1
|
Lee DS, Kim TH, Park H, Kim JE. PDI augments kainic acid-induced seizure activity and neuronal death by inhibiting PP2A-GluA2-PICK1-mediated AMPA receptor internalization in the mouse hippocampus. Sci Rep 2023; 13:13927. [PMID: 37626185 PMCID: PMC10457386 DOI: 10.1038/s41598-023-41014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
Protein disulfide isomerase (PDI) is a redox-active enzyme and also serves as a nitric oxide donor causing S-nitrosylation of cysteine residues in various proteins. Although PDI knockdown reduces α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR)-mediated neuronal activity, the underlying mechanisms are largely unknown. In the present study, we found that under physiological condition PDI knockdown increased CaMKII activity (phosphorylation) in the mouse hippocampus. However, PDI siRNA inhibited protein phosphatase (PP) 2A-mediated GluA2 S880 dephosphorylation by increasing PP2A oxidation, independent of S-nitrosylation. PDI siRNA also enhanced glutamate ionotropic receptor AMPA type subunit 1 (GluA1) S831 and GluA2 S880, but not GluA1 S845 and GluA2 Y869/Y873/Y876 phosphorylations, concomitant with the enhanced protein interacting with C kinase 1 (PICK1)-mediated AMPAR internalization. Furthermore, PDI knockdown attenuated seizure activity and neuronal damage in response to kainic acid (a non-desensitizing agonist of AMPAR). Therefore, these findings suggest that PDI may regulate surface AMPAR expression through PP2A-GluA2-PICK1 signaling pathway, and that PDI may be one of the therapeutic targets for epilepsy via AMPAR internalization without altering basal neurotransmission.
Collapse
Affiliation(s)
- Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-do, 24252, South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-do, 24252, South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-do, 24252, South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-do, 24252, South Korea.
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
2
|
Verbinnen I, Procknow SS, Lenaerts L, Reynhout S, Mehregan A, Ulens C, Janssens V, King KA. Clinical and molecular characteristics of a novel rare de novo variant in PPP2CA in a patient with a developmental disorder, autism, and epilepsy. Front Cell Dev Biol 2022; 10:1059938. [DOI: 10.3389/fcell.2022.1059938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
PP2A-related (neuro) developmental disorders are a family of genetic diseases caused by a heterozygous alteration in one of several genes encoding a subunit of type 2A protein phosphatases. Reported affected genes, so far, are PPP2R5D, encoding the PP2A regulatory B56δ subunit; PPP2R1A, encoding the scaffolding Aα subunit; and PPP2CA, encoding the catalytic Cα subunit—in that order of frequency. Patients with a pathogenic de novo mutation in one of these genes, in part, present with overlapping features, such as generalized hypotonia, intellectual and developmental delay, facial dysmorphologies, seizures, and autistic features, and, in part, with opposite features, e.g., smaller versus larger head sizes or normal versus absent corpus callosum. Molecular variant characterization has been consistent so far with loss-of-function or dominant-negative disease mechanisms for all three affected genes. Here, we present a case report of another PPP2CA-affected individual with a novel de novo missense variant, resulting in a one-amino acid substitution in the Cα subunit: p.Cys196Arg. Biochemical characterization of the variant revealed its pathogenicity, as it appeared severely catalytically impaired, showed mildly affected A subunit binding, and moderately decreased binding to B/B55, B”/PR72, and all B56 subunits, except B56γ1. Carboxy-terminal methylation appeared unaffected, as was binding to B”’/STRN3—all being consistent with a partial loss of function. Clinically, the girl presented with mild-to-moderate developmental delay, a full-scale IQ of 83, mild dysmorphic facial features, tonic–clonic seizures, and autistic behaviors. Brain MRI appeared normal. We conclude that this individual falls within the milder end of the clinical and molecular spectrum of previously reported PPP2CA cases.
