1
|
Bhattacharya RS, Singh R, Panghal A, Thakur A, Singh L, Verma RK, Singh C, Goyal M, Kumar J. Multi-Targeting Phytochemicals for Alzheimer's Disease. Phytother Res 2025; 39:1453-1483. [PMID: 39815655 DOI: 10.1002/ptr.8435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/23/2024] [Accepted: 12/28/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative illness in which β-amyloid (Aβ) and tau protein accumulate in neurons in the form of tangles. The pathophysiological pathway of AD consists of Aβ-amyloid peptides, tau proteins, and oxidative stress in neurons and increased neuro-inflammatory response. Food and Drug Administration in the United States has authorized various drugs for the effective treatment of AD, which include galantamine, rivastigmine, donepezil, memantine, sodium oligomannate, lecanemab, and aducanumab. The major disadvantage of these drugs is that they only provide "symptomatic" relief. They are most effective in the early stages or for mild to moderate cases of the disease, but are not suitable for long-term use. Besides conventional therapies, phytochemicals have the potential to stop the progression of AD. According to research, the use of potential phytochemicals against AD has gained attention due to their potent anti-inflammatory, antioxidant, anti-hyperphosphorylation of the tau protein, metal chelation, and anti-amyloid properties. This study seeks to provide an up-to-date compilation of the most current and promising breakthroughs in AD therapy using phytochemicals. It could be concluded that phytochemicals light serve as an effective therapy for AD. However, more mechanistic investigations are needed to determine the clinical implications of phytochemicals in AD treatment.
Collapse
Affiliation(s)
- Radha Shree Bhattacharya
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Punjab, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, Himachal Pradesh, India
| | - Lachhman Singh
- Faculty of Pharmacy, Government Pharmacy College, Seraj, V.P.O. Bagsaid, Mandi, Himachal Pradesh, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| |
Collapse
|
2
|
Abdian S, Fakhri S, Moradi SZ, Khirehgesh MR, Echeverría J. Saffron and its major constituents against neurodegenerative diseases: A mechanistic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156097. [PMID: 39577115 DOI: 10.1016/j.phymed.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Neurodegeneration has been recognized as the main pathophysiological alteration in the majority of brain-related diseases. Despite contemporary attempts to provide acceptable medicinal therapies, the conclusion has not been much beneficial. Besides, the complex pathophysiological mechanisms behind neurodegenerative diseases (NDDs) urge the needs for finding novel multi-target agents. Accordingly, saffron with major active constituents and as multi-targeting agents have shown beneficial effects in modulating NDDs with higher efficacy and lower side effects. PURPOSE The present study provides a systematic and comprehensive review of the existing in vitro, in vivo, and clinical data on the effectiveness, and signaling pathways of saffron and its key phytochemical components in the management of NDDs. The need to develop novel saffron delivery systems is also considered. METHODS Studies were identified through a systematic and comprehensive search in Science Direct, PubMed, and Scopus databases through April 30, 2024. The whole saffron major constituents (e.g., saffron, crocin, crocetin, picrocrocin, and safranal) and NDDs (e.g., neuro*, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, Huntington*, Parkinson*, Alzheimer*, and brain) were selected as keywords to find related studies. In the systematic analysis, 64 articles were directly included in the current study. Additional reports were added within the comprehensive studies in the review. RESULTS Saffron and its active metabolites crocin, crocetin, safranal, and picrocrocin have shown acceptable efficacy in managing NDDs like Alzheimer's disease, Parkinson's disease, Attention deficit hyperactivity disorder, depression, and other NDDs via modulating apoptotic (e.g., caspases, Bax/Bcl-2, cytochrome c, and death receptors), inflammatory (e.g., NF-κB, IL-1β, IL-6, TNF-α, and COX-2), and oxidative strass (e.g., Nrf2, GSH, GPx, CAT, SOD, MDA, ROS, and nitrite) signaling pathways. The presented in vitro, in vivo, and clinical evidences showed us a better future of controlling NDDs with higher efficacy, while decreasing associated side effects with no significant toxicity. Additionally, employing novel delivery systems could increase the efficacy of saffron phytoconstituents to resolve the issues pharmacokinetic limitations. CONCLUSION Saffron and its major constituents employ anti-inflammatory, anti-apoptotic and antioxidant mechanisms in modulating several dysregulated-signaling pathways in NDDs. However, further research is necessary to elucidate the precise underlying mechanisms in exploring the feasibility of using saffron active compounds against NDDs. More studies should focus on dose-response relationships, long-term effects, highlighting key mechanisms, and designing more well-controlled clinical trials. Additionally, developing stable and cost-benefit novel delivery systems in future works helps to remove the pharmacokinetic limitations of saffron major constituents.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Beigoli S, Hajizadeh AA, Taghavizadeh Yazdi ME, Zarei H, Vafaee F, Boskabady MH. The brain and systemic oxidative stress and memory changes induced by inhaled paraquat in rat improved by Crocus sativus. Leg Med (Tokyo) 2024; 71:102525. [PMID: 39243568 DOI: 10.1016/j.legalmed.2024.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The present study aimed to investigate the effect of Crocus sativus (Cs) on paraquat (PQ)-induced learning and memory deficits as well as brain and lung oxidative stress and systemic inflammation, and oxidative stress in rats. Rats were exposed to saline (Ctrl) or PQ (PQ groups) aerosols. PQ groups were treated with 0.03 mg/kg/day dexamethasone (Dexa), 20 and 80 mg/kg/day Cs-L and Cs-H, 5 mg/kg/day pioglitazone (Pio), and Cs-L+Pio for 16 days during PQ exposure period. Learning and memory abilities were assessed by Morris water maze (MWM) and passive avoidance tests. PQ group showed increased numbers of total and differential WBCs in blood, and increased malondialdehyde (MDA), in the serum, brain, and lung but reduced thiol, catalase (CAT), and superoxide dismutase (SOD) levels compared to the control group (for all, p < 0.001). The escape latency and traveled distance were increased in the PQ group. However, the time spent in the target quadrant in the MWM test and the latency to enter the dark room were reduced after receiving an electrical shock (p < 0.05 to P<0.001). In all treated groups, measured values were improved compared to PQ group (p < 0.05 to p < 0.001). The combination of Cs-L+Pio showed more pronounced effects compared to either treatment alone (p < 0.05 to p < 0.001). These findings suggest that Cs has neuroprotective properties and may be beneficial in the treatment of neurodegenerative diseases induced by noxious agents such as PQ.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Asghar Hajizadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossin Zarei
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Sanjari-Pour M, Faridi N, Wang P, Bathaie SZ. Protective effect of saffron carotenoids against amyloid beta-induced neurotoxicity in differentiated PC12 cells via the unfolded protein response and autophagy. Phytother Res 2024; 38:4923-4939. [PMID: 36794286 DOI: 10.1002/ptr.7773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
The preventive effect of saffron against Alzheimer's disease (AD) has been reported. Herein, we studied the effect of Cro and Crt, saffron carotenoids, on the cellular model of AD. The MTT assay, flow cytometry, and elevated p-JNK, p-Bcl-2, and c-PARP indicated the AβOs-induced apoptosis in differentiated PC12 cells. Then, the protective effects of Cro/Crt on dPC12 cells against AβOs were investigated in preventive and therapeutic modalities. Starvation was used as a positive control. RT-PCR and Western blot results revealed the reduced eIF2α phosphorylation and increased spliced-XBP1, Beclin1, LC3II, and p62, which indicate the AβOs-induced autophagic flux defect, autophagosome accumulation, and apoptosis. Cro and Crt inhibited the JNK-Bcl-2-Beclin1 pathway. They altered Beclin1 and LC3II and decreased p62 expressions, leading cells to survival. Cro and Crt altered the autophagic flux by different mechanisms. So, Cro increased the rate of autophagosome degradation more than Crt, while Crt increased the rate of autophagosome formation more than Cro. The application of 4μ8C and chloroquine as the inhibitors of XBP1 and autophagy, respectively, confirmed these results. So, augmentation of the survival branches of UPR and autophagy is involved and may serve as an effective strategy to prevent the progression of AβOs toxicity.
Collapse
Affiliation(s)
- Mariam Sanjari-Pour
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - S Zahra Bathaie
- Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran
- UCLA-DOE Institute, University of California Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
5
|
Pourmousavi L, Asadi RH, Zehsaz F, Jadidi RP. Potential therapeutic effects of crocin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7395-7420. [PMID: 38758225 DOI: 10.1007/s00210-024-03131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Crocin, a natural bioactive compound derived from saffron (Crocus sativus) and other Crocus genera, has gained significant attention recently due to its potential therapeutic properties. The multifaceted nature of crocin's biological effects has piqued the interest of researchers and health enthusiasts, prompting further investigations into its mechanisms of action and therapeutic applications. This review article comprehensively explores the emerging evidence supporting crocin's role as a promising ally in protecting against metabolic disorders. The review covers the molecular mechanisms underlying crocin's beneficial effects and highlights its potential applications in preventing and treating diverse pathological conditions. Understanding the mechanisms through which crocin exerts its protective effects could advance scientific knowledge and offer potential avenues for developing novel therapeutic interventions. As we uncover the potential of crocin as a valuable ally in the fight against disorders, it becomes evident that nature's palette holds remarkable solutions for enhancing our health.
Collapse
Affiliation(s)
- Laleh Pourmousavi
- Department of Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Farzad Zehsaz
- Department of Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | |
Collapse
|
6
|
Manhas D, Dhiman S, Kour H, Kour D, Sharma K, Wazir P, Vij B, Kumar A, Sawant SD, Ahmed Z, Nandi U. ADME/PK Insights of Crocetin: A Molecule Having an Unusual Chemical Structure with Druglike Features. ACS OMEGA 2024; 9:21494-21509. [PMID: 38764638 PMCID: PMC11097163 DOI: 10.1021/acsomega.4c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 05/21/2024]
Abstract
Crocetin is a promising phyto-based molecule to treat Alzheimer's disease (AD). The chemical structure of crocetin is incongruent with various standard structural features of CNS drugs. As poor pharmacokinetic behavior is the major hurdle for any candidate to become a drug, we elucidated its druggable characteristics by implementing in silico, in vitro, and in vivo approaches, as limited ADME/PK information is available. Results demonstrate several attributes of crocetin based on rules of drug-likeness, lipophilicity, pKa, P-gp inhibitory activity, plasma stability, RBC partitioning, metabolic stability, CYP inhibitory action, blood-brain barrier (BBB) permeability, oral bioavailability, and pharmacokinetic interaction with marketed anti-Alzheimer's drugs (memantine, donepezil, galantamine, and rivastigmine). However, aqueous solubility, chemical stability, plasma protein binding, and P-gp induction are some concerns associated with this molecule that should be taken into consideration during its further development. Overall results indicate favorable ADME/PK behavior and potential druggable candidature of crocetin.
