1
|
Matarrese P, Vona R, Ascione B, Cittadini C, Tocci A, Mileo AM. Tumor Microenvironmental Cytokines Drive NSCLC Cell Aggressiveness and Drug-Resistance via YAP-Mediated Autophagy. Cells 2023; 12:cells12071048. [PMID: 37048121 PMCID: PMC10093141 DOI: 10.3390/cells12071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Dynamic reciprocity between cellular components of the tumor microenvironment and tumor cells occurs primarily through the interaction of soluble signals, i.e., cytokines produced by stromal cells to support cancer initiation and progression by regulating cell survival, differentiation and immune cell functionality, as well as cell migration and death. In the present study, we focused on the analysis of the functional response of non-small cell lung cancer cell lines elicited by the treatment with some crucial stromal factors which, at least in part, mimic the stimulus exerted in vivo on tumor cells by microenvironmental components. Our molecular and functional results highlight the role played by the autophagic machinery in the cellular response in terms of the invasive capacity, stemness and drug resistance of two non-small lung cancer cell lines treated with stromal cytokines, also highlighting the emerging role of the YAP pathway in the mutual and dynamic crosstalk between tumor cells and tumor microenvironment elements. The results of this study provide new insights into the YAP-mediated autophagic mechanism elicited by microenvironmental cytokines on non-small cell lung cancer cell lines and may suggest new potential strategies for future cancer therapeutic interventions.
Collapse
Affiliation(s)
- Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| | - Rosa Vona
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Barbara Ascione
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Camilla Cittadini
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| |
Collapse
|
2
|
López-Cortés GI, Díaz-Alvarez L, Ortega E. Leukocyte Membrane Enzymes Play the Cell Adhesion Game. Front Immunol 2021; 12:742292. [PMID: 34887854 PMCID: PMC8650063 DOI: 10.3389/fimmu.2021.742292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
For a long time, proteins with enzymatic activity have not been usually considered to carry out other functions different from catalyzing chemical reactions within or outside the cell. Nevertheless, in the last few years several reports have uncovered the participation of numerous enzymes in other processes, placing them in the category of moonlighting proteins. Some moonlighting enzymes have been shown to participate in complex processes such as cell adhesion. Cell adhesion plays a physiological role in multiple processes: it enables cells to establish close contact with one another, allowing communication; it is a key step during cell migration; it is also involved in tightly binding neighboring cells in tissues, etc. Importantly, cell adhesion is also of great importance in pathophysiological scenarios like migration and metastasis establishment of cancer cells. Cell adhesion is strictly regulated through numerous switches: proteins, glycoproteins and other components of the cell membrane. Recently, several cell membrane enzymes have been reported to participate in distinct steps of the cell adhesion process. Here, we review a variety of examples of membrane bound enzymes participating in adhesion of immune cells.
Collapse
Affiliation(s)
- Georgina I López-Cortés
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Díaz-Alvarez
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Matarrese P, Vona R, Ascione B, Paggi MG, Mileo AM. Physical Interaction between HPV16E7 and the Actin-Binding Protein Gelsolin Regulates Epithelial-Mesenchymal Transition via HIPPO-YAP Axis. Cancers (Basel) 2021; 13:cancers13020353. [PMID: 33477952 PMCID: PMC7836002 DOI: 10.3390/cancers13020353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus 16 (HPV16) exhibits a strong oncogenic potential mainly in cervical, anogenital and oropharyngeal cancers. The E6 and E7 viral oncoproteins, acting via specific interactions with host cellular targets, are required for cell transformation and maintenance of the transformed phenotype as well. We previously demonstrated that HPV16E7 interacts with the actin-binding protein gelsolin, involved in cytoskeletal F-actin dynamics. Herein, we provide evidence that the E7/gelsolin interaction promotes the cytoskeleton rearrangement leading to epithelial-mesenchymal transition-linked morphological and transcriptional changes. E7-mediated cytoskeletal actin remodeling induces the HIPPO pathway by promoting the cytoplasmic retention of inactive P-YAP. These results suggest that YAP could play a role in the "de-differentiation" process underlying the acquisition of a more aggressive phenotype in HPV16-transformed cells. A deeper comprehension of the multifaceted mechanisms elicited by the HPV infection is vital for providing novel strategies to block the biological and clinical features of virus-related cancers.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Rosa Vona
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Barbara Ascione
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Marco G. Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS—Regina Elena National Cancer Institute Rome, 00144 Rome, Italy
- Correspondence: (M.G.P.); (A.M.M.); Tel.: +39-0652662550 (M.G.P. & A.M.M.)
