1
|
Bolanle IO, Palmer TM. O-GlcNAcylation and Phosphorylation Crosstalk in Vascular Smooth Muscle Cells: Cellular and Therapeutic Significance in Cardiac and Vascular Pathologies. Int J Mol Sci 2025; 26:3303. [PMID: 40244145 PMCID: PMC11989994 DOI: 10.3390/ijms26073303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
More than 400 different types of post-translational modifications (PTMs), including O-GlcNAcylation and phosphorylation, combine to co-ordinate almost all aspects of protein function. Often, these PTMs overlap and the specific relationship between O-GlcNAcylation and phosphorylation has drawn much attention. In the last decade, the significance of this dynamic crosstalk has been linked to several chronic pathologies of cardiovascular origin. However, very little is known about the pathophysiological significance of this crosstalk for vascular smooth muscle cell dysfunction in cardiovascular disease. O-GlcNAcylation occurs on serine and threonine residues which are also targets for phosphorylation. A growing body of research has now emerged linking altered vascular integrity and homeostasis with highly regulated crosstalk between these PTMs. Additionally, a significant body of evidence indicates that O-GlcNAcylation is an important contributor to the pathogenesis of neointimal hyperplasia and vascular restenosis responsible for long-term vein graft failure. In this review, we evaluate the significance of this dynamic crosstalk and its role in cardiovascular pathologies, and the prospects of identifying possible targets for more effective therapeutic interventions.
Collapse
Affiliation(s)
| | - Timothy M. Palmer
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
| |
Collapse
|
2
|
Qin Q, Wei P, Usman S, Ahamefule CS, Jin C, Wang B, Yan K, van Aalten DMF, Fang W. Gfa1 (glutamine fructose-6-phosphate aminotransferase) is essential for Aspergillus fumigatus growth and virulence. BMC Biol 2025; 23:80. [PMID: 40082985 PMCID: PMC11907850 DOI: 10.1186/s12915-025-02184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Aspergillus fumigatus, the primary etiological agent of invasive aspergillosis, causes over 1.8 million deaths annually. Targeting cell wall biosynthetic pathways offers a promising antifungal strategy. Gfa1, a rate-limiting enzyme in UDP-GlcNAc synthesis, plays a pivotal role in the hexosamine biosynthetic pathway (HBP). RESULTS Deletion of gfa1 (Δgfa1) results in auxotrophy for glucosamine (GlcN) or N-acetylglucosamine (GlcNAc). Under full recovery (FR) conditions, where minimal medium is supplemented with 5 mM GlcN as the sole carbon source, the Δgfa1 mutant shows growth comparable to the wild-type (WT). However, when supplemented with 5 mM GlcN and 55 mM glucose, growth is partially repressed, likely due to carbon catabolite repression, a condition termed partial repression (PR). Under PR conditions, Δgfa1 exhibits compromised growth, reduced conidiation, defective germination, impaired cell wall integrity, and increased sensitivity to endoplasmic reticulum (ER) stress and high temperatures. Additionally, Δgfa1 demonstrates disruptions in protein homeostasis and iron metabolism. Transcriptomic analysis of the mutant under PR conditions reveals significant alterations in carbohydrate and amino acid metabolism, unfolded protein response (UPR) processes, and iron assimilation. Importantly, Gfa1 is essential for A. fumigatus virulence, as demonstrated in Caenorhabditis elegans and Galleria mellonella infection models. CONCLUSIONS These findings underscore the critical role of Gfa1 in fungal pathogenicity and suggest its potential as a therapeutic target for combating A. fumigatus infections.
Collapse
Affiliation(s)
- Qijian Qin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Pingzhen Wei
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Sayed Usman
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | | | - Cheng Jin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Kaizhou Yan
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Daan M F van Aalten
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Wenxia Fang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, China.
| |
Collapse
|
3
|
Fernández A, Câmara N, Sierra E, Arbelo M, Bernaldo de Quirós Y, Jepson PD, Deaville R, Díaz-Delgado J, Suárez-Santana C, Castro A, Hernández JN, Godinho A. Cetacean Intracytoplasmic Eosinophilic Globules: A Cytomorphological, Histological, Histochemical, Immunohistochemical, and Proteomic Characterization. Animals (Basel) 2023; 13:2130. [PMID: 37443929 DOI: 10.3390/ani13132130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The nature, etiopathogenesis, and clinicopathologic relevance of the prevalent intracytoplasmic eosinophilic globules (IEGs) within hepatocytes of cetaceans are unknown. This study aims to evaluate the presence and characterize the IEGs in the hepatocytes of cetaceans using histochemical and immunohistochemical electron microscopy, Western blot, lectin histochemistry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry techniques. A total of 95/115 (83%) animals (16 species) exhibited histologically evident intracytoplasmic round to oval, single to multiple, hyaline eosinophilic globules within the hepatocytes. These globules were largely PAS-positive, diastase resistant, and were immunopositive for fibrinogen (FB, 97%), albumin (Alb, 85%), and α1-antitrypsine (A1AT, 53%). The IEG positivity for FB and A1AT were correlated with live-stranding, hepatic congestion and a good nutritional status. The cetaceans lacking IEGs were consistently dead stranded and had poor body conditions. The IEGs in 36 bycaught cetaceans were, all except one, FB-positive and A1AT-negative. The IEGs exhibited morphologic and compositional variations at the ultrastructural level, suggesting various stages of development and/or etiopathogenesis(es). The glycocalyx analysis suggested an FB- and A1AT-glycosylation pattern variability between cetaceans and other animals. The proteomic analyses confirmed an association between the IEGs and acute phase proteins, suggesting a relationship between acute stress (i.e., bycatch), disease, and cellular protective mechanisms, allowing pathologists to correlate this morphological change using the acute hepatocytic cell response under certain stress conditions.
Collapse
Affiliation(s)
- Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Calle Transmontaña, s/n, 35416 Arucas, Canary Islands, Spain
| | - Nakita Câmara
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Calle Transmontaña, s/n, 35416 Arucas, Canary Islands, Spain
- The Oceanic Platform of the Canary Islands (PLOCAN), Carretera de Taliarte, s/n, 35200 Telde, Canary Islands, Spain
- Loro Parque Foundation, Avenida Loro Parque, s/n, 38400 Puerto de la Cruz, Canary Islands, Spain
| | - Eva Sierra
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Calle Transmontaña, s/n, 35416 Arucas, Canary Islands, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Calle Transmontaña, s/n, 35416 Arucas, Canary Islands, Spain
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Calle Transmontaña, s/n, 35416 Arucas, Canary Islands, Spain
| | - Paul D Jepson
- Zoological Society of London, Institute of Zoology, Regent's Park, London NW1 4RY, UK
| | - Rob Deaville
- Zoological Society of London, Institute of Zoology, Regent's Park, London NW1 4RY, UK
| | - Josué Díaz-Delgado
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Calle Transmontaña, s/n, 35416 Arucas, Canary Islands, Spain
| | - Cristian Suárez-Santana
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Calle Transmontaña, s/n, 35416 Arucas, Canary Islands, Spain
| | - Ayoze Castro
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Calle Transmontaña, s/n, 35416 Arucas, Canary Islands, Spain
- The Oceanic Platform of the Canary Islands (PLOCAN), Carretera de Taliarte, s/n, 35200 Telde, Canary Islands, Spain
| | - Julia N Hernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Calle Transmontaña, s/n, 35416 Arucas, Canary Islands, Spain
| | - Ana Godinho
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Calle Transmontaña, s/n, 35416 Arucas, Canary Islands, Spain
- Rua Central de Gandra, University Institute of Health Sciences (IUCS)-CESPU, 4585-116 Gandra, Portugal
| |
Collapse
|
4
|
Abstract
The capacity of cells to organize complex biochemical reactions in intracellular space is a fundamental organizational principle of life. Key to this organization is the compartmentalization of the cytoplasm into distinct organelles, which is frequently achieved through intracellular membranes. Recent evidence, however, has added a new layer of flexibility to cellular compartmentalization. As such, in response to specific stimuli, liquid-liquid phase separations can lead to the rapid rearrangements of the cytoplasm to form membraneless organelles. Stress granules (SGs) are one such type of organelle that form specifically when cells are faced with stress stimuli, to aid cells in coping with stress. Inherently, altered SG formation has been linked to the pathogenesis of diseases associated with stress and inflammatory conditions, including cancer. Exciting discoveries have indicated an intimate link between SGs and tumorigenesis. Several pro-tumorigenic signaling molecules including the RAS oncogene, mTOR, and histone deacetylase 6 (HDAC6) have been shown to upregulate SG formation. Based on these studies, SGs have emerged as structures that can integrate oncogenic signaling and tumor-associated stress stimuli to enhance cancer cell fitness. In addition, growing evidence over the past decade suggests that SGs function not only to regulate the switch between survival and cell death, but also contribute to cancer cell proliferation, invasion, metastasis, and drug resistance. Although much remains to be learned about the role of SGs in tumorigenesis, these studies highlight SGs as a key regulatory hub in cancer and a promising therapeutic target.
Collapse
Affiliation(s)
- Min-Seok Song
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elda Grabocka
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Silva-Aguiar RP, Peruchetti DB, Pinheiro AAS, Caruso-Neves C, Dias WB. O-GlcNAcylation in Renal (Patho)Physiology. Int J Mol Sci 2022; 23:ijms231911260. [PMID: 36232558 PMCID: PMC9569498 DOI: 10.3390/ijms231911260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Kidneys maintain internal milieu homeostasis through a well-regulated manipulation of body fluid composition. This task is performed by the correlation between structure and function in the nephron. Kidney diseases are chronic conditions impacting healthcare programs globally, and despite efforts, therapeutic options for its treatment are limited. The development of chronic degenerative diseases is associated with changes in protein O-GlcNAcylation, a post-translation modification involved in the regulation of diverse cell function. O-GlcNAcylation is regulated by the enzymatic balance between O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) which add and remove GlcNAc residues on target proteins, respectively. Furthermore, the hexosamine biosynthetic pathway provides the substrate for protein O-GlcNAcylation. Beyond its physiological role, several reports indicate the participation of protein O-GlcNAcylation in cardiovascular, neurodegenerative, and metabolic diseases. In this review, we discuss the impact of protein O-GlcNAcylation on physiological renal function, disease conditions, and possible future directions in the field.