Collapse
Affiliation(s)
- Diksha Manhas
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harpreet Kour
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Dilpreet Kour
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuhu Sharma
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Wazir
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Bhavna Vij
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanghapal D. Sawant
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Zabeer Ahmed
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Bej E, Volpe AR, Cesare P, Cimini A, d'Angelo M, Castelli V. Therapeutic potential of saffron in brain disorders: From bench to bedside. Phytother Res 2024; 38:2482-2495. [PMID: 38446350 DOI: 10.1002/ptr.8169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Saffron is a spice derived from the flower of Crocus sativus L., which has been used for centuries as a coloring and flavoring agent, as well as a source of medicinal compounds. Saffron contains various bioactive constituents, such as crocin, crocetin, safranal, picrocrocin, and kaempferol, that have shown potential benefits for human health. Among them, crocin is the most abundant and characteristic constituent of saffron, responsible for its bright red color and antioxidant properties. One of the most promising applications of saffron and its constituents is in the prevention and treatment of neurological disorders, such as depression, anxiety, Alzheimer's disease, Parkinson's disease, and other brain disorders. Saffron and its constituents have been reported to exert neuroprotective effects through various mechanisms, such as modulating neurotransmitters, enhancing neurogenesis, reducing neuroinflammation, regulating oxidative stress, activating the Nrf2 signaling pathway, and modulating epigenetic factors. Several clinical and preclinical studies have demonstrated the efficacy and safety of saffron and its constituents in improving cognitive function, mood, and other neurological outcomes. In this review, we summarize the current evidence on the therapeutic potential of saffron and its constituents in neurological disorders, from bench to bedside. We also discuss the challenges and future directions for the development of saffron-based therapies for brain health.
Collapse
Affiliation(s)
- Erjola Bej
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Rita Volpe
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Patrizia Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
8
|
Beigoli S, Hajizadeh AA, Taghavizadeh Yazdi ME, Khosravi R, Vafaee F, Boskabady MH. Improvement of inhaled paraquat induced lung and systemic inflammation, oxidative stress and memory changes by safranal. Toxicon 2024; 241:107687. [PMID: 38484848 DOI: 10.1016/j.toxicon.2024.107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The effects of safranal and pioglitazone alone and their combination on inhaled paraquat (PQ)-induced systemic oxidative stress and inflammation as well as behavioral changes were examined in rats. In this study, animals were exposed to saline (Ctrl) or PQ (PQ groups) aerosols. PQ exposed animals were treated with dexamethasone, 0.8 and 3.2 mg/kg/day safranal (Saf-L and Saf-H), 5 mg/kg/day pioglitazone (Pio), and Saf-L + Pio for 16 days during PQ exposure period. PQ group showed increased numbers of total and differential WBCs in blood and bronchoalveolar lavage fluid (BALF), increased malondialdehyde (MDA), in the serum BALF and brain reduced thiol, catalase (CAT), and superoxide dismutase (SOD) levels compared to the control group (for all, p < 0.001). The escape latency and traveled distance were enhanced, but the time spent in the target quadrant in the probe day and the latency to enter the dark room 3, 24, 48, and 72 h after receiving an electrical shock, (in the shuttle box test) were decreased in the PQ group (p < 0.05 to P < 0.001). In all treated groups, all measure values were improved compared to PQ group (p < 0.05 to p < 0.001). In combination treated group of Saf-L + Pio, most measured values were more improved than the Saf-L and Pio groups (p < 0.05 to p < 0.001). Saf and Pio improved PQ-induced changes similar to dexamethasone but the effects produced by combination treatments of Saf-L + Pio were more prominent than Pio and Saf-L alone, suggesting a potentiating effect for the combination of the two agents.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Asghar Hajizadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reyhaneh Khosravi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Hamedani SG, Pourmasoumi M, Zarifi SH, Askari G, Jamialahmadi T, Bagherniya M, Sahebkar A. Therapeutic effects of saffron and its components on neurodegenerative diseases. Heliyon 2024; 10:e24334. [PMID: 38298664 PMCID: PMC10827773 DOI: 10.1016/j.heliyon.2024.e24334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/02/2024] Open
Abstract
Due to an increase in the number of older people in recent years, neurodegenerative diseases as the most important age-related neurological disorders are considered as a great threat to human health. The treatment strategies for these disorders are symptomatic and there is no known definitive treatment; however, recently, several studies have investigated the effectiveness of some herbs and their components in limiting the progression and treatment of neurodegenerative disorders. In this study, we searched Medline (via PubMed), Scopus, Science Direct, and Google Scholar databases. The keywords used in the search were: saffron [title/abstract] or (saffron compound [title/abstract]) and (neurological disorders [title/abstract]), publication date range (2010-2023), and language (English). After applying inclusion and exclusion criteria, 30 articles remained. Of the 30 articles included in the study, six studies on the treatment of neurodegenerative disorders by saffron and its components were in the clinical trial phase, and 24 studies were in the preclinical phase. Saffron and its compounds can play an important role in inhibiting neuroinflammation and excitotoxic pathways, modulating autophagy and apoptosis, attenuating oxidative damage, and activating defensive antioxidant enzymes, resulting in neuroprotection against neurodegenerative diseases. Therefore, this study aimed to review the studies on the effects of saffron and its compounds on the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sahar Golpour- Hamedani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of medical science, Iran
| | - Makan Pourmasoumi
- Gastrointestinal & Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Wang W, Jiang S, Zhao Y, Zhu G. Echinacoside: A promising active natural products and pharmacological agents. Pharmacol Res 2023; 197:106951. [PMID: 37804927 DOI: 10.1016/j.phrs.2023.106951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Echinacoside, a natural phenylethanoid glycoside, was discovered and isolated from the garden plant Echinacea angustifolia DC., belonging to the Compositae family, approximately sixty years ago. Extensive investigations have revealed that it possesses a wide array of pharmacologically beneficial activities for human health, particularly notable for its neuroprotective and anticancer activity. Several crucial concerns surfaced, encompassing the recognition of active metabolites that exhibited inadequate bioavailability in their prototype form, the establishment of precise molecular signal pathways or targets associated with the aforementioned effects of echinacoside, and the scarcity of dependable clinical trials. Hence, the question remains unanswered as to whether scientific research can effectively utilize this natural compound. To support future studies on this natural product, it is imperative to provide a systematic overview and insights into potential future prospects. The current review provides a comprehensive analysis of the existing knowledge on echinacoside, encompassing its wide distribution, structural diversity and metabolism, diverse therapeutic applications, and improvement of echinacoside bioavailability for its potential utilization.
Collapse
Affiliation(s)
- Wang Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shujun Jiang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
11
|
Shehata NI, Abd EL-Salam DM, Hussein RM, Rizk SM. Effect of safranal or candesartan on 3-nitropropionicacid-induced biochemical, behavioral and histological alterations in a rat model of Huntington's disease. PLoS One 2023; 18:e0293660. [PMID: 37910529 PMCID: PMC10619823 DOI: 10.1371/journal.pone.0293660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
3-nitropropionic acid (3-NP) is a potent mitochondrial inhibitor mycotoxin. Systemic administration of 3-NP can induce Huntington's disease (HD)-like symptoms in experimental animals. Safranal (Safr) that is found in saffron essential oil has antioxidant, anti-inflammatory and anti-apoptotic actions. Candesartan (Cands) is an angiotensin receptor blocker that has the potential to prevent cognitive deficits. The present study aims to investigate the potential neuroprotective efficacy of Safr or Cands in 3-NP-induced rat model of HD. The experiments continued for nine consecutive days. Rats were randomly assigned into seven groups. The first group (Safr-control) was daily intraperitoneally injected with paraffin oil. The second group (Cands- and 3-NP-control) daily received an oral dose of 0.5% carboxymethylcellulose followed by an intraperitoneal injection of 0.9% saline. The third and fourth groups received a single daily dose of 50 mg/kg Safr (intraperitoneal) and 1 mg/kg Cands (oral), respectively. The sixth group was daily treated with 50 mg Safr kg/day (intraperitoneal) and was intraperitoneally injected with 20 mg 3-NP/ kg, from the 3rd till the 9th day. The seventh group was daily treated with 1 mg Cands /kg/day (oral) and was intraperitoneally injected with 20 mg 3-NP/ kg, from the 3rd till the 9th day. The present results revealed that 3-NP injection induced a considerable body weight loss, impaired memory and locomotor activity, reduced striatal monoamine levels. Furthermore, 3-NP administration remarkably increased striatal malondialdehyde and nitric oxide levels, whereas markedly decreased the total antioxidant capacity. Moreover, 3-NP significantly upregulated the activities of inducible nitric oxide synthase and caspase-3 as well as the Fas ligand, in striatum. On the contrary, Safr and Cands remarkably alleviated the above-mentioned 3-NP-induced alterations. In conclusion, Safr and Cands may prevent or delay the progression of HD and its associated impairments through their antioxidant, anti-inflammatory, anti-apoptotic and neuromodulator effects.
Collapse
Affiliation(s)
| | | | | | - Sherine Maher Rizk
- Faculty of Pharmacy, Biochemistry Department, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Abbaszade-Cheragheali A, Kakhki S, Khatibi SR, Hosseini M, Navari F, Beheshti F. Feeding crocin ameliorate cognitive dysfunction, oxidative stress and neuroinflammation induced by unpredictable chronic mild stress in rats. Inflammopharmacology 2023; 31:2079-2090. [PMID: 37261629 DOI: 10.1007/s10787-023-01250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION The aim of the current study was to investigate the probable mechanism and effect of crocin on brain oxidative damage and memory deficits induced by unpredictable chronic mild stress (UCMS). MATERIALS AND METHODS Male Wistar rats were randomly divided into six groups consisting of one vehicle group (received normal saline), four groups included rats who received UCMS 4 weeks out of which three groups were pretreated with different doses of crocin (10, 20, and 30 mg/kg/day) concomitantly. To assess the pure effect of crocin, the last experimental group received a high dose of crocin (30 mg/kg/day) without exposure to the UCMS procedure. The behavioral tests including Morris water maze (MWM) and passive avoidance (PA) were performed and eventually they were sacrificed for the estimation of biochemical parameters. RESULTS The increase in Malondialdehyde (MDA) as an oxidative stress indicator and nitrite levels in the hippocampus were observed in UCMS rats, along with memory deficits in behavioral tests including passive avoidance and Morris water maze (MWM) test. Moreover, treatment with crocin decreased MDA, nitrite, pro-inflammatory cytokine such as TNF-α, and pathological hallmark of Alzheimer's disease including amyloid-β (Aβ), and glial fibrillary acidic protein (GFAP) in the hippocampus, whereas antioxidant agents including total thiol content, SOD, and catalase activity were increased. Also behavioral test demonstrated a positive effect of crocin on memory deficit induced by UCMS. Interlukin-10 as an important anti-inflammatory agent was increased as well. Interestingly, in some behavioral and biochemical findings, treatment with 30 mg/kg of crocin has given better results compared to vehicle group, which means the administration of crocin could have preventive effects on learning and memory impairment. CONCLUSION The present study strongly confirmed the positive effect of crocin and has the potential as an antioxidant and anti-inflammatory agent that could improve memory impairment induced by UCMS.
