1
|
Gupta T, Arora L, Mukhopadhyay S, Pal SK. Ultrasensitive Detection of Lipid-Induced Misfolding of the Prion Protein at the Aqueous-Liquid Crystal Interface. J Phys Chem Lett 2024; 15:2117-2122. [PMID: 38363235 DOI: 10.1021/acs.jpclett.3c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The misfolding of the α-helical cellular prion protein into a self-propagating β-rich aggregated form is a key pathogenic event in fatal and transmissible neurodegenerative diseases collectively known as prion diseases. Herein, we utilize the interfacial properties of liquid crystals (LCs) to monitor the lipid-membrane-induced conformational switching of prion protein (PrP) into β-rich amyloid fibrils. The lipid-induced conformational switching resulting in aggregation occurs at the nanomolar protein concentration and is primarily mediated by electrostatic interactions between PrP and lipid headgroups. Our LC-based methodology offers a potent and sensitive tool to detect and delineate molecular mechanisms of PrP misfolding mediated by lipid-protein interactions at the aqueous interface under physiological conditions.
Collapse
Affiliation(s)
- Tarang Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Lisha Arora
- Department of Chemical Sciences, Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Samrat Mukhopadhyay
- Department of Chemical and Biological Sciences, Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
2
|
Regmi D, Shen F, Stanic A, Islam M, Du D. Effect of phospholipid liposomes on prion fragment (106-128) amyloid formation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184199. [PMID: 37454869 DOI: 10.1016/j.bbamem.2023.184199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Misfolding and aggregation of cellular prion protein (PrPc) is a major molecular process involved in the pathogenesis of prion diseases. Here, we studied the aggregation properties of a prion fragment peptide PrP(106-128). The results show that the peptide aggregates in a concentration-dependent manner in an aqueous solution and that the aggregation is sensitive to pH and the preformed amyloid seeds. Furthermore, we show that the zwitterionic POPC liposomes moderately inhibit the aggregation of PrP(106-128), whereas POPC/cholesterol (8:2) vesicles facilitate peptide aggregation likely due to the increase of the lipid packing order and membrane rigidity in the presence of cholesterol. In addition, anionic lipid vesicles of POPG and POPG/cholesterol above a certain concentration accelerate the aggregation of the peptide remarkably. The strong electrostatic interactions between the N-terminal region of the peptide and POPG may constrain the conformational plasticity of the peptide, preventing insertion of the peptide into the inner side of the membrane and thus promoting fibrillation on the membrane surface. The results suggest that the charge properties of the membrane, the composition of the liposomes, and the rigidity of lipid packing are critical in determining peptide adsorption on the membrane surface and the efficiency of the membrane in catalyzing peptide oligomeric nucleation and amyloid formation. The peptide could be used as an improved model molecule to investigate the mechanistic role of the crucial regions of PrP in aggregation in a membrane-rich environment and to screen effective inhibitors to block key interactions between these regions and membranes for preventing PrP aggregation.
Collapse
Affiliation(s)
- Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Fengyun Shen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Aleksander Stanic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Majedul Islam
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
3
|
Remarkable difference of phospholipid molecular chirality in regulating PrP aggregation and cell responses. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Crestini A, Santilli F, Martellucci S, Carbone E, Sorice M, Piscopo P, Mattei V. Prions and Neurodegenerative Diseases: A Focus on Alzheimer's Disease. J Alzheimers Dis 2021; 85:503-518. [PMID: 34864675 DOI: 10.3233/jad-215171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Specific protein misfolding and aggregation are mechanisms underlying various neurodegenerative diseases such as prion disease and Alzheimer's disease (AD). The misfolded proteins are involved in prions, amyloid-β (Aβ), tau, and α-synuclein disorders; they share common structural, biological, and biochemical characteristics, as well as similar mechanisms of aggregation and self-propagation. Pathological features of AD include the appearance of plaques consisting of deposition of protein Aβ and neurofibrillary tangles formed by the hyperphosphorylated tau protein. Although it is not clear how protein aggregation leads to AD, we are learning that the cellular prion protein (PrPC) plays an important role in the pathogenesis of AD. Herein, we first examined the pathogenesis of prion and AD with a focus on the contribution of PrPC to the development of AD. We analyzed the mechanisms that lead to the formation of a high affinity bond between Aβ oligomers (AβOs) and PrPC. Also, we studied the role of PrPC as an AβO receptor that initiates an AβO-induced signal cascade involving mGluR5, Fyn, Pyk2, and eEF2K linking Aβ and tau pathologies, resulting in the death of neurons in the central nervous system. Finally, we have described how the PrPC-AβOs interaction can be used as a new potential therapeutic target for the treatment of PrPC-dependent AD.
Collapse
Affiliation(s)
- Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy
| | - Elena Carbone
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| |
Collapse
|
5
|
Prion Protein Biology Through the Lens of Liquid-Liquid Phase Separation. J Mol Biol 2021; 434:167368. [PMID: 34808226 DOI: 10.1016/j.jmb.2021.167368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/29/2022]
Abstract
Conformational conversion of the α-helix-rich cellular prion protein into the misfolded, β-rich, aggregated, scrapie form underlies the molecular basis of prion diseases that represent a class of invariably fatal, untreatable, and transmissible neurodegenerative diseases. However, despite the extensive and rigorous research, there is a significant gap in the understanding of molecular mechanisms that contribute to prion pathogenesis. In this review, we describe the historical perspective of the development of the prion concept and the current state of knowledge of prion biology including structural, molecular, and cellular aspects of the prion protein. We then summarize the putative functional role of the N-terminal intrinsically disordered segment of the prion protein. We next describe the ongoing efforts in elucidating the prion phase behavior and the emerging role of liquid-liquid phase separation that can have potential functional relevance and can offer an alternate non-canonical pathway involving conformational conversion into a disease-associated form. We also attempt to shed light on the evolutionary perspective of the prion protein highlighting the potential role of intrinsic disorder in prion protein biology and summarize a few important questions associated with the phase transitions of the prion protein. Delving deeper into these key aspects can pave the way for a detailed understanding of the critical molecular determinants of the prion phase transition and its relevance to physiology and neurodegenerative diseases.
Collapse
|
6
|
Excitation energy migration to study protein oligomerization and amyloid formation. Biophys Chem 2021; 281:106719. [PMID: 34864229 DOI: 10.1016/j.bpc.2021.106719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Excitation energy migration via homo-FRET (Förster resonance energy transfer) is a unique variant of traditional FRET that involves a non-radiative energy transfer between the dipoles of two or more chemical identical fluorophores in close proximity and with an overlap between its excitation and emission spectra. Such energy migrations between chemically identical fluorophores within the Förster distance having their dipoles oriented over a wide angular spread results in the depolarization of fluorescence anisotropy depending on the local density of the fluorophores. Therefore, this methodology can be employed to study protein oligomerization and amyloid fibril formation. The conceptual framework involves extracting structural information by identifying proximal and distal locations in supramolecular assemblies by monitoring the efficiency of homo-FRET between fluorophore-conjugated protein molecules within these supramolecular assemblies. This review highlights two such cases in which excitation energy migration via homo-FRET was used to characterize the formation of membrane-mediated β-sheet rich oligomers of the prion protein as well as to construct a site-specific 2D-proximity correlation map to probe inter-residue proximities within the highly organized amyloid fibrils of α-synuclein. Energy migration studies will find applications in studying a wide range of biomolecular assemblies such as lipid-protein complexes, oligomers, amyloids, and phase-separated condensates.