Collapse
Affiliation(s)
- Rodrigo P. Silva-Aguiar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Diogo B. Peruchetti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ana Acacia S. Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro 21045-900, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro 21045-900, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Wagner B. Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Correspondence:
| |
Collapse
|
6
|
Song XJ, Zhou HY, Sun YY, Huang HC. Phosphorylation and Glycosylation of Amyloid-β Protein Precursor: The Relationship to Trafficking and Cleavage in Alzheimer's Disease. J Alzheimers Dis 2021; 84:937-957. [PMID: 34602469 DOI: 10.3233/jad-210337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in the central nervous system, and this disease is characterized by extracellular senile plaques and intracellular neurofibrillary tangles. Amyloid-β (Aβ) peptide is the main constituent of senile plaques, and this peptide is derived from the amyloid-β protein precursor (AβPP) through the successive cleaving by β-site AβPP-cleavage enzyme 1 (BACE1) and γ-secretase. AβPP undergoes the progress of post-translational modifications, such as phosphorylation and glycosylation, which might affect the trafficking and the cleavage of AβPP. In the recent years, about 10 phosphorylation sites of AβPP were identified, and they play complex roles in glycosylation modification and cleavage of AβPP. In this article, we introduced the transport and the cleavage pathways of AβPP, then summarized the phosphorylation and glycosylation sites of AβPP, and further discussed the links and relationship between phosphorylation and glycosylation on the pathways of AβPP trafficking and cleavage in order to provide theoretical basis for AD research.
Collapse
Affiliation(s)
- Xi-Jun Song
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - He-Yan Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| |
Collapse
|
7
|
Liu Y, Xu B, Hu Y, Liu P, Lian S, Lv H, Yang Y, Ji H, Yang H, Liu J, Yao R, Li S. O-GlcNAc / Akt pathway regulates glucose metabolism and reduces apoptosis in liver of piglets with acute cold stress. Cryobiology 2021; 100:125-132. [PMID: 33651993 DOI: 10.1016/j.cryobiol.2021.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Cold stress is one of the serious factors restricting the development of animal husbandry in cold areas. Cold exposure can easily lead to cold stress, slow growth and even death of newborn animals. O-GlcNAcylation modification can act as type of "stress receptor" and"nutrition sensor" in a variety of stress responses, however, it is not clear how O-GlcNAcylation can regulate glucose metabolism in the liver of piglets under cold stress. In this study, piglets 21 days of age were exposed to 4 °C for 4 h or 8 h in a phytotron. Serum cortisol and other stress hormones were used to assess body status to establish a cold stress piglet model. The changes of glycogen in liver were detected by PAS. FDP and PA were also measured to study the glycolysis level of liver. To characterize potential mechanisms of O-GlcNAcylation on the livers of cold stress piglets, AKT, GSK3β, GS, PFKFB2, AS160 and their corresponding phosphorylation were determined by Western blotting. Results show O-GlcNAcylation increased and apoptosis levels increased in the liver following cold exposure during excessive CORT or metabolic dysfunction. It is suggested that the acute cold exposure of piglets induced a sequential change in the level of O-GlcNAcylation, which may be one of the factors mediating liver cell apoptosis and glucose metabolism regulation by the O-GlcNAc/AKT pathway. These findings provide new insight into the mechanisms of the cold stress response, which can facilitate the development of new strategies to combat the effects of hypothermia.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Hongming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yuying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Hong Ji
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Huanmin Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Ruizhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China.
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|
8
|
Liebelt F, Sebastian RM, Moore CL, Mulder MPC, Ovaa H, Shoulders MD, Vertegaal ACO. SUMOylation and the HSF1-Regulated Chaperone Network Converge to Promote Proteostasis in Response to Heat Shock. Cell Rep 2020; 26:236-249.e4. [PMID: 30605679 PMCID: PMC6316133 DOI: 10.1016/j.celrep.2018.12.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
The role of stress-induced increases in SUMO2/3 conjugation during the heat shock response (HSR) has remained enigmatic. We investigated SUMO signal transduction at the proteomic and functional level during the HSR in cells depleted of proteostasis network components via chronic heat shock factor 1 inhibition. In the recovery phase post heat shock, high SUMO2/3 conjugation was prolonged in cells lacking sufficient chaperones. Similar results were obtained upon inhibiting HSP90, indicating that increased chaperone activity during the HSR is critical for recovery to normal SUMO2/3 levels post-heat shock. Proteasome inhibition likewise prolonged SUMO2/3 conjugation, indicating that stress-induced SUMO2/3 targets are subsequently degraded by the ubiquitin-proteasome system. Functionally, we suggest that SUMOylation can enhance the solubility of target proteins upon heat shock, a phenomenon that we experimentally observed in vitro. Collectively, our results implicate SUMO2/3 as a rapid response factor that coordinates proteome degradation and assists the maintenance of proteostasis upon proteotoxic stress. Chaperone depletion delays recovery of SUMOylation in response to heat shock SUMOylated proteins are targeted to the proteasome during heat shock recovery Chaperone depletion impairs clearance of Ub/SUMO co-modified proteins after stress SUMO is a rapid response factor likely increasing protein solubility under heat shock
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2300 RA, the Netherlands
| | - Rebecca M Sebastian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher L Moore
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monique P C Mulder
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2300 RA, the Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2300 RA, the Netherlands
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2300 RA, the Netherlands.
| |
Collapse
|
9
|
Ryan P, Xu M, Davey AK, Danon JJ, Mellick GD, Kassiou M, Rudrawar S. O-GlcNAc Modification Protects against Protein Misfolding and Aggregation in Neurodegenerative Disease. ACS Chem Neurosci 2019; 10:2209-2221. [PMID: 30985105 DOI: 10.1021/acschemneuro.9b00143] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins are becoming the focus of intense research due to their implications in a broad spectrum of neurodegenerative diseases. Various PTMs have been identified to alter the toxic profiles of proteins which play critical roles in disease etiology. In Alzheimer's disease (AD), dysregulated phosphorylation is reported to promote pathogenic processing of the microtubule-associated tau protein. Among the PTMs, the enzymatic addition of N-acetyl-d-glucosamine (GlcNAc) residues to Ser/Thr residues is reported to deliver protective effects against the pathogenic processing of both amyloid precursor protein (APP) and tau. Modification of tau with as few as one single O-GlcNAc residue inhibits its toxic self-assembly. This modification also has the same effect on the assembly of the Parkinson's disease (PD) associated α-synuclein (ASyn) protein. In fact, O-GlcNAcylation ( O-linked GlcNAc modification) affects the processing of numerous proteins implicated in AD, PD, amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) in a similar manner. As such, manipulation of a protein's O-GlcNAcylation status has been proposed to offer therapeutic routes toward addressing multiple neurodegenerative pathologies. Here we review the various effects that O-GlcNAc modification, and its modulated expression, have on pathogenically significant proteins involved in neurodegenerative disease.
Collapse
Affiliation(s)
- Philip Ryan
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | - Mingming Xu
- Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Andrew K. Davey
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | | | - George D. Mellick
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Abstract
In the early 1980s, while using purified glycosyltransferases to probe glycan structures on surfaces of living cells in the murine immune system, we discovered a novel form of serine/threonine protein glycosylation (O-linked β-GlcNAc; O-GlcNAc) that occurs on thousands of proteins within the nucleus, cytoplasm, and mitochondria. Prior to this discovery, it was dogma that protein glycosylation was restricted to the luminal compartments of the secretory pathway and on extracellular domains of membrane and secretory proteins. Work in the last 3 decades from several laboratories has shown that O-GlcNAc cycling serves as a nutrient sensor to regulate signaling, transcription, mitochondrial activity, and cytoskeletal functions. O-GlcNAc also has extensive cross-talk with phosphorylation, not only at the same or proximal sites on polypeptides, but also by regulating each other's enzymes that catalyze cycling of the modifications. O-GlcNAc is generally not elongated or modified. It cycles on and off polypeptides in a time scale similar to phosphorylation, and both the enzyme that adds O-GlcNAc, the O-GlcNAc transferase (OGT), and the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), are highly conserved from C. elegans to humans. Both O-GlcNAc cycling enzymes are essential in mammals and plants. Due to O-GlcNAc's fundamental roles as a nutrient and stress sensor, it plays an important role in the etiologies of chronic diseases of aging, including diabetes, cancer, and neurodegenerative disease. This review will present an overview of our current understanding of O-GlcNAc's regulation, functions, and roles in chronic diseases of aging.
Collapse
Affiliation(s)
- Gerald W Hart
- From the Complex Carbohydrate Research Center and Biochemistry and Molecular Biology Department, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
11
|
Jensen RV, Andreadou I, Hausenloy DJ, Bøtker HE. The Role of O-GlcNAcylation for Protection against Ischemia-Reperfusion Injury. Int J Mol Sci 2019; 20:ijms20020404. [PMID: 30669312 PMCID: PMC6359045 DOI: 10.3390/ijms20020404] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 01/13/2023] Open
Abstract
Ischemia reperfusion injury (IR injury) associated with ischemic heart disease contributes significantly to morbidity and mortality. O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification that plays an important role in numerous biological processes, both in normal cell functions and disease. O-GlcNAc increases in response to stress. This increase mediates stress tolerance and cell survival, and is protective. Increasing O-GlcNAc is protective against IR injury. Experimental cellular and animal models, and also human studies, have demonstrated that protection against IR injury by ischemic preconditioning, and the more clinically applicable remote ischemic preconditioning, is associated with increases in O-GlcNAc levels. In this review we discuss how the principal mechanisms underlying tissue protection against IR injury and the associated immediate elevation of O-GlcNAc may involve attenuation of calcium overload, attenuation of mitochondrial permeability transition pore opening, reduction of endoplasmic reticulum stress, modification of inflammatory and heat shock responses, and interference with established cardioprotective pathways. O-GlcNAcylation seems to be an inherent adaptive cytoprotective response to IR injury that is activated by mechanical conditioning strategies.