Collapse
|
3
|
Regulation of Cardiac PKA Signaling by cAMP and Oxidants. Antioxidants (Basel) 2021; 10:antiox10050663. [PMID: 33923287 PMCID: PMC8146537 DOI: 10.3390/antiox10050663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pathologies, such as cancer, inflammatory and cardiac diseases are commonly associated with long-term increased production and release of reactive oxygen species referred to as oxidative stress. Thereby, protein oxidation conveys protein dysfunction and contributes to disease progression. Importantly, trials to scavenge oxidants by systemic antioxidant therapy failed. This observation supports the notion that oxidants are indispensable physiological signaling molecules that induce oxidative post-translational modifications in target proteins. In cardiac myocytes, the main driver of cardiac contractility is the activation of the β-adrenoceptor-signaling cascade leading to increased cellular cAMP production and activation of its main effector, the cAMP-dependent protein kinase (PKA). PKA-mediated phosphorylation of substrate proteins that are involved in excitation-contraction coupling are responsible for the observed positive inotropic and lusitropic effects. PKA-actions are counteracted by cellular protein phosphatases (PP) that dephosphorylate substrate proteins and thus allow the termination of PKA-signaling. Both, kinase and phosphatase are redox-sensitive and susceptible to oxidation on critical cysteine residues. Thereby, oxidation of the regulatory PKA and PP subunits is considered to regulate subcellular kinase and phosphatase localization, while intradisulfide formation of the catalytic subunits negatively impacts on catalytic activity with direct consequences on substrate (de)phosphorylation and cardiac contractile function. This review article attempts to incorporate the current perception of the functionally relevant regulation of cardiac contractility by classical cAMP-dependent signaling with the contribution of oxidant modification.
Collapse
|
4
|
Setti T, Arab MGL, Santos GS, Alkass N, Andrade MAP, Lana JFSD. The protective role of glutathione in osteoarthritis. J Clin Orthop Trauma 2021; 15:145-151. [PMID: 33717929 PMCID: PMC7920102 DOI: 10.1016/j.jcot.2020.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/16/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
It is currently understood that osteoarthritis (OA) is a major chronic inflammatory musculoskeletal disease. While this disease has long been attributed to biomechanical trauma, recent evidence establishes a significant correlation between osteoarthritic progression and unbridled oxidative stress, responsible for prolonged inflammation. Research describes this as a disturbance in the balanced production of reactive oxygen species (ROS) and antioxidant defenses, generating macromolecular damage and disrupted redox signaling and control. Since ROS pathways are being considered new targets for OA treatment, the development of antioxidant therapy to counteract exacerbated oxidative stress is being continuously researched and enhanced in order to fortify the cellular defenses. Experiments with glutathione and its precursor molecule, N-acetylcysteine (NAC), have shown interesting results in the literature for the management of OA, where they have demonstrated efficacy in reducing cartilage degradation and inflammation markers as well as significant improvements in pain and functional outcomes. Glutathione remains a safe, effective and overall cheap treatment alternative in comparison to other current therapeutic solutions and, for these reasons, it may prove to be comparably superior under particular circumstances. METHODS Literature was reviewed using PubMed and Google Scholar in order to bring up significant evidence and illustrate the defensive mechanisms of antioxidant compounds against oxidative damage in the onset of musculoskeletal diseases. The investigation included a combination of keywords such as: oxidative stress, oxidative damage, inflammation, osteoarthritis, antioxidant, glutathione, n-acetylcysteine, redox, and cell signaling. CONCLUSION Based on the numerous studies included in this literature review, glutathione and its precursor N-acetylcysteine have demonstrated significant protective effects in events of prolonged, exacerbated oxidative stress as seen in chronic inflammatory musculoskeletal disorders such as osteoarthritis.