Collapse
Affiliation(s)
- Ali Abbaszade-Cheragheali
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Samaneh Kakhki
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Clinical Biochemistry, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Reza Khatibi
- Department of Public Health, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Navari
- Imam Hossein Educational Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
13
|
Sadat Rafiei SK, Abolghasemi S, Frashidi M, Ebrahimi S, Gharei F, Razmkhah Z, Tavousi N, Mahmoudvand B, Faani M, Karimi N, Abdi A, Soleimanzadeh M, Ahmadpour Youshanlui M, Sadatmadani SF, Alikhani R, Pishkari Y, Deravi N. Saffron and Sleep Quality: A Systematic Review of Randomized Controlled Trials. Nutr Metab Insights 2023; 16:11786388231160317. [PMID: 37484523 PMCID: PMC10357048 DOI: 10.1177/11786388231160317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/12/2023] [Indexed: 07/25/2023] Open
Abstract
Background Sleep quality is defined as an individual's consent to sleep experience. Poor sleep quality has important adverse health outcomes. There are drugs to treat sleep disorders but consumption of these drugs is accompanied by adverse effects whereas herbal treatments have fewer side effects. Saffron is spice obtained from Crocus sativus flower. Several articles have been done on its effects on the quality of sleep and its safety. This review for the first time critically evaluates effect of saffron on sleep quality improvement. Method The search technique aims to get all related published data-based up to 2022 articles. PubMed, Central, Google Scholar, and Scopus were examined. Only full reports were evaluated (abstracts were excluded). The first screening was done by title and abstract. Then full text of articles was read and irrelevant articles were removed. Duplicate articles were also removed by Endnote. By using Cochrane risk of bias tool assessment, a quality score based on probability of bias was given. Methodological characteristics were also evaluated using the criteria of Stevinson and Ernst. Result In the systematic review, 5 randomized clinical trials with 379 participants from 3 countries were identified. In placebo-comparison trials, saffron contains a large treatment. Conclusion It seems that saffron has a beneficial influence on duration and quality of sleep. Saffron, crocin, and safranal induce hypnotic effects by increasing the duration of sleep. Research conducted so far provides initial support and safety for use of saffron to improve sleep quality.
Collapse
Affiliation(s)
- Seyyed Kiarash Sadat Rafiei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Setare Abolghasemi
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Frashidi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Ebrahimi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Gharei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razmkhah
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Tavousi
- Student Research committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Mahmoudvand
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Faani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Karimi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Soleimanzadeh
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | - Yasamin Pishkari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Goyal A, Verma A, Agrawal A, Dubey N, Kumar A, Behl T. Therapeutic implications of crocin in Parkinson's disease: A review of preclinical research. Chem Biol Drug Des 2023; 101:1229-1240. [PMID: 36752710 DOI: 10.1111/cbdd.14210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Parkinson's disease is among the most common forms of neurodegenerative illness, with present treatment being primarily symptomatic and frequently coming with substantial adverse effects. Neuronal degeneration may arise due to a variety of pathological events, like inflammatory responses, neurotransmitter dysregulation, oxidative damage, mitochondrial malfunction, apoptosis, and genetic factors. The health issue and financial burden brought on by Parkinson's disease can worsen as the population ages. In the search for new and secure therapeutic agents for Parkinson's disease, several natural compounds have been shown to exert considerable neuroprotective benefits. Crocin, a naturally occurring carotenoid molecule, was found to have neuroprotective potential in the therapy of this disorder. Taking into account, the outcomes of various studies and the restorative actions of crocin, the present study emphasized the protective ability of crocin in this disease. Given the strong evidence supporting the neuroprotective ability of crocin, it is inferred that crocin inhibits inflammatory, apoptotic, and antioxidant processes through multiple mechanisms. Therefore, this compound is considered a safe and effective therapeutic choice for neurodegenerative illnesses like Parkinson's disease. However, more research on its efficacy as a treatment of Parkinson's disease is needed, specifically examining its mechanisms and the results obtained in clinical trials.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Abhay Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidohli, Uttarakhand, India
| |
Collapse
|
15
|
Tajaddini A, Roshanravan N, Mobasseri M, Haleem Al-Qaim Z, Hadi A, Aeinehchi A, Sefid-Mooye Azar P, Ostadrahimi A. The effect of saffron (Crocus sativus L.) on glycemia, lipid profile, and antioxidant status in patients with type-2 diabetes mellitus: A randomized placebo-controlled trial. Phytother Res 2023; 37:388-398. [PMID: 36580575 DOI: 10.1002/ptr.7600] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 12/30/2022]
Abstract
In the current study, we aimed to investigate the effect of saffron supplementation on glycemic status, lipid profile, atherogenic indices, and oxidative status in patients with type-2 diabetes (T2DM). In a randomized, double-blind controlled trial, 70 patients were randomly allocated into two groups (n = 35, each) and received 100 mg/day of saffron or placebo for eight weeks. Dietary intake, weight, body mass index (BMI), waist and hip circumferences (WC and HC), waist to hip ratio (WHR), fasting blood sugar (FBS), hemoglobin A1c (HbA1c), insulin, and Homeostatic model assessment for insulin resistance (HOMA-IR), lipid profile, atherogenic indices, oxidative status, and liver enzymes were determined before and after the intervention. At the end of the eighth week, saffron intervention could significantly reduce FBS (7.57%), lipid profile (except high-density lipoprotein cholesterol [HDL-C]), atherogenic indices, and liver enzymes (p < .05). Moreover, saffron could improve oxidative status (nitric oxide [NO] and malondialdehyde [MDA] reduced by 26.29% and 16.35%, respectively). Catalase (CAT) concentration remained unchanged. Saffron supplementation may alleviate T2DM by improving glycemic status, lipid profile, liver enzymes, and oxidative status. Further investigation is necessary to assess possible side effects and confirm the positive effect of saffron as a complementary therapy in clinical recommendations for T2DM.
Collapse
Affiliation(s)
- Aynaz Tajaddini
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Endocrinology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amir Hadi
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Aydin Aeinehchi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Ali A, Yu L, Kousar S, Khalid W, Maqbool Z, Aziz A, Arshad MS, Aadil RM, Trif M, Riaz S, Shaukat H, Manzoor MF, Qin H. Crocin: Functional characteristics, extraction, food applications and efficacy against brain related disorders. Front Nutr 2022; 9:1009807. [PMID: 36583211 PMCID: PMC9792498 DOI: 10.3389/fnut.2022.1009807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Crocin is a bioactive compound that naturally occurs in some medicinal plants, especially saffron and gardenia fruit. Different conventional and novel methods are used for its extraction. Due to some control conditions, recent methods such as ultrasonic extraction, supercritical fluid extraction, enzyme-associated extraction, microwave extraction, and pulsed electric field extraction are widely used because these methods give more yield and efficiency. Crocin is incorporated into different food products to make functional foods. However, it can also aid in the stability of food products. Due to its ability to protect against brain diseases, the demand for crocin has been rising in the pharmaceutical industry. It also contain antioxidant, anti-inflammatory, anticancer and antidepressant qualities. This review aims to describe crocin and its role in developing functional food, extraction, and bioavailability in various brain-related diseases. The results of the literature strongly support the importance of crocin against various diseases and its use in making different functional foods.
Collapse
Affiliation(s)
- Anwar Ali
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Liang Yu
- Department of Research and Development Office, Hunan First Normal University, Changsha, China,*Correspondence: Liang Yu
| | - Safura Kousar
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Afifa Aziz
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering, Syke, Germany
| | - Sakhawat Riaz
- Department of Home Economics, Government College University, Faisalabad, Pakistan,Food and Nutrition Society, Gilgit Baltistan, Pakistan
| | - Horia Shaukat
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China,School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Muhammad Faisal Manzoor
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha, China,Hong Qin
| |
Collapse
|
17
|
López-Taboada I, Sal-Sarria S, Vallejo G, Coto-Montes A, Conejo NM, González-Pardo H. Sexual dimorphism in spatial learning and brain metabolism after exposure to a western diet and early life stress in rats. Physiol Behav 2022; 257:113969. [PMID: 36181786 DOI: 10.1016/j.physbeh.2022.113969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023]
Abstract
Prolonged daily intake of Western-type diet rich in saturated fats and sugars, and exposure to early life stress have been independently linked to impaired neurodevelopment and behaviour in animal models. However, sex-specific effects of both environmental factors combined on spatial learning and memory, behavioural flexibility, and brain oxidative capacity have still not been addressed. The current study aimed to evaluate the impact of maternal and postnatal exposure to a high-fat and high-sugar diet (HFS), and exposure to early life stress by maternal separation in adult male and female Wistar rats. For this purpose, spatial learning and memory and behavioural flexibility were evaluated in the Morris water maze, and regional brain oxidative capacity and oxidative stress levels were measured in the hippocampus and medial prefrontal cortex. Spatial memory, regional brain oxidative metabolism, and levels of oxidative stress differed between females and males, suggesting sexual dimorphism in the effects of a HFS diet and early life stress. Males fed the HFS diet performed better than all other experimental groups independently of early life stress exposure. However, behavioural flexibility evaluated in the spatial reversal leaning task was impaired in males fed the HFS diet. In addition, exposure to maternal separation or the HFS diet increased the metabolic capacity of the prefrontal cortex and dorsal hippocampus in males and females. Levels of oxidative stress measured in the latter brain regions were also increased in groups fed the HFS diet, but maternal separation seemed to dampen regional brain oxidative stress levels. Therefore, these results suggest a compensatory effect resulting from the interaction between prolonged exposure to a HFS diet and early life stress.
Collapse
Affiliation(s)
- Isabel López-Taboada
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Saúl Sal-Sarria
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Guillermo Vallejo
- Methodology area, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain
| | - Ana Coto-Montes
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain; Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
18
|
Authentication of Iranian Saffron (Crocus sativus) Using Stable Isotopes δ13C and δ2H and Metabolites Quantification. Molecules 2022; 27:molecules27206801. [DOI: 10.3390/molecules27206801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Saffron is a very high value-added ingredient used in the food supplement market and contains a high level of safranal. Adding synthetic safranal to saffron, which is significantly cheaper, and falsifying the origin of saffron may represent recurrent fraud. Saffron from different countries was analyzed to determine the stable isotope ratios δ13C and δ2H from safranal by gas chromatography coupled with isotope-ratio mass spectrometry (GC-C/P-IRMS) and the concentration of saffron metabolites with ultra-high performance liquid chromatography coupled with diode array detector (UHPLC-DAD). The isotopic analysis highlighted a higher ratio of δ2H in synthetic safranal than in natural safranal; the mean values were 36‰ (+/− 40) and −210‰ (+/− 35), respectively. The δ13C between Iranian, Spanish and other saffron was significantly different and represents median values of −28.62‰, −30.12‰ and −30.70‰, respectively. Moreover, linear and quadratic discriminant analyses (LDA and QDA) were computed using the two isotope ratios of safranal and the saffron metabolites. A first QDA showed that trans-crocetin and the δ13C of safranal, picrocrocin, and crocin C3 concentrations clearly differentiated Iranian saffron from other origins. A second model identified δ13C, trans-crocetin, crocin C2, crocin C3, and picrocrocin as good predictors to discriminate saffron samples from Iran, Spain, or other origins, with a total ability score classification matrix of 100% and a prediction matrix of 82.5%. This combined approach may be a useful tool to authenticate the origin of unknown saffron.
