1
|
Li D, Hemati H, Park Y, Taftaf R, Zhang Y, Liu J, Cristofanilli M, Liu X. ICAM-1-suPAR-CD11b Axis Is a Novel Therapeutic Target for Metastatic Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:2734. [PMID: 37345070 PMCID: PMC10216673 DOI: 10.3390/cancers15102734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Accumulating evidence demonstrates that circulating tumor cell (CTC) clusters have higher metastatic ability than single CTCs and negatively correlate with cancer patient outcomes. Along with homotypic CTC clusters, heterotypic CTC clusters (such as neutrophil-CTC clusters), which have been identified in both cancer mouse models and cancer patients, lead to more efficient metastasis formation and worse patient outcomes. However, the mechanism by which neutrophils bind to CTCs remains elusive. In this study, we found that intercellular adhesion molecule-1 (ICAM-1) on triple-negative breast cancer (TNBC) cells and CD11b on neutrophils mediate tumor cell-neutrophil binding. Consequently, CD11b deficiency inhibited tumor cell-neutrophil binding and TNBC metastasis. Furthermore, CD11b mediated hydrogen peroxide (H2O2) production from neutrophils. Moreover, we found that ICAM-1 in TNBC cells promotes tumor cells to secrete suPAR, which functions as a chemoattractant for neutrophils. Knockdown of uPAR in ICAM-1+ TNBC cells reduced lung-infiltrating neutrophils and lung metastasis. Bioinformatics analysis confirmed that uPAR is highly expressed in TNBCs, which positively correlates with higher neutrophil infiltration and negatively correlates with breast cancer patient survival. Collectively, our findings provide new insight into how neutrophils bind to CTC to facilitate metastasis and discover a novel potential therapeutic strategy by blocking the ICAM-1-suPAR-CD11b axis to inhibit TNBC metastasis.
Collapse
Affiliation(s)
- Dong Li
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.L.)
| | - Hami Hemati
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.L.)
| | - Younhee Park
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.L.)
| | - Rokana Taftaf
- Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Youbin Zhang
- Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Massimo Cristofanilli
- Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 606011, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Xia Liu
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.L.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Bai B, Xu Y, Chen H. Pathogenic roles of neutrophil-derived alarmins (S100A8/A9) in heart failure: From molecular mechanisms to therapeutic insights. Br J Pharmacol 2023; 180:573-588. [PMID: 36464854 DOI: 10.1111/bph.15998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
An excessive neutrophil count is recognized as a valuable predictor of inflammation and is associated with a higher risk of adverse cardiac events in patients with heart failure. Our understanding of the effectors used by neutrophils to inflict proinflammatory actions needs to be advanced. Recently, emerging evidence has demonstrated a causative role of neutrophil-derived alarmins (i.e. S100A8/A9) in aggravating cardiac injuries by induction of inflammation. In parallel with the neutrophil count, high circulating levels of S100A8/A9 proteins powerfully predict mortality in patients with heart failure. As such, a deeper understanding of the biological functions of neutrophil-derived S100A8/A9 proteins would offer novel therapeutic insights. Here, the basic biology of S100A8/A9 proteins and their pleiotropic roles in cardiovascular diseases are discussed, focusing on heart failure. We also consider the evidence that therapeutic targeting of S100A8/A9 proteins by the humanized vaccine, antibodies or inhibitors is able to town down inflammatory injuries.
Collapse
Affiliation(s)
- Bo Bai
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Cardiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Yun Xu
- Department of Cardiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Haibo Chen
- Department of Cardiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| |
Collapse
|
3
|
Bauer KC, York EM, Cirstea MS, Radisavljevic N, Petersen C, Huus KE, Brown EM, Bozorgmehr T, Berdún R, Bernier L, Lee AHY, Woodward SE, Krekhno Z, Han J, Hancock REW, Ayala V, MacVicar BA, Finlay BB. Gut microbes shape microglia and cognitive function during malnutrition. Glia 2022; 70:820-841. [PMID: 35019164 PMCID: PMC9305450 DOI: 10.1002/glia.24139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022]
Abstract
Fecal-oral contamination promotes malnutrition pathology. Lasting consequences of early life malnutrition include cognitive impairment, but the underlying pathology and influence of gut microbes remain largely unknown. Here, we utilize an established murine model combining malnutrition and iterative exposure to fecal commensals (MAL-BG). The MAL-BG model was analyzed in comparison to malnourished (MAL mice) and healthy (CON mice) controls. Malnourished mice display poor spatial memory and learning plasticity, as well as altered microglia, non-neuronal CNS cells that regulate neuroimmune responses and brain plasticity. Chronic fecal-oral exposures shaped microglial morphology and transcriptional profile, promoting phagocytic features in MAL-BG mice. Unexpectedly, these changes occurred independently from significant cytokine-induced inflammation or blood-brain barrier (BBB) disruption, key gut-brain pathways. Metabolomic profiling of the MAL-BG cortex revealed altered polyunsaturated fatty acid (PUFA) profiles and systemic lipoxidative stress. In contrast, supplementation with an ω3 PUFA/antioxidant-associated diet (PAO) mitigated cognitive deficits within the MAL-BG model. These findings provide valued insight into the malnourished gut microbiota-brain axis, highlighting PUFA metabolism as a potential therapeutic target.