Collapse
Affiliation(s)
- Thiago Setti
- Orthopedics – Sports Medicine – Pain Physician, Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue – Room #406 – Centro, 89814-210, Maravilha, SC, Brazil
| | - Miguel Gustavo Luz Arab
- Orthopedics – Sports Medicine – Pain Physician, Samax - Saude Maxima, 401 Sergipe St – Cj 102, 01243-001, São Paulo, SP, Brazil
| | - Gabriel Silva Santos
- IOC – Instituto do Osso e da Cartilagem, The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue, Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| | - Natasha Alkass
- Pharmaceutical Science, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia
| | - Marco Antonio Percope Andrade
- Federal University of Minas Gerais, Department of Locomotor Apparatus, 6627 Presidente Antônio Carlos Avenue, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - José Fábio Santos Duarte Lana
- Orthopedics – Sports Medicine – Pain Physician, IOC – Instituto do Osso e da Cartilagem, The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue, Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| |
Collapse
|
5
|
Diering S, Stathopoulou K, Goetz M, Rathjens L, Harder S, Piasecki A, Raabe J, Schulz S, Brandt M, Pflaumenbaum J, Fuchs U, Donzelli S, Sadayappan S, Nikolaev VO, Flenner F, Ehler E, Cuello F. Receptor-independent modulation of cAMP-dependent protein kinase and protein phosphatase signaling in cardiac myocytes by oxidizing agents. J Biol Chem 2020; 295:15342-15365. [PMID: 32868295 PMCID: PMC7650233 DOI: 10.1074/jbc.ra120.014467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/28/2020] [Indexed: 02/04/2023] Open
Abstract
The contraction and relaxation of the heart is controlled by stimulation of the β1-adrenoreceptor (AR) signaling cascade, which leads to activation of cAMP-dependent protein kinase (PKA) and subsequent cardiac protein phosphorylation. Phosphorylation is counteracted by the main cardiac protein phosphatases, PP2A and PP1. Both kinase and phosphatases are sensitive to intramolecular disulfide formation in their catalytic subunits that inhibits their activity. Additionally, intermolecular disulfide formation between PKA type I regulatory subunits (PKA-RI) has been described to enhance PKA's affinity for protein kinase A anchoring proteins, which alters its subcellular distribution. Nitroxyl donors have been shown to affect contractility and relaxation, but the mechanistic basis for this effect is unclear. The present study investigates the impact of several nitroxyl donors and the thiol-oxidizing agent diamide on cardiac myocyte protein phosphorylation and oxidation. Although all tested compounds equally induced intermolecular disulfide formation in PKA-RI, only 1-nitrosocyclohexalycetate (NCA) and diamide induced reproducible protein phosphorylation. Phosphorylation occurred independently of β1-AR activation, but was abolished after pharmacological PKA inhibition and thus potentially attributable to increased PKA activity. NCA treatment of cardiac myocytes induced translocation of PKA and phosphatases to the myofilament compartment as shown by fractionation, immunofluorescence, and proximity ligation assays. Assessment of kinase and phosphatase activity within the myofilament fraction of cardiac myocytes after exposure to NCA revealed activation of PKA and inhibition of phosphatase activity thus explaining the increase in phosphorylation. The data suggest that the NCA-mediated effect on cardiac myocyte protein phosphorylation orchestrates alterations in the kinase/phosphatase balance.
Collapse
Affiliation(s)
- Simon Diering
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstantina Stathopoulou
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mara Goetz
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Rathjens
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sönke Harder
- Institut für Klinische Chemie und Laboratoriumsmedizin, Massenspektrometrische Proteomanalytik, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angelika Piasecki
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janice Raabe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steven Schulz
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mona Brandt
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Pflaumenbaum
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Fuchs
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Donzelli
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sakthivel Sadayappan
- University of Cincinnati Heart, Lung and Vascular Institute, Cardiovascular Center, Cincinnati, Ohio USA
| | - Viacheslav O Nikolaev
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Experimental Cardiovascular Research, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederik Flenner
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences) and School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Center, King's College London, London, United Kingdom
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
6
|
Foley TD. Reductive Reprogramming: A Not-So-Radical Hypothesis of Neurodegeneration Linking Redox Perturbations to Neuroinflammation and Excitotoxicity. Cell Mol Neurobiol 2019; 39:577-590. [PMID: 30904976 PMCID: PMC11462848 DOI: 10.1007/s10571-019-00672-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Free radical-mediated oxidative stress, neuroinflammation, and excitotoxicity have long been considered insults relevant to the progression of Alzheimer's disease and other aging-related neurodegenerative disorders (NDD). Among these phenomena, the significance of oxidative stress and, more generally, redox perturbations, for NDD remain ill-defined and unsubstantiated. Here, I argue that (i) free radical-mediated oxidations of biomolecules can be dissociated from the progression of NDD, (ii) oxidative stress fails as a descriptor of cellular redox states under conditions relevant to disease, and (iii) aberrant upregulation of compensatory reducing activities in neural cells, resulting in reductive shifts in thiol-based redox potentials, may be an overlooked and paradoxical contributor to disease progression. In particular, I summarize evidence which supports the view that reductive shifts in the extracellular space can occur in response to oxidant and inflammatory signals and that these have the potential to reduce putative regulatory disulfide bonds in exofacial domains of the N-methyl-D-aspartate receptor, leading potentially to aberrant increases in neuronal excitability and, if sustained, excitotoxicity. The novel reductive reprogramming hypothesis of neurodegeneration presented here provides an alternative view of redox perturbations in NDD and links these to both neuroinflammation and excitotoxicity.