Collapse
|
7
|
Abstract
Protein aggregation and amyloid formation are pathogenic events underlying the development of an increasingly large number of human diseases named “proteinopathies”. Abnormal accumulation in affected tissues of amyloid β (Aβ) peptide, islet amyloid polypeptide (IAPP), and the prion protein, to mention a few, are involved in the occurrence of Alzheimer’s (AD), type 2 diabetes mellitus (T2DM) and prion diseases, respectively. Many reports suggest that the toxic properties of amyloid aggregates are correlated with their ability to damage cell membranes. However, the molecular mechanisms causing toxic amyloid/membrane interactions are still far to be completely elucidated. This review aims at describing the mutual relationships linking abnormal protein conformational transition and self-assembly into amyloid aggregates with membrane damage. A cross-correlated analysis of all these closely intertwined factors is thought to provide valuable insights for a comprehensive molecular description of amyloid diseases and, in turn, the design of effective therapies.
Collapse
|
8
|
Lathe R, Darlix JL. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 2020; 165:535-556. [PMID: 32025859 PMCID: PMC7024060 DOI: 10.1007/s00705-020-04529-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh School of Medicine, Edinburgh, UK. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, Russia.
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Laboratory of Bioimaging and Pathologies (Unité Mixte de Recherche 7021), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
9
|
Agarwal A, Das D, Banerjee T, Mukhopadhyay S. Energy migration captures membrane-induced oligomerization of the prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140324. [DOI: 10.1016/j.bbapap.2019.140324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/22/2022]
|
10
|
Pradhan P, Srivastava A, Singh J, Biswas B, Saini A, Siddique I, Kumari P, Khan MA, Mishra A, Yadav PK, Kumar S, Bhavesh NS, Venkatraman P, Vivekanandan P, Kundu B. Prion protein transcription is auto-regulated through dynamic interactions with G-quadruplex motifs in its own promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194479. [PMID: 31931179 DOI: 10.1016/j.bbagrm.2019.194479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 11/19/2022]
Abstract
Cellular prion protein (PrP) misfolds into an aberrant and infectious scrapie form (PrPSc) that lead to fatal transmissible spongiform encephalopathies (TSEs). Association of prions with G-quadruplex (GQ) forming nucleic acid motifs has been reported, but implications of these interactions remain elusive. Herein, we show that the promoter region of the human prion gene (PRNP) contains two putative GQ motifs (Q1 and Q2) that assume stable, hybrid, intra-molecular quadruplex structures and bind with high affinity to PrP. Here, we investigate the ability of PrP to bind to the quadruplexes in its own promoter. We used a battery of techniques including SPR, NMR, CD, MD simulations and cell culture-based reporter assays. Our results show that PrP auto-regulates its expression by binding and resolving the GQs present in its own promoter. Furthermore, we map this resolvase-like activity to the N-terminal region (residues 23-89) of PrP. Our findings highlight a positive transcriptional-translational feedback regulation of the PRNP gene by PrP through dynamic unwinding of GQs in its promoter. Taken together, our results shed light on a yet unknown mechanism of regulation of the PRNP gene. This work provides the necessary framework for a plethora of studies on understanding the regulation of PrP levels and its implications in prion pathogenesis.
Collapse
Affiliation(s)
- Prashant Pradhan
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Ankit Srivastava
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Jasdeep Singh
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Banhi Biswas
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Akanksha Saini
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Ibrar Siddique
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pooja Kumari
- Transcription Regulation group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohd Asim Khan
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India
| | - Akhilesh Mishra
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramod Kumar Yadav
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Shivani Kumar
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prasanna Venkatraman
- Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, 2nd floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India.
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
11
|
Hackl S, Becker CFW. Prion protein-Semisynthetic prion protein (PrP) variants with posttranslational modifications. J Pept Sci 2019; 25:e3216. [PMID: 31713950 PMCID: PMC6899880 DOI: 10.1002/psc.3216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC ) into scrapie prion protein (PrPSc ) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site-selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.
Collapse
Affiliation(s)
- Stefanie Hackl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| |
Collapse
|
12
|
Ryu YS, Yun H, Chung T, Suh JH, Kim S, Lee K, Wittenberg NJ, Oh SH, Lee B, Lee SD. Kinetics of lipid raft formation at lipid monolayer-bilayer junction probed by surface plasmon resonance. Biosens Bioelectron 2019; 142:111568. [PMID: 31442945 DOI: 10.1016/j.bios.2019.111568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
A label-free, non-dispruptive, and real-time analytical device to monitor the dynamic features of biomolecules and their interactions with neighboring molecules is an essential prerequisite for biochip- and diagonostic assays. To explore one of the central questions on the lipid-lipid interactions in the course of the liquid-ordered (lo) domain formation, called rafts, we developed a method of reconstituting continuous but spatially heterogeneous lipid membrane platforms with molayer-bilayer juntions (MBJs) that enable to form the lo domains in a spatiotemporally controlled manner. This allows us to detect the time-lapse dynamics of the lipid-lipid interactions during raft formation and resultant membrane phase changes together with the raft-associated receptor-ligand binding through the surface plasmon resonance (SPR). For cross-validation, using epifluorescence microscopy, we demonstrated the underlying mechanisms for raft formations that the infiltration of cholesterols into the sphingolipid-enriched domains plays a crucial roles in the membrane phase-separation. Our membrane platform, being capable of monitoring dynamic interactions among lipids and performing the systematic optical analysis, will unveil physiological roles of cholesterols in a variety of biological events.
Collapse
Affiliation(s)
- Yong-Sang Ryu
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Sensor System Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hansik Yun
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Taerin Chung
- Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jeng-Hun Suh
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sungho Kim
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyookeun Lee
- Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Nathan J Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St SE, Minneapolis, MN, 55455, USA; Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St SE, Minneapolis, MN, 55455, USA
| | - Byoungho Lee
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sin-Doo Lee
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
13
|
Bernardi L, Bruni AC. Mutations in Prion Protein Gene: Pathogenic Mechanisms in C-Terminal vs. N-Terminal Domain, a Review. Int J Mol Sci 2019; 20:E3606. [PMID: 31340582 PMCID: PMC6678283 DOI: 10.3390/ijms20143606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Inherited mutations in the Prion protein (PrP), encoded by the PRNP gene, have been associated with autosomal dominant neurodegenerative disorders, such as Creutzfeldt-Jacob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), and Fatal Familial Insomnia (FFI). Notably, PRNP mutations have also been described in clinical pictures resembling other neurodegenerative diseases, such as frontotemporal dementia. Regarding the pathogenesis, it has been observed that these point mutations are located in the C-terminal region of the PRNP gene and, currently, the potential significance of the N-terminal domain has largely been underestimated. The purpose of this report is to review and provide current insights into the pathogenic mechanisms of PRNP mutations, emphasizing the differences between the C- and N-terminal regions and focusing, in particular, on the lesser-known flexible N-terminal, for which recent biophysical evidence has revealed a physical interaction with the globular C-terminal domain of the cellular prion protein (PrPC).
