 10.15252/embr.201438913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
How to attenuate traumatic memories has long been the focus of intensive research efforts, as traumatic memories are extremely persistent and heavily impinge on the quality of life. Despite the fact that traumatic memories are often not readily amenable to immediate intervention, surprisingly few studies have investigated treatment options for remote traumata in animal models. The few that have unanimously concluded that exposure therapy-based approaches, the most successful behavioral intervention for the attenuation of recent forms of traumata in humans, fail to effectively reduce remote fear memories. Here, we provide an overview of these animal studies with an emphasis on why remote traumatic memories might be refractory to behavioral interventions: A lack of neuroplasticity in brain areas relevant for learning and memory emerges as a common denominator of such resilience. We then outline the findings of a recent study in mice showing that by combining exposure therapy-like approaches with small molecule inhibitors of histone deacetylases (HDACis), even remote memories can be persistently attenuated. This pharmacological intervention reinstated neuroplasticity to levels comparable to those found upon successful attenuation of recent memories. Thus, HDACis-or any other agent capable of heightening neuroplasticity-in conjunction with exposure therapy-based treatments might constitute a promising approach to overcome remote traumata.
Collapse
Affiliation(s)
- Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johannes Gräff
- Brain Mind Institute, School of Life Sciences Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
40
|
Angiotensin-(1-7) improves cognitive function in rats with chronic cerebral hypoperfusion. Brain Res 2014; 1573:44-53. [DOI: 10.1016/j.brainres.2014.05.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/26/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
|
41
|
Vargas LS, Lara MVS, Gonçalves R, Mandredini V, Ponce-Soto LA, Marangoni S, Dal Belo CA, Mello-Carpes PB. The intrahippocampal infusion of crotamine from Crotalus durissus terrificus venom enhances memory persistence in rats. Toxicon 2014; 85:52-8. [PMID: 24813333 DOI: 10.1016/j.toxicon.2014.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 11/16/2022]
Abstract
Previous research has shown that crotamine, a toxin isolated from the venom of Crotalus durissus terrificus, induces the release of acetylcholine and dopamine in the central nervous system of rats. Particularly, these neurotransmitters are important modulators of memory processes. Therefore, in this study we investigated the effects of crotamine infusion on persistence of memory in rats. We verified that the intrahippocampal infusion of crotamine (1 μg/μl; 1 μl/side) improved the persistence of object recognition and aversive memory. By other side, the intrahippocampal infusion of the toxin did not alter locomotor and exploratory activities, anxiety or pain threshold. These results demonstrate a future prospect of using crotamine as potential pharmacological tool to treat diseases involving memory impairment, although it is still necessary more researches to better elucidate the crotamine effects on hippocampus and memory.
Collapse
Affiliation(s)
- Liane S Vargas
- Physiology Research Group, Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, P.O. Box 118, 97500-970 Uruguaiana, RS, Brazil
| | - Marcus V S Lara
- Physiology Research Group, Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, P.O. Box 118, 97500-970 Uruguaiana, RS, Brazil
| | - Rithiele Gonçalves
- Physiology Research Group, Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, P.O. Box 118, 97500-970 Uruguaiana, RS, Brazil
| | - Vanusa Mandredini
- Physiology Research Group, Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, P.O. Box 118, 97500-970 Uruguaiana, RS, Brazil
| | - Luis Alberto Ponce-Soto
- LAQUIP, Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Sergio Marangoni
- LAQUIP, Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Cháriston A Dal Belo
- CIPBIOTEC, Federal University of Pampa (UNIPAMPA), Campus São Gabriel, 97300-000 São Gabriel, RS, Brazil
| | - Pâmela B Mello-Carpes
- Physiology Research Group, Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, P.O. Box 118, 97500-970 Uruguaiana, RS, Brazil.
| |
Collapse
|
42
|
Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 2014; 156:261-76. [PMID: 24439381 DOI: 10.1016/j.cell.2013.12.020] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/22/2013] [Accepted: 12/23/2013] [Indexed: 01/19/2023]
Abstract
Traumatic events generate some of the most enduring forms of memories. Despite the elevated lifetime prevalence of anxiety disorders, effective strategies to attenuate long-term traumatic memories are scarce. The most efficacious treatments to diminish recent (i.e., day-old) traumata capitalize on memory updating mechanisms during reconsolidation that are initiated upon memory recall. Here, we show that, in mice, successful reconsolidation-updating paradigms for recent memories fail to attenuate remote (i.e., month-old) ones. We find that, whereas recent memory recall induces a limited period of hippocampal neuroplasticity mediated, in part, by S-nitrosylation of HDAC2 and histone acetylation, such plasticity is absent for remote memories. However, by using an HDAC2-targeting inhibitor (HDACi) during reconsolidation, even remote memories can be persistently attenuated. This intervention epigenetically primes the expression of neuroplasticity-related genes, which is accompanied by higher metabolic, synaptic, and structural plasticity. Thus, applying HDACis during memory reconsolidation might constitute a treatment option for remote traumata.
