1
|
Li X, Wang W, Pan S, Cao X, Thomas ER, Xie M, Zhang C, Wu J. Exploring heat shock proteins as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2024; 230:116633. [PMID: 39551273 DOI: 10.1016/j.bcp.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded α-synuclein (α-syn). Promoting the degradation of misfolded proteins has been shown to be an effective approach to alleviate PD. This review highlights the roles of specific heat shock proteins (HSPs) in modulating α-syn aggregation and neuronal survival. HSP27 prevents glycosylation-induced α-syn aggregation, disrupts copper ion interactions, inhibits mitochondrial apoptosis, and prevents dopaminergic neuronal cell death. HSP70 alleviates dopaminergic neuronal damage by promoting mitophagy and preventing neuronal apoptosis. HSC70 plays a critical role in chaperone-mediated autophagy and facilitates lysosomal degradation. GRP78 mitigates abnormal protein aggregation. The HSP70-HSP40-HSP110 system is capable of degrading α-syn amyloid fibers. Inhibition of HSP90 expression protects neurons. Further research should prioritize developing regulators of HSPs as treatments for PD. While HSPs offer promise in PD management, their complex roles necessitate cautious therapeutic development to harness their potential. Understanding the specific roles of different HSPs will be essential to developing effective therapies for α-syn clearance.
Collapse
Affiliation(s)
- Xiang Li
- The Zigong Affiliated Hospital, Southwest Medical University, Zigong Mental Health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province 643020, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shi Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xueqin Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | | | - Mingyu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| | - Jianming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Magliocca G, Esposito E, Tufano M, Piccialli I, Rubino V, Tedeschi V, Sisalli MJ, Carriero F, Ruggiero G, Secondo A, Annunziato L, Scorziello A, Pannaccione A. Involvement of K V3.4 Channel in Parkinson's Disease: A Key Player in the Control of Midbrain and Striatum Differential Vulnerability during Disease Progression? Antioxidants (Basel) 2024; 13:999. [PMID: 39199246 PMCID: PMC11351402 DOI: 10.3390/antiox13080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease in the elderly, is characterized by selective loss of dopaminergic neurons and accumulation of α-synuclein (α-syn), mitochondrial dysfunction, Ca2+ dyshomeostasis, and neuroinflammation. Since current treatments for PD merely address symptoms, there is an urgent need to identify the PD pathophysiological mechanisms to develop better therapies. Increasing evidence has identified KV3.4, a ROS-sensitive KV channel carrying fast-inactivating currents, as a potential therapeutic target against neurodegeneration. In fact, it has been hypothesized that KV3.4 channels could play a role in PD etiopathogenesis, controlling astrocytic activation and detrimental pathways in A53T mice, a well-known model of familial PD. Here, we showed that the A53T midbrain, primarily involved in the initial phase of PD pathogenesis, displayed an early upregulation of the KV3.4 channel at 4 months, followed by its reduction at 12 months, compared with age-matched WT. On the other hand, in the A53T striatum, the expression of KV3.4 remained high at 12 months, decreasing thereafter, in 16-month-old mice. The proteomic profile highlighted a different detrimental phenotype in A53T brain areas. In fact, the A53T striatum and midbrain differently expressed neuroprotective/detrimental pathways, with the variation of astrocytic p27kip1, XIAP, and Smac/DIABLO expression. Of note, a switch from protective to detrimental phenotype was characterized by the upregulation of Smac/DIABLO and downregulation of p27kip1 and XIAP. This occurred earlier in the A53T midbrain, at 12 months, compared with the striatum proteomic profile. In accordance, an upregulation of Smac/DIABLO and a downregulation of p27kip1 occurred in the A53T striatum only at 16 months, showing the slowest involvement of this brain area. Of interest, HIF-1α overexpression was associated with the detrimental profile in midbrain and its major vulnerability. At the cellular level, patch-clamp recordings revealed that primary A53T striatum astrocytes showed hyperpolarized resting membrane potentials and lower firing frequency associated with KV3.4 ROS-dependent hyperactivity, whereas primary A53T midbrain astrocytes displayed a depolarized resting membrane potential accompanied by a slight increase of KV3.4 currents. Accordingly, intracellular Ca2+ homeostasis was significantly altered in A53T midbrain astrocytes, in which the ER Ca2+ level was lower than in A53T striatum astrocytes and the respective littermate controls. Collectively, these results suggest that the early KV3.4 overexpression and ROS-dependent hyperactivation in astrocytes could take part in the different vulnerabilities of midbrain and striatum, highlighting astrocytic KV3.4 as a possible new therapeutic target in PD.
Collapse
Affiliation(s)
- Giorgia Magliocca
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Emilia Esposito
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Michele Tufano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (M.J.S.); (G.R.)
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Maria Jose Sisalli
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (M.J.S.); (G.R.)
| | - Flavia Carriero
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy;
| | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (M.J.S.); (G.R.)
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| |
Collapse
|
3
|
Liu S, Liu Y, Bao E, Tang S. The Protective Role of Heat Shock Proteins against Stresses in Animal Breeding. Int J Mol Sci 2024; 25:8208. [PMID: 39125776 PMCID: PMC11311290 DOI: 10.3390/ijms25158208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Heat shock proteins (HSPs) play an important role in all living organisms under stress conditions by acting as molecular chaperones. The expression of different HSPs during stress varies depending on their protective functions and anti-apoptotic activities. The application of HSPs improves the efficiency and decreases the economic cost of animal breeding. By upregulating the expression of HSPs, feed supplements can improve stress tolerance in farm animals. In addition, high expression of HSPs is often a feature of tumor cells, and inhibiting the expression of HSPs is a promising novel method for killing these cells and treating cancers. In the present review, the findings of previous research on the application of HSPs in animal breeding and veterinary medicine are summarized, and the knowledge of the actions of HSPs in animals is briefly discussed.
Collapse
Affiliation(s)
| | | | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No. 1 Road, Nanjing 210095, China; (S.L.); (Y.L.)
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No. 1 Road, Nanjing 210095, China; (S.L.); (Y.L.)
| |
Collapse
|
4
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M, Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ 2024; 31:387-404. [PMID: 38521844 PMCID: PMC11043370 DOI: 10.1038/s41418-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong J Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Dey MK, Devireddy RV. Adult Stem Cells Freezing Processes and Cryopreservation Protocols. Methods Mol Biol 2024; 2783:53-89. [PMID: 38478226 DOI: 10.1007/978-1-0716-3762-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. Cryopreservation has shown the most promise but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. The purpose of this chapter is to present a general overview of cryopreservation storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage.
Collapse
Affiliation(s)
- Mohan Kumar Dey
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Ram V Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
6
|
Sanguanphun T, Sornkaew N, Malaiwong N, Chalorak P, Jattujan P, Niamnont N, Sobhon P, Meemon K. Neuroprotective effects of a medium chain fatty acid, decanoic acid, isolated from H. leucospilota against Parkinsonism in C. elegans PD model. Front Pharmacol 2022; 13:1004568. [PMID: 36582526 PMCID: PMC9792845 DOI: 10.3389/fphar.2022.1004568] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Sea cucumbers are marine organism that have long been used for food and traditional medicine in Asian countries. Recently, we have shown that ethyl acetate fraction (HLEA) of the crude extract of the black sea cucumber, Holothuria leucospilota, could alleviate Parkinsonism in Caenorhabditis elegans PD models. In this study, we found that the effective neuroprotective activity is attributed to HLEA-P1 compound chemically isolated and identified in H. leucospilota ethyl acetate. We reported here that HLEA-P1 could attenuate DAergic neurodegeneration, improve DAergic-dependent behaviors, reduce oxidative stress in 6-OHDA-induced C. elegans. In addition, HLEA-P1 reduced α-synuclein aggregation, improved behavior deficit and recovered lipid deposition in transgenic C. elegans overexpressing α-synuclein. We also found that HLEA-P1 activates nuclear localization of DAF-16 transcription factor of insulin/IGF-1 signaling (IIS) pathway. Treatment with 25 μg/ml of HLEA-P1 upregulated transcriptional activity of DAF-16 target genes including anti-oxidant genes (such as sod-3) and small heat shock proteins (such as hsp16.1, hsp16.2, and hsp12.6) in 6-OHDA-induced worms. In α-synuclein-overexpressed C. elegans strain, treatment with 5 μg/ml of HLEA-P1 significantly activated mRNA expression of sod-3 and hsp16.2. Chemical analysis demonstrated that HLEA-P1 compound is decanoic acid/capric acid. Taken together, our findings revealed that decanoic acid isolated from H. leucospilota exerts anti-Parkinson effect in C. elegans PD models by partly modulating IIS/DAF-16 pathway.