Collapse
Affiliation(s)
- Livia Bernardi
- Regional Neurogenetic Centre, ASP Catanzaro, 88046 Lamezia Terme (CZ), Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre, ASP Catanzaro, 88046 Lamezia Terme (CZ), Italy.
| |
Collapse
|
14
|
Wang LJ, Gu XD, Yu GH, Shen L, Ji HF. Different effects of lipid on conformational conversion of chicken and murine prion proteins. Vet Microbiol 2018; 224:1-7. [PMID: 30269782 DOI: 10.1016/j.vetmic.2018.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Prion diseases are characterized by the conformational conversion of the cellular prion protein (PrPC) to the pathogenic isoform (PrPSc). Lipids have been found to interact with PrPC and contribute to the efficient formation of PrPSc. Non-mammalian PrPs are not readily to undergo the conversion process into an infectious isoform, yet the effect of lipid on the conformational conversion of non-mammalian PrPC remains to be explored. Herein, the effects of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) on full-length recombinant chicken PrP (ChPrP) 24-249 and murine PrP (MoPrP) 23-230 were investigated. Firstly, it was found that in the presence of chemical denaturant, POPG remarkably inhibited MoPrP amyloid fibril growth, while had slight effect on that of ChPrP as estimated by amyloid fibril growth and transmissible electronic microscope assays. Secondly, under physiological condition, POPG induced conformation changes in both MoPrP and ChPrP using Thioflavin T (ThT) fluorescence, circular dichroism, proteinase K digestion and transmission electron microscopy assays. With a POPG:PrP molar ratio of 30:1, the ThT fluorescence of MoPrP was found to be lower than that of ChPrP, however, the POPG-induced MoPrP had higher β-sheet content and was more proteinase K-resistant than POPG-induced ChPrP. In summary, the present results suggested that the effects of POPG on conformational conversion of MoPrP and ChPrP were different under both denaturation and physiological conditions.
Collapse
Affiliation(s)
- Li-Juan Wang
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, China; Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China
| | - Xiao-Dan Gu
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, China; Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China
| | - Guo-Hua Yu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, School of Life Sciences, Longyan University, Longyan 364012, China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, China; Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, China; Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| |
Collapse
|
15
|
Lathe R, Darlix JL. Prion Protein PRNP: A New Player in Innate Immunity? The Aβ Connection. J Alzheimers Dis Rep 2017; 1:263-275. [PMID: 30480243 PMCID: PMC6159716 DOI: 10.3233/adr-170037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/25/2022] Open
Abstract
The prion protein PRNP has been centrally implicated in the transmissible spongiform encephalopathies (TSEs), but its normal physiological role remains obscure. We highlight emerging evidence that PRNP displays antimicrobial activity, inhibiting the replication of multiple viruses, and also interacts directly with Alzheimer's disease (AD) amyloid-β (Aβ) peptide whose own antimicrobial role is now increasingly secure. PRNP and Aβ share share membrane-penetrating, nucleic acid binding, and antiviral properties with classical antimicrobial peptides such as LL-37. We discuss findings that binding of abnormal nucleic acids to PRNP leads to oligomerization of the protein, and suggest that this may be an entrapment and sequestration process that contributes to its antimicrobial activity. Some antimicrobial peptides are known to be exploited by infectious agents, and we cover evidence that PRNP is usurped by herpes simplex virus (HSV-1) that has evolved a virus-encoded 'anti-PRNP'.unction. These findings suggest that PRNP, like LL-37 and Aβ, is likely to be a component of the innate immune system, with implications for the pathoetiology of both AD and TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Unité 7213, Université de Strasbourg, Illkirch, France
| |
Collapse
|
16
|
Abstract
Mammalian prion proteins (PrPs) that cause transmissible spongiform encephalopathies are misfolded conformations of the host cellular PrP. The misfolded form, the scrapie PrP (PrP(Sc)), can aggregate into amyloid fibrils that progressively accumulate in the brain, evolving to a pathological phenotype. A particular characteristic of PrP(Sc) is to be found as different strains, related to the diversity of conformational states it can adopt. Prion strains are responsible for the multiple phenotypes observed in prion diseases, presenting different incubation times and diverse deposition profiles in the brain. PrP biochemical properties are also strain-dependent, such as different digestion pattern after proteolysis and different stability. Although they have long been studied, strain formation is still a major unsolved issue in prion biology. The recreation of strain-specific conformational features is of fundamental importance to study this unique pathogenic phenomenon. In our recent paper, we described that murine PrP, when expressed in bacteria, forms amyloid inclusion bodies that possess different strain-like characteristics, depending on the PrP construct. Here, we present an extra-view of these data and propose that bacteria might become a successful model to generate preparative amounts of prion strain-specific assemblies for high-resolution structural analysis as well as for addressing the determinants of infectivity and transmissibility.
Collapse
Affiliation(s)
- Bruno Macedo
- a Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular , Universitat Autonoma de Barcelona , Bellaterra ( Barcelona ), Spain ;,b Faculdade de Farmacia , Universidade Federal do Rio de Janeiro, Rio de Janeiro , Brazil
| | - Yraima Cordeiro
- b Faculdade de Farmacia , Universidade Federal do Rio de Janeiro, Rio de Janeiro , Brazil
| | - Salvador Ventura
- a Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular , Universitat Autonoma de Barcelona , Bellaterra ( Barcelona ), Spain
| |
Collapse
|
17
|
Bamdad K. Sequence-dependent dynamical instability of the human prion protein: a comparative simulation study. J Biomol Struct Dyn 2017; 36:3023-3033. [PMID: 28868991 DOI: 10.1080/07391102.2017.1375430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study aimed to explore the most probable regions of the human prion protein backbone for which the initial steps of conformational transitions as a result of intrinsic and extrinsic perturbing factors on the protein structure can be assigned. A total of 0.3-μs molecular dynamics simulations on several analog structures of the protein have been performed. To mimic the impact of the extrinsic and intrinsic destructive parameters on the dynamical characteristics of the protein, mild acidic conditions and R208H mutation have been simulated. The findings indicated that distribution of conformational flexibilities along the protein chain was almost independent of the induced perturbing factors, and was mostly centralized on certain distinct parts of the structure comprising residues 132-145 and 187-203. Analyses also revealed that the segment comprising residues 187-203 may be considered as a peptide sequence, possessing high potential to start the initial steps of conformational rearrangements due to the induced physicochemical alterations. Sequence alignment and molecular dynamics data also revealed that segment 178-203 prefers to accommodate in extended structures rather than α-helices. Region 178-203 may be considered as a peptide switch capable of initiating the conformational transitions due to the introduced modifications and perturbing parameters.
Collapse
Affiliation(s)
- Kourosh Bamdad
- a Department of Biology, Faculty of Science , Payame Noor University (PNU) , 19395-3697 , Iran
| |
Collapse
|
18
|
Benet J, Paillusson F, Kusumaatmaja H. On the critical Casimir interaction between anisotropic inclusions on a membrane. Phys Chem Chem Phys 2017; 19:24188-24196. [PMID: 28840923 DOI: 10.1039/c7cp03874g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a lattice model and a versatile thermodynamic integration scheme, we study the critical Casimir interactions between inclusions embedded in a two-dimensional critical binary mixtures. For single-domain inclusions we demonstrate that the interactions are very long range, and their magnitudes strongly depend on the affinity of the inclusions with the species in the binary mixtures, ranging from repulsive when two inclusions have opposing affinities to attractive when they have the same affinities. When one of the inclusions has no preference for either of the species, we find negligible critical Casimir interactions. For multiple-domain inclusions, mimicking the observations that membrane proteins often have several domains with varying affinities to the surrounding lipid species, the presence of domains with opposing affinities does not cancel the interactions altogether. Instead we can observe both attractive and repulsive interactions depending on their relative orientations. With increasing number of domains per inclusion, the range and magnitude of the effective interactions decrease in a similar fashion to those of electrostatic multipoles. Finally, clusters formed by multiple-domain inclusions can result in an effective affinity patterning due to the anisotropic character of the Casimir interactions between the building blocks.