Collapse
Affiliation(s)
- Kylynda C. Bauer
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Elisa M. York
- Psychiatry Department, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | - Mihai S. Cirstea
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Nina Radisavljevic
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Biochemistry and Molecular Biology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Charisse Petersen
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
| | - Kelsey E. Huus
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Eric M. Brown
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | | | - Rebeca Berdún
- Institut de Recerca Biomèdica de Lleida (IRB‐Lleida)LleidaSpain
- Department of Experimental MedicineUniversitat de Lleida (UdL)LleidaSpain
| | - Louis‐Philippe Bernier
- Psychiatry Department, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | - Amy H. Y. Lee
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Sarah E. Woodward
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Zakhar Krekhno
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
| | - Jun Han
- The Metabolomics Innovation CentreUniversity of VictoriaVictoriaCanada
| | - Robert E. W. Hancock
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Victoria Ayala
- Institut de Recerca Biomèdica de Lleida (IRB‐Lleida)LleidaSpain
- Department of Experimental MedicineUniversitat de Lleida (UdL)LleidaSpain
| | - Brian A. MacVicar
- Psychiatry Department, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | - Barton Brett Finlay
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
- Biochemistry and Molecular Biology DepartmentUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
4
|
Nox2 Deficiency Reduces Cartilage Damage and Ectopic Bone Formation in an Experimental Model for Osteoarthritis. Antioxidants (Basel) 2021; 10:antiox10111660. [PMID: 34829531 PMCID: PMC8614813 DOI: 10.3390/antiox10111660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a destructive disease of the joint with age and obesity being its most important risk factors. Around 50% of OA patients suffer from inflammation of the synovial joint capsule, which is characterized by increased abundance and activation of synovial macrophages that produce reactive oxygen species (ROS) via NADPH-oxidase 2 (NOX2). Both ROS and high blood levels of low-density lipoprotein (LDL) are implicated in OA pathophysiology, which may interact to form oxidized LDL (oxLDL) and thereby promote disease. Therefore, targeting NOX2 could be a viable treatment strategy for OA. Collagenase-induced OA (CiOA) was used to compare pathology between wild-type (WT) and Nox2 knockout (Nox2−/−) C57Bl/6 mice. Mice were either fed a standard diet or Western diet (WD) to study a possible interaction between NOX2-derived ROS and LDL. Synovial inflammation, cartilage damage and ectopic bone size were assessed on histology. Extracellular ROS production by macrophages was measured in vitro using the Amplex Red assay. Nox2−/− macrophages produced basal levels of ROS but were unable to increase ROS production in response to the alarmin S100A8 or the phorbol ester PMA. Interestingly, Nox2 deficiency reduced cartilage damage, synovial lining thickness and ectopic bone size, whereas these disease parameters were not affected by WD-feeding. These results suggest that NOX2-derived ROS are involved in CiOA development.
Collapse
|
5
|
Das UN. Molecular biochemical aspects of salt (sodium chloride) in inflammation and immune response with reference to hypertension and type 2 diabetes mellitus. Lipids Health Dis 2021; 20:83. [PMID: 34334139 PMCID: PMC8327432 DOI: 10.1186/s12944-021-01507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus (T2DM) and hypertension (HTN) are common that are associated with low-grade systemic inflammation. Diet, genetic factors, inflammation, and immunocytes and their cytokines play a role in their pathobiology. But the exact role of sodium, potassium, magnesium and other minerals, trace elements and vitamins in the pathogenesis of HTN and T2DM is not known. Recent studies showed that sodium and potassium can modulate oxidative stress, inflammation, alter the autonomic nervous system and induce dysfunction of the innate and adaptive immune responses in addition to their action on renin-angiotensin-aldosterone system. These actions of sodium, potassium and magnesium and other minerals, trace elements and vitamins are likely to be secondary to their action on pro-inflammatory cytokines IL-6, TNF-α and IL-17 and metabolism of essential fatty acids that may account for their involvement in the pathobiology of insulin resistance, T2DM, HTN and autoimmune diseases.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA, 98604, USA.