Collapse
Affiliation(s)
- Timothy D Foley
- Department of Chemistry and Neuroscience Program, University of Scranton, Scranton, PA, 18510, USA.
| |
Collapse
|
7
|
Abstract
Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF-VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis.
Collapse
|
8
|
Nifoussi SK, Ratcliffe NR, Ornstein DL, Kasof G, Strack S, Craig RW. Inhibition of protein phosphatase 2A (PP2A) prevents Mcl-1 protein dephosphorylation at the Thr-163/Ser-159 phosphodegron, dramatically reducing expression in Mcl-1-amplified lymphoma cells. J Biol Chem 2014; 289:21950-9. [PMID: 24939844 DOI: 10.1074/jbc.m114.587873] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abundant, sustained expression of prosurvival Mcl-1 is an important determinant of viability and drug resistance in cancer cells. The Mcl-1 protein contains PEST sequences (enriched in proline, glutamic acid, serine, and threonine) and is normally subject to rapid turnover via multiple different pathways. One of these pathways involves a phosphodegron in the PEST region, where Thr-163 phosphorylation primes for Ser-159 phosphorylation by glycogen synthase kinase-3. Turnover via this phosphodegron-targeted pathway is reduced in Mcl-1-overexpressing BL41-3 Burkitt lymphoma and other cancer cells; turnover is further slowed in the presence of phorbol ester-induced ERK activation, resulting in Mcl-1 stabilization and an exacerbation of chemoresistance. The present studies focused on Mcl-1 dephosphorylation, which was also found to profoundly influence turnover. Exposure of BL41-3 cells to an inhibitor of protein phosphatase 2A (PP2A), okadaic acid, resulted in a rapid increase in phosphorylation at Thr-163 and Ser-159, along with a precipitous decrease in Mcl-1 expression. The decline in Mcl-1 expression preceded the appearance of cell death markers and was not slowed in the presence of phorbol ester. Upon exposure to calyculin A, which also potently inhibits PP2A, versus tautomycin, which does not, only the former increased Thr-163/Ser-159 phosphorylation and decreased Mcl-1 expression. Mcl-1 co-immunoprecipitated with PP2A upon transfection into CHO cells, and PP2A/Aα knockdown recapitulated the increase in Mcl-1 phosphorylation and decrease in expression. In sum, inhibition of PP2A prevents Mcl-1 dephosphorylation and results in rapid loss of this prosurvival protein in chemoresistant cancer cells.
Collapse
Affiliation(s)
- Shanna K Nifoussi
- From the Departments of Pharmacology and Toxicology and the Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766
| | - Nora R Ratcliffe
- Pathology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, the Veterans Affairs Medical Center, White River Junction, Vermont 05001
| | - Deborah L Ornstein
- Pathology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Gary Kasof
- Cell Signaling Technology, Danvers, Massachusetts 01923, and
| | - Stefan Strack
- Department of Pharmacology, The University of Iowa, Iowa City, Iowa 52242
| | - Ruth W Craig
- From the Departments of Pharmacology and Toxicology and the Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766,
| |
Collapse
|
9
|
Moreno ML, Escobar J, Izquierdo-Álvarez A, Gil A, Pérez S, Pereda J, Zapico I, Vento M, Sabater L, Marina A, Martínez-Ruiz A, Sastre J. Disulfide stress: a novel type of oxidative stress in acute pancreatitis. Free Radic Biol Med 2014; 70:265-77. [PMID: 24456905 DOI: 10.1016/j.freeradbiomed.2014.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/26/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
Abstract
Glutathione oxidation and protein glutathionylation are considered hallmarks of oxidative stress in cells because they reflect thiol redox status in proteins. Our aims were to analyze the redox status of thiols and to identify mixed disulfides and targets of redox signaling in pancreas in experimental acute pancreatitis as a model of acute inflammation associated with glutathione depletion. Glutathione depletion in pancreas in acute pancreatitis is not associated with any increase in oxidized glutathione levels or protein glutathionylation. Cystine and homocystine levels as well as protein cysteinylation and γ-glutamyl cysteinylation markedly rose in pancreas after induction of pancreatitis. Protein cysteinylation was undetectable in pancreas under basal conditions. Targets of disulfide stress were identified by Western blotting, diagonal electrophoresis, and proteomic methods. Cysteinylated albumin was detected. Redox-sensitive PP2A and tyrosine protein phosphatase activities diminished in pancreatitis and this loss was abrogated by N-acetylcysteine. According to our findings, disulfide stress may be considered a specific type of oxidative stress in acute inflammation associated with protein cysteinylation and γ-glutamylcysteinylation and oxidation of the pair cysteine/cystine, but without glutathione oxidation or changes in protein glutathionylation. Two types of targets of disulfide stress were identified: redox buffers, such as ribonuclease inhibitor or albumin, and redox-signaling thiols, which include thioredoxin 1, APE1/Ref1, Keap1, tyrosine and serine/threonine phosphatases, and protein disulfide isomerase. These targets exhibit great relevance in DNA repair, cell proliferation, apoptosis, endoplasmic reticulum stress, and inflammatory response. Disulfide stress would be a specific mechanism of redox signaling independent of glutathione redox status involved in inflammation.