Collapse
|
43
|
Moosavi M, Abbasi L, Zarifkar A, Rastegar K. The role of nitric oxide in spatial memory stages, hippocampal ERK and CaMKII phosphorylation. Pharmacol Biochem Behav 2014; 122:164-72. [PMID: 24704435 DOI: 10.1016/j.pbb.2014.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/14/2014] [Accepted: 03/21/2014] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is an important intercellular messenger in the control of physiologic functions. It is synthesized by 3 different nitric oxide synthase enzymes (NOS). Uses of non-selective NOS inhibitor (L-NAME) have shown that NO is involved in neuronal plasticity and memory. This study aimed to determine the differential role of NO in spatial memory formation steps. In addition, regarding the roles of ERK and CaMKII in hippocampal plasticity, the hippocampal ERK and CaMKII activities were assessed to identify the effect of L-NAME on those proteins during each phase of memory. Adult male Sprague-Dawely rats weighing 220-280 g were trained in a single session consisting of 8 trials. To evaluate the effect of L-NAME on acquisition, L-NAME (3 or 10 mg/kg/i.p.) was administered 30 min before training. To assess its effect on the consolidation phase, L-NAME (3 or 10 mg/kg/i.p.) was injected immediately after training and a probe test was carried out 24 h later to analyse memory retention. To determine its effect on memory retrieval L-NAME (3 or 10 mg/kg/i.p.) was injected 30 min before probe trial which was conducted 24 h after training. The hippocampi were isolated after behavioural studies and western blotting analysis on hippocampal lysates was performed to illustrate the levels of phosphorylated ERK and CaMKII. The results showed that pre-training administration of L-NAME in 10 mg/kg but not 3mg/kg deteriorates acquisition. Post-training and pre-probe administration of L-NAME in 10 mg/kg but not 3 mg/kg impaired animal's performance in probe test. Additionally L-NAME treatment decreased the amount of phosphorylated (activated) ERK and CaMKII in the hippocampus. This study showed that endogenous nitric oxide is involved not only in all stages of memory, but also in ERK and CaMKII activation in the hippocampus during all 3 stages of memory.
Collapse
Affiliation(s)
- Maryam Moosavi
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran; Nanotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Leila Abbasi
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Karim Rastegar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
Role of nitric oxide in altered nociception and memory following chronic stress. Physiol Behav 2014; 129:214-20. [DOI: 10.1016/j.physbeh.2014.02.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/05/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
|
45
|
Jafari-Sabet M, Khodadadnejad MA, Ghoraba S, Ataee R. Nitric oxide in the dorsal hippocampal area is involved on muscimol state-dependent memory in the step-down passive avoidance test. Pharmacol Biochem Behav 2014; 117:137-43. [DOI: 10.1016/j.pbb.2013.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/06/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
|
46
|
Nitric oxide mediates the beneficial effect of chronic naltrexone on cholestasis-induced memory impairment in male rats. Behav Pharmacol 2013; 24:195-206. [PMID: 23591123 DOI: 10.1097/fbp.0b013e3283618a8c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies suggest an augmentation of endogenous opioids following bile duct ligation (BDL) and their pivotal role in the pathophysiology of cholestasis. In this study, the effect of naltrexone, an opioid receptor antagonist, was determined on cholestasis-induced memory impairment and the possible involvement of nitric oxide (NO) in this effect. Male Albino-Wistar rats were randomized to sham-operated and BDL-operated groups. In each group, animals were treated for up to 28 days with saline; naltrexone (10 mg/kg); naltrexone and N(G)-nitro-L-arginine methyl ester (L-NAME), a nonselective nitric oxide synthase (NOS) inhibitor (3, 10 mg/kg); naltrexone and aminoguanidine, an inducible NOS inhibitor (100 mg/kg); or methylnaltrexone, a peripherally acting opioid receptor antagonist (3 mg/kg, intraperitoneal). Spatial recognition memory was determined in a Y-maze task on the day before surgery and days 7, 14, 21, and 28 after surgery. Memory performance was impaired 14 days after BDL in cholestatic rats and was significantly reversed by chronic treatment with naltrexone at days 14, 21, and 28 after BDL. On day 21 after BDL, chronic L-NAME produced only a nonsignificant decrease in the beneficial effect of naltrexone, whereas on day 28, chronic administration of both L-NAME and aminoguanidine significantly reversed this effect of naltrexone. It is therefore shown in this study that naltrexone improves BDL-induced memory deficit in rats. We conclude that the memory impairment in cholestatic rats might be because of an increase in the level of endogenous opioids and that naltrexone improved the spatial recognition memory by antagonizing opioid receptors. The observation that the procognitive effect of naltrexone is counteracted either by general inhibition of NOS enzymes or by selective inhibition of inducible NOS suggests the nitrergic pathway as a probable mechanism involved in the amelioration of spatial recognition memory by naltrexone in BDL rats.