Collapse
Affiliation(s)
- Rebekka Vibjerg Jensen
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens Panepistimiopolis, 15771 Zografou, Greece.
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore.
- Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore.
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK.
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London W1T 7DN, UK.
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey 64849, Mexico.
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark.
| |
Collapse
|
12
|
Flores-Martín J, Reyna L, Cruz Del Puerto M, Rojas ML, Panzetta-Dutari GM, Genti-Raimondi S. Hexosamine pathway regulates StarD7 expression in JEG-3 cells. Mol Biol Rep 2018; 45:2593-2600. [PMID: 30315445 DOI: 10.1007/s11033-018-4428-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
Abstract
StarD7 is a lipid binding protein involved in the delivery of phosphatidylcholine to the mitochondria whose promoter is activated by Wnt/β-catenin signaling. Although the majority of glucose enters glycolysis, ~ 2-5% of it can be metabolized via the hexosamine biosynthetic pathway (HBP). Considering that HBP has been implicated in the regulation of β-catenin we explored if changes in glucose levels modulate StarD7 expression by the HBP in trophoblast cells. We found an increase in StarD7 as well as in β-catenin expression following high-glucose (25 mM) treatment in JEG-3 cells; these effects were abolished in the presence of HBP inhibitors. Moreover, since HBP is able to promote unfolded protein response (UPR) the protein levels of GRP78, Ire1α, calnexin, p-eIF2α and total eIF2α as well as XBP1 mRNA was measured. Our results indicate that a diminution in glucose concentration leads to a decrease in StarD7 expression and an increase in the UPR markers: GRP78 and Ire1α. Conversely, an increase in glucose is associated to high StarD7 levels and low GRP78 expression, phospho-eIF2α and XBP1 splicing, although Ire1α remains high when cells are restored to high glucose. Taken together these findings indicate that glucose modulates StarD7 and β-catenin expression through the HBP associated to UPR, suggesting the existence of a link between UPR and HBP in trophoblast cells. This is the first study reporting the effects of glucose on StarD7 in trophoblast cells. These data highlight the importance to explore the role of StarD7 in placenta disorders related to nutrient availability.
Collapse
Affiliation(s)
- Jésica Flores-Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Luciana Reyna
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Mariano Cruz Del Puerto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - María L Rojas
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Susana Genti-Raimondi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina. .,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina. .,Departamento de Bioquímica Clínica, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
13
|
Laarse SAM, Leney AC, Heck AJR. Crosstalk between phosphorylation and O‐Glc
NA
cylation: friend or foe. FEBS J 2018; 285:3152-3167. [DOI: 10.1111/febs.14491] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Saar A. M. Laarse
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| | - Aneika C. Leney
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| |
Collapse
|
14
|
Mariappa D, Ferenbach AT, van Aalten DMF. Effects of hypo- O-GlcNAcylation on Drosophila development. J Biol Chem 2018; 293:7209-7221. [PMID: 29588363 PMCID: PMC5950000 DOI: 10.1074/jbc.ra118.002580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/21/2018] [Indexed: 01/12/2023] Open
Abstract
Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc (O-GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila, null mutants of the Polycomb gene O-GlcNAc transferase (OGT; also known as super sex combs (sxc)) display homeotic phenotypes. To dissect the requirement for O-GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxcK872M, was recessive lethal, whereas a second mutant, the hypomorphic sxcH537A, was homozygous viable. We observed that reduced total protein O-GlcNAcylation in the sxcH537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxcH537A and a null allele of Drosophila host cell factor (dHcf), encoding an extensively O-GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxcH537A flies lacking a copy of skuld (skd), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxcH537A enabled us to identify pleiotropic effects of globally reduced protein O-GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development.
Collapse
Affiliation(s)
- Daniel Mariappa
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| | - Andrew T Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
15
|
Stress-induced O-GlcNAcylation: an adaptive process of injured cells. Biochem Soc Trans 2017; 45:237-249. [PMID: 28202678 DOI: 10.1042/bst20160153] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/30/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
In the 30 years, since the discovery of nucleocytoplasmic glycosylation, O-GlcNAc has been implicated in regulating cellular processes as diverse as protein folding, localization, degradation, activity, post-translational modifications, and interactions. The cell co-ordinates these molecular events, on thousands of cellular proteins, in concert with environmental and physiological cues to fine-tune epigenetics, transcription, translation, signal transduction, cell cycle, and metabolism. The cellular stress response is no exception: diverse forms of injury result in dynamic changes to the O-GlcNAc subproteome that promote survival. In this review, we discuss the biosynthesis of O-GlcNAc, the mechanisms by which O-GlcNAc promotes cytoprotection, and the clinical significance of these data.
Collapse
|
16
|
Cheng YU, Li H, Li J, Li J, Gao Y, Liu B. O-GlcNAcylation enhances anaplastic thyroid carcinoma malignancy. Oncol Lett 2016; 12:572-578. [PMID: 27347182 DOI: 10.3892/ol.2016.4647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/26/2016] [Indexed: 11/06/2022] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), a dynamic post-translational modification of nuclear and cytoplasmic proteins, may have a critical role in the regulation of biological cell processes and human cancer. O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Accumulating evidence suggests that O-GlcNAcylation is involved in a variety of types of human cancer. However, the exact role of O-GlcNAcylation in tumor pathogenesis or progression remains to be established. Computed tomography scans of patients with anaplastic thyroid carcinoma (ATC) reveal a rapid growth rate and invasion. The present study demonstrated that O-GlcNAcylation accelerates the progression of ATC. The global O-GlcNAc level of intracellular proteins was increased by overexpression of OGT or downregulation of OGA activity with the specific inhibitor Thiamet-G. By contrast, the global O-GlcNAc level was decreased by silencing of OGT. MTT assay indicated that O-GlcNAcylation significantly promotes cell proliferation. Furthermore, O-GlcNAcylation enhanced cellular biological functions, such as colony formation ability, migration and invasion, of ATC cells in vitro. The findings of the present study suggest that O-GlcNAcylation is associated with malignant properties of thyroid cancer, and may be a potential target for the diagnosis and treatment of thyroid cancer.
Collapse
Affiliation(s)
- Y U Cheng
- Department of Medical Oncology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong 264000, P.R. China
| | - Honglun Li
- Department of Radiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong 264000, P.R. China
| | - Jianlin Li
- Department of Radiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong 264000, P.R. China
| | - Jisheng Li
- Department of Radiology, Penglai Hospital of Traditional Chinese Medicine, Penglai, Shandong 265600, P.R. China
| | - Yan Gao
- Department of Dermatology, Yankuang Group General Hospital, Zoucheng, Shandong 273500, P.R. China
| | - Baodong Liu
- Department of Ultrasound, Yankuang Group General Hospital, Zoucheng, Shandong 273500, P.R. China
| |
Collapse
|
17
|
Zhang N, Chen X. Potential role of O-GlcNAcylation and involvement of PI3K/Akt1 pathway in the expression of oncogenic phenotypes of gastric cancer cells in vitro. Biotechnol Appl Biochem 2015; 63:841-851. [PMID: 26333304 DOI: 10.1002/bab.1441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022]
Abstract
O-GlcNAcylation is a monosaccharide modification by a residue of N-acetylglucosamine (GlcNAc) attached to serine or threonine moieties on nuclear and cytoplasmic proteins. O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Increasing evidence suggests that O-GlcNAcylation is involved in a variety of human cancers. However, the exact role of O-GlcNAcylation in tumor progression remains unclear. Here, we show that O-GlcNAcylation accelerates oncogenic phenotypes of gastric cancer. First, cell models with increased or decreased O-GlcNAcylation were constructed by OGT overexpression, downregulation of OGA activity with specific inhibitor Thiamet-G, or silence of OGT. MTT assays indicated that O-GlcNAcylation increased proliferation of gastric cancer cells. Soft agar assay and Transwell assays showed that O-GlcNAcylation significantly enhanced cellular colony formation, migration, and invasion in vitro. Akt1 activity was stimulated by upregulation of phosphorylation at Ser473 mediated by elevated O-GlcNAcylation. The enhanced cell invasion by Thiamet-G treatment was suppressed by PI3K inhibitor LY294002. Although the cell invasion induced by Thiamet-G was reduced by Akt1 shRNA, it was still higher in comparison with that to the control (cells with Akt1 shRNA alone). And Akt1 overexpression promoted Thiamet-G-induced cell invasion. These results suggested that O-GlcNAcylation enhanced oncogenic phenotypes possibly partially involving PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Nuobei Zhang
- Department of Gastroenterology, Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi, People's Republic of China
| | - Xin Chen
- Department of Nuclear Medicine, Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi, People's Republic of China
| |
Collapse
|
18
|
Ha C, Lim K. O-GlcNAc modification of Sp3 and Sp4 transcription factors negatively regulates their transcriptional activities. Biochem Biophys Res Commun 2015; 467:341-7. [PMID: 26431879 DOI: 10.1016/j.bbrc.2015.09.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
The addition of O-linked N-acetylglucosamine (O-GlcNAc) on serine or threonine modifies a myriad of proteins and regulates their function, stability and localization. O-GlcNAc modification is common among chromosome-associated proteins, such as transcription factors, suggesting its extensive involvement in gene expression regulation. In this study, we demonstrate the O-GlcNAc status of the Sp family members of transcription factors and the functional impact on their transcriptional activities. We highlight the presence of O-GlcNAc residues in Sp3 and Sp4, but not Sp2, as demonstrated by their enrichment in GlcNAc positive protein fractions and by detection of O-GlcNAc residues on Sp3 and Sp4 co-expressed in Escherichia coli together with O-GlcNAc transferase (OGT) using an O-GlcNAc-specific antibody. Deletion mutants of Sp3 and Sp4 indicate that the majority of O-GlcNAc sites reside in their N-terminal transactivation domain. Overall, using reporter gene assays and co-immunoprecipitations, we demonstrate a functional inhibitory role of O-GlcNAc modifications in Sp3 and Sp4 transcription factors. Thereby, our study strengthens the current notion that O-GlcNAc modification is an important regulator of protein interactome.