Collapse
Affiliation(s)
- Mari-Luz Moreno
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain; Division of Neonatology, University Hospital Materno-Infantil La Fe, 46026 Valencia, Spain
| | - Alicia Izquierdo-Álvarez
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Anabel Gil
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Salvador Pérez
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Javier Pereda
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Inés Zapico
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Máximo Vento
- Division of Neonatology, University Hospital Materno-Infantil La Fe, 46026 Valencia, Spain
| | - Luis Sabater
- Department of Surgery, University Clinic Hospital, University of Valencia, 46010 Valencia, Spain
| | - Anabel Marina
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Juan Sastre
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
10
|
Escobar J, Pereda J, López-Rodas G, Sastre J. Redox signaling and histone acetylation in acute pancreatitis. Free Radic Biol Med 2012; 52:819-37. [PMID: 22178977 DOI: 10.1016/j.freeradbiomed.2011.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022]
Abstract
Histone acetylation via CBP/p300 coordinates the expression of proinflammatory cytokines in the activation phase of inflammation, particularly through mitogen-activated protein kinases (MAPKs), nuclear factor-κB (NF-κB), and signal transducers and activators of transcription (STAT) pathways. In contrast, histone deacetylases (HDACs) and protein phosphatases are mainly involved in the attenuation phase of inflammation. The role of reactive oxygen species (ROS) in the inflammatory cascade is much more important than expected. Mitochondrial ROS act as signal-transducing molecules that trigger proinflammatory cytokine production via inflammasome-independent and inflammasome-dependent pathways. The major source of ROS in acute inflammation seems to be NADPH oxidases, whereas NF-κB, protein phosphatases, and HDACs are the major targets of ROS and redox signaling in this process. There is a cross-talk between oxidative stress and proinflammatory cytokines through serine/threonine protein phosphatases, tyrosine protein phosphatases, and MAPKs that greatly contributes to amplification of the uncontrolled inflammatory cascade and tissue injury in acute pancreatitis. Chromatin remodeling during induction of proinflammatory genes would depend primarily on phosphorylation of transcription factors and their binding to gene promoters together with recruitment of histone acetyltransferases. PP2A should be considered a key modulator of the inflammatory cascade in acute pancreatitis through the ERK/NF-κB pathway and histone acetylation.
Collapse
Affiliation(s)
- Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
| | | | | | | |
Collapse
|
11
|
Foley TD, Melideo SL, Healey AE, Lucas EJ, Koval JA. Phenylarsine oxide binding reveals redox-active and potential regulatory vicinal thiols on the catalytic subunit of protein phosphatase 2A. Neurochem Res 2010; 36:232-40. [PMID: 21080067 DOI: 10.1007/s11064-010-0310-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2010] [Indexed: 11/24/2022]
Abstract
Our earlier finding that the activity of protein phosphatase 2A from rat brain is inhibited by micromolar concentrations of the dithiol cross-linking reagent phenylarsine oxide (PAO) has encouraged the hypothesis that the catalytic subunit (PP2Ac) of PP2A contains one or more pairs of closely-spaced (vicinal) thiol pairs that may contribute to regulation of the enzyme. The results of the present study demonstrate using immobilized PAO-affinity chromatography that PP2Ac from rat brain formed stable DTT-sensitive adducts with PAO with or without associated regulatory subunits. In addition, a subset of the PAO-binding vicinal thiols of PP2Ac was readily oxidized to disulfide bonds in vitro. Importantly, a small fraction of PP2Ac was still found to contain disulfide bonds after applying stringent conditions designed to prevent protein disulfide bond formation during homogenization and fractionation of the brains. These findings establish the presence of potentially regulatory and redox-active PAO-binding vicinal thiols on the catalytic subunit of PP2A and suggest that a population of PP2Ac may contain disulfide bonds in vivo.