| |
Collapse
|
6
|
Identification of differentially expressed proteins involved in fetal scarless wound healing using a rat model of cleft lip. Mol Med Rep 2021; 24:596. [PMID: 34165164 PMCID: PMC8240453 DOI: 10.3892/mmr.2021.12235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/07/2020] [Indexed: 11/05/2022] Open
Abstract
In early pregnancy, fetal skin wounds can heal quickly and undergo a transition period from scarless healing to scar formation. The aim of the present study was to identify potential biomarkers associated with scarless repair of cleft lips, in order to determine the intrinsic factors leading to scar formation in embryonic tissue. A stable model of cleft lip was established using microsurgery by constructing a wedge-shaped cleft lip-like defect in fetal rats at gestational age (GA) 16.5 and GA18.5. The GA16.5 and GA18.5 groups were used to model scarless healing and scar formation, respectively. The fetuses were returned to the uterus following surgery, then removed 72 h after the procedure. Macroscopic observation of the cleft defect and histological examination were carried out. Reverse transcription-quantitative (RT-q) PCR and parallel reaction monitoring (PRM) were used to detect mRNA and protein expression levels, respectively. The upper-left lip completely healed 72 h after surgery in the GA16.5 group of fetal rats. However, this was not the case in the GA18.5 group. Histological examination indicated new follicles visible under the epidermis of the scarless group (GA16.5). Scarring was visible on the upper-left cleft lip wound of the fetal rats in the GA18.5 group. The expression of some growth and pro-inflammatory factors, including TNF-α, were also different between two groups. Label-free quantification was used to identified differentially expressed proteins and five differentially expressed proteins (Smad4, Fabp5, S100a4, S100a8 and S100a9) were identified. The relative expression of these molecules at the mRNA and protein levels were measured using RT-qPCR and PRM. These molecules may represent potential biomarkers for the scarless repair of fetal rat cleft lip wounds.
Collapse
|
7
|
Trovato R, Canè S, Petrova V, Sartoris S, Ugel S, De Sanctis F. The Engagement Between MDSCs and Metastases: Partners in Crime. Front Oncol 2020; 10:165. [PMID: 32133298 PMCID: PMC7040035 DOI: 10.3389/fonc.2020.00165] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor metastases represent the major cause of cancer-related mortality, confirming the urgent need to identify key molecular pathways and cell-associated networks during the early phases of the metastatic process to develop new strategies to either prevent or control distal cancer spread. Several data revealed the ability of cancer cells to establish a favorable microenvironment, before their arrival in distant organs, by manipulating the cell composition and function of the new host tissue where cancer cells can survive and outgrow. This predetermined environment is termed “pre-metastatic niche” (pMN). pMN development requires that tumor-derived soluble factors, like cytokines, growth-factors and extracellular vesicles, genetically and epigenetically re-program not only resident cells (i.e., fibroblasts) but also non-resident cells such as bone marrow-derived cells. Indeed, by promoting an “emergency” myelopoiesis, cancer cells switch the steady state production of blood cells toward the generation of pro-tumor circulating myeloid cells defined as myeloid-derived suppressor cells (MDSCs) able to sustain tumor growth and dissemination. MDSCs are a heterogeneous subset of myeloid cells with immunosuppressive properties that sustain metastatic process. In this review, we discuss current understandings of how MDSCs shape and promote metastatic dissemination acting in each fundamental steps of cancer progression from primary tumor to metastatic disease.
Collapse
Affiliation(s)
- Rosalinda Trovato
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefania Canè
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Varvara Petrova
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Wilkie-Grantham RP, Magon NJ, Harwood DT, Kettle AJ, Vissers MC, Winterbourn CC, Hampton MB. Myeloperoxidase-dependent lipid peroxidation promotes the oxidative modification of cytosolic proteins in phagocytic neutrophils. J Biol Chem 2015; 290:9896-905. [PMID: 25697357 DOI: 10.1074/jbc.m114.613422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Indexed: 12/31/2022] Open
Abstract
Phagocytic neutrophils generate reactive oxygen species to kill microbes. Oxidant generation occurs within an intracellular phagosome, but diffusible species can react with the neutrophil and surrounding tissue. To investigate the extent of oxidative modification, we assessed the carbonylation of cytosolic proteins in phagocytic neutrophils. A 4-fold increase in protein carbonylation was measured within 15 min of initiating phagocytosis. Carbonylation was dependent on NADPH oxidase and myeloperoxidase activity and was inhibited by butylated hydroxytoluene and Trolox, indicating a role for myeloperoxidase-dependent lipid peroxidation. Proteomic analysis of target proteins revealed significant carbonylation of the S100A9 subunit of calprotectin, a truncated form of Hsp70, actin, and hemoglobin from contaminating erythrocytes. The addition of the reactive aldehyde 4-hydroxynonenal (HNE) caused carbonylation, and HNE-glutathione adducts were detected in the cytosol of phagocytic neutrophils. The post-translational modification of neutrophil proteins will influence the functioning and fate of these immune cells in the period following phagocytic activation, and provides a marker of neutrophil activation during infection and inflammation.