Collapse
Affiliation(s)
- Changhoon Ha
- ASAN Institute for Life Science, ASAN Medical Center, Seoul, Republic of Korea
| | - Kihong Lim
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, NY 14642, USA.
| |
Collapse
|
19
|
Liu Y, Dai S, Xing L, Xu Y, Chong K. O-linked β-N-acetylglucosamine modification and its biological functions. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0816-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
O-GlcNAcylation of eIF2α regulates the phospho-eIF2α-mediated ER stress response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1860-9. [PMID: 25937070 DOI: 10.1016/j.bbamcr.2015.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
O-GlcNAcylation is highly involved in cellular stress responses including the endoplasmic reticulum (ER) stress response. For example, glucosamine-induced flux through the hexosamine biosynthetic pathway can promote ER stress and ER stress inducers can change the total cellular level of O-GlcNAcylation. However, it is largely unknown which component(s) of the unfolded protein response (UPR) is directly regulated by O-GlcNAcylation. In this study, eukaryotic translation initiation factor 2α (eIF2α), a major branch of the UPR, was O-GlcNAcylated at Ser 219, Thr 239, and Thr 241. Upon ER stress, eIF2α is phosphorylated at Ser 51 by phosphorylated PKR-like ER kinase and this inhibits global translation initiation, except for that of specific mRNAs, including activating transcription factor 4, that induce stress-responsive genes such as C/EBP homologous protein (CHOP). Hyper-O-GlcNAcylation induced by O-GlcNAcase inhibitor (thiamet-G) treatment or O-GlcNAc transferase (OGT) overexpression hindered phosphorylation of eIF2α at Ser 51. The level of O-GlcNAcylation of eIF2α was changed by dithiothreitol treatment dependent on its phosphorylation at Ser 51. Point mutation of the O-GlcNAcylation sites of eIF2α increased its phosphorylation at Ser 51 and CHOP expression and resulted in increased apoptosis upon ER stress. These results suggest that O-GlcNAcylation of eIF2α affects its phosphorylation at Ser 51 and influences CHOP-mediated cell death. This O-GlcNAcylation of eIF2α was reproduced in thiamet-G-injected mouse liver. In conclusion, proper regulation of O-GlcNAcylation and phosphorylation of eIF2α is important to maintain cellular homeostasis upon ER stress.
Collapse
|
21
|
Ledee DR, Kajimoto M, O'Kelly Priddy CM, Olson AK, Isern N, Robillard-Frayne I, Des Rosiers C, Portman MA. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model. Am J Physiol Heart Circ Physiol 2015; 309:H137-46. [PMID: 25910802 DOI: 10.1152/ajpheart.00011.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support for infants and children with postoperative cardiopulmonary failure. Nutritional support is mandatory during ECMO although specific actions for substrates on the heart have not been delineated. Prior work shows that enhancing pyruvate oxidation promotes successful weaning from ECMO. Accordingly, we tested the hypothesis that prolonged systemic pyruvate supplementation activates pyruvate oxidation in an immature swine model in vivo. Twelve male mixed-breed Yorkshire piglets (age 30-49 days) received systemic infusion of either normal saline (group C) or pyruvate (group P) during the final 6 h of 8 h of ECMO. Over the final hour, piglets received [2-(13)C] pyruvate, as a reference substrate for oxidation, and [(13)C6]-l-leucine, as an indicator for amino acid oxidation and protein synthesis. A significant increase in lactate and pyruvate concentrations occurred, along with an increase in the absolute concentration of the citric acid cycle intermediates. An increase in anaplerotic flux through pyruvate carboxylation in group P occurred compared with no change in pyruvate oxidation. Additionally, pyruvate promoted an increase in the phosphorylation state of several nutrient-sensitive enzymes, like AMP-activated protein kinase and acetyl CoA carboxylase, suggesting activation for fatty acid oxidation. Pyruvate also promoted O-GlcNAcylation through the hexosamine biosynthetic pathway. In conclusion, although prolonged pyruvate supplementation did not alter pyruvate oxidation, it did elicit changes in nutrient- and energy-sensitive pathways. Therefore, the observed results support the further study of pyruvate and its downstream effect on cardiac function.
Collapse
Affiliation(s)
- Dolena R Ledee
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
| | - Masaki Kajimoto
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
| | | | - Aaron K Olson
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington; Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Nancy Isern
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Isabelle Robillard-Frayne
- Department of Nutrition, Université de Montréal and Montréal Heart Institute, Montréal, Quebec, Canada
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montréal Heart Institute, Montréal, Quebec, Canada
| | - Michael A Portman
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington; Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Peternelj TT, Marsh SA, Strobel NA, Matsumoto A, Briskey D, Dalbo VJ, Tucker PS, Coombes JS. Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle. Mol Cell Biochem 2014; 400:265-75. [PMID: 25416863 DOI: 10.1007/s11010-014-2283-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/15/2014] [Indexed: 01/20/2023]
Abstract
Post-translational modification of intracellular proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) profoundly affects protein structure, function, and metabolism. Although many skeletal muscle proteins are O-GlcNAcylated, the modification has not been extensively studied in this tissue, especially in the context of exercise. This study investigated the effects of glutathione depletion and acute exercise on O-GlcNAc protein modification in rat skeletal muscle. Diethyl maleate (DEM) was used to deplete intracellular glutathione and rats were subjected to a treadmill run. White gastrocnemius and soleus muscles were analyzed for glutathione status, O-GlcNAc and O-GlcNAc transferase (OGT) protein levels, and mRNA expression of OGT, O-GlcNAcase and glutamine:fructose-6-phosphate amidotransferase. DEM and exercise both reduced intracellular glutathione and increased O-GlcNAc. DEM upregulated OGT protein expression. The effects of the interventions were significant 4 h after exercise (P < 0.05). The changes in the mRNA levels of O-GlcNAc enzymes were different in the two muscles, potentially resulting from different rates of oxidative stress and metabolic demands between the muscle types. These findings indicate that oxidative environment promotes O-GlcNAcylation in skeletal muscle and suggest an interrelationship between cellular redox state and O-GlcNAc protein modification. This could represent one mechanism underlying cellular adaptation to oxidative stress and health benefits of exercise.
Collapse
Affiliation(s)
- Tina Tinkara Peternelj
- Antioxidant Research Group, School of Human Movement Studies, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Peternelj TT, Marsh SA, Morais C, Small DM, Dalbo VJ, Tucker PS, Coombes JS. O-GlcNAc protein modification in C2C12 myoblasts exposed to oxidative stress indicates parallels with endogenous antioxidant defense. Biochem Cell Biol 2014; 93:63-73. [PMID: 25453190 DOI: 10.1139/bcb-2014-0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A growing body of evidence demonstrates the involvement of protein modification with O-linked β-N-acetylglucosamine (O-GlcNAc) in the stress response and its beneficial effects on cell survival. Here we investigated protein O-GlcNAcylation in skeletal muscle cells exposed to oxidative stress and the crosstalk with endogenous antioxidant system. The study focused on antioxidant enzymes superoxide dismutase 2 (SOD2), catalase (CAT), and glutathione peroxidase 1 (GPX1), and transcriptional regulators proliferator-activated receptor gamma coactivator 1-α (PGC-1α) and forkhead box protein O1 (FOXO1), which play important roles in oxidative stress response and are known to be O-GlcNAc-modified. C2C12 myoblasts were subjected to 24 h incubation with different reagents, including hydrogen peroxide, diethyl maleate, high glucose, and glucosamine, and the inhibitors of O-GlcNAc cycling enzymes. Surprisingly, O-GlcNAc levels were significantly increased only with glucosamine, whilst other treatments showed no effect. Significant changes at the mRNA level were observed with concomitant upregulation of the genes for O-GlcNAc enzymes and stress-related proteins with oxidizing agents and downregulation of these genes with agents promoting O-GlcNAcylation. Our findings suggest a role of O-GlcNAc in the stress response and indicate an inhibitory mechanism controlling O-GlcNAc levels in the muscle cells. This could represent an important homeostatic regulation of the cellular defense system.