Collapse
Affiliation(s)
- Timothy D Foley
- Department of Chemistry, University of Scranton, Scranton, PA 18510, USA.
| | | | | | | | | |
Collapse
|
12
|
Finnegan S, Mackey AM, Cotter TG. A stress survival response in retinal cells mediated through inhibition of the serine/threonine phosphatase PP2A. Eur J Neurosci 2010; 32:322-34. [PMID: 20636478 DOI: 10.1111/j.1460-9568.2010.07301.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell survival signalling involving the PI3K/Akt survival pathway can be negatively regulated by several phosphatases including PP2A. When retinal-derived 661W cells were subjected to trophic factor deprivation this initiated a survival response through inhibition of the activity of PP2A and subsequent upregulation of the Erk and Akt survival pathways. We show this survival response via inhibition of PP2A activity was due in part to increased reactive oxygen species production when retinal cells were deprived of trophic factors. Inhibition of PP2A activity was mediated by a rapid and transient increase in phosphorylation at Tyr307, accompanied by an increase in demethylation and a decrease in the methylated form. Pre-treatment with N-acetyl-L-cysteine, which is involved in scavenging reactive oxygen species, prevented PP2A inhibition and subsequent upregulation of survival pathways. Pre-treatment with the Src family kinase inhibitor PP2 resulted in approximately 50% reduction in cellular levels of phospho-PP2A in trophic factor-deprived 661W cells, suggesting an Src tyrosine kinase had a role to play in this redox regulation of cell survival. We observed similar events in the rd10 mouse retina where there was an increased survival response prior to retinal cell death mediated through an increase in both phospho-PP2A and phospho-Gsk. Together, these results demonstrate that when retinal cells are stressed there is an initial struggle to survive, mediated through inhibition of PP2A and subsequent upregulation of survival pathways, and that these events occur simultaneously with production of reactive oxygen species, thus suggesting an important cell-signalling role for reactive oxygen species.
Collapse
Affiliation(s)
- Sorcha Finnegan
- Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
13
|
Abstract
Numerous studies indicate that reactive oxygen species (ROS) are not merely cellular by-products of respiration, but are able to modulate various signalling pathways and play certain physiological roles. Recent studies have revealed the importance of translating ROS-generation to activation/suppression of specific signalling pathways. The Wnt signalling pathway, which is essential for early development and stem cell maintenance, is also regulated by ROS. A thioredoxin-related protein, nucleoredoxin (NRX), governs ROS-stimulated Wnt signalling in a temporal manner. NRX usually interacts with Dishevelled (Dvl), an essential adaptor protein for Wnt signalling, and blocks the activation of the Wnt pathway. Oxidative stress causes dissociation of NRX from Dvl, which enables Dvl to activate the downstream Wnt signalling pathway. This study also presents the latest research findings on NRX and its related molecules.
Collapse
Affiliation(s)
- Yosuke Funato
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
14
|
Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med 2010; 48:1-15. [PMID: 19800967 PMCID: PMC2818240 DOI: 10.1016/j.freeradbiomed.2009.09.026] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/24/2009] [Accepted: 09/26/2009] [Indexed: 12/16/2022]
Abstract
Transforming growth factor beta (TGF-beta) is the most potent and ubiquitous profibrogenic cytokine, and its expression is increased in almost all the fibrotic diseases and in experimental fibrosis models. TGF-beta increases reactive oxygen species production and decreases the concentration of glutathione (GSH), the most abundant intracellular free thiol and an important antioxidant, which mediates many of the fibrogenic effects of TGF-beta in various types of cells. A decreased GSH concentration is also observed in human fibrotic diseases and in experimental fibrosis models. Although the biological significance of GSH depletion in the development of fibrosis remains obscure, GSH and N-acetylcysteine, a precursor of GSH, have been used in clinics for the treatment of fibrotic diseases. This review summarizes recent findings in the field to address the potential mechanism whereby oxidative stress mediates fibrogenesis induced by TGF-beta and the potential therapeutic value of antioxidant treatment in fibrotic diseases.