Collapse
Affiliation(s)
- Tanatcha Sanguanphun
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Nawaphat Malaiwong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pawanrat Chalorak
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand,Department of Radiological Technology and Medical Physics, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Jattujan
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand,Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand,Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand,*Correspondence: Krai Meemon,
| |
Collapse
|
7
|
Thymol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson's disease via inhibiting oxidative stress. BMC Complement Med Ther 2022; 22:40. [PMID: 35144603 PMCID: PMC8832724 DOI: 10.1186/s12906-022-03524-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background Parkinson’s disease (PD) is a multifactorial movement disorder with the progressive degeneration of the nigrostriatal system that impairs patients’ movement ability. Oxidative stress has been found to affect the etiology and pathogenesis of PD. Thymol, a monoterpenic phenol, is one of the most important dietary constituents in thyme species. It has been used in traditional medicine and possesses some properties including antioxidant, free radical scavenging, anti-inflammatory. In this study, in vitro and in vivo experiments were performed with the thymol in order to investigate its potential neuroprotective effects in models of PD. Methods The present study aimed to evaluate the therapeutic potential of thymol in 6-hydroxydopamine (6-OHDA)-induced cellular and animal models of PD. Results Post-treatment with thymol in vitro was found to protect PC12 cells from toxicity induced by 6-OHDA administration in a dose-dependent manner by (1) increasing cell viability and (2) reduction in intracellular reactive oxygen species, intracellular lipid peroxidation, and annexin-positive cells. In vivo, post-treatment with thymol was protective against neurodegenerative phenotypes associated with systemic administration of 6-OHDA. Results indicated that thymol improved the locomotor activity, catalepsy, akinesia, bradykinesia, and motor coordination and reduced the apomorphine-caused rotation in 6-OHDA-stimulated rats. Increased level of reduced glutathione content and a decreased level of MDA (malondialdehyde) in striatum were observed in the 6-OHDA rats post-treated with thymol. Conclusions Collectively, our findings suggest that thymol exerts protective effects, possibly related to an anti-oxidation mechanism, in these in vitro and in vivo models of Parkinson’s disease.
Collapse
|
8
|
Hannon G, Tansi FL, Hilger I, Prina‐Mello A. The Effects of Localized Heat on the Hallmarks of Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
9
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
10
|
El-Baz FK, Elgohary R, Salama A. Amelioration of Hepatic Encephalopathy Using Dunaliella salina Microalgae in Rats: Modulation of Hyperammonemia/TLR4. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8843218. [PMID: 33855084 PMCID: PMC8021475 DOI: 10.1155/2021/8843218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric disease that is developed as a complication of both acute and chronic liver failure affecting psychomotor dysfunction, memory, and concentration. This study is aimed at evaluating the therapeutic effects of Dunaliella salina (D. salina) microalgae in thioacetamide- (TAA-) induced HE in rats. HE was induced by TAA (200 mg/kg; i.p.) for three successive days. Forty male Wister albino rats were divided into 4 groups; the first group was served as a normal, and the second group was injected with TAA and served as TAA control. The third and fourth groups were administered D. salina (100 and 200 mg/kg; p.o.), respectively, after TAA injection for 7 days. The behavioral and biochemical markers as well as histological aspects of HE were estimated. This study revealed that TAA caused behavioral changes, oxidative stress, neuroinflammation, nuclear pyknosis, and neurons degeneration. D. salina improved liver function and decreased oxidative stress and inflammatory mediator as TLR4 protein expression. Also, D. salina elevated HSP-25 and IGF-1 as well as improved brain histopathological alterations. In conclusion, D. salina exerted a therapeutic potential against HE via its antioxidant, antiinflammatory and cytoprotective effects.
Collapse
Affiliation(s)
- Farouk K. El-Baz
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre (NRC), 33 El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
11
|
Heat-Shock Protein 27 (HSPB1) Is Upregulated and Phosphorylated in Human Platelets during ST-Elevation Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20235968. [PMID: 31783528 PMCID: PMC6928972 DOI: 10.3390/ijms20235968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Heat-shock proteins are a family of proteins which are upregulated in response to stress stimuli including inflammation, oxidative stress, or ischemia. Protective functions of heat-shock proteins have been studied in vascular disease models, and malfunction of heat-shock proteins is associated with vascular disease development. Heat-shock proteins however have not been investigated in human platelets during acute myocardial infarction ex vivo. Using two-dimensional electrophoresis and immunoblotting, we observed that heat-shock protein 27 (HSPB1) levels and phosphorylation are significantly increased in platelets of twelve patients with myocardial infarction compared to patients with nonischemic chest pain (6.4 ± 1.0-fold versus 1.0 ± 0.9-fold and 5.9 ± 1.8-fold versus 1.0 ± 0.8-fold; p < 0.05). HSP27 (HSPB1) showed a distinct and characteristic intracellular translocation from the cytoskeletal fraction into the membrane fraction of platelets during acute myocardial infarction that did not occur in the control group. In this study, we could demonstrate for the first time that HSP27 (HSPB1) is upregulated and phosphorylated in human platelets during myocardial infarction on a cellular level ex vivo with a characteristic intracellular translocation pattern. This HSP27 (HSPB1) phenotype in platelets could thus represent a measurable stress response in myocardial infarction and potentially other acute ischemic events.
Collapse
|
12
|
Dowell J, Elser BA, Schroeder RE, Stevens HE. Cellular stress mechanisms of prenatal maternal stress: Heat shock factors and oxidative stress. Neurosci Lett 2019; 709:134368. [PMID: 31299286 DOI: 10.1016/j.neulet.2019.134368] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022]
Abstract
Development of the brain prenatally is affected by maternal experience and exposure. Prenatal maternal psychological stress changes brain development and results in increased risk for neuropsychiatric disorders. In this review, multiple levels of prenatal stress mechanisms (offspring brain, placenta, and maternal physiology) are discussed and their intersection with cellular stress mechanisms explicated. Heat shock factors and oxidative stress are closely related to each other and converge with the inflammation, hormones, and cellular development that have been more deeply explored as the basis of prenatal stress risk. Increasing evidence implicates cellular stress mechanisms in neuropsychiatric disorders associated with prenatal stress including affective disorders, schizophrenia, and child-onset psychiatric disorders. Heat shock factors and oxidative stress also have links with the mechanisms involved in other kinds of prenatal stress including external exposures such as environmental toxicants and internal disruptions such as preeclampsia. Integrative understanding of developmental neurobiology with these cellular and physiological mechanisms is necessary to reduce risks and promote healthy brain development.
Collapse
Affiliation(s)
- Jonathan Dowell
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Benjamin A Elser
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA.
| | - Rachel E Schroeder
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA.