Collapse
Affiliation(s)
- Tina Tinkara Peternelj
- a Antioxidant Research Group, School of Human Movement Studies, The University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Elevated O-LinkedN-Acetylglucosamine Correlated with Reduced Sp1 Cooperative DNA Binding with Its Collaborating Factorsin Vivo. Biosci Biotechnol Biochem 2014; 74:1668-72. [DOI: 10.1271/bbb.100289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Yuzwa SA, Vocadlo DJ. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Chem Soc Rev 2014; 43:6839-58. [PMID: 24759912 DOI: 10.1039/c4cs00038b] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is a growing problem for aging populations worldwide. Despite significant efforts, no therapeutics are available that stop or slow progression of AD, which has driven interest in the basic causes of AD and the search for new therapeutic strategies. Longitudinal studies have clarified that defects in glucose metabolism occur in patients exhibiting Mild Cognitive Impairment (MCI) and glucose hypometabolism is an early pathological change within AD brain. Further, type 2 diabetes mellitus (T2DM) is a strong risk factor for the development of AD. These findings have stimulated interest in the possibility that disrupted glucose regulated signaling within the brain could contribute to the progression of AD. One such process of interest is the addition of O-linked N-acetylglucosamine (O-GlcNAc) residues onto nuclear and cytoplasmic proteins within mammals. O-GlcNAc is notably abundant within brain and is present on hundreds of proteins including several, such as tau and the amyloid precursor protein, which are involved in the pathophysiology AD. The cellular levels of O-GlcNAc are coupled to nutrient availability through the action of just two enzymes. O-GlcNAc transferase (OGT) is the glycosyltransferase that acts to install O-GlcNAc onto proteins and O-GlcNAcase (OGA) is the glycoside hydrolase that acts to remove O-GlcNAc from proteins. Uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) is the donor sugar substrate for OGT and its levels vary with cellular glucose availability because it is generated from glucose through the hexosamine biosynthetic pathway (HBSP). Within the brains of AD patients O-GlcNAc levels have been found to be decreased and aggregates of tau appear to lack O-GlcNAc entirely. Accordingly, glucose hypometabolism within the brain may result in disruption of the normal functions of O-GlcNAc within the brain and thereby contribute to downstream neurodegeneration. While this hypothesis remains largely speculative, recent studies using different mouse models of AD have demonstrated the protective benefit of pharmacologically increased brain O-GlcNAc levels. In this review we summarize the state of knowledge in the area of O-GlcNAc as it pertains to AD while also addressing some of the basic biochemical roles of O-GlcNAc and how these might contribute to protecting against AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | | |
Collapse
|
26
|
O-GlcNAc reports ambient temperature and confers heat resistance on ectotherm development. Proc Natl Acad Sci U S A 2014; 111:5592-7. [PMID: 24706800 DOI: 10.1073/pnas.1322396111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Effects of temperature on biological processes are complex. Diffusion is less affected than the diverse enzymatic reactions that have distinct individual temperature profiles. Hence thermal fluctuations pose a formidable challenge to ectothermic organisms in which body temperature is largely dictated by the ambient temperature. How cells in ectotherms cope with the myriad disruptive effects of temperature variation is poorly understood at the molecular level. Here we show that nucleocytoplasmic posttranslational modification of proteins with O-linked GlcNAc (O-GlcNAc) is closely correlated with ambient temperature during development of distantly related ectotherms ranging from the insect Drosophila melanogaster to the nematode Caenorhabditis elegans to the fish Danio rerio. Regulation seems to occur at the level of activity of the only two enzymes, O-GlcNAc transferase and O-GlcNAcase, that add and remove, respectively, this posttranslational modification in nucleus and cytoplasm. With genetic approaches in D. melanogaster and C. elegans, we demonstrate the importance of high levels of this posttranslational modification for successful development at elevated temperatures. Because many cytoplasmic and nuclear proteins in diverse pathways are O-GlcNAc targets, temperature-dependent regulation of this modification might contribute to an efficient coordinate adjustment of cellular processes in response to thermal change.
Collapse
|
27
|
Li B, Kohler JJ. Glycosylation of the nuclear pore. Traffic 2014; 15:347-61. [PMID: 24423194 DOI: 10.1111/tra.12150] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 01/09/2023]
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) posttranslational modification was first discovered 30 years ago and is highly concentrated in the nuclear pore. In the years since the discovery of this single sugar modification, substantial progress has been made in understanding the biochemistry of O-GlcNAc and its regulation. Nonetheless, O-GlcNAc modification of proteins continues to be overlooked, due in large part to the lack of reliable methods available for its detection. Recently, a new crop of immunological and chemical detection reagents has changed the research landscape. Using these tools, approximately 1000 O-GlcNAc-modified proteins have been identified. While other forms of glycosylation are typically associated with extracellular proteins, O-GlcNAc is abundant on nuclear and cytoplasmic proteins. In particular, phenylalanine-glycine nucleoporins are heavily O-GlcNAc-modified. Recent experiments are beginning to provide insight into the functional implications of O-GlcNAc modification on certain proteins, but its role in the nuclear pore has remained enigmatic. However, tantalizing new results suggest that O-GlcNAc may play roles in regulating nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, University of Texas Southwestern Medical Centre, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | | |
Collapse
|
28
|
Groves JA, Lee A, Yildirir G, Zachara NE. Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress Chaperones 2013; 18:535-58. [PMID: 23620203 PMCID: PMC3745259 DOI: 10.1007/s12192-013-0426-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 12/15/2022] Open
Abstract
O-linked N-acetyl-β-D-glucosamine (O-GlcNAc) is a ubiquitous and dynamic post-translational modification known to modify over 3,000 nuclear, cytoplasmic, and mitochondrial eukaryotic proteins. Addition of O-GlcNAc to proteins is catalyzed by the O-GlcNAc transferase and is removed by a neutral-N-acetyl-β-glucosaminidase (O-GlcNAcase). O-GlcNAc is thought to regulate proteins in a manner analogous to protein phosphorylation, and the cycling of this carbohydrate modification regulates many cellular functions such as the cellular stress response. Diverse forms of cellular stress and tissue injury result in enhanced O-GlcNAc modification, or O-GlcNAcylation, of numerous intracellular proteins. Stress-induced O-GlcNAcylation appears to promote cell/tissue survival by regulating a multitude of biological processes including: the phosphoinositide 3-kinase/Akt pathway, heat shock protein expression, calcium homeostasis, levels of reactive oxygen species, ER stress, protein stability, mitochondrial dynamics, and inflammation. Here, we will discuss the regulation of these processes by O-GlcNAc and the impact of such regulation on survival in models of ischemia reperfusion injury and trauma hemorrhage. We will also discuss the misregulation of O-GlcNAc in diseases commonly associated with the stress response, namely Alzheimer's and Parkinson's diseases. Finally, we will highlight recent advancements in the tools and technologies used to study the O-GlcNAc modification.
Collapse
Affiliation(s)
- Jennifer A. Groves
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Albert Lee
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Gokben Yildirir
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Natasha E. Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| |
Collapse
|
29
|
Zachara NE. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 2012; 302:H1905-18. [PMID: 22287582 DOI: 10.1152/ajpheart.00445.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
More than 1,000 proteins of the nucleus, cytoplasm, and mitochondria are dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of metazoans. O-GlcNAc, which modifies Ser/Thr residues, is thought to regulate protein function in a manner analogous to protein phosphorylation and, on a subset of proteins, appears to have a reciprocal relationship with phosphorylation. Like phosphorylation, O-GlcNAc levels change dynamically in response to numerous signals including hyperglycemia and cellular injury. Recent data suggests that O-GlcNAc appears to be a key regulator of the cellular stress response, the augmentation of which is protective in models of acute vascular injury, trauma hemorrhage, and ischemia-reperfusion injury. In contrast to these studies, O-GlcNAc has also been implicated in the development of hypertension and type II diabetes, leading to vascular and cardiac dysfunction. Here we summarize the current understanding of the roles of O-GlcNAc in the heart and vasculature.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Ryu IH, Do SI. Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response. Biochem Biophys Res Commun 2011; 408:52-7. [PMID: 21453677 DOI: 10.1016/j.bbrc.2011.03.115] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/25/2011] [Indexed: 11/18/2022]
Abstract
O-linked N-acetylglucosaminyltransferase (OGT)-mediated protein O-GlcNAcylation has been revealing various aspects of functional significance in biological processes, such as cellular signaling and activation of immune system. We found that OGT is maintained as S-nitrosylated form in resting cells, and its denitrosylation is triggered in innate immune response of lipopolysaccharide (LPS)-treated macrophage cells. S-nitrosylation of OGT strongly inhibits its catalytic activity up to more than 80% of native OGT, and denitrosylation of OGT leads to protein hyper-O-GlcNAcylation. Furthermore, blockage of increased protein O-GlcNAcylation results in significant loss of nitric oxide and cytokine production. We propose that denitrosylation of S-nitrosylated OGT is a direct mechanism for upregulation of OGT activity by which immune defense is critically controlled in LPS-stimulated innate immune response.
Collapse
Affiliation(s)
- In-Hyun Ryu
- Department of Life Science, Laboratory of Functional Glycomics, Ajou University, San 5, Wonchon-dong, Suwon 443-749, Republic of Korea
| | | |
Collapse
|
31
|
Zachara NE, Molina H, Wong KY, Pandey A, Hart GW. The dynamic stress-induced "O-GlcNAc-ome" highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. Amino Acids 2011; 40:793-808. [PMID: 20676906 PMCID: PMC3329784 DOI: 10.1007/s00726-010-0695-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/09/2010] [Indexed: 12/21/2022]
Abstract
The modification of nuclear, mitochondrial, and cytoplasmic proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic and essential post-translational modification of metazoans. Numerous forms of cellular injury lead to elevated levels of O-GlcNAc in both in vivo and in vitro models, and elevation of O-GlcNAc levels before, or immediately after, the induction of cellular injury is protective in models of heat stress, oxidative stress, endoplasmic reticulum (ER) stress, hypoxia, ischemia reperfusion injury, and trauma hemorrhage. Together, these data suggest that O-GlcNAc is a regulator of the cellular stress response. However, the molecular mechanism(s) by which O-GlcNAc regulates protein function leading to enhanced cell survival have not been identified. In order to determine how O-GlcNAc modulates stress tolerance in these models we have used stable isotope labeling with amino acids in cell culture to determine the identity of proteins that undergo O-GlcNAcylation in response to heat shock. Numerous proteins with diverse functions were identified, including NF-90, RuvB-like 1 (Tip49α), RuvB-like 2 (Tip49β), and several COPII vesicle transport proteins. Many of these proteins bind double-stranded DNA-dependent protein kinase (PK), or double-stranded DNA breaks, suggesting a role for O-GlcNAc in regulating DNA damage signaling or repair. Supporting this hypothesis, we have shown that DNA-PK is O-GlcNAc modified in response to numerous forms of cellular stress.