Collapse
Affiliation(s)
- R-M Liu
- Department of Environmental Health Sciences, School of Public Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | |
Collapse
|
15
|
Green KD, Garneau-Tsodikova S. Posttranslational Modification of Proteins. COMPREHENSIVE NATURAL PRODUCTS II 2010:433-468. [DOI: 10.1016/b978-008045382-8.00662-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Erental A, Harel A, Yarden O. Type 2A phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:944-54. [PMID: 17722698 DOI: 10.1094/mpmi-20-8-0944] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sclerotinia sclerotiorum is a necrotrophic, omnivorous plant pathogen with worldwide distribution. Sclerotia of S. sclerotiorum are pigmented, multihyphal structures that play a central role in the life and infection cycles of this pathogen. Plant infection depends on the formation of melanin-rich infection cushions, and secretion of hydrolytic enzymes and oxalic acid. Type 2A Ser/Thr phosphatases (PP2As) are involved in the regulation of a variety of cellular process. In the presence of cantharidin, a PP2A-specific inhibitor, hyphal elongation and sclerotia numbers were impaired whereas sclerotial size increased. We partially inactivated PP2A by antisense expression of the gene (pph1) encoding the PP2A catalytic subunit. When antisense expression was induced, almost complete cessation of fungal growth was observed, indicative of a crucial role for PP2A in fungal growth. RNAi-based gene silencing was employed to alter the expression of the 55-kDa R2 (B regulatory subunit). Isolates in which rgb1 RNA levels were decreased were slow growing, but viable. Melanin biosynthesis, infection-cushion production, and pathogenesis were significantly impaired in the rgb1 mutants, yet theses mutants were pathogenic on wounded leaves. Reduced ERK (extracellular signal-regulated kinases)-like mitogen-activated protein kinase (MAPK) function conferred a reduction in NADPH oxidase and PP2A activity levels, suggesting a functional link between MAPK, reactive oxygen species, and PP2A activity in S. sclerotiorum.
Collapse
Affiliation(s)
- A Erental
- Department of Plant Pathology and Microbiology, The Minerva Center for Agricultural Biotechnology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | |
Collapse
|
17
|
Funato Y, Miki H. Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxid Redox Signal 2007; 9:1035-57. [PMID: 17567240 DOI: 10.1089/ars.2007.1550] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thioredoxin (TRX) family proteins are involved in various biologic processes by regulating the response to oxidative stress. Nucleoredoxin (NRX), a relatively uncharacterized member of the TRX family protein, has recently been reported to regulate the Wnt/beta-catenin pathway, which itself regulates cell fate and early development, in a redox-dependent manner. In this review, we describe the TRX family proteins and discuss in detail the similarities and differences between NRX and other TRX family proteins. Although NRX possesses a conserved TRX domain and a catalytic motif for oxidoreductase activity, its sequence homology to TRX is not as high as that of the close relatives of TRX. The sequence of NRX is more similar to that of tryparedoxin (TryX), a TRX family member originally identified in parasite trypanosomes. We also discuss the reported properties and potential physiologic roles of NRX.
Collapse
Affiliation(s)
- Yosuke Funato
- Division of Cancer Genomics, Institute of Medical Science, University of Tokyo, Japan
| | | |
Collapse
|
18
|
Foley TD, Petro LA, Stredny CM, Coppa TM. Oxidative inhibition of protein phosphatase 2A activity: role of catalytic subunit disulfides. Neurochem Res 2007; 32:1957-64. [PMID: 17562162 DOI: 10.1007/s11064-007-9394-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
A molecular basis for the inhibition of brain protein phosphatase 2A (PP2A) activity by oxidative stress was examined in a high-speed supernatant (HSS) fraction from rat cerebral cortex. PP2A activity was subject to substantial disulfide reducing agent-reversible inhibition in the HSS fraction. Results of gel electrophoresis support the conclusions that inhibition of PP2A activity was associated with the both the disulfide cross-linking of the catalytic subunit (PP2A(C)) of the enzyme to other brain proteins and with the formation of an apparent novel intramolecular disulfide bond in PP2A(C). Additional findings that the vicinal dithiol cross-linking reagent phenylarsine oxide (PAO) produced a potent dithiothreitol-reversible inhibition of PP2A activity suggest that the cross-linking of PP2A(C) vicinal thiols to form an intramolecular disulfide bond may be sufficient to inhibit PP2A activity under oxidative stress. We propose that the dithiol-disulfide equilibrium of a vicinal thiol pair of PP2A(C) may confer redox sensitivity on cellular PP2A.