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, Iowa City, IA, USA.
| |
Collapse
|
13
|
Kourtis N, Tavernarakis N. Small heat shock proteins and neurodegeneration: recent developments. Biomol Concepts 2018; 9:94-102. [PMID: 30133417 DOI: 10.1515/bmc-2018-0009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
AbstractMembers of the small heat shock protein (sHSP) family are molecular chaperones with a critical role in the maintenance of cellular homeostasis under unfavorable conditions. The chaperone properties of sHSPs prevent protein aggregation, and sHSP deregulation underlies the pathology of several diseases, including neurodegenerative disorders. Recent evidence suggests that the clientele of sHSPs is broad, and the mechanisms of sHSP-mediated neuroprotection diverse. Nonetheless, the crosstalk of sHSPs with the neurodegeneration-promoting signaling pathways remains poorly understood. Here, we survey recent findings on the role and regulation of sHSPs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nikos Kourtis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 70013, Crete, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 71003, Crete, Greece
| |
Collapse
|
14
|
Shaik S, Devireddy R. Cryopreservation Protocols for Human Adipose Tissue Derived Adult Stem Cells. Methods Mol Biol 2018; 1773:231-259. [PMID: 29687394 DOI: 10.1007/978-1-4939-7799-4_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. Cryopreservation has shown to be most promising but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. The purpose of this chapter is to present a general overview of cryopreservation storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage.
Collapse
Affiliation(s)
- Shahensha Shaik
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| | - Ram Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
15
|
Pierozan P, Biasibetti-Brendler H, Schmitz F, Ferreira F, Netto CA, Wyse ATS. Synergistic Toxicity of the Neurometabolites Quinolinic Acid and Homocysteine in Cortical Neurons and Astrocytes: Implications in Alzheimer's Disease. Neurotox Res 2017; 34:147-163. [PMID: 29124681 DOI: 10.1007/s12640-017-9834-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/22/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022]
Abstract
The brain of patients affected by Alzheimer's disease (AD) develops progressive neurodegeneration linked to the formation of proteins aggregates. However, their single actions cannot explain the extent of brain damage observed in this disorder, and the characterization of co-adjuvant involved in the early toxic processes evoked in AD is essential. In this line, quinolinic acid (QUIN) and homocysteine (Hcy) appear to be involved in the AD neuropathogenesis. Herein, we investigate the effects of QUIN and Hcy on early toxic events in cortical neurons and astrocytes. Exposure of primary cortical cultures to these neurometabolites for 24 h induced concentration-dependent neurotoxicity. In addition, QUIN (25 μM) and Hcy (30 μM) triggered ROS production, lipid peroxidation, diminished of Na+,K+-ATPase activity, and morphologic alterations, culminating in reduced neuronal viability by necrotic cell death. In astrocytes, QUIN (100 μM) and Hcy (30 μM) induced caspase-3-dependent apoptosis and morphologic alterations through oxidative status imbalance. To establish specific mechanisms, we preincubated cell cultures with different protective agents. The combined toxicity of QUIN and Hcy was attenuated by melatonin and Trolox in neurons and by NMDA antagonists and glutathione in astrocytes. Cellular death and morphologic alterations were prevented when co-culture was treated with metabolites, suggesting the activation of protector mechanisms dependent on soluble factors and astrocyte and neuron communication through gap junctions. These findings suggest that early damaging events involved in AD can be magnified by synergistic toxicity of the QUIN and Hcy. Therefore, this study opens new possibilities to elucidate the molecular mechanisms of neuron-astrocyte interactions and their role in neuroprotection against QUIN and Hcy.
Collapse
Affiliation(s)
- Paula Pierozan
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Helena Biasibetti-Brendler
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Schmitz
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Ferreira
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Isquemia Cerebral e Psicobiologia dos Transtornos Mentais, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
16
|
Kennedy D, Mnich K, Oommen D, Chakravarthy R, Almeida-Souza L, Krols M, Saveljeva S, Doyle K, Gupta S, Timmerman V, Janssens S, Gorman AM, Samali A. HSPB1 facilitates ERK-mediated phosphorylation and degradation of BIM to attenuate endoplasmic reticulum stress-induced apoptosis. Cell Death Dis 2017; 8:e3026. [PMID: 29048431 PMCID: PMC5596589 DOI: 10.1038/cddis.2017.408] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 01/11/2023]
Abstract
BIM, a pro-apoptotic BH3-only protein, is a key regulator of the intrinsic (or mitochondrial) apoptosis pathway. Here, we show that BIM induction by endoplasmic reticulum (ER) stress is suppressed in rat PC12 cells overexpressing heat shock protein B1 (HSPB1 or HSP27) and that this is due to enhanced proteasomal degradation of BIM. HSPB1 and BIM form a complex that immunoprecipitates with p-ERK1/2. We found that HSPB1-mediated proteasomal degradation of BIM is dependent on MEK-ERK signaling. Other studies have shown that several missense mutations in HSPB1 cause the peripheral neuropathy, Charcot-Marie-Tooth (CMT) disease, which is associated with nerve degeneration. Here we show that cells overexpressing CMT-related HSPB1 mutants exhibited increased susceptibility to ER stress-induced cell death and high levels of BIM. These findings identify a novel function for HSPB1 as a negative regulator of BIM protein stability leading to protection against ER stress-induced apoptosis, a function that is absent in CMT-associated HSPB1 mutants.
Collapse
Affiliation(s)
- Donna Kennedy
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Deepu Oommen
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Reka Chakravarthy
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Leonardo Almeida-Souza
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerpen, Belgium.,Institute Born Bunge, Antwerpen, Belgium
| | - Michiel Krols
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerpen, Belgium.,Institute Born Bunge, Antwerpen, Belgium
| | - Svetlana Saveljeva
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Karen Doyle
- Discipline of Physiology, NUI Galway, Galway, Ireland
| | - Sanjeev Gupta
- Discipline of Pathology, School of Medicine, NUI Galway, Galway, Ireland
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerpen, Belgium.,Institute Born Bunge, Antwerpen, Belgium
| | - Sophie Janssens
- Unit Immunoregulation and Mucosal Immunology, VIB Inflammation Research Centre, Ghent University, Gent, Belgium.,Department of Internal Medicine, Ghent University, Gent, Belgium
| | - Adrienne M Gorman
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| |
Collapse
|
17
|
Ismail R, Allaudin ZN, Abdullah R, Mohd Lila MA, Nik Abd Rahman NMA, Abdul Rahman SO. Combination of VP3 and CD147-knockdown enhance apoptosis and tumor growth delay index in colorectal tumor allograft. BMC Cancer 2016; 16:461. [PMID: 27411985 PMCID: PMC4944445 DOI: 10.1186/s12885-016-2530-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cancer therapies that kill cancer cells without affecting normal cells is the ultimate mode of treating cancers. The VP3, an avian virus-derived protein, can specifically initiate cell death through several signal transduction pathways leading to apoptosis. In cancer, chemoresistance and cell survivability implicate the cell surface protein, CD147. METHODS In this study, transfection of VP3 and silencing of CD147 genes was achieved through the treatment of tumors with pVIVO1-GFP/VP3 (VP3), psiRNA-CD147/2 (shCD147/2), and their combination of CT26 colon cancer cell-induced in mice. The effectiveness of tumor-treatment was ascertained by electrophoresis, TUNEL assay, and flow cytometry analysis. While histopathological and biochemical analysis were used as toxic side effect identification. RESULTS The tumor growth delay index (TGDI) after treatment with VP3, shCD147/2, and their combination treatments increased by 1.3-, 1.2-, 2.0- and 2.3-fold respectively, over untreated control. The VP3-shCD147/2 combination treatment was more efficacious then either VP3 or shCD147/2 alone in the retardation of mouse CT26 colorectal cell tumor allograft. CONCLUSION The antitumor effect of the combination treatment is the result of synergistic effects of VP3 and shCD147/2 on the tumor cells resulting in apoptosis. Thus, the study shows that combination of VP3 and shCD147/2 treatment can be developed into a potential approach for anticolorectal cancer treatment regimen.