Collapse
Affiliation(s)
- Jorge Benet
- Department of Physics, Durham University, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
19
|
Unraveling Prion Protein Interactions with Aptamers and Other PrP-Binding Nucleic Acids. Int J Mol Sci 2017; 18:ijms18051023. [PMID: 28513534 PMCID: PMC5454936 DOI: 10.3390/ijms18051023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/23/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative disorders that affect humans and other mammals. The etiologic agents common to these diseases are misfolded conformations of the prion protein (PrP). The molecular mechanisms that trigger the structural conversion of the normal cellular PrP (PrPC) into the pathogenic conformer (PrPSc) are still poorly understood. It is proposed that a molecular cofactor would act as a catalyst, lowering the activation energy of the conversion process, therefore favoring the transition of PrPC to PrPSc. Several in vitro studies have described physical interactions between PrP and different classes of molecules, which might play a role in either PrP physiology or pathology. Among these molecules, nucleic acids (NAs) are highlighted as potential PrP molecular partners. In this context, the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology has proven extremely valuable to investigate PrP–NA interactions, due to its ability to select small nucleic acids, also termed aptamers, that bind PrP with high affinity and specificity. Aptamers are single-stranded DNA or RNA oligonucleotides that can be folded into a wide range of structures (from harpins to G-quadruplexes). They are selected from a nucleic acid pool containing a large number (1014–1016) of random sequences of the same size (~20–100 bases). Aptamers stand out because of their potential ability to bind with different affinities to distinct conformations of the same protein target. Therefore, the identification of high-affinity and selective PrP ligands may aid the development of new therapies and diagnostic tools for TSEs. This review will focus on the selection of aptamers targeted against either full-length or truncated forms of PrP, discussing the implications that result from interactions of PrP with NAs, and their potential advances in the studies of prions. We will also provide a critical evaluation, assuming the advantages and drawbacks of the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technique in the general field of amyloidogenic proteins.
Collapse
|
20
|
Endogenous Brain Lipids Inhibit Prion Amyloid Formation In Vitro. J Virol 2017; 91:JVI.02162-16. [PMID: 28202758 DOI: 10.1128/jvi.02162-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 01/22/2023] Open
Abstract
The normal cellular prion protein (PrPC) resides in detergent-resistant outer membrane lipid rafts in which conversion to the pathogenic misfolded form is believed to occur. Once misfolding occurs, the pathogenic isoform polymerizes into highly stable amyloid fibrils. In vitro assays have demonstrated an intimate association between prion conversion and lipids, specifically phosphatidylethanolamine, which is a critical cofactor in the formation of synthetic infectious prions. In the current work, we demonstrate an alternative inhibitory function of lipids in the prion conversion process as assessed in vitro by real-time quaking-induced conversion (RT-QuIC). Using an alcohol-based extraction technique, we removed the lipid content from chronic wasting disease (CWD)-infected white-tailed deer brain homogenates and found that lipid extraction enabled RT-QuIC detection of CWD prions in a 2-log10-greater concentration of brain sample. Conversely, addition of brain-derived lipid extracts to CWD prion brain or lymph node samples inhibited amyloid formation in a dose-dependent manner. Subsequent lipid analysis demonstrated that this inhibitory function was restricted to the polar lipid fraction in brain. We further investigated three phospholipids commonly found in lipid membranes, phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol, and found all three similarly inhibited RT-QuIC. These results demonstrating polar-lipid, and specifically phospholipid, inhibition of prion-seeded amyloid formation highlight the diverse roles lipid constituents may play in the prion conversion process.IMPORTANCE Prion conversion is likely influenced by lipid interactions, given the location of normal prion protein (PrPC) in lipid rafts and lipid cofactors generating infectious prions in in vitro models. Here, we use real-time quaking-induced conversion (RT-QuIC) to demonstrate that endogenous brain polar lipids can inhibit prion-seeded amyloid formation, suggesting that prion conversion is guided by an environment of proconversion and anticonversion lipids. These experiments also highlight the applicability of RT-QuIC to identify potential therapeutic inhibitors of prion conversion.
Collapse
|
21
|
Mammalian prion protein (PrP) forms conformationally different amyloid intracellular aggregates in bacteria. Microb Cell Fact 2015; 14:174. [PMID: 26536866 PMCID: PMC4634817 DOI: 10.1186/s12934-015-0361-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/17/2015] [Indexed: 01/21/2023] Open
Abstract
Background An increasing number of proteins are being shown to assemble into amyloid structures that lead to pathological states. Among them, mammalian prions outstand due to their ability to transmit the pathogenic conformation, becoming thus infectious. The structural conversion of the cellular prion protein (PrPC), into its misfolded pathogenic form (PrPSc) is the central event of prion-driven pathologies. The study of the structural properties of intracellular amyloid aggregates in general and of prion-like ones in particular is a challenging task. In this context, the evidence that the inclusion bodies formed by amyloid proteins in bacteria display amyloid-like structural and functional properties make them a privileged system to model intracellular amyloid aggregation. Results Here we provide the first demonstration that recombinant murine PrP and its C-terminal domain (90–231) attain amyloid conformations inside bacteria. Moreover, the inclusions formed by these two PrP proteins display conformational diversity, since they differ in fibril morphology, binding affinity to amyloid dyes, stability, resistance to proteinase K digestion and neurotoxicity. Conclusions Overall, our results suggest that modelling PrP amyloid formation in microbial cell factories might open an avenue for a better understanding of the structural features modulating the pathogenic impact of this intriguing protein. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0361-y) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Euphol from Euphorbia tirucalli Negatively Modulates TGF-β Responsiveness via TGF-β Receptor Segregation inside Membrane Rafts. PLoS One 2015; 10:e0140249. [PMID: 26448474 PMCID: PMC4598150 DOI: 10.1371/journal.pone.0140249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 09/23/2015] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-β (TGF-β) responsiveness in cultured cells can be modulated by TGF-β partitioning between lipid raft/caveolae- and clathrin-mediated endocytosis pathways. Lipid rafts are plasma membrane microdomains with an important role in cell survival signaling, and cholesterol is necessary for the lipid rafts’ structure and function. Euphol is a euphane-type triterpene alcohol that is structurally similar to cholesterol and has a wide range of pharmacological properties, including anti-inflammatory and anti-cancer effects. In the present study, euphol suppressed TGF-β signaling by inducing TGF-β receptor movement into lipid-raft microdomains and degrading TGF-β receptors.
Collapse
|
23
|
Contrasting Effects of Two Lipid Cofactors of Prion Replication on the Conformation of the Prion Protein. PLoS One 2015; 10:e0130283. [PMID: 26090881 PMCID: PMC4474664 DOI: 10.1371/journal.pone.0130283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/18/2015] [Indexed: 01/03/2023] Open
Abstract
Recent studies introduced two experimental protocols for converting full-length recombinant prion protein (rPrP) purified from E.coli into the infectious prion state (PrPSc) with high infectivity titers. Both protocols employed protein misfolding cyclic amplification (PMCA) for generating PrPScde novo, but used two different lipids, 1-palmitoyl-2-oleolyl-sn-glycero-3-phospho(1’-rac-glycerol) (POPG) or phosphatidylethanolamine (PE), as conversion cofactors. The current study compares the effect of POPG and PE on the physical properties of native, α-helical full-length mouse rPrP under the solvent conditions used for converting rPrP into PrPSc. Surprisingly, the effects of POPG and PE on rPrP physical properties, including its conformation, thermodynamic stability, aggregation state and interaction with a lipid, were found to be remarkably different. PE was shown to have minimal, if any, effects on rPrP thermodynamic stability, cooperativity of unfolding, immediate solvent environment or aggregation state. In fact, little evidence indicates that PE interacts with rPrP directly. In contrast, POPG was found to bind to and induce dramatic changes in rPrP structure, including a loss of α-helical conformation and formation of large lipid-protein aggregates that were resistant to partially denaturing conditions. These results suggest that the mechanisms by which lipids assist conversion of rPrP into PrPSc might be fundamentally different for POPG and PE.