Collapse
Affiliation(s)
- Rachel P Wilkie-Grantham
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Nicholas J Magon
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - D Tim Harwood
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Anthony J Kettle
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Margreet C Vissers
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Christine C Winterbourn
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Mark B Hampton
- From the Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
9
|
Hirata A, Kishida K, Nakatsuji H, Hiuge-Shimizu A, Funahashi T, Shimomura I. High serum S100A8/A9 levels and high cardiovascular complication rate in type 2 diabetics with ultrasonographic low carotid plaque density. Diabetes Res Clin Pract 2012; 97:82-90. [PMID: 22333479 DOI: 10.1016/j.diabres.2012.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
AIMS S100A8/A9 complex is an inflammation-associated biomarker, which binds toll-like receptor 4 and was associated with the receptor for advanced glycation end-products. S100A8 and S100A9 were accumulated in atherosclerotic lesions. High serum levels of S100A8/A9 are associated with acute coronary syndrome and atherosclerosis in type 2 diabetes mellitus (T2DM). However, association between serum S100A8/A9 levels and vulnerable plaque remains unclear. The present study investigated the relation between serum S100A8/A9 levels and relative plaque density (RPD) of the carotid artery determined by ultrasonography in T2DM. METHODS The study subjects were 72 consecutive T2DM outpatients (males/females=42/30), who underwent the carotid artery ultrasonography. RPD in the carotid artery was calculated by the formula; RPD=[density of the carotid plaque/density of vessel lumen]. Serum levels of adiponectin and S100A8/A9 were measured. RESULTS The median RPD was 2.1. Patients with low RPD (≤2.1) were significantly more likely to have metabolic syndrome, nephropathy, coronary artery disease, and peripheral artery disease, and higher levels of S100A8/A9, S100A8/A9-to-adiponectin ratio, and uric acid, compared to those with high RPD (>2.1). CONCLUSIONS T2DM patients with low RPD had higher prevalence of metabolic syndrome, cardiovascular diseases and higher serum S100A8/A9 levels, compared to those with high RPD.
Collapse
Affiliation(s)
- Ayumu Hirata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Nakatsuji H, Kishida K, Funahashi T, Shimomura I. Three-month treatment with pioglitazone reduces circulating levels of S100A8/A9 (MRP8/14) complex, a biomarker of inflammation, without changes in body mass index, in type 2 diabetics with abdominal obesity. Diabetes Res Clin Pract 2012; 95:e58-60. [PMID: 22154375 DOI: 10.1016/j.diabres.2011.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
Abstract
We measured circulating S100A8/A9 (MRP8/14) complex levels before and after 3-month treatment with pioglitazone in type 2 diabetic patients. The results showed that pioglitazone reduced circulating S100A8/A9 complex levels, without changing body mass index, in type 2 diabetic patients with abdominal obesity.
Collapse
Affiliation(s)
- Hideaki Nakatsuji
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
11
|
Sárvári M, Hrabovszky E, Kalló I, Solymosi N, Tóth K, Likó I, Széles J, Mahó S, Molnár B, Liposits Z. Estrogens regulate neuroinflammatory genes via estrogen receptors α and β in the frontal cortex of middle-aged female rats. J Neuroinflammation 2011; 8:82. [PMID: 21774811 PMCID: PMC3161870 DOI: 10.1186/1742-2094-8-82] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/20/2011] [Indexed: 12/18/2022] Open
Abstract
Background Estrogens exert anti-inflammatory and neuroprotective effects in the brain mainly via estrogen receptors α (ERα) and β (ERβ). These receptors are members of the nuclear receptor superfamily of ligand-dependent transcription factors. This study was aimed at the elucidation of the effects of ERα and ERβ agonists on the expression of neuroinflammatory genes in the frontal cortex of aging female rats. Methods To identify estrogen-responsive immunity/inflammation genes, we treated middle-aged, ovariectomized rats with 17β-estradiol (E2), ERα agonist 16α-lactone-estradiol (16α-LE2) and ERβ agonist diarylpropionitrile (DPN), or vehicle by Alzet minipump delivery for 29 days. Then we compared the transcriptomes of the frontal cortex of estrogen-deprived versus ER agonist-treated animals using Affymetrix Rat230 2.0 expression arrays and TaqMan-based quantitative real-time PCR. Microarray and PCR data were evaluated by using Bioconductor packages and the RealTime StatMiner software, respectively. Results Microarray analysis revealed the transcriptional regulation of 21 immunity/inflammation genes by 16α-LE2. The subsequent comparative real-time PCR study analyzed the isotype specific effects of ER agonists on neuroinflammatory genes of primarily glial origin. E2 regulated the expression of sixteen genes, including down-regulation of complement C3 and C4b, Ccl2, Tgfb1, macrophage expressed gene Mpeg1, RT1-Aw2, Cx3cr1, Fcgr2b, Cd11b, Tlr4 and Tlr9, and up-regulation of defensin Np4 and RatNP-3b, IgG-2a, Il6 and ER gene Esr1. Similar to E2, both 16α-LE2 and DPN evoked up-regulation of defensins, IgG-2a and Il6, and down-regulation of C3 and its receptor Cd11b, Ccl2, RT1-Aw2 and Fcgr2b. Conclusions These findings provide evidence that E2, 16α-LE2 and DPN modulate the expression of neuroinflammatory genes in the frontal cortex of middle-aged female rats via both ERα and ERβ. We propose that ERβ is a promising target to suppress regulatory functions of glial cells in the E2-deprived female brain and in various neuroinflammatory diseases.