Collapse
Affiliation(s)
- Ruzila Ismail
- Laboratory of Immunotherapeutic and Vaccines, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Zeenathul Nazariah Allaudin
- Laboratory of Immunotherapeutic and Vaccines, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Rasedee Abdullah
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd-Azmi Mohd Lila
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nik-Mohd-Afizan Nik Abd Rahman
- Laboratory of Immunotherapeutic and Vaccines, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sheikh-Omar Abdul Rahman
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Li Z, Wang H, Wang Q, Sun J. Buyang Huanwu Decoction Vigorously Rescues PC12 Cells Against 6-OHDA-Induced Neurotoxicity via Akt/GSK3β Pathway Based on Serum Pharmacology Methodology. Rejuvenation Res 2016; 19:467-477. [PMID: 26935342 DOI: 10.1089/rej.2015.1798] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Buyang Huanwu decoction (BYHWD), as a popular traditional Chinese medicine formula, was widely used for treating ischemic diseases. However, in the area of neurodegenerative diseases, the researches focused on BYHWD are rare but promising, and molecular mechanisms underlying are largely elusive. 6-Hydroxydopamine (6-OHDA), a dopaminergic-specific neurotoxin, is extensively used to establish neurotoxic model in vivo and in vitro. In our present study, we prepared drug-containing serum of BYHWD (Buyang Huanwu drug-containing serum [BYHWS]) based on serum pharmacology methodology. Neurotoxic model in vitro was established in PC12 cells, and innovative experimental grouping method was adopted to investigate neuroprotective effects of BYHWS on neurotoxicity induced by 6-OHDA exposure. Remarkably, BYHWS vigorously rescued PC12 cells from 6-OHDA-induced neurotoxicity even to surpass 100% in cell viability. Moreover, Hoechst/propidium iodide (PI) staining revealed that cell apoptotic rate was reduced significantly after incubation of BYHWS. Besides, BYHWS effectively restored the disruption of mitochondrial membrane potential and attenuated the elevation of intracellular reactive oxygen species level caused by 6-OHDA insult. Furthermore, BYHWS remarkably reversed the dephosphorylation of Akt (protein kinase B) and glycogen synthase kinase-3β (GSK3β) evoked by 6-OHDA. The above protective effects were attenuated by coculturing with Akt inhibitor LY294002. In summary, we concluded that the BYHWS vigorously blocked 6-OHDA-induced neurotoxicity via Akt/GSK3β pathway and provided a novel insight into roles of BYHWD in the clinical practices on neurodegenerative diseases.
Collapse
Affiliation(s)
- Zeyan Li
- Department of Anatomy, School of Medicine, Shandong University , Jinan, P.R. China
| | - Hui Wang
- Department of Anatomy, School of Medicine, Shandong University , Jinan, P.R. China
| | - Qian Wang
- Department of Anatomy, School of Medicine, Shandong University , Jinan, P.R. China
| | - Jinhao Sun
- Department of Anatomy, School of Medicine, Shandong University , Jinan, P.R. China
| |
Collapse
|
19
|
Gerber VEM, Wijenayake S, Storey KB. Anti-apoptotic response during anoxia and recovery in a freeze-tolerant wood frog (Rana sylvatica). PeerJ 2016; 4:e1834. [PMID: 27042393 PMCID: PMC4811176 DOI: 10.7717/peerj.1834] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/01/2016] [Indexed: 11/29/2022] Open
Abstract
The common wood frog, Rana sylvatica, utilizes freeze tolerance as a means of winter survival. Concealed beneath a layer of leaf litter and blanketed by snow, these frogs withstand subzero temperatures by allowing approximately 65–70% of total body water to freeze. Freezing is generally considered to be an ischemic event in which the blood oxygen supply is impeded and may lead to low levels of ATP production and exposure to oxidative stress. Therefore, it is as important to selectively upregulate cytoprotective mechanisms such as the heat shock protein (HSP) response and expression of antioxidants as it is to shut down majority of ATP consuming processes in the cell. The objective of this study was to investigate another probable cytoprotective mechanism, anti-apoptosis during oxygen deprivation and recovery in the anoxia tolerant wood frog. In particular, relative protein expression levels of two important apoptotic regulator proteins, Bax and p-p53 (S46), and five anti-apoptotic/pro-survival proteins, Bcl-2, p-Bcl-2 (S70), Bcl-xL, x-IAP, and c-IAP in response to normoxic, 24 Hr anoxic exposure, and 4 Hr recovery stages were assessed in the liver and skeletal muscle using western immunoblotting. The results suggest a tissue-specific regulation of the anti-apoptotic pathway in the wood frog, where both liver and skeletal muscle shows an overall decrease in apoptosis and an increase in cell survival. This type of cytoprotective mechanism could be aimed at preserving the existing cellular components during long-term anoxia and oxygen recovery phases in the wood frog.
Collapse
Affiliation(s)
- Victoria E M Gerber
- Department of Biology, Carleton University, Ottawa, ON, Canada; Current affiliation: Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology and Chemistry, Carleton University , Ottawa, ON , Canada
| |
Collapse
|
20
|
Chang CH, Chen Y, Yew XX, Chen HX, Kim JX, Chang CC, Peng CC, Peng RY. Improvement of erinacine A productivity in Hericium erinaceus mycelia and its neuroprotective bioactivity against the glutamate-insulted apoptosis. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Karademir B, Corek C, Ozer NK. Endoplasmic reticulum stress and proteasomal system in amyotrophic lateral sclerosis. Free Radic Biol Med 2015; 88:42-50. [PMID: 26073124 DOI: 10.1016/j.freeradbiomed.2015.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
Abstract
Protein processing including folding, unfolding and degradation is involved in the mechanisms of many diseases. Unfolded protein response and/or endoplasmic reticulum stress are accepted to be the first steps which should be completed via protein degradation. In this direction, proteasomal system and autophagy play important role as the degradation pathways and controlled via complex mechanisms. Amyotrophic lateral sclerosis is a multifactorial neurodegenerative disease which is also known as the most catastrophic one. Mutation of many different genes are involved in the pathogenesis such as superoxide dismutase 1, chromosome 9 open reading frame 72 and ubiquilin 2. These genes are mainly related to the antioxidant defense systems, endoplasmic reticulum stress related proteins and also protein aggregation, degradation pathways and therefore mutation of these genes cause related disorders.This review focused on the role of protein processing via endoplasmic reticulum and proteasomal system in amyotrophic lateral sclerosis which are the main players in the pathology. In this direction, dysfunction of endoplasmic reticulum associated degradation and related cell death mechanisms that are autophagy/apoptosis have been detailed.
Collapse
Affiliation(s)
- Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
23
|
Rajagopal P, Liu Y, Shi L, Clouser AF, Klevit RE. Structure of the α-crystallin domain from the redox-sensitive chaperone, HSPB1. JOURNAL OF BIOMOLECULAR NMR 2015; 63:223-8. [PMID: 26243512 PMCID: PMC4589510 DOI: 10.1007/s10858-015-9973-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/27/2015] [Indexed: 05/27/2023]
Abstract
Small heat shock proteins (sHSP) are a class of ATP-independent protein chaperones found throughout nature. They share a common ability to maintain partly unfolded proteins in soluble states under cellular stress conditions. All sHSPs contain a central domain called the α-crystallin domain (ACD); the domain is found in all sHSPs and in no other proteins and therefore defines the family. Though most sHSPs form large, often polydisperse oligomers from varying numbers of subunits, the ACD is both necessary and sufficient for formation of a dimer, the fundamental building block for oligomers. HSPB1 (also known as Hsp27) is unique among the ten human sHSPs because it contains a Cys residue in its dimer interface. HSPB1 is highly expressed under conditions of oxidative stress and is proposed to serve as a redox-sensitive chaperone. HSPB1 residue Cys137 has been proposed to modulate function by existing in either its oxidized (disulfide) or reduced (thiol) form (Chalova et al 2014). Here we report the solution-state NMR structure of oxidized HSPB1-ACD and compare it to a previously determined crystal structure of the reduced state. Formation of the disulfide-bond across the dimer interface yields a locked dimer structure with increased accessible hydrophobic surface. In the context of full-length HSPB1 oligomers, oxidation of Cys137 is associated with enhanced ability to bind the hydrophobic dye, 8-Anilinonapthalene-1-sulfonic-acid, implying an increased ability to interact with client proteins under oxidative stress.