Collapse
|
24
|
Tiwari PB, Wang X, He J, Darici Y. Analyzing surface plasmon resonance data: choosing a correct biphasic model for interpretation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:035001. [PMID: 25832266 DOI: 10.1063/1.4914027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Surface plasmon resonance (SPR) has been widely used as a label-free biophysical technique to quantitatively study biochemical processes. For the SPR data fitting using a single exponential function, the procedure to extract the rate constants is straightforward. However, there is no simple procedure for SPR data fitting with double exponential functions. A highly non-linear fitting procedure is, therefore, used to fit the biphasic SPR data with numerical solutions of the rate equations. This procedure requires some prior knowledge of the underlying interaction mechanism, and the extracted rate constants often have large uncertainties. In this report, we propose a new method of analyzing the biphasic SPR data using the three commonly employed biphasic models. Our method is based on a general analytical solution of the biphasic rate equations, which is much more transparent and straightforward than the highly non-linear numerical integration approach. Our method can be used to determine the underlying biphasic interaction mechanism from the analysis of the SPR data and to extract the rate constants with high confidence levels. We have illustrated the procedures with examples of the data analysis on simulated SPR profiles, and the results are discussed.
Collapse
Affiliation(s)
| | - Xuewen Wang
- Department of Physics, Florida International University, Miami, Florida 33199, USA
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, USA
| | - Yesim Darici
- Department of Physics, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
25
|
Bychkova VE, Basova LV, Balobanov VA. How membrane surface affects protein structure. BIOCHEMISTRY (MOSCOW) 2015; 79:1483-514. [DOI: 10.1134/s0006297914130045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Le Brun AP, Haigh CL, Drew SC, James M, Boland MP, Collins SJ. Neutron reflectometry studies define prion protein N-terminal peptide membrane binding. Biophys J 2014; 107:2313-24. [PMID: 25418300 PMCID: PMC4241452 DOI: 10.1016/j.bpj.2014.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022] Open
Abstract
The prion protein (PrP), widely recognized to misfold into the causative agent of the transmissible spongiform encephalopathies, has previously been shown to bind to lipid membranes with binding influenced by both membrane composition and pH. Aside from the misfolding events associated with prion pathogenesis, PrP can undergo various posttranslational modifications, including internal cleavage events. Alpha- and beta-cleavage of PrP produces two N-terminal fragments, N1 and N2, respectively, which interact specifically with negatively charged phospholipids at low pH. Our previous work probing N1 and N2 interactions with supported bilayers raised the possibility that the peptides could insert deeply with minimal disruption. In the current study we aimed to refine the binding parameters of these peptides with lipid bilayers. To this end, we used neutron reflectometry to define the structural details of this interaction in combination with quartz crystal microbalance interrogation. Neutron reflectometry confirmed that peptides equivalent to N1 and N2 insert into the interstitial space between the phospholipid headgroups but do not penetrate into the acyl tail region. In accord with our previous studies, interaction was stronger for the N1 fragment than for the N2, with more peptide bound per lipid. Neutron reflectometry analysis also detected lengthening of the lipid acyl tails, with a concurrent decrease in lipid area. This was most evident for the N1 peptide and suggests an induction of increased lipid order in the absence of phase transition. These observations stand in clear contrast to the findings of analogous studies of Ab and ?-synuclein and thereby support the possibility of a functional role for such N-terminal fragment-membrane interactions.
Collapse
Affiliation(s)
- Anton P Le Brun
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, New South Wales, 2234, Australia
| | - Cathryn L Haigh
- Department of Pathology, Kenneth Myer Building, The University of Melbourne, Victoria, 3010, Australia
| | - Simon C Drew
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia
| | - Michael James
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, New South Wales, 2234, Australia; School of Chemistry, University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Martin P Boland
- Department of Pathology, Kenneth Myer Building, The University of Melbourne, Victoria, 3010, Australia
| | - Steven J Collins
- Department of Pathology, Kenneth Myer Building, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
27
|
Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495091. [PMID: 25386560 PMCID: PMC4217372 DOI: 10.1155/2014/495091] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/23/2014] [Indexed: 01/26/2023]
Abstract
The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer's disease, tauopathies, and Huntington's diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell.
Collapse
|
28
|
Chu NK, Shabbir W, Bove-Fenderson E, Araman C, Lemmens-Gruber R, Harris DA, Becker CFW. A C-terminal membrane anchor affects the interactions of prion proteins with lipid membranes. J Biol Chem 2014; 289:30144-60. [PMID: 25217642 DOI: 10.1074/jbc.m114.587345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Membrane attachment via a C-terminal glycosylphosphatidylinositol anchor is critical for conversion of PrP(C) into pathogenic PrP(Sc). Therefore the effects of the anchor on PrP structure and function need to be deciphered. Three PrP variants, including full-length PrP (residues 23-231, FL_PrP), N-terminally truncated PrP (residues 90-231, T_PrP), and PrP missing its central hydrophobic region (Δ105-125, ΔCR_PrP), were equipped with a C-terminal membrane anchor via a semisynthesis strategy. Analyses of the interactions of lipidated PrPs with phospholipid membranes demonstrated that C-terminal membrane attachment induces a different binding mode of PrP to membranes, distinct from that of non-lipidated PrPs, and influences the biochemical and conformational properties of PrPs. Additionally, fluorescence-based assays indicated pore formation by lipidated ΔCR_PrP, a variant that is known to be highly neurotoxic in transgenic mice. This finding was supported by using patch clamp electrophysiological measurements of cultured cells. These results provide new evidence for the role of the membrane anchor in PrP-lipid interactions, highlighting the importance of the N-terminal and the central hydrophobic domain in these interactions.
Collapse
Affiliation(s)
- Nam K Chu
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Waheed Shabbir
- the Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria, and
| | - Erin Bove-Fenderson
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Can Araman
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Rosa Lemmens-Gruber
- the Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria, and
| | - David A Harris
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Christian F W Becker
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria,
| |
Collapse
|
29
|
Membrane-induced changes in the holomyoglobin tertiary structure: interplay with function. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:317-29. [DOI: 10.1007/s00249-014-0964-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/04/2014] [Accepted: 04/25/2014] [Indexed: 11/26/2022]
|
30
|
Zhou Z, Xiao G. Conformational conversion of prion protein in prion diseases. Acta Biochim Biophys Sin (Shanghai) 2013; 45:465-76. [PMID: 23580591 DOI: 10.1093/abbs/gmt027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prion diseases are a group of infectious fatal neurodegenerative diseases. The conformational conversion of a cellular prion protein (PrP(C)) into an abnormal misfolded isoform (PrP(Sc)) is the key event in prion diseases pathology. Under normal conditions, the high-energy barrier separates PrP(C) from PrP(Sc) isoform. However, pathogenic mutations, modifications as well as some cofactors, such as glycosaminoglycans, nucleic acids, and lipids, could modulate the conformational conversion process. Understanding the mechanism of conformational conversion of prion protein is essential for the biomedical research and the treatment of prion diseases. Particularly, the characterization of cofactors interacting with prion protein might provide new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | |
Collapse
|
31
|
Abstract
The infectious agent of the transmissible spongiform encephalopathies, or prion diseases, has been the center of intense debate for decades. Years of studies have provided overwhelming evidence to support the prion hypothesis that posits a protein conformal infectious agent is responsible for the transmissibility of the disease. The recent studies that generate prion infectivity with purified bacterially expressed recombinant prion protein not only provides convincing evidence supporting the core of the prion hypothesis, that a pathogenic conformer of host prion protein is able to seed the conversion of its normal counterpart to the likeness of itself resulting in the replication of the pathogenic conformer and occurrence of disease, they also indicate the importance of cofactors, particularly lipid or lipid-like molecules, in forming the protein conformation-based infectious agent. This article reviews the literature regarding the chemical nature of the infectious agent and the potential contribution from lipid molecules to prion infectivity, and discusses the important remaining questions in this research area.