Collapse
|
19
|
Rasi Marzabadi L, Fazljou SMB, Araj-Khodaei M, Sadigh-Eteghad S, Naseri A, Talebi M. Saffron reduces some inflammation and oxidative stress markers in donepezil-treated mild-to-moderate Alzheimer's Disease patients: A randomized double-blind placebo-control trial. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
An In Vitro Study of Saffron Carotenoids: The Effect of Crocin Extracts and Dimethylcrocetin on Cancer Cell Lines. Antioxidants (Basel) 2022; 11:antiox11061074. [PMID: 35739971 PMCID: PMC9220052 DOI: 10.3390/antiox11061074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Crocus sativus L. has various pharmacological properties, known for over 3600 years. These properties are attributed mainly to biologically active substances, which belong to the terpenoid group and include crocins, picrocrocin and safranal. The aim of the current work was to examine the effects of crocins (CRCs) and their methyl ester derivate dimethylcrocetin (DMCRT) on glioblastoma and rhabdomyosarcoma cell lines, in terms of cytotoxicity and gene expression, implicated in proapoptotic and cell survival pathways. Cell cytotoxicity was assessed with Alamar Blue fluorescence assay after treatment with saffron carotenoids for 24, 48 and 72 h and concentrations ranging from 22.85 to 0.18 mg/mL for CRCs and 11.43 to 0.09 mg/mL for DMCRT. In addition, BAX, BID, BCL2, MYCN, SOD1, and GSTM1 gene expression was studied by qRT-PCR analysis. Both compounds demonstrated cytotoxic effects against glioblastoma and rhabdomyosarcoma cell lines, in a dose- and time-dependent manner. They induced apoptosis, via BAX and BID upregulation, MYCN and BCL-2, SOD1, GSTM1 downregulation. The current research denotes the possible anticancer properties of saffron carotenoids, which are considered safe phytochemicals, already tested in clinical trials for their health promoting properties.
Collapse
|
21
|
Siddiqui SA, Ali Redha A, Snoeck ER, Singh S, Simal-Gandara J, Ibrahim SA, Jafari SM. Anti-Depressant Properties of Crocin Molecules in Saffron. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072076. [PMID: 35408474 PMCID: PMC9000812 DOI: 10.3390/molecules27072076] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
Saffron is a valued herb, obtained from the stigmas of the C. sativus Linn (Iridaceae), with therapeutic effects. It has been described in pharmacopoeias to be variously acting, including as an anti-depressant, anti-carcinogen, and stimulant agent. The therapeutic effects of saffron are harbored in its bioactive molecules, notably crocins, the subject of this paper. Crocins have been demonstrated to act as a monoamine oxidase type A and B inhibitor. Furthermore, saffron petal extracts have experimentally been shown to impact contractile response in electrical field stimulation. Other research suggests that saffron also inhibits the reuptake of monoamines, exhibits N-methyl-d-aspartate antagonism, and improves brain-derived neurotrophic factor signaling. A host of experimental studies found saffron/crocin to be similarly effective as fluoxetine and imipramine in the treatment of depression disorders. Saffron and crocins propose a natural solution to combat depressive disorders. However, some hurdles, such as stability and delivery, need to be overcome.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany;
- German Institute of Food Technologies (DIL e.V.), 49610 D-Quakenbrück, Germany
| | - Ali Ali Redha
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Edgar Remmet Snoeck
- Food Technology Study Programme, HAS University of Applied Sciences, Onderwijsboulevard 221, 5223 DE ‘s-Hertogenbosch, The Netherlands;
| | - Shubhra Singh
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, No. 1, Xuefu Rd, Neipu Township, Pingtung City 912, Taiwan;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain;
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, E. Market Street, 1601, Greensboro, NC 24711, USA;
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain;
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189, Iran
- Correspondence:
| |
Collapse
|
22
|
Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, Bouyahya A, Venditti A, Sen S, Acharya K, Bashiry M, Ezzat SM, Setzer WN, Martorell M, Mileski KS, Bagiu IC, Docea AO, Calina D, Cho WC. The Pharmacological Activities of Crocus sativus L.: A Review Based on the Mechanisms and Therapeutic Opportunities of its Phytoconstituents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8214821. [PMID: 35198096 PMCID: PMC8860555 DOI: 10.1155/2022/8214821] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Crocus species are mainly distributed in North Africa, Southern and Central Europe, and Western Asia, used in gardens and parks as ornamental plants, while Crocus sativus L. (saffron) is the only species that is cultivated for edible purpose. The use of saffron is very ancient; besides the use as a spice, saffron has long been known also for its medical and coloring qualities. Due to its distinctive flavor and color, it is used as a spice, which imparts food preservative activity owing to its antimicrobial and antioxidant activity. This updated review discusses the biological properties of Crocus sativus L. and its phytoconstituents, their pharmacological activities, signaling pathways, and molecular targets, therefore highlighting it as a potential herbal medicine. Clinical studies regarding its pharmacologic potential in clinical therapeutics and toxicity studies were also reviewed. For this updated review, a search was performed in the PubMed, Science, and Google Scholar databases using keywords related to Crocus sativus L. and the biological properties of its phytoconstituents. From this search, only the relevant works were selected. The phytochemistry of the most important bioactive compounds in Crocus sativus L. such as crocin, crocetin, picrocrocin, and safranal and also dozens of other compounds was studied and identified by various physicochemical methods. Isolated compounds and various extracts have proven their pharmacological efficacy at the molecular level and signaling pathways both in vitro and in vivo. In addition, toxicity studies and clinical trials were analyzed. The research results highlighted the various pharmacological potentials such as antimicrobial, antioxidant, cytotoxic, cardioprotective, neuroprotective, antidepressant, hypolipidemic, and antihyperglycemic properties and protector of retinal lesions. Due to its antioxidant and antimicrobial properties, saffron has proven effective as a natural food preservative. Starting from the traditional uses for the treatment of several diseases, the bioactive compounds of Crocus sativus L. have proven their effectiveness in modern pharmacological research. However, pharmacological studies are needed in the future to identify new mechanisms of action, pharmacokinetic studies, new pharmaceutical formulations for target transport, and possible interaction with allopathic drugs.
Collapse
Affiliation(s)
- Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timișoara, Romania
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Laxman Singh
- G.B. Pant National Institute of Himalayan Environment & Sustainable Development Kosi-Katarmal, Almora, Uttarakhand, India
| | - Nora M. Aborehab
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Alessandro Venditti
- Dipartimento di Chimica, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Moein Bashiry
- Department of Food Science and Technology, Nutrition and Food Sciences Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Ksenija S. Mileski
- Department of Morphology and Systematic of Plants, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timișoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timișoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
23
|
Shahat AS, Hassan WA, El-Sayed WM. N-Acetylcysteine and Safranal prevented the brain damage induced by hyperthyroidism in adult male rats. Nutr Neurosci 2022; 25:231-245. [PMID: 32264788 DOI: 10.1080/1028415x.2020.1743917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Hyperthyroidism is associated with impairment in the neurotransmission and severe tissue damage in the brain. The present study explored the potential deleterious effects of experimentally-induced hyperthyroidism on the neurotransmitters, oxidative homeostasis, apoptosis and DNA fragmentation in cerebral cortex, thalamus & hypothalamus, and hippocampus in rats.Methods and Results: The ameliorative effects of N-acetylcysteine (NAC; 50 mg/kg, oral) and safranal (50 mg/kg, intraperitoneal) against hyperthyroidism (L-T4 500 µg/kg, subcutaneous) were investigated. All treatments continued daily over three weeks. Hyperthyroidism was manifested by significant elevations in serum fT3 and fT4 levels and a decline in serum TSH level and body weight. It was also characterized by significant elevations in the levels of dopamine, serotonin, and 5-hydroxyindole acetic acid, and monoamine oxidase activity to varying degrees in the brain regions examined and a significant reduction in norepinephrine in hippocampus only. Hyperthyroidism resulted in a significant oxidative stress in brain typified by elevations in malondialdehyde and nitric oxide content and reductions in glutathione level and SOD and catalase activities. This led to elevations in Caspases 9 and 3 and a reduction in Bcl2 resulting in DNA damage and confirmed by the histopathology of brain tissue. The administration of NAC or safranal with L-T4 prevented these deleterious effects by reducing the oxidative load and improving the brain antioxidant status.Conclusions: Hyperthyroidism disrupted the neurotransmitters in the brain which aggravated the oxidative stress and resulted in apoptosis. N-Acetylcysteine and safranal prevented these deleterious effects by enhancing the poor antioxidant milieu of the brain.
Collapse
Affiliation(s)
- Asmaa S Shahat
- Hormone Evaluation Department, National Organisation for Drug Control and Research, Cairo, Egypt
| | - Wafaa A Hassan
- Hormone Evaluation Department, National Organisation for Drug Control and Research, Cairo, Egypt
| | - Wael M El-Sayed
- Faculty of Science, Department of Zoology, University of Ain Shams, Cairo, Egypt
| |
Collapse
|
24
|
El Midaoui A, Ghzaiel I, Vervandier-Fasseur D, Ksila M, Zarrouk A, Nury T, Khallouki F, El Hessni A, Ibrahimi SO, Latruffe N, Couture R, Kharoubi O, Brahmi F, Hammami S, Masmoudi-Kouki O, Hammami M, Ghrairi T, Vejux A, Lizard G. Saffron (Crocus sativus L.): A Source of Nutrients for Health and for the Treatment of Neuropsychiatric and Age-Related Diseases. Nutrients 2022; 14:nu14030597. [PMID: 35276955 PMCID: PMC8839854 DOI: 10.3390/nu14030597] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Saffron (Crocus sativus L.) is a medicinal plant, originally cultivated in the East and Middle East, and later in some Mediterranean countries. Saffron is obtained from the stigmas of the plant. Currently, the use of saffron is undergoing a revival. The medicinal virtues of saffron, its culinary use and its high added value have led to the clarification of its phytochemical profile and its biological and therapeutic characteristics. Saffron is rich in carotenoids and terpenes. The major products of saffron are crocins and crocetin (carotenoids) deriving from zeaxanthin, pirocrocin and safranal, which give it its taste and aroma, respectively. Saffron and its major compounds have powerful antioxidant and anti-inflammatory properties in vitro and in vivo. Anti-tumor properties have also been described. The goal of this review is to present the beneficial effects of saffron and its main constituent molecules on neuropsychiatric diseases (depression, anxiety and schizophrenia) as well as on the most frequent age-related diseases (cardiovascular, ocular and neurodegenerative diseases, as well as sarcopenia). Overall, the phytochemical profile of saffron confers many beneficial virtues on human health and, in particular, on the prevention of age-related diseases, which is a major asset reinforcing the interest for this medicinal plant.