Collapse
Affiliation(s)
- Ponni Rajagopal
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA
| | - Ying Liu
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA
| | - Lei Shi
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA
| | - Amanda F Clouser
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA.
| |
Collapse
|
24
|
Turtle anoxia tolerance: Biochemistry and gene regulation. Biochim Biophys Acta Gen Subj 2015; 1850:1188-96. [DOI: 10.1016/j.bbagen.2015.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/01/2015] [Indexed: 12/16/2022]
|
25
|
Cellular Mechanisms of Oxidative Stress and Action in Melanoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:481782. [PMID: 26064422 PMCID: PMC4438193 DOI: 10.1155/2015/481782] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/21/2015] [Indexed: 12/14/2022]
Abstract
Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment.
Collapse
|
26
|
Gao K, Liu M, Cao J, Yao M, Lu Y, Li J, Zhu X, Yang Z, Wen A. Protective effects of Lycium barbarum polysaccharide on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. Molecules 2014; 20:293-308. [PMID: 25547727 PMCID: PMC6272587 DOI: 10.3390/molecules20010293] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/19/2014] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress plays an important role in Parkinson’s disease and other neurodegenerative disorders. Lycium barbarum polysaccharides (LBP), the main active ingredients extracted from the fruits of Lycium barbarum L., have been shown to be a potent antioxidant. In the present study, we investigated the protective effects, and the possible mechanism of action of LBP against 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells. Our data demonstrated that LBP significantly reversed the 6-OHDA-induced decrease in cell viability, prevented 6-OHDA-induced changes in condensed nuclei and decreased the percentage of apoptotic cells in a dose-dependent manner. Furthermore, LBP also slowed the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), decreased the level of protein-bound 3-nitrotyrosine (3-NT) and intracellular free Ca2+, and inhibiting the overexpression of nuclear factor κB (NF-κB), neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS). These results demonstrate that LBP prevents 6-OHDA-induced apoptosis in PC12 cells, at least in part through the ROS-NO pathway.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jinyi Cao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Minna Yao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yunyang Lu
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Jiankang Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Xiaohe Zhu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
27
|
Chang CH, Chen HX, Yü G, Peng CC, Peng RY. Curcumin-Protected PC12 Cells Against Glutamate-Induced Oxidative Toxicity. Food Technol Biotechnol 2014; 52:468-478. [PMID: 27904320 PMCID: PMC5079148 DOI: 10.17113/ftb.52.04.14.3622] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 08/11/2014] [Indexed: 01/23/2023] Open
Abstract
Glutamate is a major excitatory neurotransmitter present in the central nervous system. The glutamate/cystine antiporter system x c- connects the antioxidant defense with neurotransmission and behaviour. Overactivation of ionotropic glutamate receptors induces neuronal death, a pathway called excitotoxicity. Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases including cerebral ischemia, Alzheimer's and Huntington's disease. Curcuma has a wide spectrum of biological activities regarding neuroprotection and neurocognition. By reducing the oxidative damage, curcumin attenuates a spinal cord ischemia-reperfusion injury, seizures and hippocampal neuronal loss. The rat pheochromocytoma (PC12) cell line exhibits many characteristics useful for the study of the neuroprotection and neurocognition. This investigation was carried out to determine whether the neuroprotective effects of curcumin can be observed via the glutamate-PC12 cell model. Results indicate that glutamate (20 mM) upregulated glutathione peroxidase 1, glutathione disulphide, Ca2+ influx, nitric oxide production, cytochrome c release, Bax/Bcl-2 ratio, caspase-3 activity, lactate dehydrogenase release, reactive oxygen species, H 2 O 2 , and malondialdehyde; and downregulated glutathione, glutathione reductase, superoxide dismutase and catalase, resulting in enhanced cell apoptosis. Curcumin alleviates all these adverse effects. Conclusively, curcumin can effectively protect PC12 cells against the glutamate-induced oxidative toxicity. Its mode of action involves two pathways: the glutathione-dependent nitric oxide-reactive oxygen species pathway and the mitochondria-dependent nitric oxide-reactive oxygen species pathway.
Collapse
Affiliation(s)
- Chi-Huang Chang
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Rd., Shalu County,
Taichung City 43022, Taiwan
| | - Hua-Xin Chen
- Department of Pharmacy, Kuang-Tieng General Hospital, Shalu County, Taichung City 43302, Taiwan
| | - George Yü
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Rd., Shalu County,
Taichung City 43022, Taiwan
| | - Chiung-Chi Peng
- Graduate Institute of Clinical Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei 10031, Taiwan
| | - Robert Y. Peng
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Rd., Shalu County,
Taichung City 43022, Taiwan
- Research Institute of Medical Sciences, Taipei Medical University, 250 Wu-Xing St., Taipei 10031, Taiwan
| |
Collapse
|
28
|
Bahr B, Galan H, Arroyo J. Decreased expression of phosphorylated placental heat shock protein 27 in human and ovine intrauterine growth restriction (IUGR). Placenta 2014; 35:404-10. [DOI: 10.1016/j.placenta.2014.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/09/2014] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
|
29
|
Gao H, Liu X, Chen D, Lv L, Wu M, Mi J, Wang W. Comparative study of Hsp27, GSK3β, Wnt1 and PRDX3 in Hirschsprung's disease. Int J Exp Pathol 2014; 95:229-37. [PMID: 24773279 DOI: 10.1111/iep.12075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 01/29/2014] [Indexed: 01/20/2023] Open
Abstract
Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system characterized by aganglionosis in distal gut. In this study, we used two-dimensional gel electrophoresis (2-DE) technology coupled with matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis to identify differentially expressed proteins in the aganglionic (stenotic) and ganglionic (normal) colon segment tissues from patients with HSCR. We identified 15 proteins with different expression levels between the stenotic and the normal colon segment tissues from patients with HSCR. Nine proteins were upregulated and six proteins downregulated in the stenotic colon segment tissues compared to the normal colon segment tissues. Based on the biological functions, we selected the Hsp27 upregulated proteins and the PRDX3 downregulated proteins to confirm their expression in 20 patients. The protein and mRNA expressions of Hsp27 were statistically higher in the stenotic colon segment tissues than in the normal colon segment tissues, whereas the protein and mRNA expressions of PRDX3 were statistically lower in the stenotic colon segment tissues than in the normal colon segment tissues. These findings of changes in mRNA and protein in tissues from patients with HSCR provide information which may be helpful in understanding the pathomechanism that is implicated in the disease.
Collapse
Affiliation(s)
- Hong Gao
- Laboratory of Pediatric Congenital Malformation, Ministry of Public Health, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Mei JM, Niu CS. Effects of CDNF on 6-OHDA-induced apoptosis in PC12 cells via modulation of Bcl-2/Bax and caspase-3 activation. Neurol Sci 2014; 35:1275-80. [PMID: 24633814 DOI: 10.1007/s10072-014-1700-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/21/2014] [Indexed: 12/14/2022]
Abstract
Progressive dopamine neuron degeneration in the substantia nigra pars compacta is considered the most prominent pathological characteristic of Parkinson's disease (PD). Currently, there is no cure, but only the capability to relieve the symptoms of PD. The conserved dopamine neurotrophic factor (CDNF) protects and rescues dopamine neurons in vivo. However, the molecular function of CDNF in PD remains unclear. In present study, we investigated the role and intrinsic mechanism of CDNF in preventing and reversing rat pheochromocytoma (PC12) cells from apoptosis induced by 6-hydroxydopamine (6-OHDA). We demonstrate that 6-OHDA induces cell death in PC12 cells, but that CDNF attenuates this effect in a dose-dependent manner. Further study shows that upregulation of the Bcl-2/Bax ratio and downregulation of caspase-3 activity are observed in a dose-dependent manner upon pre-treatment or post-treatment with CDNF, suggesting a pathway of regulation of apoptosis by CDNF. These data demonstrate that CDNF prevents the apoptosis of PC12 cells induced by 6-OHDA by modulating Bcl-2/Bax and caspase-3 activation.