Collapse
Affiliation(s)
- Fei Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Ave., Columbus, OH 43210, USA.
| | | |
Collapse
|
32
|
Marzo L, Marijanovic Z, Browman D, Chamoun Z, Caputo A, Zurzolo C. 4-hydroxytamoxifen leads to PrPSc clearance by conveying both PrPC and PrPSc to lysosomes independently of autophagy. J Cell Sci 2013; 126:1345-54. [PMID: 23418355 DOI: 10.1242/jcs.114801] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders involving the abnormal folding of a native cellular protein, named PrP(C), to a malconformed aggregation-prone state, enriched in beta sheet secondary structure, denoted PrP(Sc). Recently, autophagy has garnered considerable attention as a cellular process with the potential to counteract neurodegenerative diseases of protein aggregation such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. Stimulation of autophagy by chemical compounds has also been shown to reduce PrP(Sc) in infected neuronal cells and prolong survival times in mouse models. Consistent with previous reports, we demonstrate that autophagic flux is increased in chronically infected cells. However, in contrast to recent findings we show that autophagy does not cause a reduction in scrapie burden. We report that in infected neuronal cells different compounds known to stimulate autophagy are ineffective in increasing autophagic flux and in reducing PrP(Sc). We further demonstrate that tamoxifen and its metabolite 4-hydroxytamoxifen lead to prion degradation in an autophagy-independent manner by diverting the trafficking of both PrP and cholesterol to lysosomes. Our data indicate that tamoxifen, a well-characterized, widely available pharmaceutical, may have applications in the therapy of prion diseases.
Collapse
Affiliation(s)
- Ludovica Marzo
- Institut Pasteur, Unité de Trafic Membranaire et Pathogenèse, 25 rue du Docteur Roux, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
33
|
Lauterbach T, Manna M, Ruhnow M, Wisantoso Y, Wang Y, Matysik A, Oglęcka K, Mu Y, Geifman-Shochat S, Wohland T, Kraut R. Weak glycolipid binding of a microdomain-tracer peptide correlates with aggregation and slow diffusion on cell membranes. PLoS One 2012; 7:e51222. [PMID: 23251459 PMCID: PMC3520979 DOI: 10.1371/journal.pone.0051222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
Organized assembly or aggregation of sphingolipid-binding ligands, such as certain toxins and pathogens, has been suggested to increase binding affinity of the ligand to the cell membrane and cause membrane reorganization or distortion. Here we show that the diffusion behavior of the fluorescently tagged sphingolipid-interacting peptide probe SBD (Sphingolipid Binding Domain) is altered by modifications in the construction of the peptide sequence that both result in a reduction in binding to ganglioside-containing supported lipid membranes, and at the same time increase aggregation on the cell plasma membrane, but that do not change relative amounts of secondary structural features. We tested the effects of modifying the overall charge and construction of the SBD probe on its binding and diffusion behavior, by Surface Plasmon Resonance (SPR; Biacore) analysis on lipid surfaces, and by Fluorescence Correlation Spectroscopy (FCS) on live cells, respectively. SBD binds preferentially to membranes containing the highly sialylated gangliosides GT1b and GD1a. However, simple charge interactions of the peptide with the negative ganglioside do not appear to be a critical determinant of binding. Rather, an aggregation-suppressing amino acid composition and linker between the fluorophore and the peptide are required for optimum binding of the SBD to ganglioside-containing supported lipid bilayer surfaces, as well as for interaction with the membrane. Interestingly, the strength of interactions with ganglioside-containing artificial membranes is mirrored in the diffusion behavior by FCS on cell membranes, with stronger binders displaying similar characteristic diffusion profiles. Our findings indicate that for aggregation-prone peptides, aggregation occurs upon contact with the cell membrane, and rather than giving a stronger interaction with the membrane, aggregation is accompanied by weaker binding and complex diffusion profiles indicative of heterogeneous diffusion behavior in the probe population.
Collapse
Affiliation(s)
- Tim Lauterbach
- School of Biological Sciences, Nanyang Technological University, Singapore
- Institut für Lebensmittel- und Bioverfahrenstechnik, Technische Universität Dresden, Dresden, Germany
| | - Manoj Manna
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Maria Ruhnow
- School of Biological Sciences, Nanyang Technological University, Singapore
- Institut für Lebensmittel- und Bioverfahrenstechnik, Technische Universität Dresden, Dresden, Germany
| | - Yudi Wisantoso
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yaofeng Wang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Artur Matysik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kamila Oglęcka
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Rachel Kraut
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
34
|
Li H, Ye S, Wei F, Ma S, Luo Y. In situ molecular-level insights into the interfacial structure changes of membrane-associated prion protein fragment [118-135] investigated by sum frequency generation vibrational spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16979-16988. [PMID: 23116165 DOI: 10.1021/la302655p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein aggregation is associated with many "protein deposition diseases". A precise molecular detail of the conformational transitions of such a membrane-associated protein structure is critical to understand the disease mechanism and develop effective treatments. One potential model peptide for studying the mechanism of protein deposition diseases is prion protein fragment [118-135] (PrP118-135), which shares homology with the C-terminal domain of the Alzheimer's β-amyloid peptide. In this study, sum frequency generation vibrational spectroscopy (SFG-VS) has been applied to characterize interactions between PrP118-135 and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) lipid bilayer in situ. The conformation change and orientation of PrP118-135 in lipid bilayers have been determined using SFG spectra with different polarization combinations. It is found that low-concentration PrP118-135 predominantly adopts α-helical structure but with tiny β-sheet structure. With the PrP118-135 concentration increasing, the molecular number ratio of parallel β-sheet structure increases and reaches about 44% at a concentration of 0.10 mg/mL, indicating the formation of abnormally folded scrapie isoforms. The α-helical structure inserts into the lipid bilayer with a tilt angle of ~32° versus the surface normal, while the β-sheet structure lies down on the lipid bilayer with the tilt and twist angle both of 90°. The 3300 cm(-1) N-H stretching signal in psp spectra arises from α-helical structure at low PrP concentration and from the β-sheet structure at high PrP concentration. Results from this study will provide an in-depth insight into the early events in the aggregation of PrP in cell membrane.
Collapse
Affiliation(s)
- Hongchun Li
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, People's Republic of China 230026
| | | | | | | | | |
Collapse
|
35
|
Kraut R, Bag N, Wohland T. Fluorescence Correlation Methods for Imaging Cellular Behavior of Sphingolipid-Interacting Probes. Methods Cell Biol 2012; 108:395-427. [DOI: 10.1016/b978-0-12-386487-1.00018-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
NMR structure and CD titration with metal cations of human prion alpha2-helix-related peptides. Bioinorg Chem Appl 2011:10720. [PMID: 18274605 PMCID: PMC2216051 DOI: 10.1155/2007/10720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/04/2007] [Accepted: 07/11/2007] [Indexed: 11/17/2022] Open
Abstract
The 173–195 segment corresponding to the helix 2 of the C-globular prion protein domain could be one of several “spots” of intrinsic conformational flexibility. In fact, it possesses chameleon conformational behaviour and gathers several disease-associated point mutations. We have performed spectroscopic studies on the wild-type fragment 173–195 and on its D178N mutant dissolved in trifluoroethanol to mimic the in vivo system, both in the presence and in the absence of metal cations. NMR data showed that the structure of the D178N mutant is characterized by two short helices separated by a kink, whereas the wild-type peptide is fully helical. Both peptides retained these structural organizations, as monitored by CD, in the presence of metal cations. NMR spectra were however not in favour of the formation of definite ion-peptide complexes. This agrees with previous evidence that other regions of the prion protein are likely the natural target of metal cation binding.