Collapse
Affiliation(s)
- Timothy D Foley
- Department of Chemistry, University of Scranton, 800 Linden St., Scranton, PA 18510, USA.
| | | | | | | |
Collapse
|
19
|
Lechward K, Sugajska E, de Baere I, Goris J, Hemmings BA, Zolnierowicz S. Interaction of nucleoredoxin with protein phosphatase 2A. FEBS Lett 2006; 580:3631-7. [PMID: 16764867 DOI: 10.1016/j.febslet.2006.04.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/05/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
A trimeric protein phosphatase 2A (PP2A(T55)) composed of the catalytic (PP2Ac), structural (PR65/A), and regulatory (PR55/B) subunits was isolated from rabbit skeletal muscle by thiophosphorylase affinity chromatography, and contained two additional proteins of 54 and 55 kDa, respectively. The 54 kDa protein was identified as eukaryotic translation termination factor 1 (eRF1) and as a PP2A interacting protein. The 55 kDa protein is now identified as nucleoredoxin (NRX). The formation of a complex between GST-NRX, PP2A(C) and PP2A(D) was demonstrated by pull-down experiments with purified forms of PP2A, and by immunoprecipitation of HA-tagged NRX expressed in HEK293 cells complexed endogenous PP2A subunits. Analysis of PP2A activity in the presence of GST-NRX showed that NRX competed with polycations for both stimulatory and inhibitory effects on different forms of PP2A.
Collapse
Affiliation(s)
- Katarzyna Lechward
- Cell and Molecular Signalling Laboratory, Intercollegiate Faculty of Biotechnology UG-MUG, Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
20
|
Nyunoya T, Monick MM, Powers LS, Yarovinsky TO, Hunninghake GW. Macrophages Survive Hyperoxia via Prolonged ERK Activation Due to Phosphatase Down-regulation. J Biol Chem 2005; 280:26295-302. [PMID: 15901735 DOI: 10.1074/jbc.m500185200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages exposed to hyperoxia in the lung continue to survive for prolonged periods. We previously reported (Nyunoya, T., Powers, L. S., Yarovinsky, T. O., Butler, N. S., Monick, M. M., and Hunninghake, G. W. (2003) J. Biol. Chem. 278, 36099-36106) that hyperoxia induces cell cycle arrest and sustained extracellular signal-related kinase (ERK) activity in macrophages. In this study, we determined the mechanisms of hyperoxia-induced ERK activation and how ERK activity plays a pro-survival role in hyperoxia-exposed cells. Inhibition of ERK activity decreased survival of hyperoxia-exposed macrophages. This was due, at least in part, to down-regulation of the pro-apoptotic Bcl-2 family member, BimEL. In determining the mechanism of ERK activation by hyperoxia, we found that ERK activation was not associated with hyperoxia-induced activation of the upstream ERK kinase mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2. When we examined the ability of whole cell lysates from hyperoxia-exposed cells to dephosphorylate purified phosphorylated ERK, we found decreased ERK-directed phosphatase activity. Two particular ERK-directed phosphatases (protein phosphatase 2A and MAPK phosphatase-3) demonstrated decreased activity in hyperoxia-exposed cells. Moreover, whole cell lysates from normoxia-exposed cells depleted of PP2A or MAPK phosphatase-3 were also less able to dephosphorylate ERK. These data demonstrate that, in hyperoxia-exposed macrophages, sustained activation of ERK due to phosphatase down-regulation permits macrophage survival via effects on the balance between pro- and anti-apoptotic Bcl-2 family proteins.
Collapse
Affiliation(s)
- Toru Nyunoya
- Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|