Collapse
Affiliation(s)
- Jia-Ming Mei
- Department of Neurosurgery, Anhui Province Key Laboratory of Brain Function and Brain Disease, Anhui Provincial Hospital Affiliated to Anhui Medical University, Lujiang Road 17, P.O. Box 230001, Hefei, Anhui, China,
| | | |
Collapse
|
31
|
Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 2014; 114:58-83. [PMID: 24389580 PMCID: PMC3937258 DOI: 10.1016/j.pneurobio.2013.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, surgical brain injury, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of "cross-tolerance," in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning.
Collapse
Affiliation(s)
- R Anne Stetler
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Zheng Jing
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Michael J Zigmond
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
32
|
Pienaar IS, Dexter DT, Burkhard PR. Mitochondrial proteomics as a selective tool for unraveling Parkinson’s disease pathogenesis. Expert Rev Proteomics 2014; 7:205-26. [DOI: 10.1586/epr.10.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
The role of heat shock proteins in Amyotrophic Lateral Sclerosis: The therapeutic potential of Arimoclomol. Pharmacol Ther 2014; 141:40-54. [DOI: 10.1016/j.pharmthera.2013.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
|
34
|
Ebrahimi-Fakhari D, Saidi LJ, Wahlster L. Molecular chaperones and protein folding as therapeutic targets in Parkinson's disease and other synucleinopathies. Acta Neuropathol Commun 2013; 1:79. [PMID: 24314025 PMCID: PMC4046681 DOI: 10.1186/2051-5960-1-79] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022] Open
Abstract
Changes in protein metabolism are key to disease onset and progression in many neurodegenerative diseases. As a prime example, in Parkinson's disease, folding, post-translational modification and recycling of the synaptic protein α-synuclein are clearly altered, leading to a progressive accumulation of pathogenic protein species and the formation of intracellular inclusion bodies. Altered protein folding is one of the first steps of an increasingly understood cascade in which α-synuclein forms complex oligomers and finally distinct protein aggregates, termed Lewy bodies and Lewy neurites. In neurons, an elaborated network of chaperone and co-chaperone proteins is instrumental in mediating protein folding and re-folding. In addition to their direct influence on client proteins, chaperones interact with protein degradation pathways such as the ubiquitin-proteasome-system or autophagy in order to ensure the effective removal of irreversibly misfolded and potentially pathogenic proteins. Because of the vital role of proper protein folding for protein homeostasis, a growing number of studies have evaluated the contribution of chaperone proteins to neurodegeneration. We herein review our current understanding of the involvement of chaperones, co-chaperones and chaperone-mediated autophagy in synucleinopathies with a focus on the Hsp90 and Hsp70 chaperone system. We discuss genetic and pathological studies in Parkinson's disease as well as experimental studies in models of synucleinopathies that explore molecular chaperones and protein degradation pathways as a novel therapeutic target. To this end, we examine the capacity of chaperones to prevent or modulate neurodegeneration and summarize the current progress in models of Parkinson's disease and related neurodegenerative disorders.
Collapse
|
35
|
Oommen D, Prise KM. Down-regulation of PERK enhances resistance to ionizing radiation. Biochem Biophys Res Commun 2013; 441:31-5. [DOI: 10.1016/j.bbrc.2013.09.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/27/2013] [Indexed: 01/23/2023]
|
36
|
Zeng L, Tan J, Lu W, Lu T, Hu Z. The potential role of small heat shock proteins in mitochondria. Cell Signal 2013; 25:2312-9. [PMID: 23917209 DOI: 10.1016/j.cellsig.2013.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 01/10/2023]
Abstract
Mitochondria play a central role in cellular metabolism, calcium homeostasis, redox signaling and cell fates. Mitochondrial homeostasis is tightly regulated, and mitochondrial dysfunction is frequently associated with severe human pathologies. Small heat shock proteins are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy. The mechanisms that lie behind the cytoprotection of small heat shock proteins are related to the regulation of mitochondrial functions. This review recapitulates the current knowledge of the expression of various small heat shock proteins in mitochondria and discusses their implication in the role of mitochondria and their regulation. Based on their involvement in mitochondrial normal physiology and pathology, a better understanding of their roles and regulation will pave the way for innovative approaches for the successful treatment of a range of stress-related syndromes whose etiology is based upon dysfunction of mitochondria.
Collapse
Affiliation(s)
- Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | | | | | | | | |
Collapse
|
37
|
Cao JP, Niu HY, Wang HJ, Huang XG, Gao DS. NF-κB p65/p52 plays a role in GDNF up-regulating Bcl-2 and Bcl-w expression in 6-OHDA-induced apoptosis of MN9D cell. Int J Neurosci 2013; 123:705-10. [PMID: 23590664 DOI: 10.3109/00207454.2013.795149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) has been shown to protect dopaminergic (DA) neurons against 6-hydroxydopamine (6-OHDA) toxicity. The mechanism underlying the antiapoptosis role of GDNF still needs further studies. We previously observed that nuclear factor-kappaB (NF-κB) signaling pathway, i.e. p65/p52, mediated the antiapoptosis role of GDNF in MN9D cells. Here, the DA cell line MN9D was used to explore the mechanisms underlying NF-κB p65/p52-mediated protection role of GDNF in DA neurons. The results showed that GDNF pretreatment blocked the apoptotic effects induced by 6-OHDA, with the upregulation of the antiapoptotic protein, Bcl-2 and Bcl-w, as well as the downregulation of the proapoptotic proteins, Bax and Bad. Furthermore, when sip100 plasmids were transfected into MN9D cells to inhibit the expression of p100, which was the precursor of p52, the effects of GDNF on upregulating Bcl-2 and Bcl-w were attenuated. These results indicated that GDNF could protect MN9D cells from apoptosis induced by 6-OHDA via upregulating Bcl-2 and Bcl-w expressions and downregulating Bax and Bad expressions. Moreover, NF-κB p65/p52 signaling mediated the effects of GDNF on Bcl-2 and Bcl-w expressions.
Collapse
|
38
|
Tian WX, Li JK, Qin P, Wang R, Ning GB, Qiao JG, Li HQ, Bi DR, Pan SY, Guo DZ. Screening of differentially expressed genes in the growth plate of broiler chickens with tibial dyschondroplasia by microarray analysis. BMC Genomics 2013; 14:276. [PMID: 23617778 PMCID: PMC3648502 DOI: 10.1186/1471-2164-14-276] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 04/18/2013] [Indexed: 12/18/2022] Open
Abstract
Background Tibial dyschondroplasia (TD) is a common skeletal disorder in broiler chickens. It is characterized by the presence of a non-vascularized and unmineralized cartilage in the growth plate. Previous studies have investigated differential expression of genes related to cartilage development during latter stages of TD. The aim of our study was to identify differentially expressed genes (DEGs) in the growth plate of broiler chickens, which were associated with early stage TD. We induced TD using tetramethylthiuram disulfide (thiram) for 1, 2, and 6 days and determined DEGs with chicken Affymetrix GeneChip assays. The identified DEGs were verified by quantitative polymerase chain reaction (qPCR) assays. Results We identified 1630 DEGs, with 82, 1385, and 429 exhibiting at least 2.0-fold changes (P < 0.05) at days 1, 2, and 6, respectively. These DEGs participate in a variety of biological processes, including cytokine production, oxidation reduction, and cell surface receptor linked signal transduction on day 1; lipid biosynthesis, regulation of growth, cell cycle, positive and negative gene regulation, transcription and transcription regulation, and anti-apoptosis on day 2; and regulation of cell proliferation, transcription, dephosphorylation, catabolism, proteolysis, and immune responses on day 6. The identified DEGs were associated with the following pathways: neuroactive ligand-receptor interaction on day 1; synthesis and degradation of ketone bodies, terpenoid backbone biosynthesis, ether lipid metabolism, JAK-STAT, GnRH signaling pathway, ubiquitin mediated proteolysis, TGF-β signaling, focal adhesion, and Wnt signaling on day 2; and arachidonic acid metabolism, mitogen-activated protein kinase (MAPK) signaling, JAK-STAT, insulin signaling, and glycolysis on day 6. We validated seven DEGs by qPCR. Conclusions Our findings demonstrate previously unrecognized changes in gene transcription associated with early stage TD. The DEGs we identified by microarray analysis will be used in future studies to clarify the molecular pathogenic mechanisms of TD. From these findings, potential pathways involved in early stage TD warrant further investigation.