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, IRCCS—Regina Elena National Cancer Institute Rome, 00144 Rome, Italy
- Correspondence: (M.G.P.); (A.M.M.); Tel.: +39-0652662550 (M.G.P. & A.M.M.)
| |
Collapse
|
4
|
Manganelli V, Matarrese P, Antonioli M, Gambardella L, Vescovo T, Gretzmeier C, Longo A, Capozzi A, Recalchi S, Riitano G, Misasi R, Dengjel J, Malorni W, Fimia GM, Sorice M, Garofalo T. Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs. Autophagy 2020; 17:2528-2548. [PMID: 33034545 DOI: 10.1080/15548627.2020.1834207] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria-associated membranes (MAMs) are essential communication subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. We previously demonstrated that, upon macroautophagy/autophagy induction, AMBRA1 is recruited to the BECN1 complex and relocalizes to MAMs, where it regulates autophagy by interacting with raft-like components. ERLIN1 is an endoplasmic reticulum lipid raft protein of the prohibitin family. However, little is known about its association with the MAM interface and its involvement in autophagic initiation. In this study, we investigated ERLIN1 association with MAM raft-like microdomains and its interaction with AMBRA1 in the regulation of the autophagic process. We show that ERLIN1 interacts with AMBRA1 at MAM raft-like microdomains, which represents an essential condition for autophagosome formation upon nutrient starvation, as demonstrated by knocking down ERLIN1 gene expression. Moreover, this interaction depends on the "integrity" of key molecules, such as ganglioside GD3 and MFN2. Indeed, knocking down ST8SIA1/GD3-synthase or MFN2 expression impairs AMBRA1-ERLIN1 interaction at the MAM level and hinders autophagy. In conclusion, AMBRA1-ERLIN1 interaction within MAM raft-like microdomains appears to be pivotal in promoting the formation of autophagosomes.Abbreviations: ACSL4/ACS4: acyl-CoA synthetase long chain family member 4; ACTB/β-actin: actin beta; AMBRA1: autophagy and beclin 1 regulator 1; ATG14: autophagy related 14; BECN1: beclin 1; CANX: calnexin; Cy5: cyanine 5; ECL: enhanced chemiluminescence; ER: endoplasmic reticulum; ERLIN1/KE04: ER lipid raft associated 1; FB1: fumonisin B1; FE: FRET efficiency; FRET: Förster/fluorescence resonance energy transfer; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD3: aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)ceramide; HBSS: Hanks' balanced salt solution; HRP: horseradish peroxidase; LMNB1: lamin B1; mAb: monoclonal antibody; MAMs: mitochondria-associated membranes; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MYC/cMyc: proto-oncogene, bHLH transcription factor; P4HB: prolyl 4-hydroxylase subunit beta; pAb: polyclonal antibody; PE: phycoerythrin; SCAP/SREBP: SREBF chaperone; SD: standard deviation; ST8SIA1: ST8 alpha-N-acetyl-neuraminide alpha-2,8 sialyltransferase 1; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUBB/beta-tubulin: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; VDAC1/porin: voltage dependent anion channel 1.
Collapse
Affiliation(s)
| | - Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Lucrezia Gambardella
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Christine Gretzmeier
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Agostina Longo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Serena Recalchi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Joern Dengjel
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Biology, University of Fribourg, Suisse, Germany
| | - Walter Malorni
- School of Pharmacy, University of Tor Vergata, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Lu C, Amin MA, Fox DA. CD13/Aminopeptidase N Is a Potential Therapeutic Target for Inflammatory Disorders. THE JOURNAL OF IMMUNOLOGY 2020; 204:3-11. [PMID: 31848300 DOI: 10.4049/jimmunol.1900868] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023]
Abstract
CD13/aminopeptidase N is a widely expressed ectoenzyme with multiple functions. As an enzyme, CD13 regulates activities of numerous cytokines by cleaving their N-terminals and is involved in Ag processing by trimming the peptides bound to MHC class II. Independent of its enzymatic activity, cell membrane CD13 functions by cross-linking-induced signal transduction, regulation of receptor recycling, enhancement of FcγR-mediated phagocytosis, and acting as a receptor for cytokines. Moreover, soluble CD13 has multiple proinflammatory roles mediated by binding to G-protein-coupled receptors. CD13 not only modulates development and activities of immune-related cells, but also regulates functions of inflammatory mediators. Therefore, CD13 is important in the pathogenesis of various inflammatory disorders. Inhibitors of CD13 have shown impressive anti-inflammatory effects, but none of them has yet been used for clinical therapy of human inflammatory diseases. We reevaluate CD13's regulatory role in inflammation and suggest that CD13 could be a potential therapeutic target for inflammatory disorders.