Collapse
Affiliation(s)
- Natasha E Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA.
| | | | | | | | | |
Collapse
|
32
|
Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X, Cong Q, Yu W. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta Mol Basis Dis 2011; 1812:514-9. [PMID: 21255644 DOI: 10.1016/j.bbadis.2011.01.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/04/2011] [Accepted: 01/12/2011] [Indexed: 12/19/2022]
Abstract
O-GlcNAc is a monosaccharide attached to serine or threonine hydroxyl moieties on numerous nuclear and cytoplasmic proteins; O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Although recent studies have shown that O-GlcNAcylation plays essential roles in breast cancer progression, it is also necessary to know whether O-GlcNAcylation is involved in other types of human cancer. In this study, O-GlcNAcylation levels and the expressions of OGT and OGA in human lung and colon cancer tissues were examined by immunohistochemistry analysis. We found that O-GlcNAcylation as well as OGT expression was significantly elevated in the cancer tissues compared with that in the corresponding adjacent tissues. Additionally, the roles of O-GlcNAcylation in the malignancy of lung and colon cancer were investigated in vitro. The results showed that O-GlcNAcylation markedly enhanced the anchorage-independent growth of lung and colon cancer cells; O-GlcNAcylation could also enhance lung and colon cancer invasion in a context-dependent manner. All together, this study suggests that O-GlcNAcylation might play important roles in lung and colon cancer formation and progression, and may be a valuable target for diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Wenyi Mi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Urzúa U, Owens GA, Zhang GM, Cherry JM, Sharp JJ, Munroe DJ. Tumor and reproductive traits are linked by RNA metabolism genes in the mouse ovary: a transcriptome-phenotype association analysis. BMC Genomics 2010; 11 Suppl 5:S1. [PMID: 21210965 PMCID: PMC3045792 DOI: 10.1186/1471-2164-11-s5-s1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The link between reproductive life history and incidence of ovarian tumors is well known. Periods of reduced ovulations may confer protection against ovarian cancer. Using phenotypic data available for mouse, a possible association between the ovarian transcriptome, reproductive records and spontaneous ovarian tumor rates was investigated in four mouse inbred strains. NIA15k-DNA microarrays were employed to obtain expression profiles of BalbC, C57BL6, FVB and SWR adult ovaries. RESULTS Linear regression analysis with multiple-test control (adjusted p ≤ 0.05) resulted in ovarian tumor frequency (OTF) and number of litters (NL) as the top-correlated among five tested phenotypes. Moreover, nearly one-hundred genes were coincident between these two traits and were decomposed in 76 OTF(-) NL(+) and 20 OTF(+) NL(-) genes, where the plus/minus signs indicate the direction of correlation. Enriched functional categories were RNA-binding/mRNA-processing and protein folding in the OTF(-) NL(+) and the OTF(+) NL(-) subsets, respectively. In contrast, no associations were detected between OTF and litter size (LS), the latter a measure of ovulation events in a single estrous cycle. CONCLUSION Literature text-mining pointed to post-transcriptional control of ovarian processes including oocyte maturation, folliculogenesis and angiogenesis as possible causal relationships of observed tumor and reproductive phenotypes. We speculate that repetitive cycling instead of repetitive ovulations represent the actual link between ovarian tumorigenesis and reproductive records.
Collapse
Affiliation(s)
- Ulises Urzúa
- Laboratorio de Genómica Aplicada, ICBM, Universidad de Chile, Independencia 1027, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
34
|
Kazemi Z, Chang H, Haserodt S, McKen C, Zachara NE. O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner. J Biol Chem 2010; 285:39096-107. [PMID: 20926391 DOI: 10.1074/jbc.m110.131102] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate the mechanisms by which O-linked β-N-acetylglucosamine modification of nucleocytoplasmic proteins (O-GlcNAc) confers stress tolerance to multiple forms of cellular injury, we explored the role(s) of O-GlcNAc in the regulation of heat shock protein (HSP) expression. Using a cell line in which deletion of the O-GlcNAc transferase (OGT; the enzyme that adds O-GlcNAc) can be induced by 4-hydroxytamoxifen, we screened the expression of 84 HSPs using quantitative reverse transcriptase PCR. In OGT null cells the stress-induced expression of 18 molecular chaperones, including HSP72, were reduced. GSK-3β promotes apoptosis through numerous pathways, including phosphorylation of heat shock factor 1 (HSF1) at Ser(303) (Ser(P)(303) HSF1), which inactivates HSF1 and inhibits HSP expression. In OGT null cells we observed increased Ser(P)(303) HSF1; conversely, in cells in which O-GlcNAc levels had been elevated, reduced Ser(P)(303) HSF1 was detected. These data, combined with those showing that inhibition of GSK-3β in OGT null cells recovers HSP72 expression, suggests that O-GlcNAc regulates the activity of GSK-3β. In OGT null cells, stress-induced inactivation of GSK-3β by phosphorylation at Ser(9) was ablated providing a molecular basis for these findings. Together, these data suggest that stress-induced GlcNAcylation increases HSP expression through inhibition of GSK-3β.
Collapse
Affiliation(s)
- Zahra Kazemi
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
35
|
Guinez C, Mir AM, Martin N, Leprince D, Michalski JC, Vergoten G, Lefebvre T. Arginine 469 is a pivotal residue for the Hsc70-GlcNAc-binding property. Biochem Biophys Res Commun 2010; 400:537-42. [PMID: 20804732 DOI: 10.1016/j.bbrc.2010.08.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 08/23/2010] [Indexed: 11/15/2022]
Abstract
The members of the 70kDa-heat shock proteins (HSP70) family play numerous fundamental functions in the cell such as promoting the assembly of multimeric complexes or helping the correct folding of nascent proteins to take place. In numerous previous studies we demonstrated that Hsp70 and its constitutive isoform Hsc70 are endowed of a GlcNAc-binding activity. The molecular modeling of the substrate binding domain of Hsc70 and in silico docking experiments using Ser/Thr-O-GlcNAc motifs allowed to define the potential carbohydrate-recognition region and to point out the crucial position of Arg469 as an amino-acid directly interacting with the sugar moiety. We cloned a flagged Hsc70 in a pCMV.SPORT6 vector and we showed that the mutation R469A decreased the GlcNAc-binding property of the chaperone of around 70%. This is the first work reporting the localization of the GlcNAc-binding domain of a member of the HSP70 family.
Collapse
Affiliation(s)
- Céline Guinez
- CNRS-UMR 8576, Unit of Structural and Functional Glycobiology, IFR 147, Université de Lille 1, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Karunakaran U, Jeoung NH. O-GlcNAc Modification: Friend or Foe in Diabetic Cardiovascular Disease. KOREAN DIABETES JOURNAL 2010; 34:211-9. [PMID: 20835337 PMCID: PMC2932889 DOI: 10.4093/kdj.2010.34.4.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
O-Linked β-N-acetyl glucosaminylation (O-GlcNAcylation) is a dynamic post-translational modification that occurs on serine and threonine residues of cytosolic and nuclear proteins in all cell types, including those involved in the cardiovascular system. O-GlcNAcylation is thought to act in a manner analogous to protein phosphorylation. O-GlcNAcylation rapidly cycles on/off proteins in a time scale similar to that for phosphorylation/dephosphorylation of proteins. Several studies indicate that O-GlcNAc might induce nuclear localization of some transcription factors and may affect their DNA binding activities. However, at the cellular level, it has been shown that O-GlcNAc levels increase in response to stress and augmentation of this response suppresses cell survival. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are major hallmarks of type 2 diabetes and diabetes-related cardiovascular complications. Thus, O-GlcNAc and its metabolic functions are not yet well-understood; focusing on the role of O-GlcNAc in the cardiovascular system is a viable target for biomedical investigation. In this review, we summarize our current understanding of the role of O-GlcNAc on the regulation of cell function and survival in the cardiovascular system.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Department of Medical Sciences, Kyungpook National University School of Medicine, Daegu, Korea
| | | |
Collapse
|
37
|
Chatham JC, Marchase RB. The role of protein O-linked beta-N-acetylglucosamine in mediating cardiac stress responses. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1800:57-66. [PMID: 19607882 PMCID: PMC2814923 DOI: 10.1016/j.bbagen.2009.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 11/24/2022]
Abstract
The modification of serine and threonine residues of nuclear and cytoplasmic proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc) has emerged as a highly dynamic post-translational modification that plays a critical role in regulating numerous biological processes. Much of our understanding of the mechanisms underlying the role of O-GlcNAc on cellular function has been in the context of its adverse effects in mediating a range of chronic disease processes, including diabetes, cancer and neurodegenerative diseases. However, at the cellular level it has been shown that O-GlcNAc levels are increased in response to stress; augmentation of this response improved cell survival while attenuation decreased cell viability. Thus, it has become apparent that strategies that augment O-GlcNAc levels are pro-survival, whereas those that reduce O-GlcNAc levels decrease cell survival. There is a long history demonstrating the effectiveness of acute glucose-insulin-potassium (GIK) treatment and to a lesser extent glutamine in protecting against a range of stresses, including myocardial ischemia. A common feature of these approaches for metabolic cardioprotection is that they both have the potential to stimulate O-GlcNAc synthesis. Consequently, here we examine the links between metabolic cardioprotection with the ischemic cardioprotection associated with acute increases in O-GlcNAc levels. Some of the protective mechanisms associated with activation of O-GlcNAcylation appear to be transcriptionally mediated; however, there is also strong evidence to suggest that transcriptionally independent mechanisms also play a critical role. In this context we discuss the potential link between O-GlcNAcylation and cardiomyocyte calcium homeostasis including the role of non-voltage gated, capacitative calcium entry as a potential mechanism contributing to this protection.