Collapse
Affiliation(s)
- Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia 52000, Morocco;
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
- Correspondence: (A.E.M.); (G.L.); Tel.: +1-514-343-6111 (ext. 3320) (A.E.M.); +33-3-80-39-62-56 (G.L.)
| | - Imen Ghzaiel
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comte, 21000 Dijon, France;
| | - Mohamed Ksila
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Amira Zarrouk
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
- Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Farid Khallouki
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia 52000, Morocco;
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
| | - Salama Ouazzani Ibrahimi
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
| | - Norbert Latruffe
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
| | - Omar Kharoubi
- Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran1 ABB, Oran 31000, Algeria;
| | - Fatiha Brahmi
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Sonia Hammami
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Olfa Masmoudi-Kouki
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Mohamed Hammami
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Taoufik Ghrairi
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Correspondence: (A.E.M.); (G.L.); Tel.: +1-514-343-6111 (ext. 3320) (A.E.M.); +33-3-80-39-62-56 (G.L.)
| |
Collapse
|
25
|
Samad N, Hafeez F, Imran I. D-galactose induced dysfunction in mice hippocampus and the possible antioxidant and neuromodulatory effects of selenium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5718-5735. [PMID: 34424474 DOI: 10.1007/s11356-021-16048-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Aging is an ultimate reality that everyone has to face. D-galactose (D-gal) has been used extensively to develop aging model. Trace elements such as selenium (Se) have been used as a potential antioxidant for neuro-protection. The present work aims to develop therapeutic agents such as Se for the treatment of aging-induced neurological ailments such as anxiety, depression, and memory impairment. For this purpose, mice were treated with D-gal at a dose of 300 mg/ml/kg and various doses of Se (0.175 and 0.35mg/ml/kg) for 28 days. Behavioral tests were monitored after treatment days. After the behavioral assessment, mice were decapitated and their brains were collected. Hippocampi were removed from the brain for biochemical, neurochemical, and histopathological analysis. The present findings of behavioral analysis showed that D-gal-induced anxiety- and depression-like symptoms were inhibited by both doses of Se. D-gal-induced memory alteration was also prevented by repeated doses of Se (0.175 and 0.35mg/ml/kg). Biochemical analysis showed that D-gal-induced increase of oxidative stress and inflammatory markers and decrease of antioxidant enzymes and total protein contents in the hippocampus were prevented by Se administration. An increase in the activity of acetylcholinesterase was also diminished by Se. The neurochemical assessment showed that D-gal-induced increased serotonin metabolism and decreased acetylcholine levels in the hippocampus were restored by repeated treatment of Se. Histopathological estimations also exhibited; normalization of D-gal induced neurodegenerative changes. It is concluded that D-gal-induced dysfunction in mice hippocampus caused anxiety, depression, memory impairment, oxidative stress, neuro-inflammation, and histological alterations that were mitigated by Se via its antioxidant potential, anti-inflammatory property, and modulating capability of serotonergic and cholinergic functions.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Farheen Hafeez
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
26
|
The Novel Role of Crocus sativus L. in Enhancing Skin Flap Survival by Affecting Apoptosis Independent of mTOR: A Data-Virtualized Study. Aesthetic Plast Surg 2022; 46:3047-3062. [PMID: 36044060 PMCID: PMC9430006 DOI: 10.1007/s00266-022-03048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite the improvements to enhance skin flap viability, the effects of ischemia-reperfusion (IR), oxidative stress, necrosis, and apoptosis are still challenging. Crocus sativus L. (Saffron) is highly noticeable due to its tissue-protective and antioxidant properties. So, we aimed to investigate its effects on skin flap viability, oxidative stress, apoptosis markers, histopathological changes, and mTOR/p-mTOR expression. MATERIALS AND METHODS 40 Sprauge-Dawley rats, weighting 200-240 g, were divided into four groups including: (1) Sham (8 × 3 cm skin cut, without elevation); (2) Flap Surgery (8 × 3 cm skin flap with elevation from its bed); (3) Saffron 40 mg/kg + Flap Surgery; and (4) Saffron 80 mg/kg + Flap Surgery. Saffron was administrated orally for 7 days. At day 7, flap necrosis percentage, histopathological changes, malondialdehyde level, Myeloperoxidase and superoxide dismutase activity, Bax, Bcl-2, mTOR, and p-mTOR expression were measured. Protein expressions were controlled by β-Actin. RESULTS Saffron administration decreased flap necrosis percentage (p < 0.01), which was not dose-dependent. Treatment groups showed significant histological healing signs (Neovascularization, Fibroblast migration, Epithelialization, and Epithelialization thickness), decreased MDA content (p < 0.01), increased SOD (p < 0.01) and decreased MPO activity (p < 0.01). Bax and Bcl-2 expression, decreased and increased respectively in treated groups (p < 0.0001). mTOR and p-mTOR expression were not changed significantly in Saffron treated groups. CONCLUSION Saffron could increase skin flap viability, alleviate necrosis, decrease oxidative stress and decrease apoptotic cell death, after skin flap surgery, but it acts independent of the mTOR pathway. So, Saffron could potentially be used clinically to enhance skin flap viability. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266. https://www.springer.com/00266.
Collapse
|
27
|
El-Baz FK, Abdel Jaleel GA, Hussein RA, Saleh DO. Dunalialla salina microalgea and its isolated zeaxanthin mitigate age-related dementia in rats: Modulation of neurotransmission and amyloid-β protein. Toxicol Rep 2021; 8:1899-1908. [PMID: 34926168 PMCID: PMC8648797 DOI: 10.1016/j.toxrep.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/30/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022] Open
Abstract
D. salina as well as its isolated zeaxanthin showed marked recovery of the D-gal-induced effect on the escape latency time. D. salina exerted an amelioration in the brain Aβ contents and an increase in the brain 5-HT, NE and DOP levels. These effects were confirmed by histopathological increase in number of viable neurons in both cerebral cortex and hippocampus.
Age-related deterioration of sensorimotor and cognitive abilities suggests that the brain undergoes regressive alterations with aging that compromise its function. Thus, the present study was designed to assess the efficacy of Dunaliella salina in counteracting D-galactose (D-gal)-induced dementia brain aging and its modulatory role in attenuating amyloid β (Aβ) protein and neurotransmitters. Aging associated dementia was generated by injection of D-gal (200 mg/kg; i.p) of rats for 8 weeks. D. salina biomass (250 mg/kg), polar (30 mg/kg), its carotenoid (30 mg/kg) fractions as well as the isolated zeaxanthin (250 μg/kg) were given orally simultaneously with D-gal for additional two weeks. Twenty-four hours after the last treatment dose; behavioral, biochemical and histopathological assessment were performed. Results showed that oral treatment of motor deficit rats with D. salina biomass and its isolated polar and carotenoid fractions showed amelioration in the motor coordination assessed by the rotarod test and in the memory and learning capabilities evaluated by Morris water maze test. D. salina also showed a reduction in brain levels of inflammatory indicators viz. interlekin-1β and inducible nitric oxide synthetase as well as brain contents of Aβ protein and myelin base protein. Likewise, oral treatment with D. salina biomass and its isolated polar and carotenoid fractions exhibited an increase in the rats’ brain neurotransmitters and their metabolites. Furthermore, histopathological investigations have confirmed all of these results. Our findings suggest that D. salina overcomes brain aging and thereby repairs age-related dementia, both for its modulating function in attenuating the Aβ protein and neurotransmitters.
Collapse
Affiliation(s)
- Farouk K El-Baz
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El Tahrir St.), Dokki, Giza, P.O.12622, Egypt
| | - Gehad A Abdel Jaleel
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El Tahrir St.), Dokki, Egypt
| | - Rehab A Hussein
- Pharmacognosy Department, National Research Centre (NRC), 33 El Buhouth St. (Former El Tahrir St.), Dokki, Giza P.O.12622, Egypt
| | - Dalia O Saleh
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El Tahrir St.), Dokki, Egypt
| |
Collapse
|
28
|
Xing B, Li S, Yang J, Lin D, Feng Y, Lu J, Shao Q. Phytochemistry, pharmacology, and potential clinical applications of saffron: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114555. [PMID: 34438035 DOI: 10.1016/j.jep.2021.114555] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron, the dried red stigma of the perennial herb Crocus sativus L. (Iridaceae), is one of the most important and expensive spices in the world. It is used as a traditional Chinese medicine with demonstrated effects in promoting blood circulation and suppressing blood stasis, cooling blood detoxification, and relieving depression. It is mainly used for the treatment of depression, irregular menstruation, postpartum thrombosis, and bruises. AIM OF THE STUDY This review aims to provide a systematic and up-to-date overview of the phytochemistry, pharmacology, and clinical applications of saffron. We hope it could provide useful references and guidance for the future directions of research on saffron. MATERIALS AND METHODS The online database, such as Web of Science, Google Scholar, Science Direct, PubMed, SpringerLink, Wiley Online Library, SciFinder and Chemical book, and CNKI were used to collect relevant literature. And the classic books about Chinese herbal medicine were also being referenced. RESULTS More than 150 chemical compounds, including carotenoids, flavonoids and flavonoid glycosides, monoterpenes and monoterpenoid derivatives, monocyclic aromatic hydrocarbons, amino acids, alkaloids and others, were revealed. The pharmacological activities study of saffron were focused on the antioxidant, anti-inflammatory, antitumor, antidepressant, hypoglycemic, hypolipidemic, memory-enhancing, and so on. Currently, saffron is mainly used for the treatment of diabetes, Alzheimer's disease, depression, anxiety disorders, cardiovascular diseases, learning and memory disorders, cancer, and other conditions. CONCLUSIONS Phytochemical and pharmacological analyses of saffron have been revealed in recent studies. However, clinical studies have focused mainly on AD, depression and anxiety disorders. Therefore, a large number of clinical trials are needed to study the efficacy of saffron and its major chemical components against other diseases including hypertension, hyperlipidemia, and cancer. Further studies of the mechanism of action and toxicological properties of saffron are also required, especially research to establish an effective dose of saffron and its long-term toxicity in vivo.
Collapse
Affiliation(s)
- Bingcong Xing
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Shuailing Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiaxin Yang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ding Lin
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yue Feng
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
29
|
The Impact of Crocin and Chronic Isolation Stress on Passive Avoidance Memory and Brain Electrical Activity in Male Rats. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Fotoohi A, Moloudi MR, Hosseini S, Hassanzadeh K, Feligioni M, Izadpanah E. A Novel Pharmacological Protective Role for Safranal in an Animal Model of Huntington's Disease. Neurochem Res 2021; 46:1372-1379. [PMID: 33611726 DOI: 10.1007/s11064-021-03271-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
Abstract
Huntington's disease (HD) is a progressive, neurodegenerative and inherited disease and recent years have witnessed the understanding of the cellular and molecular mechanisms related to HD. Safranal, an organic compound isolated from saffron, has been reported to have anti-apoptotic, anti-inflammatory and antioxidant activity and has studied in chronic and neurodegenerative disease. Therefore, this study was aimed to investigate the effect of safranal on 3-NP induced locomotor activity and biochemical alterations in rats. To this aim, 40 male Wistar rats weighting 250-300 g were divided into 5 groups (n = 8) including sham, 3-NP group (10 mg/kg) as control and treatment groups (3-NP + safranal 0.75, 1.5 and 3 mg/kg) in two weeks duration of treatment. Behavioral/movement assessments in addition to oxidant/antioxidant markers in rat cortex and striatum were evaluated in control and treatment groups. Here, we found that safranal significantly alleviated 3-NP-induced changes of body weight, rotarod activity, number of vacuous chewing movements (VCMs), and locomotor activity. In addition, brain tissue assessments in cortex and striatum revealed that safranal could prevent the elevation of nitrite and malondialdehyde (MDA) levels as well as decrease of superoxide dismutase (SOD), catalase activity and glutathione (GSH) induced by 3-NP. In conclusion our results showed that safranal prevented the motor dysfunction induced by 3-NP in animal model of Huntington's disease. This effect might be due to its modulating effect on oxidants-antioxidant balance.