Collapse
Affiliation(s)
- Chenyang Lu
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109; and.,Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mohammad A Amin
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - David A Fox
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109; and
| |
Collapse
|
6
|
Maselli A, Parlato S, Puglisi R, Raggi C, Spada M, Macchia D, Pontecorvi G, Iessi E, Pagano MT, Cirulli F, Gabriele L, Carè A, Vici P, Pizzuti L, Barba M, Matarrese P, Pierdominici M, Ortona E. Autoantibodies Specific to ERα are Involved in Tamoxifen Resistance in Hormone Receptor Positive Breast Cancer. Cells 2019; 8:cells8070750. [PMID: 31331091 PMCID: PMC6678306 DOI: 10.3390/cells8070750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/13/2023] Open
Abstract
Tamoxifen resistance is a major hurdle in the treatment of estrogen receptor (ER)-positive breast cancer. The mechanisms of tamoxifen resistance are not fully understood although several underlying molecular events have been suggested. Recently, we identified autoantibodies reacting with membrane-associated ERα (anti-ERα Abs) in sera of breast cancer patients, able to promote tumor growth. Here, we investigated whether anti-ERα Abs purified from sera of ER-positive breast cancer patients could contribute to tamoxifen resistance. Anti-ERα Abs inhibited tamoxifen-mediated effects on cell cycle and proliferation in MCF-7 cells. Moreover, anti-ERα Abs hampered the tamoxifen-mediated reduction of tumor growth in SCID mice xenografted with breast tumor. Notably, simvastatin-mediated disaggregation of lipid rafts, where membrane-associated ERα is embedded, restored tamoxifen sensitivity, preventing anti-ERα Abs effects. In conclusion, detection of serum anti-ERα Abs may help predict tamoxifen resistance and concur to appropriately inform therapeutic decisions concerning hormone therapy in ER-positive breast cancer patients.
Collapse
Affiliation(s)
- Angela Maselli
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Stefania Parlato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Carla Raggi
- National Centre for the Control and the Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Massimo Spada
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Daniele Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giada Pontecorvi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Elisabetta Iessi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria Teresa Pagano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Patrizia Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy
| | - Laura Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy
| | - Maddalena Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marina Pierdominici
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Elena Ortona
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
7
|
Abbruzzese C, Matteoni S, Persico M, Ascione B, Schenone S, Musumeci F, Amato R, Perrotti N, Matarrese P, Paggi MG. The small molecule SI113 hinders epithelial-to-mesenchymal transition and subverts cytoskeletal organization in human cancer cells. J Cell Physiol 2019; 234:22529-22542. [PMID: 31099037 DOI: 10.1002/jcp.28816] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
The small molecule SI113 is an inhibitor of the kinase activity of SGK1, a key biological regulator acting on the PI3K/mTOR signal transduction pathway. Several studies demonstrate that this compound is able to strongly restrain cancer growth in vitro and in vivo, alone or in associative antineoplastic treatments, being able to elicit an autophagic response, either cytotoxic or cytoprotective. To elucidate more exhaustively the molecular mechanisms targeted by SI113, we performed activity-based protein profiling (ABPP) proteomic analysis using a kinase enrichment procedure. This technique allowed the identification via mass spectrometry of novel targets of this compound, most of them involved in functions concerning cell motility and cytoskeletal architecture. Using a glioblastoma multiforme, hepatocarcinoma and colorectal carcinoma cell line, we recognized an inhibitory effect of SI113 on cell migration, invading, and epithelial-to-mesenchymal transition. In addition, these cancer cells, when exposed to this compound, showed a remarkable subversion of the cytoskeletal architecture characterized by F-actin destabilization, phospho-FAK delocalization, and tubulin depolimerization. These results were definitely concordant in attributing to SI113 a key role in hindering cancer cell malignancy and, due to its negligible in vivo toxicity, can sustain performing a Phase I clinical trial to employ this drug in associative cancer therapy.
Collapse
Affiliation(s)
- Claudia Abbruzzese
- Division of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Matteoni
- Division of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Persico
- Division of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Barbara Ascione
- Center for Gender Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Marco G Paggi
- Division of Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
8
|
Orsó E, Robenek H, Boettcher A, Wolf Z, Liebisch G, Kramer W, Schmitz G. Nonglucuronidated Ezetimibe Disrupts CD13- and CD64-Coassembly in Membrane Microdomains and Decreases Cellular Cholesterol Content in Human Monocytes/Macrophages. Cytometry A 2019; 95:869-884. [PMID: 30994973 DOI: 10.1002/cyto.a.23772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
Ezetimibe (EZE) and glucuronidated EZE (EZE-Glu) differentially target Niemann-Pick C1-like 1 (NPC1L1) and CD13 (aminopeptidase-N) to inhibit intestinal cholesterol absorption and cholesterol processing in other cells, although the precise molecular mechanisms are not fully elucidated. Cellular effects of EZE, EZE-Glu, and the low-absorbable EZE-analogue S6130 were investigated on human monocyte-derived macrophages upon loading with atherogenic lipoproteins. EZE and S6130, but not EZE-Glu disturbed the colocalization of CD13 and its coreceptor CD64 (Fcγ receptor I) in membrane microdomains, and decreased the presence of both receptors in detergent-resistant membrane fractions. Biotinylated cholesterol absorption inhibitor C-5 (i.e., derivative of EZE) was rapidly internalized to perinuclear tubular structures of cells, resembling endoplasmic reticulum (ER), but CD13 was detected on extracellular sites of the plasma membrane and endolysosomal vesicles. Administration of EZE, but not of EZE-Glu or S6130, was associated with decreased cellular cholesteryl ester content, indicating the sterol-O acyltransferase 1 (SOAT1)-inhibition by EZE. Furthermore, EZE decreased the expression of molecules involved in cholesterol uptake and synthesis, in parallel with increased apolipoprotein A-I-mediated cholesterol efflux and upregulation of efflux-effectors. However, NPC1L1 the other claimed molecular target of EZE, was not detected in macrophages, thereby excluding this protein as target for EZE in macrophages. Thus, EZE is very likely a CD13-linked microdomain-disruptor and SOAT1-inhibitor in macrophages leading to in vitro anti-atherosclerotic effects through a decrease of net cellular cholesterol content. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Evelyn Orsó