Collapse
Affiliation(s)
- John C Chatham
- Department of Medicine, Division of Cardiovascular Disease, Center for Free Radical Biology, Center for Aging and Clinical Nutrition Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | |
Collapse
|
38
|
Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D. Changes in brain MicroRNAs contribute to cholinergic stress reactions. J Mol Neurosci 2010; 40:47-55. [PMID: 19711202 PMCID: PMC2807969 DOI: 10.1007/s12031-009-9252-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/20/2009] [Indexed: 01/07/2023]
Abstract
Mental stress modifies both cholinergic neurotransmission and alternative splicing in the brain, via incompletely understood mechanisms. Here, we report that stress changes brain microRNA (miR) expression and that some of these stress-regulated miRs regulate alternative splicing. Acute and chronic immobilization stress differentially altered the expression of numerous miRs in two stress-responsive regions of the rat brain, the hippocampal CA1 region and the central nucleus of the amygdala. miR-134 and miR-183 levels both increased in the amygdala following acute stress, compared to unstressed controls. Chronic stress decreased miR-134 levels, whereas miR-183 remained unchanged in both the amygdala and CA1. Importantly, miR-134 and miR-183 share a common predicted mRNA target, encoding the splicing factor SC35. Stress was previously shown to upregulate SC35, which promotes the alternative splicing of acetylcholinesterase (AChE) from the synapse-associated isoform AChE-S to the, normally rare, soluble AChE-R protein. Knockdown of miR-183 expression increased SC35 protein levels in vitro, whereas overexpression of miR-183 reduced SC35 protein levels, suggesting a physiological role for miR-183 regulation under stress. We show stress-induced changes in miR-183 and miR-134 and suggest that, by regulating splicing factors and their targets, these changes modify both alternative splicing and cholinergic neurotransmission in the stressed brain.
Collapse
Affiliation(s)
- Ari Meerson
- Department of Biological Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Luisa Cacheaux
- Helen Wills Neuroscience Institute, UC Berkeley, 3140 VLSB, Berkeley, CA 94720-3140 USA
| | - Ki Ann Goosens
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT Building, 46-2171B, Cambridge, MA USA
| | - Robert M. Sapolsky
- Department of Biological Sciences, Stanford School of Medicine, Stanford University, Stanford, CA USA
| | - Hermona Soreq
- Department of Biological Chemistry and Interdisciplinary Center of Neural Computation, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140 USA
- Helen Wills Neuroscience Institute and the Department of Integrative Biology, UC Berkeley, 3140 VLSB, Berkeley, CA 94720-3140 USA
| |
Collapse
|
39
|
Lefebvre T, Dehennaut V, Guinez C, Olivier S, Drougat L, Mir AM, Mortuaire M, Vercoutter-Edouart AS, Michalski JC. Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer's disease. Biochim Biophys Acta Gen Subj 2009; 1800:67-79. [PMID: 19732809 DOI: 10.1016/j.bbagen.2009.08.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/17/2009] [Accepted: 08/24/2009] [Indexed: 11/19/2022]
Abstract
O-GlcNAcylation is widespread within the cytosolic and nuclear compartments of cells. This post-translational modification is likely an indicator of good health since its intracellular level correlates with the availability of extracellular glucose. Apart from its status as a nutrient sensor, O-GlcNAcylation may also act as a stress sensor since it exerts its fundamental effects in response to stress. Several studies report that the cell quickly responds to an insult by elevating O-GlcNAcylation levels and by unmasking a newly described Hsp70-GlcNAc binding property. From a more practical point of view, it has been shown that O-GlcNAcylation impairments contribute to the etiology of cardiovascular diseases, type-2 diabetes and Alzheimer's disease (AD), three illnesses common in occidental societies. Many studies have demonstrated that O-GlcNAcylation operates as a powerful cardioprotector and that by raising O-GlcNAcylation levels, the organism more successfully resists trauma-hemorrhage and ischemia/reperfusion injury. Recent data have also shown that insulin resistance and, more broadly, type-2 diabetes can be controlled by O-GlcNAcylation of the insulin pathway and O-GlcNAcylation of the gluconeogenesis transcription factors FoxO1 and CRCT2. Lastly, the finding that AD may correspond to a type-3 diabetes offers new perspectives into the knowledge of the neuropathology and into the search for new therapeutic avenues.
Collapse
Affiliation(s)
- Tony Lefebvre
- CNRS-UMR 8576, Unit of Structural and Functional Glycobiology, IFR 147, University of Lille 1, Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
O-GlcNAc cycling: implications for neurodegenerative disorders. Int J Biochem Cell Biol 2009; 41:2134-46. [PMID: 19782947 DOI: 10.1016/j.biocel.2009.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 12/20/2022]
Abstract
The dynamic post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc), termed O-GlcNAcylation, is an important mechanism for modulating cellular signaling pathways. O-GlcNAcylation impacts transcription, translation, organelle trafficking, proteasomal degradation and apoptosis. O-GlcNAcylation has been implicated in the etiology of several human diseases including type-2 diabetes and neurodegeneration. This review describes the pair of enzymes responsible for the cycling of this post-translational modification: O-GlcNAc transferase (OGT) and beta-N-acetylglucosaminidase (OGA), with a focus on the function of their structural domains. We will also highlight the important processes and substrates regulated by these enzymes, with an emphasis on the role of O-GlcNAc as a nutrient sensor impacting insulin signaling and the cellular stress response. Finally, we will focus attention on the many ways by which O-GlcNAc cycling may affect the cellular machinery in the neuroendocrine and central nervous systems.
Collapse
|
41
|
Laczy B, Hill BG, Wang K, Paterson AJ, White CR, Xing D, Chen YF, Darley-Usmar V, Oparil S, Chatham JC. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol 2009; 296:H13-28. [PMID: 19028792 PMCID: PMC2637779 DOI: 10.1152/ajpheart.01056.2008] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/11/2008] [Indexed: 02/07/2023]
Abstract
The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function.
Collapse
Affiliation(s)
- Boglarka Laczy
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Stress granules and processing bodies are related mRNA-containing granules implicated in controlling mRNA translation and decay. A genomic screen identifies numerous factors affecting granule formation, including proteins involved in O -GlcNAc modifications. These results highlight the importance of post-translational modifications in translational control and mRNP granule formation.
Collapse
Affiliation(s)
- Angela Hilliker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106, USA.
| | | |
Collapse
|
43
|
Champattanachai V, Marchase RB, Chatham J. Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2. Am J Physiol Cell Physiol 2008; 294:C1509-20. [PMID: 18367586 PMCID: PMC2800950 DOI: 10.1152/ajpcell.00456.2007] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that glucosamine protected neonatal rat ventricular myocytes against ischemia-reperfusion (I/R) injury, and this was associated with an increase in protein O-linked-N-acetylglucosamine (O-GlcNAc) levels. However, the protective effect of glucosamine could be mediated via pathways other that O-GlcNAc formation; thus the initial goal of the present study was to determine whether increasing O-GlcNAc transferase (OGT) expression, which catalyzes the formation of O-GlcNAc, had a protective effect similar to that of glucosamine. To better understand the potential mechanism underlying O-GlcNAc-mediated cytoprotection, we examined whether increased O-GlcNAc levels altered the expression and translocation of members of the Bcl-2 protein family. Both glucosamine (5 mM) and OGT overexpression increased basal and I/R-induced O-GlcNAc levels, significantly decreased cellular injury, and attenuated loss of cytochrome c. Both interventions also attenuated the loss of mitochondrial membrane potential induced by H2O2 and were also associated with an increase in mitochondrial Bcl-2 levels but had no effect on Bad or Bax levels. Compared with glucosamine and OGT overexpression, NButGT (100 microM), an inhibitor of O-GlcNAcase, was less protective against I/R and H2O2 and did not affect Bcl-2 expression, despite a 5- to 10-fold greater increase in overall O-GlcNAc levels. Decreased OGT expression resulted in lower basal O-GlcNAc levels, prevented the I/R-induced increase in O-GlcNAc and mitochondrial Bcl-2, and increased cellular injury. These results demonstrate that the protective effects of glucosamine are mediated via increased formation of O-GlcNAc and suggest that this is due, in part, to enhanced mitochondrial Bcl-2 translocation.
Collapse
MESH Headings
- Acetylglucosamine/metabolism
- Animals
- Animals, Newborn
- Cell Survival
- Cells, Cultured
- Cytochromes c/metabolism
- Cytoprotection
- Enzyme Inhibitors/pharmacology
- Glucosamine/metabolism
- Glycosylation
- Hydrogen Peroxide/metabolism
- Membrane Potential, Mitochondrial
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- N-Acetylglucosaminyltransferases/genetics
- N-Acetylglucosaminyltransferases/metabolism
- Protein Processing, Post-Translational/drug effects
- Protein Transport
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA Interference
- Rats
- Rats, Sprague-Dawley
- Transfection
- Up-Regulation
- beta-N-Acetylhexosaminidases/antagonists & inhibitors
- beta-N-Acetylhexosaminidases/metabolism
Collapse
Affiliation(s)
- Voraratt Champattanachai
- Department of Cell Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 690, Birmingham, AL, 35294
| | - Richard B. Marchase
- Department of Cell Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 690, Birmingham, AL, 35294
| | - John Chatham
- Department of Cell Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 690, Birmingham, AL, 35294
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 690, Birmingham, AL, 35294
| |
Collapse
|
44
|
Riu IH, Shin IS, Do SI. Sp1 modulates ncOGT activity to alter target recognition and enhanced thermotolerance in E. coli. Biochem Biophys Res Commun 2008; 372:203-9. [PMID: 18486602 DOI: 10.1016/j.bbrc.2008.05.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
cDNAs encoding three isoforms of OGT (ncOGT, mOGT, and sOGT) were expressed in Escherichia coli in which the coexpression system of OGT with target substrates was established in vivo. No endogenous bacterial proteins were significantly O-GlcNAcylated by any type of OGT isoform while co-expressed p62 and Sp1 were strongly O-GlcNAcylated by ncOGT. These results suggest that most of bacterial proteins appear not to be recognized as right substrates by mammalian OGT whereas cytosolic environments may supply UDP-GlcNAc enough to proceed to O-GlcNAcylation in E. coli. Under these conditions, sOGT was auto-O-GlcNAcylated whereas ncOGT and mOGT were not. Importantly, we found that when Sp1 was coexpressed, ncOGT can O-GlcNAcylate not only Sp1 but also many bacterial proteins. Our findings suggest that Sp1 may modulate the capability of target recognition of ncOGT by which ncOGT can be led to newly recognize bacterial proteins as target substrates, finally generating the O-glyco-bacteria. Our results demonstrate that the O-glyco-bacteria showed enhanced thermal resistance to allow cell survival at a temperature as high as 52 degrees C.