Collapse
|
37
|
Hou X, Small DH, Aguilar MI. Surface plasmon resonance spectroscopy: a new lead in studying the membrane binding of amyloidogenic transthyretin. Methods Mol Biol 2011; 752:215-228. [PMID: 21713640 DOI: 10.1007/978-1-60327-223-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surface plasmon resonance (SPR) employs the optical principle of SPR to measure changes in mass on a sensor chip surface in real time. Surface chemistry has been developed which enables the immoblization of lipid bilayers and determination of protein-membrane interactions in real time. In the last decade, the plasma membrane has been demonstrated to play an important role in amyloidogenesis and cytotoxicity induced by amyloidogenic proteins. SPR provides an ideal way to study the membrane binding of amyloidogenic proteins. In this chapter, we describe the application of SPR to the study of amyloidogenic transthyretin binding to the plasma membrane and artificial lipid bilayers.
Collapse
Affiliation(s)
- Xu Hou
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
38
|
Biosensing of lipid–prion interactions: Insights on charge effect, Cu(II)-ions binding and prion oligomerization. Biosens Bioelectron 2010; 26:1399-406. [DOI: 10.1016/j.bios.2010.07.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/02/2010] [Accepted: 07/17/2010] [Indexed: 11/18/2022]
|
39
|
Wang F, Yin S, Wang X, Zha L, Sy MS, Ma J. Role of the highly conserved middle region of prion protein (PrP) in PrP-lipid interaction. Biochemistry 2010; 49:8169-76. [PMID: 20718504 DOI: 10.1021/bi101146v] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Converting normal prion protein (PrP(C)) to the pathogenic PrP(Sc) isoform is central to prion disease. We previously showed that, in the presence of lipids, recombinant mouse PrP (rPrP) can be converted into the highly infectious conformation, suggesting a crucial role of lipid-rPrP interaction in PrP conversion. To understand the mechanism of lipid-rPrP interaction, we analyzed the ability of various rPrP mutants to bind anionic lipids and to gain lipid-induced proteinase K (PK) resistance. We found that the N-terminal positively charged region contributes to electrostatic rPrP-lipid binding but does not affect lipid-induced PK resistance. In contrast, the highly conserved middle region of PrP, consisting of a positively charged region and a hydrophobic domain, is essential for lipid-induced rPrP conversion. The hydrophobic domain deletion mutant significantly weakened the hydrophobic rPrP-lipid interaction and abolished the lipid-induced C-terminal PK resistance. The rPrP mutant without positive charges in the middle region reduced the amount of the lipid-induced PK-resistant rPrP form. Consistent with a critical role of the middle region in lipid-induced rPrP conversion, both disease-associated P105L and P102L mutations, localized between lysine residues in the positively charged region, significantly affected lipid-induced rPrP conversion. The hydrophobic domain-localized 129 polymorphism altered the strength of hydrophobic rPrP-lipid interaction. Collectively, our results suggest that the interaction between the middle region of PrP and lipids is essential for the formation of the PK-resistant conformation. Moreover, the influence of disease-associated PrP mutations and the 129 polymorphism on PrP-lipid interaction supports the relevance of PrP-lipid interaction to the pathogenesis of prion disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
40
|
Lawson VA, Lumicisi B, Welton J, Machalek D, Gouramanis K, Klemm HM, Stewart JD, Masters CL, Hoke DE, Collins SJ, Hill AF. Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein. PLoS One 2010; 5:e12351. [PMID: 20808809 PMCID: PMC2925953 DOI: 10.1371/journal.pone.0012351] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/22/2010] [Indexed: 11/18/2022] Open
Abstract
Background The accumulation of protease resistant conformers of the prion protein (PrPres) is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. Methodology/Principal Finding In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrPres formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS) from the PrPC substrate was found to specifically prevent PrPres formation seeded by mouse derived PrPSc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrPres formation, while having no effect on PrPres formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. Conclusions/Significance Cofactor requirements for PrPres formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.
Collapse
Affiliation(s)
- Victoria A. Lawson
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- The Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (VAL); (AFH)
| | - Brooke Lumicisi
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeremy Welton
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dorothy Machalek
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Katrina Gouramanis
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen M. Klemm
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - James D. Stewart
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L. Masters
- The Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - David E. Hoke
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Steven J. Collins
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- The Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew F. Hill
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry & Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- The Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (VAL); (AFH)
| |
Collapse
|
41
|
Luo K, Li S, Xie M, Wu D, Wang W, Chen R, Huang L, Huang T, Pang D, Xiao G. Real-time visualization of prion transport in single live cells using quantum dots. Biochem Biophys Res Commun 2010; 394:493-7. [PMID: 20193663 DOI: 10.1016/j.bbrc.2010.02.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 02/24/2010] [Indexed: 11/17/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders resulting from structural conversion of the cellular isoform of PrP(C) to the infectious scrapie isoform PrP(Sc). It is believed that such structural alteration may occur within the internalization pathway. However, there is no direct evidence to support this hypothesis. Employing quantum dots (QDs) as a probe, we have recorded a real-time movie demonstrating the process of prion internalization in a living cell for the first time. The entire internalization process can be divided into four discrete but connected stages. In addition, using methyl-beta-cyclodextrin to disrupt cell membrane cholesterol, we show that lipid rafts play an important role in locating cellular PrP(C) to the cell membrane and in initiating PrP(C) endocytosis.
Collapse
Affiliation(s)
- Kan Luo
- State Key Laboratory of Virology and Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Piccinini M, Scandroglio F, Prioni S, Buccinnà B, Loberto N, Aureli M, Chigorno V, Lupino E, DeMarco G, Lomartire A, Rinaudo MT, Sonnino S, Prinetti A. Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 2010; 41:314-40. [PMID: 20127207 DOI: 10.1007/s12035-009-8096-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/22/2009] [Indexed: 12/13/2022]
Abstract
Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron-glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid-protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid beta peptide in Alzheimer's disease, huntingtin in Huntington's disease, alpha-synuclein in Parkinson's disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.
Collapse
Affiliation(s)
- Marco Piccinini
- Section of Biochemistry, Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
ACAT-1, Cav-1 and PrP expression in scrapie susceptible and resistant sheep. Open Life Sci 2010. [DOI: 10.2478/s11535-009-0076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractScrapie is a prion disease for which no means of ante-mortem diagnosis is available. We recently found a relationship between cell susceptibility to scrapie and altered cholesterol homeostasis. In brains and in skin fibroblasts and peripheral blood mononuclear cells from healthy and scrapie-affected sheep carrying a scrapie-susceptible genotype, the levels of cholesterol esters were consistently higher than in tissues and cultures derived from animals with a scrapie-resistant genotype. Here we show that intracellular accumulation of cholesterol esters (CE) in fibroblasts derived from scrapie-susceptible sheep was accompanied by parallel alterations in the expression level of acyl-coenzymeA: cholesterol-acyltransferase (ACAT1) and caveolin-1 (Cav-1) that are involved in the pathways leading to intracellular cholesterol esterification and trafficking. Comparative analysis of cellular prion protein (PrPc) mRNA, showed an higher expression level in cells from animals carrying a susceptible genotype, with or without Scrapie. These data suggest that CE accumulation in peripheral cells, together with the altered expression of some proteins implicated in intracellular cholesterol homeostasis, might serve to identify a distinctive lipid metabolic profile associated with increased susceptibility to develop prion disease following infection.