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Horst Robenek
- Leibniz Institute for Arteriosclerosis Research, University of Muenster, 48149 Muenster, Germany
| | - Alfred Boettcher
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Zsuzsanna Wolf
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Werner Kramer
- Biomedical and Scientific Consulting, 55130 Mainz, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Ciarlo L, Vona R, Manganelli V, Gambardella L, Raggi C, Marconi M, Malorni W, Sorice M, Garofalo T, Matarrese P. Recruitment of mitofusin 2 into "lipid rafts" drives mitochondria fusion induced by Mdivi-1. Oncotarget 2018; 9:18869-18884. [PMID: 29721168 PMCID: PMC5922362 DOI: 10.18632/oncotarget.24792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 02/27/2018] [Indexed: 02/04/2023] Open
Abstract
The regulation of the mitochondrial dynamics and the balance between fusion and fission processes are crucial for the health and fate of the cell. Mitochondrial fusion and fission machinery is controlled by key proteins such as mitofusins, OPA-1 and several further molecules. In the present work we investigated the implication of lipid rafts in mitochondrial fusion induced by Mdivi-1. Our results underscore the possible implication of lipid "rafts" in mitochondrial morphogenetic changes and their homeostasis.
Collapse
Affiliation(s)
- Laura Ciarlo
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Vona
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Lucrezia Gambardella
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Raggi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.,Center of Metabolomics, Rome, Italy
| |
Collapse
|
10
|
Pierdominici M, Maselli A, Locatelli SL, Ciarlo L, Careddu G, Patrizio M, Ascione B, Tinari A, Carlo-Stella C, Malorni W, Matarrese P, Ortona E. Estrogen receptor β ligation inhibits Hodgkin lymphoma growth by inducing autophagy. Oncotarget 2018; 8:8522-8535. [PMID: 28052027 PMCID: PMC5352419 DOI: 10.18632/oncotarget.14338] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/05/2016] [Indexed: 12/09/2022] Open
Abstract
Although Hodgkin lymphoma (HL) is curable with current therapy, at least 20% of patients relapse or fail to make complete remission. In addition, patients who achieve long-term disease-free survival frequently undergo infertility, secondary malignancies, and cardiac failure, which are related to chemotherapeutic agents and radiation therapies. Hence, new therapeutic strategies able to counteract the HL disease in this important patient population are still a matter of study. Estrogens, in particular 17β-estradiol (E2), have been suggested to play a role in lymphoma cell homeostasis by estrogen receptors (ER) β activation. On these bases, we investigated whether the ligation of ERβ by a selective agonist, the 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), could impact HL tumor growth. We found that DPN-mediated ERβ activation led to a reduction of in vitro cell proliferation and cell cycle progression by inducing autophagy. In nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice engrafted with HL cells, ERβ activation by DPN was able to reduce lymphoma growth up to 60% and this associated with the induction of tumor cell autophagy. Molecular characterization of ERβ-induced autophagy revealed an overexpression of damage-regulated autophagy modulator 2 (DRAM2) molecule, whose role in autophagy modulation is still debated. After ERβ activation, both DRAM2 and protein 1 light chain 3 (LC3), a key actor in the autophagosome formation, strictly interacted each other and localized at mitochondrial level. Altogether these results suggest that targeting ERβ with selective agonists might affect HL cell proliferation and tumor growth via a mechanism that brings into play DRAM2-dependent autophagic cascade.
Collapse
Affiliation(s)
- Marina Pierdominici
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Maselli
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia L Locatelli
- Department of Oncology and Hematology, Humanitas Cancer Center - Humanitas Clinical and Research Center, Milano, Italy
| | - Laura Ciarlo
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppa Careddu
- Department of Oncology and Hematology, Humanitas Cancer Center - Humanitas Clinical and Research Center, Milano, Italy
| | - Mario Patrizio
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ascione
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Tinari
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carmelo Carlo-Stella
- Department of Oncology and Hematology, Humanitas Cancer Center - Humanitas Clinical and Research Center, Milano, Italy
| | - Walter Malorni
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Matarrese
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Ortona
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
11
|
Matarrese P, Abbruzzese C, Mileo AM, Vona R, Ascione B, Visca P, Rollo F, Benevolo M, Malorni W, Paggi MG. Interaction between the human papillomavirus 16 E7 oncoprotein and gelsolin ignites cancer cell motility and invasiveness. Oncotarget 2018; 7:50972-50985. [PMID: 27072581 PMCID: PMC5239452 DOI: 10.18632/oncotarget.8646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
The viral oncoprotein E7 from the “high-risk” Human Papillomavirus 16 (HPV16) strain is able, when expressed in human keratinocytes, to physically interact with the actin severing protein gelsolin (GSN). In a previous work it has been suggested that this protein-protein interaction can hinder GSN severing function, thus leading to actin network remodeling. In the present work we investigated the possible implications of this molecular interaction in cancer cell metastatic potential by analyzing two different human CC cell lines characterized by low or high expression levels of HPV16 DNA (SiHa and CaSki, respectively). In addition, a HPV-null CC cell line (C-33A), transfected in order to express the HPV16 E7 oncoprotein as well as two different deletion mutants, was also analyzed. We found that HPV16 E7 expression level was directly related with cervical cancer migration and invasion capabilities and that these HPV16 E7-related features were associated with Epithelial to Mesenchymal Transition (EMT) processes. These effects appeared as strictly attributable to the physical interaction of HPV16 E7 with GSN, since HPV16 E7 deletion mutants unable to bind to GSN were also unable to modify microfilament assembly dynamics and, therefore, cell movements and invasiveness. Altogether, these data profile the importance of the physical interaction between HPV16 E7 and GSN in the acquisition of the metastatic phenotype by CC cells, underscoring the role of HPV16 intracellular load as a risk factor in cancer.