Collapse
Affiliation(s)
- In-Hyun Riu
- Department of Life Science, Laboratory of Functional Glycomics, Ajou University, San 5, Wonchon-dong, Youngtong-gu, Suwon City 443-749, Republic of Korea
| | | | | |
Collapse
|
45
|
Xing D, Feng W, Nöt LG, Miller AP, Zhang Y, Chen YF, Majid-Hassan E, Chatham JC, Oparil S. Increased protein O-GlcNAc modification inhibits inflammatory and neointimal responses to acute endoluminal arterial injury. Am J Physiol Heart Circ Physiol 2008; 295:H335-42. [PMID: 18469144 DOI: 10.1152/ajpheart.01259.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inflammation plays a major role in vascular disease. We have shown that leukocyte infiltration and inflammatory mediator expression contribute to vascular remodeling after endoluminal injury. This study tested whether increasing protein O-linked-N-acetylglucosamine (O-GlcNAc) levels with glucosamine (GlcN) and O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc) inhibits acute inflammatory and neointimal responses to endoluminal arterial injury. Ovariectomized rats were treated with a single injection of GlcN (0.3 mg/g ip), PUGNAc (7 nmol/g ip) or vehicle (V) 2 h before balloon injury of the right carotid artery. O-GlcNAc-modified protein levels decreased markedly in injured arteries of V-treated rats at 30 min, 2 h, and 24 h after injury but returned to control (contralateral uninjured) levels after 14 days. Both GlcN and PUGNAc increased O-GlcNAc-modified protein levels in injured arteries compared with V controls at 30 min postinjury; the GlcN-mediated increase persisted at 24 h but was not evident at 14 days. Proinflammatory mediator expression increased markedly after injury and was reduced significantly (30-50%) by GlcN and PUGNAc. GlcN and PUGNAc also inhibited infiltration of neutrophils and monocytes in injured arteries. Chronic (14 days) treatment with GlcN reduced neointima formation in injured arteries by 50% compared with V controls. Acute GlcN and PUGNAc treatment increases O-GlcNAc-modified protein levels and inhibits acute inflammatory responses in balloon-injured rat carotid arteries; 14 day GlcN treatment inhibits neointima formation in these vessels. Augmenting O-GlcNAc modification of proteins in the vasculature may represent a novel anti-inflammatory and vasoprotective mechanism.
Collapse
Affiliation(s)
- Dongqi Xing
- Department of Medicine, Univ. of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Guinez C, Mir AM, Dehennaut V, Cacan R, Harduin-Lepers A, Michalski JC, Lefebvre T. Protein ubiquitination is modulated by O-GlcNAc glycosylation. FASEB J 2008; 22:2901-11. [PMID: 18434435 DOI: 10.1096/fj.07-102509] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the past two decades, O-GlcNAc modification of cytosolic and nuclear proteins has been intensively studied. Nevertheless, the function of this post-translational modification remains unclear. It has been recently speculated that O-GlcNAc could act as a protective signal against proteasomal degradation, both by modifying target substrates and/or by inhibiting the proteasome itself. In this work, we have investigated the putative relation between O-GlcNAc and the ubiquitin pathway. First, we showed that the level of both modifications increased rapidly after thermal stress but, unlike ubiquitinated proteins, O-GlcNAc-modified proteins failed to be stabilized by inhibiting proteasome function. Increasing O-GlcNAc levels, using glucosamine or PUGNAc, enhanced ubiquitination. Inversely, when O-GlcNAc levels were reduced, using forskolin or glucose deprivation, ubiquitination decreased. Targeted-RNA interference of O-GlcNAc transferase also reduced ubiquitination and moreover halved cell thermotolerance. Finally, we demonstrated that the ubiquitin-activating enzyme E1 was O-GlcNAc modified and that its glycosylation and its interaction with Hsp70 varied according to the conditions of cell culture. Altogether, these results show that O-GlcNAc and ubiquitin are not strictly antagonistic post-translational modifications, but rather that the former might regulate the latter, and also suggest that E1 could be one of the common links between the two pathways.
Collapse
Affiliation(s)
- Céline Guinez
- UMR USTL/CNRS 8576, Laboratoire de Glycobiologie Structurale et Fonctionnelle, IFR 147, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
An early and rapid response to severe injury or trauma is the development of hyperglycemia, which has long been thought to be an essential survival response by providing fuel for vital organ systems and facilitating mobilization of interstitial fluid reserves by increasing osmolarity. However, glucose can also be metabolized via the hexosamine biosynthesis pathway (HBP), leading to the synthesis of uridine diphosphate N-acetyl-glucosamine(UDP-GlcNAc). UDP-GlcNAc is a substrate for the addition, via an O-linkage, of a single N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins (O-glycosylation, O-GlcNAc). There is increasing appreciation that protein O-glycosylation is a highly dynamic posttranslational modification that plays a key role in signal transduction pathways. Sustained increases in O-GlocNAc have been implicated in the development of diabetes and diabetic complications; however, recent studies have demonstrated that stress leads to a transient increase in O-GlcNAc levels that is associated with increased tolerance to stress. Indeed, activation of pathways leading to O-GlcNAc formation improves cell survival after I/R injury, whereas inhibition of O-GlcNAc formation decreases cell survival. In addition, in rodent models of trauma-hemorrhage, increasing O-GlcNAc levels during resuscitation improves cardiac function and organ perfusion and attenuates the inflammatory response. At the cellular level, increasing O-GlcNAc levels attenuates nuclear factor-kappaB activation. It is noteworthy that other metabolic-based treatments for severe injury such as glucose-insulin-potassium and glutamine also lead to increased HBP flux and O-GlcNAc levels. The goal of this review is to summarize our current understanding of the role of the HBP and O-GlcNAc on the regulation of cell function and survival and to present evidence to support the notion that activation of these pathways represents a novel treatment strategy for severe injury and trauma.
Collapse
Affiliation(s)
- John C Chatham
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA.
| | | | | | | |
Collapse
|
48
|
Taylor RP, Parker GJ, Hazel MW, Soesanto Y, Fuller W, Yazzie MJ, McClain DA. Glucose deprivation stimulates O-GlcNAc modification of proteins through up-regulation of O-linked N-acetylglucosaminyltransferase. J Biol Chem 2008; 283:6050-7. [PMID: 18174169 DOI: 10.1074/jbc.m707328200] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification of proteins that functions as a nutrient sensing mechanism. Here we report on regulation of O-GlcNAcylation over a broad range of glucose concentrations. We have discovered a significant induction of O-GlcNAc modification of a limited number of proteins under conditions of glucose deprivation. Beginning 12 h after treatment, glucose-deprived human hepatocellular carcinoma (HepG2) cells demonstrate a 7.8-fold increase in total O-GlcNAc modification compared with cells cultured in normal glucose (5 mm; p = 0.008). Some of the targets of glucose deprivation-induced O-GlcNAcylation are distinct from those modified in response to high glucose (20 mm) or glucosamine (10 mm) treatment, suggesting differential targeting with glucose deprivation and glucose excess. O-GlcNAcylation of glycogen synthase is significantly increased with glucose deprivation, and this O-GlcNAc increase contributes to a 60% decrease (p = 0.004) in glycogen synthase activity. Increased O-GlcNAc modification is not mediated by increased UDP-GlcNAc, the rate-limiting substrate for O-GlcNAcylation. Rather, the mRNA for nucleocytoplasmic O-linked N-acetylglucosaminyltransferase (OGT) increases 3.4-fold within 6 h of glucose deprivation (p = 0.006). Within 12 h, OGT protein increases 1.7-fold (p = 0.01) compared with normal glucose-treated cells. In addition, 12-h glucose deprivation leads to a 49% decrease in O-GlcNAcase protein levels (p = 0.03). We conclude that increased O-GlcNAc modification stimulated by glucose deprivation results from increased OGT and decreased O-GlcNAcase levels and that these changes affect cell metabolism, thus inactivating glycogen synthase.
Collapse
Affiliation(s)
- Rodrick P Taylor
- Departments of Biochemistry and Medicine, University of Utah School of Medicine, 30 N. 2030 East, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Guinez C, Mir AM, Leroy Y, Cacan R, Michalski JC, Lefebvre T. Hsp70-GlcNAc-binding activity is released by stress, proteasome inhibition, and protein misfolding. Biochem Biophys Res Commun 2007; 361:414-20. [PMID: 17645866 DOI: 10.1016/j.bbrc.2007.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 07/06/2007] [Indexed: 11/18/2022]
Abstract
Numerous recent works strengthen the idea that the nuclear and cytosolic-specific O-GlcNAc glycosylation protects cells against injuries. We have first investigated O-GlcNAc level and Hsp70-GlcNAc-binding activity (HGBA) behaviour after exposure of HeLa and HepG(2) cells to a wide variety of stresses. O-GlcNAc and HGBA responses were different according to the stress and according to the cell. HGBA was released for almost all stresses, while O-GlcNAc level was modified either upwards or downwards, depending to the stress. Against all expectations, we demonstrated that energy charge did not significantly vary with stress whereas UDP-GlcNAc pools were more dramatically affected even if differences in UDP-GlcNAc contents were not correlated with O-GlcNAc variations suggesting that O-GlcNAc transferase is itself finely regulated during cell injury. Finally, HGBA could be triggered by proteasome inhibition and by L-azetidine-2-carboxylic acid (a proline analogue) incorporation demonstrating that protein misfolding is one of the key-activator of this Hsp70 property.
Collapse
Affiliation(s)
- Céline Guinez
- UMR-CNRS 8576, UGSF, IFR 147, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|