Collapse
Affiliation(s)
- Ahmad Fotoohi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Raman Moloudi
- Neurosciences Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saed Hosseini
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Kudistan Province, Pasdaran Avenue, Sanandaj, Iran
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161, Rome, Italy
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161, Rome, Italy.
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144, Milan, Italy.
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Kudistan Province, Pasdaran Avenue, Sanandaj, Iran.
| |
Collapse
|
31
|
Pitsikas N. Crocus sativus L. Extracts and Its Constituents Crocins and Safranal; Potential Candidates for Schizophrenia Treatment? Molecules 2021; 26:molecules26051237. [PMID: 33669124 PMCID: PMC7956290 DOI: 10.3390/molecules26051237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia is a chronic mental devastating disease. Current therapy suffers from various limitations including low efficacy and serious side effects. Thus, there is an urgent necessity to develop new antipsychotics with higher efficacy and safety. The dried stigma of the plant Crocus sativus L., (CS) commonly known as saffron, are used in traditional medicine for various purposes. It has been demonstrated that saffron and its bioactive components crocins and safranal exert a beneficial action in different pathologies of the central nervous system such as anxiety, depression, epilepsy and memory problems. Recently, their role as potential antipsychotic agents is under investigation. In the present review, I intended to critically assess advances in research of these molecules for the treatment of schizophrenia, comment on their advantages over currently used neuroleptics as well-remaining challenges. Up to our days, few preclinical studies have been conducted to this end. In spite of it, results are encouraging and strongly corroborate that additional research is mandatory aiming to definitively establish a role for saffron and its bioactive components for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| |
Collapse
|
32
|
PLGA Multiplex Membrane Platform for Disease Modelling and Testing of Therapeutic Compounds. MEMBRANES 2021; 11:membranes11020112. [PMID: 33562851 PMCID: PMC7915411 DOI: 10.3390/membranes11020112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
A proper validation of an engineered brain microenvironment requires a trade of between the complexity of a cellular construct within the in vitro platform and the simple implementation of the investigational tool. The present work aims to accomplish this challenging balance by setting up an innovative membrane platform that represents a good compromise between a proper mimicked brain tissue analogue combined with an easily accessible and implemented membrane system. Another key aspect of the in vitro modelling disease is the identification of a precise phenotypic onset as a definite hallmark of the pathology that needs to be recapitulated within the implemented membrane system. On the basis of these assumptions, we propose a multiplex membrane system in which the recapitulation of specific neuro-pathological onsets related to Alzheimer’s disease pathologies, namely oxidative stress and β-amyloid1–42 toxicity, allowed us to test the neuroprotective effects of trans-crocetin on damaged neurons. The proposed multiplex membrane platform is therefore quite a versatile tool that allows the integration of neuronal pathological events in combination with the testing of new molecules. The present paper explores the use of this alternative methodology, which, relying on membrane technology approach, allows us to study the basic physiological and pathological behaviour of differentiated neuronal cells, as well as their changing behaviour, in response to new potential therapeutic treatment.
Collapse
|
33
|
Cerdá-Bernad D, Valero-Cases E, Pastor JJ, Frutos MJ. Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. Crit Rev Food Sci Nutr 2020; 62:3232-3249. [PMID: 33356506 DOI: 10.1080/10408398.2020.1864279] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Saffron (Crocus sativus L.) is used as a spice for its organoleptic characteristics related to its coloring and flavoring properties, and it has been also used in traditional medicine to treat various diseases. The main chemical components responsible for these properties are crocin, crocetin and safranal. These compounds have been shown to have a wide spectrum of biological activities, including several properties as antigenotoxic, antioxidant, anticancer, anti-inflammatory, antiatherosclerotic, antidiabetic, hypotensive, hypoglycemic, antihyperlipidemic, antidegenerative and antidepressant, among others. This review article highlights the antioxidant effects of these bioactive compounds to reduce reactive oxygen species (ROS) and the mechanisms of action involved, since there are a multitude of diseases related to oxidative stress and the generation of free radicals (FRs). Recent studies have shown that the effects of crocin, crocetin and safranal against oxidative stress include the reduction in lipid peroxidation (malondialdehyde [MDA] levels) and nitric oxide (NO) levels, and the increase in the levels of glutathione, antioxidant enzymes (superoxide dismutase [SOD], catalase (CAT) and glutathione peroxidase [GPx]) and thiol content. Therefore, due to the great antioxidant effects of these saffron compounds, it makes saffron a potential source of bioactive extracts for the development of bioactive ingredients, which can be used to produce functional foods.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| | - Estefanía Valero-Cases
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| | | | - María José Frutos
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| |
Collapse
|
34
|
Musillo C, Borgi M, Saul N, Möller S, Luyten W, Berry A, Cirulli F. Natural products improve healthspan in aged mice and rats: A systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 121:89-105. [PMID: 33309907 DOI: 10.1016/j.neubiorev.2020.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Over the last decades a decrease in mortality has paved the way for late onset pathologies such as cardiovascular, metabolic or neurodegenerative diseases. This evidence has led many researchers to shift their focus from researching ways to extend lifespan to finding ways to increase the number of years spent in good health; "healthspan" is indeed the emerging concept of such quest for ageing without chronic or disabling diseases and dysfunctions. Regular consumption of natural products might improve healthspan, although the mechanisms of action are still poorly understood. Since preclinical studies aimed to assess the efficacy and safety of these compounds are growing, we performed a systematic review and meta-analysis on the effects of natural products on healthspan in mouse and rat models of physiological ageing. Results indicate that natural compounds show robust effects improving stress resistance and cognitive abilities. These promising data call for further studies investigating the underlying mechanisms in more depth.
Collapse
Affiliation(s)
- Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy; PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Marta Borgi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Nadine Saul
- Molecular Genetics Group, Faculty of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Steffen Möller
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057, Rostock, Germany
| | | | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
35
|
Forouzanfar F, Asadpour E, Hosseinzadeh H, Boroushaki MT, Adab A, Dastpeiman SH, Sadeghnia HR. Safranal protects against ischemia-induced PC12 cell injury through inhibiting oxidative stress and apoptosis. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:707-716. [PMID: 33128592 DOI: 10.1007/s00210-020-01999-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
Safranal, isolated from saffron (Crocus sativus L.), is known to possesses neuroprotective effects. In this study, the neuroprotective potential of safranal against PC12 cell injury triggered by ischemia/reperfusion was investigated. PC12 cells were pretreated with safranal at concentration ranges of 10-160 μM for 2 h and then deprived from oxygen-glucose-serum for 6 h, followed by reoxygenation for 24 h (OGD condition). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2,7-dichlorofluorescin diacetate (DCF-DA), and comet assays were used to measure the extent of cellular viability, reactive oxygen substances (ROS), and DNA damage, respectively. Also, propidium iodide (PI) flow cytometry assay and western blotting of bax, bcl-2, and cleaved caspase-3 were performed for assessment of apoptosis. OGD exposure reduced the cell viability and increased intracellular ROS production, oxidative DNA damage, and apoptosis, in comparison with untreated control cells. Pretreatment with safranal (40 and 160 μM) significantly attenuated OGD-induced PC12 cell death, oxidative damage, and apoptosis. Furthermore, safranal markedly reduced the overexpression of bax/bcl-2 ratio and active caspase-3 following OGD (p < 0.05). The present findings indicated that safranal protects against OGD-induced neurotoxicity via modulating of oxidative and apoptotic responses.Graphical abstract The schematic representation of the mode of action of safranal against PC12 cells death induced by oxygen-glucose-serum deprivation and reoxygenation (OGD-R).
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Asadpour
- Anaestehsiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taher Boroushaki
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, PO Box 99199-91766, Mashhad, Iran
| | - Afrouz Adab
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, PO Box 99199-91766, Mashhad, Iran
| | - Seyedeh Hoda Dastpeiman
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, PO Box 99199-91766, Mashhad, Iran
| | - Hamid R Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, PO Box 99199-91766, Mashhad, Iran. .,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, PO Box 99199-91766, Mashhad, Iran. .,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, PO Box 99199-91766, Mashhad, Iran.
| |
Collapse
|
36
|
Krishnaswamy VKD, Alugoju P, Periyasamy L. Effect of short-term oral supplementation of crocin on age-related oxidative stress, cholinergic, and mitochondrial dysfunction in rat cerebral cortex. Life Sci 2020; 263:118545. [PMID: 33038382 DOI: 10.1016/j.lfs.2020.118545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Aging is associated with oxidative stress and altered cholinergic and mitochondrial function. Crocin is a carotenoid antioxidant that quenches free radicals and protects cells and tissues from oxidation in biological systems. The aim of the present study is to investigate the effect of oral supplementation of Crocin on age-associated oxidative stress, cholinergic, and mitochondrial function in rat cerebral cortex. MAIN METHODS The middle-aged (15 months old) rats were segregated into three groups (n = 6): Control (ad-libitum fed +0.9% saline as vehicle), Cro 50 (ad-libitum fed + crocin 50 mg/kg/day), Cro 150 (ad-libitum fed + crocin 150 mg/kg/day). The experiment was scheduled for 45 days. The serum and brain parameters were estimated after euthanasia. KEY FINDINGS Crocin supplementation of Cro 50 and Cro 150 displayed a relative decline in body weight gain during the experimental period and significantly reduced age-associated serum triglyceride level over control. In rat cerebral cortex, age-associated macromolecular damage, decline in endogenous antioxidants and an increase in intracellular calcium concentration were significantly reversed due to oral supplementation of Crocin. Cro 150 significantly improved acetylcholine content as a consequence of acetylcholinesterase inhibition. Further, remarkable mitochondrial function was observed in Cro 150 over the control group as determined by citrate synthase and cytochrome C oxidase enzyme activities. SIGNIFICANCE Oral supplementation of Crocin significantly reversed age-associated oxidative stress and neuroinflammatory markers. Meanwhile, Cro 150 remarkably improved cholinergic and mitochondrial function over the control group and facilitated further delay in the aging process due to enhanced cognitive effect.