Collapse
|
44
|
Graham JF, Agarwal S, Kurian D, Kirby L, Pinheiro TJT, Gill AC. Low density subcellular fractions enhance disease-specific prion protein misfolding. J Biol Chem 2010; 285:9868-9880. [PMID: 20106973 DOI: 10.1074/jbc.m109.093484] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The production of prion particles in vitro by amplification with or without exogenous seed typically results in infectivity titers less than those associated with PrP(Sc) isolated ex vivo and highlights the potential role of co-factors that can catalyze disease-specific prion protein misfolding in vivo. We used a cell-free conversion assay previously shown to replicate many aspects of transmissible spongiform encephalopathy disease to investigate the cellular location of disease-specific co-factors using fractions derived from gradient centrifugation of a scrapie-susceptible cell line. Fractions from the low density region of the gradient doubled the efficiency of conversion of recombinant PrP. These fractions contain plasma membrane and cytoplasmic proteins, and conversion enhancement can be achieved using PrP(Sc) derived from two different strains of mouse-passaged scrapie as seed. Equivalent fractions from a second scrapie-susceptible cell line also stimulate conversion. We also show that subcellular fractions enhancing disease-specific prion protein conversion prevent in vitro fibrillization of recombinant prion protein, suggesting the existence of separate, competing mechanisms of disease-specific and nonspecific misfolding in vivo.
Collapse
Affiliation(s)
- James F Graham
- Neuropathogenesis Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Alexander Robertson Building, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG
| | - Sonya Agarwal
- Neuropathogenesis Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Alexander Robertson Building, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG
| | - Dominic Kurian
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN
| | - Louise Kirby
- Neuropathogenesis Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Alexander Robertson Building, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG
| | - Teresa J T Pinheiro
- School of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Andrew C Gill
- Neuropathogenesis Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Alexander Robertson Building, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG.
| |
Collapse
|
45
|
Hou X, Small DH, Aguilar MI. Surface plasmon resonance spectroscopy in determination of the interactions between amyloid beta proteins (Abeta) and lipid membranes. Methods Mol Biol 2010; 627:225-235. [PMID: 20217625 DOI: 10.1007/978-1-60761-670-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Surface plasmon resonance (SPR) spectroscopy is emerging as a useful tool for determination of molecular interactions in real time. Studies on the molecular pathogenesis of amyloidoses have shown that the plasma membrane plays an important role in amyloidogenesis and cytotoxicity induced by amyloidogenic proteins. By immobilizing lipid bilayers on a sensor chip surface, SPR spectroscopy has been employed to examine the binding of amyloidogenic proteins, such as amyloid beta protein (Abeta), to a variety of lipid membranes, and it provided new insights into the molecular interactions between these amyloidogenic proteins and membranes. In this chapter, we describe the application of SPR spectroscopy to the determination of the binding of Abeta to lipid membranes.
Collapse
Affiliation(s)
- Xu Hou
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
46
|
Dorosz J, Volinsky R, Bazar E, Kolusheva S, Jelinek R. Phospholipid-induced fibrillation of a prion amyloidogenic determinant at the air/water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12501-12506. [PMID: 19588938 DOI: 10.1021/la901750v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The peptide fragment 106-126 of prion protein [PrP(106-126)] is a prominent amyloidogenic determinant. We present analysis of PrP(106-126) fibrillation at the air/water interface and, in particular, the relationship between the fibrillation process and interactions of the peptide with phospholipid monolayers. We find that lipid monolayers deposited at the air/water interface induce rapid formation of remarkably highly ordered fibrils by PrP(106-126), and that the extent of fibrillation and fiber organization were dependent upon the presence of negatively charged and unsaturated phospholipids in the monolayers. We also observe that fibrillation was enhanced when PrP(106-126) was injected underneath preassembled phospholipid monolayers, compared to deposition and subsequent compression of mixed monolayers of the peptide and phospholipids. In a broader context, this study demonstrates that Langmuir systems constitute a useful platform for studying lipid interactions of amyloidogenic peptides and lipid-induced fibrillation phenomena.
Collapse
Affiliation(s)
- Jerzy Dorosz
- Department of Chemistry and Ilse Katz Institute of Nanotechnology, Ben Gurion University, Beer Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
47
|
Sanghera N, Swann MJ, Ronan G, Pinheiro TJ. Insight into early events in the aggregation of the prion protein on lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2245-51. [DOI: 10.1016/j.bbamem.2009.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/06/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
|
48
|
Shin JY, Shin JI, Kim JS, Yang YS, Shin YK, Kim KK, Lee S, Kweon DH. Disulfide bond as a structural determinant of prion protein membrane insertion. Mol Cells 2009; 27:673-80. [PMID: 19533034 DOI: 10.1007/s10059-009-0089-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022] Open
Abstract
Conversion of the normal soluble form of prion protein, PrP (PrP(C)), to proteinase K-resistant form (PrP(Sc)) is a common molecular etiology of prion diseases. Proteinase K-resistance is attributed to a drastic conformational change from alpha-helix to beta-sheet and subsequent fibril formation. Compelling evidence suggests that membranes play a role in the conformational conversion of PrP. However, biophysical mechanisms underlying the conformational changes of PrP and membrane binding are still elusive. Recently, we demonstrated that the putative transmembrane domain (TMD; residues 111-135) of Syrian hamster PrP penetrates into the membrane upon the reduction of the conserved disulfide bond of PrP. To understand the mechanism underlying the membrane insertion of the TMD, here we explored changes in conformation and membrane binding abilities of PrP using wild type and cysteine-free mutant. We show that the reduction of the disulfide bond of PrP removes motional restriction of the TMD, which might, in turn, expose the TMD into solvent. The released TMD then penetrates into the membrane. We suggest that the disulfide bond regulates the membrane binding mode of PrP by controlling the motional freedom of the TMD.
Collapse
Affiliation(s)
- Jae Yoon Shin
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hornemann S, von Schroetter C, Damberger FF, Wüthrich K. Prion protein-detergent micelle interactions studied by NMR in solution. J Biol Chem 2009; 284:22713-21. [PMID: 19546219 DOI: 10.1074/jbc.m109.000430] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cellular prion proteins, PrP(C), carrying the amino acid substitutions P102L, P105L, or A117V, which confer increased susceptibility to human transmissible spongiform encephalopathies, are known to form structures that include transmembrane polypeptide segments. Herein, we investigated the interactions between dodecylphosphocholine micelles and the polypeptide fragments 90-231 of the recombinant mouse PrP variants carrying the amino acid replacements P102L, P105L, A117V, A113V/A115V/A118V, K110I/H111I, M129V, P105L/M129V, and A117V/M129V. Wild-type mPrP-(90-231) and mPrP[M129V]-(91-231) showed only weak interactions with dodecylphosphocholine micelles in aqueous solution at pH 7.0, whereas discrete interaction sites within the polypeptide segment 102-127 were identified for all other aforementioned mPrP variants by NMR chemical shift mapping. These model studies thus provide evidence that amino acid substitutions within the polypeptide segment 102-127 affect the interactions of PrP(C) with membranous structures, which might in turn modulate the physiological function of the protein in health and disease.
Collapse
Affiliation(s)
- Simone Hornemann
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
50
|
|