Collapse
|
47
|
Alpha-tocopherol in the brain tissue preservation of stroke-prone spontaneously hypertensive rats. J Physiol Biochem 2013; 70:49-60. [DOI: 10.1007/s13105-013-0279-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/23/2013] [Indexed: 12/20/2022]
|
48
|
Serum ghrelin is associated with verbal learning and adiposity in a sample of healthy, fit older adults. BIOMED RESEARCH INTERNATIONAL 2013; 2013:202757. [PMID: 23971025 PMCID: PMC3732628 DOI: 10.1155/2013/202757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/07/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022]
Abstract
The purpose of the present investigation was to determine the relationship between serum ghrelin concentrations, adiposity, and verbal learning in a group of healthy, fit older adults. Participants were 28 healthy older adults (age: 70.8 ± 9.3 yrs, BMI: 27.3 ± 5.7). Participants reported to the laboratory and basic anthropometric data were collected, followed by a blood draw to quantify serum ghrelin. Participants then underwent cognitive testing that included the revised Hopkins Verbal Learning Test (HVLT), as well as the Mini-Mental Status Exam (MMSE). The results of the MMSE test revealed that the volunteers were cognitively intact (MMSE 27.6 ± 1.8). A significant correlation emerged between serum ghrelin concentrations, 2 trials of the HVLT (Trial 1: r = 0.316, P = 0.05; Trial 2: r = 0.395, P = 0.03), and the sum of three-site skinfold analysis (r = 0.417, P = 0.015). Based upon the aforementioned relationships, it appears that fasting levels of serum ghrelin are related to both verbal learning and adiposity in healthy, fit older adults.
Collapse
|
49
|
Finnerty NJ, Bolger FB, Pålsson E, Lowry JP. An investigation of hypofrontality in an animal model of schizophrenia using real-time microelectrochemical sensors for glucose, oxygen, and nitric oxide. ACS Chem Neurosci 2013; 4:825-31. [PMID: 23578219 DOI: 10.1021/cn4000567] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glucose, O2, and nitric oxide (NO) were monitored in real time in the prefrontal cortex of freely moving animals using microelectrochemical sensors following phencyclidine (PCP) administration. Injection of saline controls produced a decrease in glucose and increases in both O2 and NO. These changes were short-lived and typical of injection stress, lasting ca. 30 s for glucose and between 2 and 6 min for O2 and NO, respectively. Subchronic PCP (10 mg/kg) resulted in increased motor activity and increases in all three analytes lasting several hours: O2 and glucose were uncoupled with O2 increasing rapidly following injection reaching a maximum of 70% (ca. 62 μM) after ca. 15 min and then slowly returning to baseline over a period of ca. 3 h. The time course of changes in glucose and NO were similar; both signals increased gradually over the first hour post injection reaching maxima of 55% (ca. 982 μM) and 8% (ca. 31 nM), respectively, and remaining elevated to within 1 h of returning to baseline levels (after ca. 5 and 7 h, respectively). While supporting increased utilization of glucose and O2 and suggesting overcompensating supply mechanisms, this neurochemical data indicates a hyperfrontal effect following acute PCP administration which is potentially mediated by NO. It also confirms that long-term in vivo electrochemical sensors and data offer a real-time biochemical perspective of the underlying mechanisms.
Collapse
Affiliation(s)
- Niall J. Finnerty
- Department
of Chemistry, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Fiachra B. Bolger
- Department
of Chemistry, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience
and Physiology, The Sahlgrenska Academy at University of Gothenburg, PO Box 431, 405 30 Gothenburg, Sweden
| | - John P. Lowry
- Department
of Chemistry, National University of Ireland Maynooth, Co. Kildare, Ireland
| |
Collapse
|
50
|
Mohamed S, Lee Ming T, Jaffri JM. Cognitive enhancement and neuroprotection by catechin-rich oil palm leaf extract supplement. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:819-827. [PMID: 23001939 DOI: 10.1002/jsfa.5802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/03/2012] [Accepted: 06/13/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Catechin-rich oil palm (Elaeis guineensis) leaf extract (OPLE) has good cardiovascular and phytoestrogenic properties. The OPLE (0.5 g day(-1) ) was supplemented to young, healthy, adult human volunteers, and their cognitive learning abilities were compared to placebo-controlled groups (N = 15). Their short-term memories, spatial visualisations, processing speeds, and language skills, were assessed over 2 months by cognitive tests computer programs. RESULTS Relative to the controls, volunteers taking OPLE had improved (P < 0.05) short-term memory, after 1 month of intervention which became highly significant (P < 0.005) after 2 months. The spatial visualisation ability and processing speed improved (P < 0.05) after 2 months consumption. The dietary OPLE showed neuroprotection in nitric oxide-deficient rats. The mechanisms involved systemic and cellular modulations that eventually enhance neuron survival. The longer the duration of OPLE consumption, the more significant was the enhancement, as shown for short-term memory. CONCLUSION This is the first report on the cognitive-enhancing effects of dietary OPLE in humans. The computer-assisted cognitive tests were simple, low in cost, errors and man hours, and hence are better than conventional cognitive test methods. In rats, the equivalent OPLE dose showed brain antioxidant enzymes modulating properties and neuroprotection under nitric oxide deficiency, with possibly neurogenesis in normal rats. This supported the effects in humans.
Collapse
Affiliation(s)
- Suhaila Mohamed
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang Malaysia.
| | | | | |
Collapse
|