Collapse
Affiliation(s)
- Paola Matarrese
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Abbruzzese
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Anna Maria Mileo
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Immunology and Immunotherapy, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Rosa Vona
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ascione
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Visca
- Unit of Pathology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Francesca Rollo
- Unit of Pathology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Maria Benevolo
- Unit of Pathology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Walter Malorni
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy.,Istituto San Raffaele Pisana, Rome, Italy
| | - Marco G Paggi
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| |
Collapse
|
12
|
Garofalo T, Matarrese P, Manganelli V, Marconi M, Tinari A, Gambardella L, Faggioni A, Misasi R, Sorice M, Malorni W. Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation. Autophagy 2016; 12:917-35. [PMID: 27123544 DOI: 10.1080/15548627.2016.1160971] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mitochondria-associated membranes (MAMs) are subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. This membrane scrambling between ER and mitochondria appears to play a critical role in the earliest steps of autophagy. Recently, lipid microdomains, i.e. lipid rafts, have been identified as further actors of the autophagic process. In the present work, a series of biochemical and molecular analyses has been carried out in human fibroblasts with the specific aim of characterizing lipid rafts in MAMs and to decipher their possible implication in the autophagosome formation. In fact, the presence of lipid microdomains in MAMs has been detected and, in these structures, a molecular interaction of the ganglioside GD3, a paradigmatic "brick" of lipid rafts, with core-initiator proteins of autophagy, such as AMBRA1 and WIPI1, was revealed. This association seems thus to take place in the early phases of autophagic process in which MAMs have been hypothesized to play a key role. The functional activity of GD3 was suggested by the experiments carried out by knocking down ST8SIA1 gene expression, i.e., the synthase that leads to the ganglioside formation. This experimental condition results in fact in the impairment of the ER-mitochondria crosstalk and the subsequent hindering of autophagosome nucleation. We thus hypothesize that MAM raft-like microdomains could be pivotal in the initial organelle scrambling activity that finally leads to the formation of autophagosome.
Collapse
Affiliation(s)
- Tina Garofalo
- a Department of Experimental Medicine , Sapienza University , Rome , Italy
| | - Paola Matarrese
- b Section of Cell Aging and Degeneration, Department of Drug Research and Evaluation, Istituto Superiore di Sanita' , Rome , Italy.,c Center of Metabolomics , Rome , Italy
| | - Valeria Manganelli
- a Department of Experimental Medicine , Sapienza University , Rome , Italy
| | - Matteo Marconi
- b Section of Cell Aging and Degeneration, Department of Drug Research and Evaluation, Istituto Superiore di Sanita' , Rome , Italy
| | - Antonella Tinari
- d Department of Technology and Health , Istituto Superiore di Sanita' , Rome , Italy
| | - Lucrezia Gambardella
- b Section of Cell Aging and Degeneration, Department of Drug Research and Evaluation, Istituto Superiore di Sanita' , Rome , Italy
| | - Alberto Faggioni
- a Department of Experimental Medicine , Sapienza University , Rome , Italy
| | - Roberta Misasi
- a Department of Experimental Medicine , Sapienza University , Rome , Italy
| | - Maurizio Sorice
- a Department of Experimental Medicine , Sapienza University , Rome , Italy
| | - Walter Malorni
- b Section of Cell Aging and Degeneration, Department of Drug Research and Evaluation, Istituto Superiore di Sanita' , Rome , Italy.,e Istituto San Raffaele Pisana , Rome , Italy
| |
Collapse
|
13
|
Zotz JS, Wölbing F, Lassnig C, Kauffmann M, Schulte U, Kolb A, Whitelaw B, Müller M, Biedermann T, Huber M. CD13/aminopeptidase N is a negative regulator of mast cell activation. FASEB J 2016; 30:2225-35. [PMID: 26936360 DOI: 10.1096/fj.201600278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 12/20/2022]
Abstract