Collapse
Affiliation(s)
- Wen-xia Tian
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Parkinson's disease is a debilitating disorder characterized by a progressive loss of dopaminergic neurons caused by programmed cell death. The aim of this review is to provide an up-to-date summary of the major programmed cell death pathways as they relate to PD. For a long time, programmed cell death has been synonymous with apoptosis but there now is evidence that other types of programmed cell death exist, such as autophagic cell death or programmed necrosis, and that these types of cell death are relevant to PD. The pathways and signals covered here include namely the death receptors, BCL-2 family, caspases, calpains, cdk5, p53, PARP-1, autophagy, mitophagy, mitochondrial fragmentation, and parthanatos. The review will present evidence from postmortem PD studies, toxin-induced models (especially MPTP/MPP+, 6-hydroxydopamine and rotenone), and from α-synuclein, LRRK2, Parkin, DJ-1, and PINK1 genetic models of PD, both in vitro and in vivo.
Collapse
Affiliation(s)
- Katerina Venderova
- University of the Pacific, Thomas J. Long School of Pharmacy, Department of Physiology and Pharmacology, Stockton, CA 95211, USA.
| | | |
Collapse
|
40
|
Dimant H, Ebrahimi-Fakhari D, McLean PJ. Molecular chaperones and co-chaperones in Parkinson disease. Neuroscientist 2012; 18:589-601. [PMID: 22829394 DOI: 10.1177/1073858412441372] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parkinson disease, a progressive neurodegenerative disorder, is caused by the pathological accumulation of proteins, including the ubiquitous presynaptic protein α-synuclein. Alterations in the metabolism of α-synuclein have clearly been linked to neurodegeneration, and early steps in the pathological sequence of this protein include the formation of oligomers, fibrils, and small aggregates. Targeting these early steps of oligomerization is one of the main therapeutic approaches in the quest to develop disease-modifying agents. Molecular chaperones, molecules that can mediate the proper folding and refolding of client proteins, are vital to cell function and survival and thus have been explored as potential therapeutic agents. Important to Parkinson disease, chaperones are capable of preventing α-synuclein misfolding, oligomerization, and aggregate formation as shown in vitro and in Parkinson disease animal models. Furthermore, chaperones and associated co-chaperones are closely linked to pathways of protein degradation, like the ubiquitin-proteasome system and autophagy, and are thus able to remove irreversibly misfolded proteins. In this review, we summarize the role of molecular chaperones in Parkinson disease models and discuss the importance of preserving protein homeostasis to prevent neurodegeneration. We also review the growing number of exciting studies that have targeted molecular chaperone function as a novel therapeutic approach.
Collapse
Affiliation(s)
- Hemi Dimant
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02219, USA
| | | | | |
Collapse
|
41
|
Oommen D, Prise KM. KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1α survival pathways. Biochem Biophys Res Commun 2012; 421:538-43. [PMID: 22521642 DOI: 10.1016/j.bbrc.2012.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/08/2012] [Indexed: 01/12/2023]
Abstract
KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1α (HIF-1α). HIF-1α is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1α. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1α in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1α levels in KNK437-treated cells. This suggested that the absence of HIF-1α in hypoxic cells was not due to the enhanced protein degradation. HIF-1α is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1α mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1α levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.
Collapse
Affiliation(s)
- Deepu Oommen
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.
| | | |
Collapse
|
42
|
MEI JIAMING, NIU CHAOSHI. Protective and reversal effects of conserved dopamine neurotrophic factor on PC12 cells following 6-hydroxydopamine administration. Mol Med Rep 2012; 12:297-302. [DOI: 10.3892/mmr.2015.3388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 01/22/2015] [Indexed: 11/06/2022] Open
|
43
|
Tao L, Li X, Zhang L, Tian J, Li X, Sun X, Li X, Jiang L, Zhang X, Chen J. Protective effect of tetrahydroxystilbene glucoside on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. PLoS One 2011; 6:e26055. [PMID: 21998750 PMCID: PMC3188584 DOI: 10.1371/journal.pone.0026055] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/16/2011] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease. The molecule, 2,3,5,4'-tetrahydr- oxystilbene-2-O-β-D-glucoside (TSG), is a potent antioxidant derived from the Chinese herb, Polygonum multiflorum Thunb. In this study, we investigated the protective effect of TSG against 6-hydroxydopamine-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. Our data demonstrated that TSG significantly reversed the 6-hydroxydopamine-induced decrease in cell viability, prevented 6-hydroxydopamine-induced changes in condensed nuclei and decreased the percentage of apoptotic cells in a dose-dependent manner. In addition, TSG slowed the accumulation of intracellular reactive oxygen species and nitric oxide, counteracted the overexpression of inducible nitric oxide syntheses as well as neuronal nitric oxide syntheses, and also reduced the level of protein-bound 3-nitrotyrosine. These results demonstrate that the protective effects of TSG on rat adrenal pheochromocytoma PC12 cells are mediated, at least in part, by the ROS-NO pathway. Our results indicate that TSG may be effective in providing protection against neurodegenerative diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Lizhen Tao
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaofeng Li
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lingling Zhang
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiyu Tian
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaobing Li
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xin Sun
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuefen Li
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lin Jiang
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaojun Zhang
- Department of Physics and Mathematics, School of Biomedical Engineering, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jianzong Chen
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
44
|
Cell death-resistance of differentiated myotubes is associated with enhanced anti-apoptotic mechanisms compared to myoblasts. Apoptosis 2011; 16:221-34. [PMID: 21161388 DOI: 10.1007/s10495-010-0566-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle atrophy is associated with elevated apoptosis while muscle differentiation results in apoptosis resistance, indicating that the role of apoptosis in skeletal muscle is multifaceted. The objective of this study was to investigate mechanisms underlying apoptosis susceptibility in proliferating myoblasts compared to differentiated myotubes and we hypothesized that cell death-resistance in differentiated myotubes is mediated by enhanced anti-apoptotic pathways. C(2)C(12) myoblasts and myotubes were treated with H(2)O(2) or staurosporine (Stsp) to induce cell death. H(2)O(2) and Stsp induced DNA fragmentation in more than 50% of myoblasts, but in myotubes less than 10% of nuclei showed apoptotic changes. Mitochondrial membrane potential dissipation was detected with H(2)O(2) and Stsp in myoblasts, while this response was greatly diminished in myotubes. Caspase-3 activity was 10-fold higher in myotubes compared to myoblasts, and Stsp caused a significant caspase-3 induction in both. However, exposure to H(2)O(2) did not lead to caspase-3 activation in myoblasts, and only to a modest induction in myotubes. A similar response was observed for caspase-2, -8 and -9. Abundance of caspase-inhibitors (apoptosis repressor with caspase recruitment domain (ARC), and heat shock protein (HSP) 70 and -25 was significantly higher in myotubes compared to myoblasts, and in addition ARC was suppressed in response to Stsp in myotubes. Moreover, increased expression of HSPs in myoblasts attenuated cell death in response to H(2)O(2) and Stsp. Protein abundance of the pro-apoptotic protein endonuclease G (EndoG) and apoptosis-inducing factor (AIF) was higher in myotubes compared to myoblasts. These results show that resistance to apoptosis in myotubes is increased despite high levels of pro-apoptotic signaling mechanisms, and we suggest that this protective effect is mediated by enhanced anti-caspase mechanisms.