Collapse
Affiliation(s)
- Miklós Sárvári
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest, 1083, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Peng WH, Jian WX, Li HL, Hou L, Wei YD, Li WM, Xu YW. Increased serum myeloid-related protein 8/14 level is associated with atherosclerosis in type 2 diabetic patients. Cardiovasc Diabetol 2011; 10:41. [PMID: 21592353 PMCID: PMC3120649 DOI: 10.1186/1475-2840-10-41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background Myeloid-related protein 8/14 (MRP8/14) is a stable heterodimer formed by two different calcium-binding proteins (MRP8 and MRP14). Studies have identified that MRP8/14 regulates vascular inflammation and serves as a novel marker of acute coronary syndrome. In this study, we evaluated the correlation between serum levels of MRP8/14, hsCRP, endogenous secretory receptor for advanced glycation end-products (esRAGE) and the occurrence of coronary artery disease (CAD), or carotid intima-media thickness (IMT) when CAD was not yet developed in diabetic patients. Methods Serum levels of MRP8/14, esRAGE and hsCRP were measured in 375 diabetic patients. Then the results of those who had CAD were compared against who had not. Also, we investigated the associations between above-mentioned indicators and IMT of subjects without CAD in both diabetic group and non-diabetic one. Results Serum MRP8/14 was significantly higher in CAD than in non-CAD group (9.7 ± 3.6 ug/ml vs. 8.2 ± 3.0 ug/ml, P < 0.001). It was associated with severity of CAD (r = 0.16, P = 0.026). In non-CAD group, MRP8/14 was associated with IMT in patients with (r = 0.30, P < 0.001) or without diabetes (r = 0.26, P = 0.015). The areas under the curves of receiver operating characteristic for CAD were 0.63 (95% CI 0.57-0.68) for MRP8/14, 0.76 (95% CI 0.71-0.81) for hsCRP and 0.62 (95% CI 0.56 -0.67) for esRAGE. Conclusion In summary, we report that diabetic patients with CAD had elevated plasma MRP8/14 levels which were also positively correlated with the severity of CAD and carotid IMT in patients without clinically overt CAD.
Collapse
Affiliation(s)
- Wen Hui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The mammalian TLRs serve as key sensors of PAMPs, such as bacterial LPS, lipopeptides, and flagellins, which are present in microbial cells but not host cells. TLRs have therefore been considered to play a central role in the discrimination between "self" and "non-self". However, since the discovery of their microbial ligands, many studies have provided evidence that host-derived molecules may also stimulate TLR2- or TLR4-dependent signaling. To date, more than 20 of these endogenous TLR ligands have been proposed, which have tended to fall into the categories of released intracellular proteins, ECM components, oxidatively modified lipids, and other soluble mediators. This review aims to summarize the evidence supporting the intrinsic TLR-stimulating capacity of each of these proposed endogenous ligands with a particular emphasis on the measures taken to exclude contaminating LPS and lipopeptides from experimental systems. The emerging evidence that many of these molecules may be more accurately described as PAMP-binding molecules (PBMs) or PAMP-sensitizing molecules (PSMs), rather than genuine ligands of TLR2 or TLR4, is also summarized. The relevance of this possibility to the pathogenesis of chronic inflammatory diseases, tumor surveillance, and autoimmunity is discussed.
Collapse
Affiliation(s)
- Clett Erridge
- Department of Cardiovascular Sciences, Glenfield General Hospital, University of Leicester, Leicester, UK, LE3 9QP.
| |
Collapse
|
14
|
Lim SY, Raftery M, Cai H, Hsu K, Yan WX, Hseih HL, Watts RN, Richardson D, Thomas S, Perry M, Geczy CL. S-nitrosylated S100A8: novel anti-inflammatory properties. THE JOURNAL OF IMMUNOLOGY 2008; 181:5627-36. [PMID: 18832721 DOI: 10.4049/jimmunol.181.8.5627] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
S100A8 and S100A9, highly expressed by neutrophils, activated macrophages, and microvascular endothelial cells, are secreted during inflammatory processes. Our earlier studies showed S100A8 to be an avid scavenger of oxidants, and, together with its dependence on IL-10 for expression in macrophages, we postulated that this protein has a protective role. S-nitrosylation is an important posttranslational modification that regulates NO transport, cell signaling, and homeostasis. Relatively few proteins are targets of S-nitrosylation. To date, no inflammation-associated proteins with NO-shuttling capacity have been identified. We used HPLC and mass spectrometry to show that S100A8 and S100A9 were readily S-nitrosylated by NO donors. S-nitrosylated S100A8 (S100A8-SNO) was the preferred nitrosylated product. No S-nitrosylation occurred when the single Cys residue in S100A8 was mutated to Ala. S100A8-SNO in human neutrophils treated with NO donors was confirmed by the biotin switch assay. The stable adduct transnitrosylated hemoglobin, indicating a role in NO transport. S100A8-SNO suppressed mast cell activation by compound 48/80; intravital microscopy was used to demonstrate suppression of leukocyte adhesion and extravasation triggered by compound 48/80 in the rat mesenteric microcirculation. Although S100A8 is induced in macrophages by LPS or IFN-gamma, the combination, which activates inducible NO synthase, did not induce S100A8. Thus, the antimicrobial functions of NO generated under these circumstances would not be compromised by S100A8. Our results suggest that S100A8-SNO may regulate leukocyte-endothelial cell interactions in the microcirculation, and suppression of mast cell-mediated inflammation represents an additional anti-inflammatory property for S100A8.