Antigen-induced mast cell (MC) activation via cross-linking of IgE-bound high-affinity receptors for IgE (FcεRI) underlies type I allergy and anaphylactic shock. Comprehensive knowledge of FcεRI regulation is thus required. We have identified a functional interaction between FcεRI and CD13 in murine MCs. Antigen-triggered activation of IgE-loaded FcεRI results in cocapping and cointernalization of CD13 and equivalent internalization rates of up to 40%. Cointernalization is not unspecific, because ligand-driven KIT internalization is not accompanied by CD13 internalization. Moreover, antibody-mediated cross-linking of CD13 causes IL-6 production in an FcεRI-dependent manner. These data are indicative of a functional interaction between FcεRI and CD13 on MCs. To determine the role of this interaction, CD13-deficient bone marrow-derived MCs (BMMCs) were analyzed. Intriguingly, antigen stimulation of CD13-deficient BMMCs results in significantly increased degranulation and proinflammatory cytokine production compared to wild-type cells. Furthermore, in a low-dose model of passive systemic anaphylaxis, antigen-dependent decrease in body temperature, reflecting the anaphylactic reaction, is substantially enhanced by the CD13 inhibitor bestatin (-5.9 ± 0.6°C) and by CD13 deficiency (-8.8 ± 0.6°C) in contrast to controls (-1.2 ± 1.97°C). Importantly, bestatin does not aggravate anaphylaxis in CD13-deficient mice. Thus, we have identified CD13 as a novel negative regulator of MC activation in vitro and in vivo-Zotz, J. S., Wölbing, F., Lassnig, C., Kauffmann, M., Schulte, U., Kolb, A., Whitelaw, B., Müller, M., Biedermann, T., Huber, M. CD13/aminopeptidase N is a negative regulator of mast cell activation.
Collapse
Affiliation(s)
- Julia S Zotz
- Institute of Biochemistry and Molecular Immunology, University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Florian Wölbing
- Department of Dermatology, Technical University of Munich, Munich, Germany
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marlies Kauffmann
- Institute of Biochemistry and Molecular Immunology, University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Uwe Schulte
- Institute of Physiology II, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (Bioss), Freiburg, Germany; Logopharm GmbH, March-Buchheim, Germany
| | - Andreas Kolb
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom; and
| | - Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tilo Biedermann
- Department of Dermatology, Technical University of Munich, Munich, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany;
| |
Collapse
|
14
|
Lambert C, Preijers FWMB, Yanikkaya Demirel G, Sack U. Monocytes and macrophages in flow: an ESCCA initiative on advanced analyses of monocyte lineage using flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 92:180-188. [DOI: 10.1002/cyto.b.21280] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/13/2015] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Claude Lambert
- Immunology Laboratory, CNRS UMR5307 Labo Georges Friedel (LGF); Pole De Biologie-Pathologie, University Hospital; St Etienne France
| | - Frank W. M. B. Preijers
- Department of Laboratory Medicine Laboratory of Hematology; Radboud University Medical Center; Nijmegen The Netherlands
| | | | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty; Translational Centre for Regenerative Medicine (TRM), Universität Leipzig; Leipzig Germany
| |
Collapse
|
15
|
Lozupone F, Borghi M, Marzoli F, Azzarito T, Matarrese P, Iessi E, Venturi G, Meschini S, Canitano A, Bona R, Cara A, Fais S. TM9SF4 is a novel V-ATPase-interacting protein that modulates tumor pH alterations associated with drug resistance and invasiveness of colon cancer cells. Oncogene 2015; 34:5163-74. [PMID: 25659576 DOI: 10.1038/onc.2014.437] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022]
Abstract
An inverted pH gradient across the cell membranes is a typical feature of malignant cancer cells that are characterized by extracellular acidosis and cytosol alkalization. These dysregulations are able to create a unique milieu that favors tumor progression, metastasis and chemo/immune-resistance traits of solid tumors. A key event mediating tumor cell pH alterations is an aberrant activation of ion channels and proton pumps such as (H+)-vacuolar-ATPase (V-ATPase). TM9SF4 is a poorly characterized transmembrane protein that we have recently shown to be related to cannibal behavior of metastatic melanoma cells. Here, we demonstrate that TM9SF4 represents a novel V-ATPase-associated protein involved in V-ATPase activation. We have observed in HCT116 and SW480 colon cancer cell lines that TM9SF4 interacts with the ATP6V1H subunit of the V-ATPase V1 sector. Suppression of TM9SF4 with small interfering RNAs strongly reduces assembly of V-ATPase V0/V1 sectors, thus reversing tumor pH gradient with a decrease of cytosolic pH, alkalization of intracellular vesicles and a reduction of extracellular acidity. Such effects are associated with a significant inhibition of the invasive behavior of colon cancer cells and with an increased sensitivity to the cytotoxic effects of 5-fluorouracil. Our study shows for the first time the important role of TM9SF4 in the aberrant constitutive activation of the V-ATPase, and the development of a malignant phenotype, supporting the potential use of TM9SF4 as a target for future anticancer therapies.