Collapse
|
45
|
Seidi A, Kaji H, Annabi N, Ostrovidov S, Ramalingam M, Khademhosseini A. A microfluidic-based neurotoxin concentration gradient for the generation of an in vitro model of Parkinson's disease. BIOMICROFLUIDICS 2011; 5:22214. [PMID: 21799720 PMCID: PMC3145239 DOI: 10.1063/1.3580756] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/30/2011] [Indexed: 05/19/2023]
Abstract
In this study, we developed a miniaturized microfluidic-based high-throughput cell toxicity assay to create an in vitro model of Parkinson's disease (PD). In particular, we generated concentration gradients of 6-hydroxydopamine (6-OHDA) to trigger a process of neuronal apoptosis in pheochromocytoma PC12 neuronal cell line. PC12 cells were cultured in a microfluidic channel, and a concentration gradient of 6-OHDA was generated in the channel by using a back and forth movement of the fluid flow. Cellular apoptosis was then analyzed along the channel. The results indicate that at low concentrations of 6-OHDA along the gradient (i.e., approximately less than 260 μM), the neuronal death in the channel was mainly induced by apoptosis, while at higher concentrations, 6-OHDA induced neuronal death mainly through necrosis. Thus, this concentration appears to be useful for creating an in vitro model of PD by inducing the highest level of apoptosis in PC12 cells. As microfluidic systems are advantageous in a range of properties such as throughput and lower use of reagents, they may provide a useful approach for generating in vitro models of disease for drug discovery applications.
Collapse
|
46
|
Gibrat C, Cicchetti F. Potential of cystamine and cysteamine in the treatment of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:380-9. [PMID: 21111020 DOI: 10.1016/j.pnpbp.2010.11.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/10/2010] [Accepted: 11/17/2010] [Indexed: 01/08/2023]
Abstract
Neurodegenerative disorders are a subset of disabling pathologies characterized, in part, by a progressive and specific loss of certain brain cell populations. Current therapeutic approaches for the treatment of these disorders are mainly designed towards symptom management and do not manifestly block their typified neuronal loss. However, research conducted over the past decade has reflected the increasing interest and need to find disease-modifying molecules. Among the several neuroprotective agents emerging from experimental animal work, cystamine, as well as its reduced form cysteamine, have been identified as potential candidate drugs. Given the significant benefits observed in a Huntington's disease (HD) model, cysteamine has recently leaped to clinical trial. Here, we review the beneficial properties of these compounds as reported in animal studies, their mechanistic underpinnings, and their potential implications for the future treatment of patients suffering from neurodegenerative diseases, and more specifically for HD and Parkinson's disease (PD).
Collapse
Affiliation(s)
- C Gibrat
- Centre de Recherche du CHUL (CHUQ), Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada, G1V 4G2
| | | |
Collapse
|
47
|
Madrigal-Matute J, Martin-Ventura JL, Blanco-Colio LM, Egido J, Michel JB, Meilhac O. Heat-shock proteins in cardiovascular disease. Adv Clin Chem 2011; 54:1-43. [PMID: 21874755 DOI: 10.1016/b978-0-12-387025-4.00001-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heat-shock proteins (HSPs) belong to a group of highly conserved families of proteins expressed by all cells and organisms and their expression may be constitutive or inducible. They are generally considered as protective molecules against different types of stress and have numerous intracellular functions. Secretion or release of HSPs has also been described, and potential roles for extracellular HSPs reported. HSP expression is modulated by different stimuli involved in all steps of atherogenesis including oxidative stress, proteolytic aggression, or inflammation. Also, antibodies to HSPs may be used to monitor the response to different types of stress able to induce changes in HSP levels. In the present review, we will focus on the potential implication of HSPs in atherogenesis and discuss the limitations to the use of HSPs and anti-HSPs as biomarkers of atherothrombosis. HSPs could also be considered as potential therapeutic targets to reinforce vascular defenses and delay or avoid clinical complications associated with atherothrombosis.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Lab, IIS, Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Choe C, Park JW, Kim ES, Lee SG, Park SY, Lee JS, Cho MJ, Kang KR, Han J, Kang D. Proteomic analysis of differentially expressed proteins in bovine endometrium with endometritis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:205-12. [PMID: 20827334 DOI: 10.4196/kjpp.2010.14.4.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/18/2010] [Accepted: 08/05/2010] [Indexed: 11/15/2022]
Abstract
Endometritis is one of the primary reasons for reproductive failure. In order to investigate endometritis-associated marker proteins, proteomic analysis was performed on bovine endometrium with endometritis. In bovine endometritis, desmin, α-actin-2, heat-shock protein (HSP) 27, peroxiredoxin-6, luteinizing hormone receptor isoform 1, collectin-43 precursor, deoxyribonuclease-I (DNase-I), and MHC class I heavy chain (MHC-Ih) were up-regulated. In contrast, transferrin, interleukin-2 precursor, hemoglobin β subunit, and potassium channel tetramerisation domain-containing 11 (KCTD11) were down-regulated in comparison to normal endometrium. The proteomic results were validated by semiquantitative-PCR and immunoblot analysis. The mRNA levels of desmin, transferrin, α-actin-2, HSP27, KCTD11, and MHC-Ih were up-regulated by over 1.5-fold, and showed a pattern similar to their proteomic profiles. Desmin and α-actin-2 protein showed positive correlations between proteomic analysis and immunoblot analysis. These results suggest that desmin and α-actin-2 may play important roles in endometritis-related function, and could be useful markers for the diagnosis of bovine endometritis.
Collapse
Affiliation(s)
- Changyong Choe
- Animal Genetic Resources Station, National Institute of Animal Science, RDA, Namwon 590-832, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Johansen JL, Sager TN, Lotharius J, Witten L, Mørk A, Egebjerg J, Thirstrup K. HIF prolyl hydroxylase inhibition increases cell viability and potentiates dopamine release in dopaminergic cells. J Neurochem 2010; 115:209-19. [PMID: 20649842 DOI: 10.1111/j.1471-4159.2010.06917.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypoxia-inducible factor (HIF) controls the expression of genes that adapts the cellular condition to accommodate oxidative stress. The potential beneficial effect of HIF up-regulation in ischemia has recently gained interest substantiated by the known HIF-regulation of erythropoietin and other hypoxia accommodating genes. So far the perspectives for HIF up-regulation has been focused on anemia and ischemia related diseases but little information is available about the relevance of HIF biology for neurodegenerative disease like Parkinson's disease. We therefore sought out to characterize the effect of HIF-up-regulation on survival and dopamine homeostasis in dopaminergic cells. We used a low molecular weight HIF prolyl hydroxylase (HPH) inhibitor and lentiviral based shRNA knockdown of HPH subtypes as molecular tools to increase HIF protein level and downstream HIF-regulated genes. We show that HIF induction results in protection against oxidative stress in cellular models based on PC12 cells and LUHMES cells. In addition, HPH inhibition elevates tyrosine hydroxylase expression and activity, which causes increased dopamine synthesis and release in both PC12 cells and a primary rat ventral mesencephalic cell culture. All together these findings suggest that prolyl hydroxylases may represent novel targets for therapeutic intervention in disorders characterized by dopamine homeostasis dysregulation like Parkinson's disease.
Collapse
|
50
|
Gupta S, Deepti A, Deegan S, Lisbona F, Hetz C, Samali A. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS Biol 2010; 8:e1000410. [PMID: 20625543 PMCID: PMC2897763 DOI: 10.1371/journal.pbio.1000410] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 05/20/2010] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR). Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.
Collapse
Affiliation(s)
- Sanjeev Gupta
- Apoptosis Research Centre, School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Ayswaria Deepti
- Apoptosis Research Centre, School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Shane Deegan
- Apoptosis Research Centre, School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Fernanda Lisbona
- Institute of Biomedical Sciences, FONDAP Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Institute of Biomedical Sciences, FONDAP Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, NUI Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|