Collapse
Affiliation(s)
- Su Yin Lim
- Centre for Infection and Inflammation Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pouliot P, Plante I, Raquil MA, Tessier PA, Olivier M. Myeloid-Related Proteins Rapidly Modulate Macrophage Nitric Oxide Production during Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2008; 181:3595-601. [DOI: 10.4049/jimmunol.181.5.3595] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Bréchard S, Tschirhart EJ. Regulation of superoxide production in neutrophils: role of calcium influx. J Leukoc Biol 2008; 84:1223-37. [PMID: 18519744 PMCID: PMC2567897 DOI: 10.1189/jlb.0807553] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Upon stimulation, activation of NADPH oxidase complexes in neutrophils produces a burst of superoxide anions contributing to oxidative stress and the development of inflammatory process. Store-operated calcium entry (SOCE), whereby the depletion of intracellular stores induces extracellular calcium influx, is known to be a crucial element of NADPH oxidase regulation. However, the mechanistic basis mediating SOCE is still only partially understood, as is the signal-coupling pathway leading to modulation of store-operated channels. This review emphasizes the role of calcium influx in the control of the NADPH oxidase and summarizes the current knowledge of pathways mediating this extracellular calcium entry in neutrophils. Such investigations into the cross-talk between NADPH oxidase and calcium might allow the identification of novel pharmacological targets with clinical use, particularly in inflammatory diseases.
Collapse
Affiliation(s)
- Sabrina Bréchard
- Life Sciences Research Unit, University of Luxembourg, Luxembourg.
| | | |
Collapse
|
17
|
Capturing proteins that bind polyunsaturated fatty acids: demonstration using arachidonic acid and eicosanoids. Lipids 2007; 43:161-9. [PMID: 18084788 DOI: 10.1007/s11745-007-3136-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Accepted: 11/06/2007] [Indexed: 12/27/2022]
Abstract
Polyunsaturated fatty acids (PUFA) and their biological derivatives, including the eicosanoids, have numerous roles in physiology and pathology. Although some eicosanoids are known to act through receptors, the molecular actions of many PUFA remain obscure. As the three-dimensional structure of eicosanoids allows them to specifically bind and activate their receptors, we hypothesized that the same structure would allow other proteins to associate with PUFA and eicosanoids. Here, we demonstrate that biotinylation of arachidonic acid and its oxygenated derivatives 5-hydroxyeicosatetraenoic acid (5-HETE) and leukotriene (LT) B(4) can be used to pull down associated proteins. Separation of proteins by two-dimensional gel electrophoresis indicated that a large number of proteins bound each lipid and that proteins could distinguish between two enantiomers of 5-HETE. Individual proteins, identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry, included proteins that are known to bind lipids, including albumin and phosphatidylethanolamine-binding protein, as well as several novel proteins. These include cytoskeletal proteins, such as actin, moesin, stathmin and coactosin-like protein, and G protein signaling proteins, such as Rho GDP dissociation inhibitor 1 and nucleoside diphosphate kinase B. This method, then, represents a relatively simple and straightforward way to screen for proteins that directly associate with, and are potentially modulated by, PUFA and their derivatives.
Collapse
|
18
|
Rossary A, Arab K, Steghens JP. Polyunsaturated fatty acids modulate NOX 4 anion superoxide production in human fibroblasts. Biochem J 2007; 406:77-83. [PMID: 17472580 PMCID: PMC1948982 DOI: 10.1042/bj20061009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The strong ROS (reactive oxygen species) production, part of an antioxidant response of human fibroblasts triggered by DHA (docosahexaenoic acid; C(22:6,n-3), served as a model for deciphering the relative contribution of NOX (NADPH oxidase) to ROS production, as the role of this enzymatic system remains controversial. Using hydroxyethidium fluorescence for fibroblast ROS production, RT (reverse transcriptase)-PCR for NOX 4 mRNA quantification and mRNA silencing, we show that ROS production evolves in parallel with the catalytic activity of NOX and is suppressed by siNOX 4 (small interference oligonucleotide RNA directed against NOX 4) silencing. Apocynin and plumbagin, specific inhibitors of NOX, prevent ROS production in this cellular model and confirm the role of NOX 4 for this production. Furthermore, we show that, in cell lysates, NOX 4 activity can be modulated by PUFAs (polyunsaturated fatty acids) at the micromolar level in the presence of calcium: NOX 4 activity is increased by arachidonic acid (C20:4,n-6) (approximately 175% of the control), and conjugated linoleic acid (C18:2 [9Z,11E]) is a potent inhibitor (50% of the control). Unexpectedly, intracellular superoxide dismutase does not participate in the modulation of this ROS production and the opposite effects of some PUFAs, described in our experiments, could suggest another way of regulating NOX activity.