Collapse
Affiliation(s)
- F Lozupone
- Therapeutic Research and Medicines Evaluation Department, Istituto Superiore di Sanità, Rome, Italy
| | - M Borghi
- Infectious, Parasitic and Immune-Mediated Diseases Department, Istituto Superiore di Sanità, Rome, Italy
| | - F Marzoli
- Therapeutic Research and Medicines Evaluation Department, Istituto Superiore di Sanità, Rome, Italy
| | - T Azzarito
- Therapeutic Research and Medicines Evaluation Department, Istituto Superiore di Sanità, Rome, Italy
| | - P Matarrese
- Therapeutic Research and Medicines Evaluation Department, Istituto Superiore di Sanità, Rome, Italy
| | - E Iessi
- Therapeutic Research and Medicines Evaluation Department, Istituto Superiore di Sanità, Rome, Italy
| | - G Venturi
- Therapeutic Research and Medicines Evaluation Department, Istituto Superiore di Sanità, Rome, Italy
| | - S Meschini
- Technology and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - A Canitano
- Therapeutic Research and Medicines Evaluation Department, Istituto Superiore di Sanità, Rome, Italy
| | - R Bona
- Therapeutic Research and Medicines Evaluation Department, Istituto Superiore di Sanità, Rome, Italy
| | - A Cara
- Therapeutic Research and Medicines Evaluation Department, Istituto Superiore di Sanità, Rome, Italy
| | - S Fais
- Therapeutic Research and Medicines Evaluation Department, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Matarrese P, Garofalo T, Manganelli V, Gambardella L, Marconi M, Grasso M, Tinari A, Misasi R, Malorni W, Sorice M. Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy 2014; 10:750-65. [PMID: 24589479 DOI: 10.4161/auto.27959] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sphingolipids are structural lipid components of cell membranes, including membrane of organelles, such as mitochondria or endoplasmic reticulum, playing a role in signal transduction as well as in the transport and intermixing of cell membranes. Sphingolipid microdomains, also called lipid rafts, participate in several metabolic and catabolic cell processes, including apoptosis. However, the defined role of lipid rafts in the autophagic flux is still unknown. In the present study we analyzed the role of gangliosides, a class of sphingolipids, in autolysosome morphogenesis in human and murine primary fibroblasts by means of biochemical and analytical cytology methods. Upon induction of autophagy, by using amino acid deprivation as well as tunicamycin, we found that GD3 ganglioside, considered as a paradigmatic raft constituent, actively contributed to the biogenesis and maturation of autophagic vacuoles. In particular, fluorescence resonance energy transfer (FRET) and coimmunoprecipitation analyses revealed that this ganglioside interacts with phosphatidylinositol 3-phosphate and can be detected in immature autophagosomes in association with LC3-II as well as in autolysosomes associated with LAMP1. Hence, it appears as a structural component of autophagic flux. Accordingly, we found that autophagy was significantly impaired by knocking down ST8SIA1/GD3 synthase (ST8 α-N-acetyl-neuraminide α-2,8-sialyltransferase 1) or by altering sphingolipid metabolism with fumonisin B1. Interestingly, exogenous administration of GD3 ganglioside was capable of reactivating the autophagic process inhibited by fumonisin B1. Altogether, these results suggest that gangliosides, via their molecular interaction with autophagy-associated molecules, could be recruited to autophagosome and contribute to morphogenic remodeling, e.g., to changes of membrane curvature and fluidity, finally leading to mature autolysosome formation.
Collapse
Affiliation(s)
- Paola Matarrese
- Section of Cell Aging and Degeneration; Department of Drug Research and Evaluation; Istituto Superiore di Sanita; Rome, Italy; Center of Metabolomics; Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine; Sapienza University; Rome, Italy
| | | | - Lucrezia Gambardella
- Section of Cell Aging and Degeneration; Department of Drug Research and Evaluation; Istituto Superiore di Sanita; Rome, Italy
| | - Matteo Marconi
- Section of Cell Aging and Degeneration; Department of Drug Research and Evaluation; Istituto Superiore di Sanita; Rome, Italy
| | - Maria Grasso
- Department of Experimental Medicine; Sapienza University; Rome, Italy
| | - Antonella Tinari
- Department of Technology and Health; Istituto Superiore di Sanita, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine; Sapienza University; Rome, Italy
| | - Walter Malorni
- Section of Cell Aging and Degeneration; Department of Drug Research and Evaluation; Istituto Superiore di Sanita; Rome, Italy; Istituto San Raffaele Sulmona; L'Aquila, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine; Sapienza University; Rome, Italy
| |
Collapse
|
17
|