Collapse
Affiliation(s)
- V K D Krishnaswamy
- Department of Biochemistry and Molecular Biology, Pondicherry University, India
| | - Phaniendra Alugoju
- Department of Biochemistry and Molecular Biology, Pondicherry University, India
| | - Latha Periyasamy
- Department of Biochemistry and Molecular Biology, Pondicherry University, India.
| |
Collapse
|
37
|
Discussion of the promising effect of electroacupuncture on cognitive improvement in D-galactose-induced aging rats based on NLRP3-ASC-Caspase-1 signaling pathway. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2020. [DOI: 10.1007/s11726-020-1195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Dastgerdi HH, Radahmadi M, Reisi P. Comparative study of the protective effects of crocin and exercise on long-term potentiation of CA1 in rats under chronic unpredictable stress. Life Sci 2020; 256:118018. [DOI: 10.1016/j.lfs.2020.118018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/03/2023]
|
39
|
Sohaei S, Hadi A, Karimi E, Arab A. Saffron supplementation effects on glycemic indices: a systematic review and meta-analysis of randomized controlled clinical trials. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1807567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sara Sohaei
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Hadi
- Halal Research Center of IRI, FDA, Tehran, Iran
| | - Elham Karimi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Research Development Center, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
40
|
Zhang P, Cui J, Mansooridara S, Kalantari AS, Zangeneh A, Zangeneh MM, Sadeghian N, Taslimi P, Bayat R, Şen F. Suppressor capacity of copper nanoparticles biosynthesized using Crocus sativus L. leaf aqueous extract on methadone-induced cell death in adrenal phaeochromocytoma (PC12) cell line. Sci Rep 2020; 10:11631. [PMID: 32669563 PMCID: PMC7363853 DOI: 10.1038/s41598-020-68142-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/18/2020] [Indexed: 12/29/2022] Open
Abstract
In this research, we prepared and formulated a neuroprotective supplement (copper nanoparticles in aqueous medium utilizing Crocus sativus L. Leaf aqueous extract) for determining its potential against methadone-induced cell death in PC12. The results of chemical characterization tests i.e., FE-SEM, FT-IR, XRD, EDX, TEM, and UV–Vis spectroscopy revealed that the study showed that copper nanoparticles were synthesized in the perfect way possible. In the TEM and FE-SEM images, the copper nanoparticles were in the mean size of 27.5 nm with the spherical shape. In the biological part of the present research, the Rat inflammatory cytokine assay kit was used to measure the concentrations of inflammatory cytokines. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test was used to show DNA fragmentation and apoptosis. Caspase-3 activity was assessed by the caspase activity colorimetric assay kit and mitochondrial membrane potential was studied by Rhodamine123 fluorescence dye. Also, the cell viability of PC12 was measured by trypan blue assay. Copper nanoparticles-treated cell cutlers significantly (p ≤ 0.01) decreased the inflammatory cytokines concentrations, caspase-3 activity, and DNA fragmentation and they raised the cell viability and mitochondrial membrane potential in the high concentration of methadone-treated PC12 cells. The best result of neuroprotective properties was seen in the high dose of copper nanoparticles i.e., 4 µg. According to the above results, copper nanoparticles containing C. sativus leaf aqueous extract can be used in peripheral nervous system treatment as a neuroprotective promoter and central nervous system after approving in the clinical trial studies in humans.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Medical College of Henan University, Zhengzhou, 450003, Henan, China
| | - Jian Cui
- Department of Neurosurgery, Xi'an No. 1 Hospital, No. 30 South Street Powder Lane, Beilin District, Xi'an, 710002, Shaanxi, China.
| | - Shirin Mansooridara
- Medical Sciences Research Center, Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Atoosa Shahriyari Kalantari
- Department of Neurology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.,Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.,Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Nastaran Sadeghian
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| | - Ramazan Bayat
- Sen Research Group, Department of Biochemistry, University of Dumlupınar, 43000, Kütahya, Turkey
| | - Fatih Şen
- Sen Research Group, Department of Biochemistry, University of Dumlupınar, 43000, Kütahya, Turkey
| |
Collapse
|
41
|
Wu D, Zhang S, Sun N, Zhu B, Lin S. Neuroprotective Function of a Novel Hexapeptide QMDDQ from Shrimp via Activation of the PKA/CREB/BNDF Signaling Pathway and Its Structure-Activity Relationship. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6759-6769. [PMID: 32452680 DOI: 10.1021/acs.jafc.0c02689] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate the neuroprotective function of shrimp-derived peptides QMDDQ and KMDDQ. Biochemical results revealed that both peptides exhibited neuroprotective effects by increasing acetylcholine (ACh) content and inhibiting acetylcholinesterase (AChE) activity in PC12 cells; QMDDQ was more active than KMDDQ. COSY-NOESY spectroscopic data showed that the superior neuroprotective function of QMDDQ might be attributed to its N-terminal glutamine as it exhibited an extended spatial conformation, facilitating its interactions with AChE. QMDDQ can promote the basic energy metabolism of cells more than KMDDQ. The peptides showed neuroprotective ability due to the activation of the antiapoptosis and PKA/CREB/BNDF signaling pathway. QMDDQ was selected to investigate its memory-enhancing activity in scopolamine-induced amnesic mice, revealing memory protection in mice, as it improved their performance in the Morris water maze experiment. In addition, QMDDQ increased ACh content (4.98 ± 0.51 μg/mg prot) and decreased AChE activity (4.72 ± 0.11 U/mg prot) in the mouse hippocampus. These data indicate the systemic mechanism through which naturally derived QMDDQ improved neuroprotection and memory ability.
Collapse
Affiliation(s)
- Dan Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Shuyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| |
Collapse
|
42
|
Liu Z, Qin G, Mana L, Dong Y, Huang S, Wang Y, Wu Y, Shi J, Tian J, Wang P. GAPT regulates cholinergic dysfunction and oxidative stress in the brains of learning and memory impairment mice induced by scopolamine. Brain Behav 2020; 10:e01602. [PMID: 32174034 PMCID: PMC7218254 DOI: 10.1002/brb3.1602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholinergic dysfunction and oxidative stress are the crucial mechanisms of Alzheimer's disease (AD). GAPT, also called GEPT (a combination of several active components extracted from the Chinese herbs ginseng, epimedium, polygala and tuber curcumae) or Jinsiwei, is a patented Chinese herbal compound, has been clinically widely used to improve learning and memory impairment, but whether it can play a neuroprotective role by protecting cholinergic neurons and reducing oxidative stress injury remains unclear. METHODS Male ICR mice were intraperitoneally injected with scopolamine (3 mg/kg) to establish a learning and memory disordered model. An LC-MS method was established to study the chemical compounds and in vivo metabolites of GAPT. After scopolamine injection, a step-down passive-avoidance test (SDPA) and a Y maze test were used to estimate learning ability and cognitive function. In addition, ELISA detected the enzymatic activities of acetylcholinesterase (AChE), acetylcholine (ACh), choline acetyltransferase (ChAT), malondialdehyde (MDA), glutathione peroxidase (GPX), and total superoxide dismutase (T-SOD). The protein expressions of AChE, ChAT, SOD1, and GPX1 were observed by western blot, and the distribution of ChAT, SOD1, and GPX1 was observed by immunohistochemical staining. RESULTS After one-half or 1 month of intragastric administration, GAPT can ameliorate scopolamine-induced behavioral changes in learning and memory impaired mice. It can also decrease the activity of MDA and protein expression level of AChE, increase the activity of Ach, and increase activity and protein expression level of ChAT, SOD, and GPX in scopolamine-treated mice. After one and a half month of intragastric administration of GAPT, echinacoside, salvianolic acid A, ginsenoside Rb1, ginsenoside Rg2, pachymic acid, and beta asarone could be absorbed into mice blood and pass through BBB. CONCLUSIONS GAPT can improve the learning and memory ability of scopolamine-induced mice, and its mechanism may be related to protecting cholinergic neurons and reducing oxidative stress injury.
Collapse
Affiliation(s)
- Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Gaofeng Qin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Lulu Mana
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,Department of Integrative Medicine, School of TCM, Xinjiang Medical University, Urumqi, China
| | - Yunfang Dong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,Zhongkang International Health Physical Examination Center-Qingdao Ruiyuan Hospital of Traditional Chinese Medicine, Qingdao, China
| | - Shuaiyang Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Yahan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Yiqiong Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,Jiangsu Province Hospital on Integrated Chinese and Western Medicines, Nanjing, China
| | - Jing Shi
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,BUCM Neurology Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinzhou Tian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,BUCM Neurology Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pengwen Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China
| |
Collapse
|
43
|
Effect of Saffron Extract and Crocin in Serum Metabolites of Induced Obesity Rats. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/1247946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of saffron extract (Crocus sativus L.) and its primary compound crocin was studied on an induced obesity rat model. Our study is aimed at investigating and comparing the metabolite changes in obese and obese treated with saffron extract and crocin and at improving the understanding of the therapeutic effect of saffron extract and crocin. Two different doses of saffron extracts and crocin (40 and 80 mg/kg) were incorporated in a high-fat diet (HFD) and were given for eight weeks to the obese rats. The changes in metabolite profiles of the serum were determined using proton nuclear magnetic resonance (1H-NMR). Pattern recognition by multivariate data analysis (MVDA) showed that saffron extract and crocin at 80 mg/kg was the best dosage compared to 40 mg/kg. It also showed that both treatments work in different pathways, especially concerning glucose, lipid, and creatinine metabolism. In conclusion, although the pure compound, crocin, is superior to the saffron crude extract, this finding suggested that the saffron extract can be considered as an alternative aside from crocin in treating obesity.
Collapse
|
44
|
Hakimi Z, Salmani H, Marefati N, Arab Z, Gholamnezhad Z, Beheshti F, Shafei MN, Hosseini M. Protective Effects of Carvacrol on Brain Tissue Inflammation and Oxidative Stress as well as Learning and Memory in Lipopolysaccharide-Challenged Rats. Neurotox Res 2020; 37:965-976. [PMID: 31811590 DOI: 10.1007/s12640-019-00144-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023]
Abstract
Inflammation can cause memory impairment. In the present study, the effect of carvacrol on brain tissue inflammation and oxidative stress as well as learning and memory in lipopolysaccharide (LPS)-challenged rats was evaluated. The animals were grouped and treated: (1) control which received vehicle instead of LPS and carvacrol, (2) LPS (1 mg/kg; i.p. 120 min before behavioral tests), and (3-5) in these groups, 25, 50, or 100 mg/kg of carvacrol (i.p.) was administered 30 min prior to LPS. In a Morris water maze test, compared to LPS group, administration of all three doses of carvacrol shortened the elapsed time and the traveled distance to find the platform, while it prolonged the traveled time in the target area. In a passive avoidance test, administration of all 25, 50, and 100 mg/kg carvacrol significantly increased the latency at the 3 h, 24 h, 48 h, and 72 h after the shock compared to the LPS group. Interleukin (IL)-6, malondialdehyde (MDA), and NO (nitric oxide) metabolites were increased in the brain by LPS injection, while thiol, superoxide dismutase (SOD), and catalase (CAT) were decreased. Pretreatment with carvacrol reduced IL-6, NO metabolites, and MDA, while it improved thiol content, CAT, and SOD. The results indicated that carvacrol protected from learning and memory impairment and the brain tissue inflammation and oxidative stress in LPS-challenged rats.