Collapse
Affiliation(s)
- Adrien Rossary
- *UF 21455, Stress Oxydant et Vitamines, Fédération de Biochimie, Hôpital E. Herriot, 5, Place d'Arsonval, F-69437 Lyon, France
- †EA 3090, Claude Bernard University Lyon 1, Lyon, France
| | - Khelifa Arab
- ‡Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jean-Paul Steghens
- *UF 21455, Stress Oxydant et Vitamines, Fédération de Biochimie, Hôpital E. Herriot, 5, Place d'Arsonval, F-69437 Lyon, France
- †EA 3090, Claude Bernard University Lyon 1, Lyon, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
19
|
Cao W, Cheng L, Behar J, Biancani P, Harnett KM. IL-1beta signaling in cat lower esophageal sphincter circular muscle. Am J Physiol Gastrointest Liver Physiol 2006; 291:G672-80. [PMID: 16645161 DOI: 10.1152/ajpgi.00110.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In a cat model of acute experimental esophagitis, resting in vivo lower esophageal sphincter (LES) pressure and in vitro tone are lower than in normal LES, and the LES circular smooth muscle layer contains elevated levels of IL-1beta that decrease the LES tone of normal cats. We now examined the mechanisms of IL-1beta-induced reduction in LES tone. IL-1beta significantly reduced acetylcholine-induced Ca(2+) release in Ca(2+)-free medium, and this effect was partially reversed by catalase, demonstrating a role of H(2)O(2) in these changes. IL-1beta significantly increased the production of H(2)O(2), and the increase was blocked by the p38 MAPK inhibitor SB-203580, by the cytosolic phospholipase A(2) (cPLA(2)) inhibitor AACOCF3, and by the NADPH oxidase inhibitor apocynin, but not by the MEK1 inhibitor PD-98059. IL-1beta significantly increased the phosphorylation of p38 MAPK and cPLA(2). IL-1beta-induced cPLA(2) phosphorylation was blocked by SB-203580 but not by AACOCF3, suggesting sequential activation of p38 MAPK-phosphorylating cPLA(2). The IL-1beta-induced reduction in LES tone was partially reversed by AACOCF3 and by the Ca(2+)-insensitive PLA(2) inhibitor bromoenol lactone (BEL). IL-1beta significantly increased cyclooxygenase (COX)-2 and PGE(2) levels. The increase in PGE(2) was blocked by SB-203580, AACOCF3, BEL, and the COX-2 inhibitor NS-398 but not by PD-98059 or the COX-1 inhibitor valeryl salicylate. The data suggested that IL-1beta reduces LES tone by producing H(2)O(2), which may affect Ca(2+)-release mechanisms and increase the synthesis of COX-2 and PGE(2). Both H(2)O(2) and PGE(2) production depend on sequential activation of p38 MAPK and cPLA(2). cPLA(2) activates NADPH oxidases, producing H(2)O(2), and may produce arachidonic acid, converted to PGE(2) via COX-2.
Collapse
Affiliation(s)
- Weibiao Cao
- Dept. of Medicine, Brown Medical School and Rhode Island Hospital, 55 Claverick St., Rm. 336, Providence, RI 02903, USA
| | | | | | | | | |
Collapse
|
20
|
Cheng L, Cao W, Behar J, Fiocchi C, Biancani P, Harnett KM. Acid-induced release of platelet-activating factor by human esophageal mucosa induces inflammatory mediators in circular smooth muscle. J Pharmacol Exp Ther 2006; 319:117-26. [PMID: 16807360 DOI: 10.1124/jpet.106.106104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In a human in vitro model of esophagitis, we investigated the genesis of esophagitis-associated dysmotility by examining HCl-induced production of inflammatory mediators in the mucosa and investigating their effect on esophageal circular muscle. Muscularis propria was removed from organ donors' esophagi, leaving the mucosal tube intact. The tube was tied at both ends, forming a sac, and filled with HCl at pH 4. After 3 h of incubation, the supernatant surrounding the sac was analyzed or applied to circular muscle strips. HCl alone did not affect circular muscle contraction in response to electrical field stimulation (EFS), but supernatant of HCl-treated mucosa abolished contraction. The inhibition was reversed by the platelet-activating factor (PAF) antagonist CV3988 [(+/-)-3-(N-octadecylcarbamoyl)-2-methoxy) propyl-(2-thiazolioethyl) phosphate], whereas the PAF analog 2-O-methyl platelet-activating factor C-16 (PAF-16) inhibited EFS-induced contraction and acetylcholine (ACh) release in circular muscle strips. The hydrogen peroxide scavenger catalase reversed the inhibition in contraction, to the same extent as CV3988. We therefore measured PAF and hydrogen peroxide (H(2)O(2)) in mucosa, mucosa supernatant, and circular muscle. HCl increased PAF and interleukin (IL)-1beta (but not IL-6, prostaglandin E(2), or H(2)O(2)) in mucosa, and only PAF was released into the supernatant, presumably to affect circular muscle. In circular muscle, exogenous PAF induced sequential formation of IL-6, H(2)O(2), IL-1beta, and PAF. Release of PAF by the mucosa inhibits ACh release from circular muscle layer neurons and initiates sequential formation of inflammatory mediators in muscle, resulting in production of PAF by the muscle itself, possibly initiating in a self-sustaining cycle.