Collapse
Affiliation(s)
- Zhara Hakimi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohre Arab
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad Naser Shafei
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Deligiannidou GE, Philippou E, Vidakovic M, Berghe WV, Heraclides A, Grdovic N, Mihailovic M, Kontogiorgis C. Natural Products Derived from the Mediterranean Diet with Antidiabetic Activity: from Insulin Mimetic Hypoglycemic to Nutriepigenetic Modulator Compounds. Curr Pharm Des 2020; 25:1760-1782. [PMID: 31298162 DOI: 10.2174/1381612825666190705191000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The Mediterranean diet is a healthy eating pattern that protects against the development of Type 2 diabetes mellitus (T2DM), a metabolic disease characterized by elevated blood sugar levels due to pancreatic beta-cell functional impairment and insulin resistance in various tissues. Inspired by the ancient communities, this diet emphasizes eating primarily plant-based foods, including vegetables, legumes, fruits, cereals, and nuts. Importantly, virgin olive oil is used as the principal source of fat. Red meat is consumed in low amounts while wine and fish are consumed moderately. OBJECTIVE Here, we review the most beneficial components of the Mediterranean Diet and tentative mechanisms of action for prevention and/or management of T2DM, based on research conducted within the last decade. METHODS The references over the last five years have been reviewed and they have been selected properly according to inclusion/ exclusion criteria. RESULTS Several bioactive diet components were evaluated to prevent inflammation and cytokine-induced oxidative damage, reduce glucose concentration, carbohydrate absorption and increase insulin sensitivity and related gene expression. CONCLUSION The adherence to a healthy lifestyle, including diet, exercise and habits remains the best approach for the prevention of diabetes as well as frequent check-ups and education. Though diabetes has a strong genetic component, in recent years many reports strongly point to the critical role of lifestyle specific epigenetic modifications in the development of T2DM. It remains to be established how different components of the Mediterranean Diet interact and influence the epigenetic landscape to prevent or treat the disease.
Collapse
Affiliation(s)
- Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Elena Philippou
- Department of Life and Health Sciences, University of Nicosia, Makedonitissis, Nicosia 2417, Cyprus.,Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Melita Vidakovic
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Wim V Berghe
- Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Wilrijk, Belgium
| | - Alexandros Heraclides
- Department of Primary Care and Population Health, University of Nicosia Medical School, Ayiou Nikolaou Street, Egkomi, Cyprus
| | - Nevena Grdovic
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Mirjana Mihailovic
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| |
Collapse
|
46
|
Wong KH, Xie Y, Huang X, Kadota K, Yao XS, Yu Y, Chen X, Lu A, Yang Z. Delivering Crocetin across the Blood-Brain Barrier by Using γ-Cyclodextrin to Treat Alzheimer's Disease. Sci Rep 2020; 10:3654. [PMID: 32107408 PMCID: PMC7046745 DOI: 10.1038/s41598-020-60293-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/10/2020] [Indexed: 11/21/2022] Open
Abstract
Crocetin (CRT) has shown various neuroprotective effects such as antioxidant activities and the inhibition of amyloid β fibril formation, and thus is a potential therapeutic candidate for Alzheimer's disease (AD). However, poor water solubility and bioavailability are the major obstacles in formulation development and pharmaceutical applications of CRT. In this study, a novel water-soluble CRT-γ-cyclodextrin inclusion complex suitable for intravenous injection was developed. The inclusion complex was nontoxic to normal neuroblastoma cells (N2a cells and SH-SY5Y cells) and AD model cells (7PA2 cells). Furthermore, it showed stronger ability to downregulate the expression of C-terminus fragments and level of amyloid β in 7PA2 cell line as compared to the CRT free drug. Both inclusion complex and CRT were able to prevent SH-SY5Y cell death from H2O2-induced toxicity. The pharmacokinetics and biodistribution studies showed that CRT-γ-cyclodextrin inclusion complex significantly increased the bioavailability of CRT and facilitated CRT crossing the blood-brain barrier to enter the brain. This data shows a water-soluble γ-cyclodextrin inclusion complex helped to deliver CRT across the blood-brain barrier. This success should fuel further pharmaceutical research on CRT in the treatment for AD, and it should engender research on γ-cyclodextrin with other drugs that have so far not been explored.
Collapse
Affiliation(s)
- Ka Hong Wong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Yuning Xie
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Xiao Huang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Kazunori Kadota
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
- Department of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu, 215500, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong.
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu, 215500, China.
| |
Collapse
|
47
|
Baluchnejadmojarad T, Mohamadi-Zarch SM, Roghani M. Safranal, an active ingredient of saffron, attenuates cognitive deficits in amyloid β-induced rat model of Alzheimer's disease: underlying mechanisms. Metab Brain Dis 2019; 34:1747-1759. [PMID: 31422512 DOI: 10.1007/s11011-019-00481-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative amyloid disorder with progressive deterioration of cognitive and memory skills. Despite many efforts, no decisive therapy yet exists for AD. Safranal is the active constituent of saffron essential oil with antioxidant, anti-inflammatory, and anti-apoptotic properties. In this study, the possible beneficial effect of safranal on cognitive deficits was evaluated in a rat model of AD induced by intrahippocampal amyloid beta (Aβ1-40). Safranal was daily given p.o. (0.025, 0.1, and 0.2 ml/kg) post-surgery for 1 week and finally learning and memory were evaluated in addition to assessment of the involvement of oxidative stress, inflammation, and apoptosis. Findings showed that safranal treatment of amyloid β-microinjected rats dose-dependently improved cognition in Y-maze, novel-object discrimination, passive avoidance, and 8-arm radial arm maze tasks. Besides, safranal attenuated hippocampal level of malondialdehyde (MDA), reactive oxygen species (ROS), protein carbonyl, interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor α (TNFα), nuclear factor-kappa B (NF-kB), apoptotic biomarkers including caspase 3 and DNA fragmentation, glial fibrillary acidic protein (GFAP), myeloperoxidase (MPO), and acetylcholinesterase (AChE) activity and improved superoxide dismutase (SOD) activity and mitochondrial membrane potential (MMP) with no significant effect on nitrite, catalase activity, and glutathione (GSH). Furthermore, safranal prevented CA1 neuronal loss due to amyloid β1-40. In summary, safranal treatment of intrahippocampal amyloid beta1-40-microinjected rats could prevent learning and memory decline via neuronal protection and at a molecular level through amelioration of apoptosis, oxidative stress, inflammation, cholinesterase activity, neutrophil infiltration, and also by preservation of mitochondrial integrity.
Collapse
Affiliation(s)
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
48
|
Rajabian A, Hosseini A, Hosseini M, Sadeghnia HR. A Review of Potential Efficacy of Saffron ( Crocus sativus L.) in Cognitive Dysfunction and Seizures. Prev Nutr Food Sci 2019; 24:363-372. [PMID: 31915630 PMCID: PMC6941716 DOI: 10.3746/pnf.2019.24.4.363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022] Open
Abstract
Crocus sativus (saffron) is traditionally used to relieve several ailments. Experimental researches have also investigated applications of saffron and its active constituents for the treatment of a wide spectrum of disorders. This review discusses pharmacological/therapeutic properties of saffron and its main components on memory function, learning ability and seizures, to highlight their merit for alleviating these disorders. An extensive literature review was carried out using various databases including ISI Web of Knowledge, Medline/PubMed, Science Direct, Scopus, Google Scholar, Embase, Biological Abstracts, and Chemical Abstracts. The growing body of evidence showed the value of saffron and its' components, alone, or in combination with the other pharmaceuticals, for improving learning and memory abilities and controlling seizures. These findings may provide pharmacological basis for the use of saffron in cognitive disturbance and epilepsy. However, further preclinical and clinical studies are necessary.
Collapse
Affiliation(s)
- Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 9177944553,
Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 9177944553,
Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad 9177944553,
Iran
| | - Hamid Reza Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad 9177944553,
Iran
| |
Collapse
|
49
|
Rao SV, Hemalatha P, Yetish S, Muralidhara M, Rajini PS. Prophylactic neuroprotective propensity of Crocin, a carotenoid against rotenone induced neurotoxicity in mice: behavioural and biochemical evidence. Metab Brain Dis 2019; 34:1341-1353. [PMID: 31214956 DOI: 10.1007/s11011-019-00451-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
Previously we have demonstrated the potential neuroprotective propensity of saffron and Crocin (CR) employing a Drosophila model of Parkinsonism. Rotenone (ROT) has been extensively used as a model neurotoxin to induce Parkinson's disease (PD) like symptoms in mice. In the present study, as a proof of concept we evaluated the efficacy of CR prophylaxis (25 mg/ kg bw/d, 7d) to attenuate ROT(0.5 mg/Kg bw/d,7d) -induced neurotoxic effects in male mice focussing on neurobehavioural assessments and biochemical determinants in the striatum. CR prophylaxis significantly alleviated ROT-induced behavioural alterations such as increased anxiety, diminished exploratory behaviour, decreased motor co-ordination, and grip strength. Concomitantly, we evidenced diminution of oxidative stress markers, enhanced levels of antioxidant enzyme and mitochondrial enzyme function in the striatal region. Further, varying degree of restoration of cholinergic function, dopamine and α-synuclein levels were discernible suggesting the possible mechanism/s of action of CR in this model. Based on our earlier data in flies and in worm model, we propose its use as an adjuvant therapeutic agent in oxidative stress-mediated neurodegenerative conditions such as PD.
Collapse
Affiliation(s)
- Sriranjini Venkata Rao
- Department of Biochemistry, Mysuru, India.
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India.
| | - P Hemalatha
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India
| | - S Yetish
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India
| | | | - Padmanabhan S Rajini
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India
| |
Collapse
|
50
|
Samad N, Jabeen S, Imran I, Zulfiqar I, Bilal K. Protective effect of gallic acid against arsenic-induced anxiety-/depression- like behaviors and memory impairment in male rats. Metab Brain Dis 2019; 34:1091-1102. [PMID: 31119507 DOI: 10.1007/s11011-019-00432-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
The purpose of the present study is to determine the effects of gallic acid (GA) on sodium arsenite (iAS)-induced behavior deficits and memory alteration in male rats. Thirty six animals were divided in to 6 groups (six animals in each) (i) saline+saline; (ii) saline+GA (50 mg/kg); (iii) saline+ GA (100 mg/kg) (iv) iAS + saline; (v) iAS + GA(50 mg/kg); (vi) iAS + GA (100 mg/kg). Animals were treated with iAS (2.5 mg/kg/ml); GA (50 and 100 mg/kg/ml) and saline (0.9%; 1 ml/kg) for 4 weeks. Repeated administration of iAS increases immobility time in forced swim test and decreases time spent in open arm (elevated plus maze) and light box (light dark activity box test) suggests depression like and anxiety-like symptoms respectively. On the other hand, animals treated with iAS + GA decreases immobility time and increases time spent in open arm and light box than saline+iAS treated animals suggests anxiolytic and antidepressant-like behavior of GA. Repeated administration of iAS also involves in memory impairment as observed in the Morris water maze test that is reversed by co-administration of GA, indicates that GA also involves in the enhancement of memory. Brain malondialdehyde (MDA) levels, antioxidant enzymes and acetylcholinesterase (AChE) activities also observed in the present study. Results show that iAS produces oxidative stress by increasing lipid peroxidation and decreasing antioxidant enzyme activity. Conversely co-administration of GA produces antioxidant effects by normalization of oxidative stress induced by iAS. Alteration in iAS induced AChE activity is also reversed by GA. It is suggested that GA via its antioxidant potential, has protective effects on iAS induced behavioral deficits and memory alteration. The findings have a strong implication on iAS induced neurological diseases, such as depression, anxiety, Alzheimer's disease and dementia etc.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Sadia Jabeen
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Iqra Zulfiqar
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Kainat Bilal
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|