Collapse
Affiliation(s)
- Ling Cheng
- Division of Gastroenterology, Rhode Island Hospital and Brown University, Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
21
|
Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, Harnett KM. HCl-induced inflammatory mediators in cat esophageal mucosa and inflammatory mediators in esophageal circular muscle in an in vitro model of esophagitis. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1307-17. [PMID: 16439466 DOI: 10.1152/ajpgi.00576.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Platelet-activating factor (PAF) and interleukin-6 (IL-6) are produced in the esophagus in response to HCl and affect ACh release, causing changes in esophageal motor function similar to esophagitis (Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, and Harnett KM. Am J Physiol Gastrointest Liver Physiol 289: G418-G428, 2005). We therefore examined HCl-activated mechanisms for production of PAF and IL-6 in cat esophageal mucosa and circular muscle. A segment of normal mucosa was tied at both ends, forming a mucosal sac (Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, and Harnett KM. Am J Physiol Gastrointest Liver Physiol 289: G860-G869, 2005) that was filled with acidic Krebs buffer (pH 5.8) or normal Krebs buffer (pH 7.0) as control and kept in oxygenated Krebs buffer for 3 h. The supernatant of the acidic sac (MS-HCl) abolished contraction of normal muscle strips in response to electric field stimulation. The inhibition was reversed by the PAF antagonist CV3988 and by IL-6 antibodies. PAF and IL-6 levels in MS-HCl and mucosa were significantly elevated over control. IL-6 levels in mucosa and supernatant were reduced by CV3988, suggesting that formation of IL-6 depends on PAF. PAF-receptor mRNA levels were not detected by RT-PCR in normal mucosa, but were significantly elevated after exposure to HCl, indicating that HCl causes production of PAF and expression of PAF receptors in esophageal mucosa and that PAF causes production of IL-6. PAF and IL-6, produced in the mucosa, are released to affect the circular muscle layer. In the circular muscle, PAF causes production of additional IL-6 that activates NADPH oxidase to induce production of H(2)O(2). H(2)O(2) causes formation of IL-1beta that may induce production of PAF in the muscle, possibly closing a self-sustaining cycle of production of inflammatory mediators.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, 02903, USA
| | | | | | | | | | | |
Collapse
|
22
|
Nacken W, Mooren FC, Manitz MP, Bode G, Sorg C, Kerkhoff C. S100A9 deficiency alters adenosine-5'-triphosphate induced calcium signalling but does not generally interfere with calcium and zinc homeostasis in murine neutrophils. Int J Biochem Cell Biol 2005; 37:1241-53. [PMID: 15778088 DOI: 10.1016/j.biocel.2004.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 12/06/2004] [Accepted: 12/23/2004] [Indexed: 11/26/2022]
Abstract
The two calcium- and zinc-binding proteins, S100A9 and S100 A8, abundant in myeloid cells are considered to play important roles in both calcium signalling and zinc homeostasis. Polymorphonuclear neutrophils from S100A9 ko mice are also devoid of S100A8. Therefore, S100A9-deficient neutrophils were used as a model to study the role of the two S100 proteins in the neutrophils's calcium and zinc metabolism. Analysis of the intracellular zinc level upon pyrithione and (+/-)-(E)-methyl-2-[(E)-hydroxyimino]-5-nitro-6-methoxy-3-hexeneamide (NOR-1) treatment revealed no differences between S100A9-deficient and wildtype neutrophils. Similar, the calcium signals were not distinguishable from S100A9-deficient and wildtype neutrophils upon stimulation with platelet activating factor (PAF), thapsigargin or macrophage inflammatory protein 1 alpha (MIP-1 alpha), indicating despite their massive expression S100A8/A9 do neither serve as calcium nor as zinc buffering proteins in granulocytes. In contrast, stimulation with adenosine-5'-triphosphate (ATP) induces a significant stronger increase of the intracellular free calcium level in S100A9-deficient cells compared to wildtype cells. Moreover, the ATP-induced calcium signal was still different when the cells were incubated in calcium free buffer suggesting that pirinergic receptors of the P(2Y) class could be involved in this signalling pathway.
Collapse
Affiliation(s)
- Wolfgang Nacken
- Institute of Experimental Dermatology, University of Münster, Röntgenstr. 21, D-48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|