Marconi M, Ascione B, Ciarlo L, Vona R, Garofalo T, Sorice M, Gianni AM, Locatelli SL, Carlo-Stella C, Malorni W, Matarrese P. Constitutive localization of DR4 in lipid rafts is mandatory for TRAIL-induced apoptosis in B-cell hematologic malignancies. Cell Death Dis 2013; 4:e863. [PMID: 24136227 PMCID: PMC3920963 DOI: 10.1038/cddis.2013.389] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 01/20/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) acts as an apoptosis inducer for cancer cells sparing non-tumor cell targets. However, several phase I/II clinical trials have shown limited benefits of this molecule. In the present work, we investigated whether cell susceptibility to TRAIL ligation could be due to the presence of TRAIL death receptors (DRs) 4 and 5 in membrane microdomains called lipid rafts. We performed a series of analyses, either by biochemical methods or fluorescence resonance energy transfer (FRET) technique, on normal cells (i.e. lymphocytes, fibroblasts, endothelial cells), on a panel of human cancer B-cell lines as well as on CD19+ lymphocytes from patients with B-chronic lymphocytic leukemia, treated with different TRAIL ligands, that is, recombinant soluble TRAIL, specific agonistic antibodies to DR4 and DR5, or CD34+ TRAIL-armed cells. Irrespective to the expression levels of DRs, a molecular interaction between ganglioside GM3, abundant in lymphoid cells, and DR4 was detected. This association was negligible in all non-transformed cells and was strictly related to TRAIL susceptibility of cancer cells. Interestingly, lipid raft disruptor methyl-beta-cyclodextrin abrogated this susceptibility, whereas the chemotherapic drug perifosine, which induced the recruitment of TRAIL into lipid microdomains, improved TRAIL-induced apoptosis. Accordingly, in ex vivo samples from patients with B-chronic lymphocytic leukemia, the constitutive embedding of DR4 in lipid microdomains was associated per se with cell death susceptibility, whereas its exclusion was associated with TRAIL resistance. These results provide a key mechanism for TRAIL sensitivity in B-cell malignances: the association, within lipid microdomains, of DR4 but not DR5, with a specific ganglioside, that is the monosialoganglioside GM3. On these bases we suggest that lipid microdomains could exert a catalytic role for DR4-mediated cell death and that an ex vivo quantitative FRET analysis could be predictive of cancer cell sensitivity to TRAIL.
Collapse
Affiliation(s)
- M Marconi
- Department of Theraputic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Piedfer M, Dauzonne D, Tang R, N'Guyen J, Billard C, Bauvois B. Aminopeptidase-N/CD13 is a potential proapoptotic target in human myeloid tumor cells. FASEB J 2011; 25:2831-42. [PMID: 21566207 PMCID: PMC7163944 DOI: 10.1096/fj.11-181396] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transmembrane metalloprotease aminopeptidase‐N (APN)/CD13 is overexpressed in various solid and hematological malignancies in humans, including acute myeloid leukemia (AML) and is thought to influence tumor progression. Here, we investigated the contribution of APN/CD13 to the regulation of growth and survival processes in AML cells in vitro. Anti‐CD13 monoclonal antibodies MY7 and SJ1D1 (which do not inhibit APN activity) and WM15 (an APN‐blocking antibody) inhibited the growth of the AML cell line U937 and induced apoptosis, as evidenced by cell accumulation in the sub‐G1 phase, DNA fragmentation, and phosphatidylserine externalization. Isotype‐matched IgG1 and the APN/CD13 enzymatic inhibitors bestatin and 2' ,3‐dinitroflavone‐8‐acetic acid, were ineffective. Internalization of CD13‐MY7 complex into cells was followed by mitochondrial membrane depolarization, Bcl‐2 and Mcl‐1 down‐regulation, Bax up‐regulation, caspase‐9, caspase‐8, and caspase‐3 activation, and cleavage of the caspase substrate PARP‐1. The broad‐spectrum caspase inhibitor Z‐VAD‐fmk and the caspase‐9‐ and caspase‐8‐specific inhibitors significantly attenuated apoptosis. CD13 ligation also induced apoptosis and PARP‐1 cleavage in primary AML blasts, whereas normal blood cells were not affected. Overall, these data provide new evidence that CD13 can serve as a target for inducing caspase‐dependent apoptosis in AML (independently of its APN activity). These findings may have implications for tumor biology and treatment.—Piedfer, M., Dauzonne, D., Tang, R., N'Guyen, J., Billard, C., Bauvois, B. Aminopeptidase‐N/CD13 is a potential proapoptotic target in human myeloid tumor cells. FASEB J. 25, 2831‐2842 (2011). http://www.fasebj.org
Collapse
Affiliation(s)
- Marion Piedfer
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM) U872, Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Expression, regulation and functional activities of aminopeptidase N (EC 3.4.11.2; APN; CD13) on murine macrophage J774 cell line. Immunobiology 2011; 216:132-44. [DOI: 10.1016/j.imbio.2010.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 06/22/2010] [Indexed: 12/31/2022]
|
20
|
Darbandi-Tehrani K, Hermand P, Carvalho S, Dorgham K, Couvineau A, Lacapère JJ, Combadière C, Deterre P. Subtle conformational changes between CX3CR1 genetic variants as revealed by resonance energy transfer assays. FASEB J 2010; 24:4585-4598. [PMID: 20667981 DOI: 10.1096/fj.10-156612] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chemokine CX3CL1 is expressed as a membrane protein that forms a potent adhesive pair with its unique receptor CX3CR1. This receptor has 3 natural variants, V249-T280 (VT), I249-T280 (IT), and I249-M280 (IM), whose relative frequencies are significantly associated with the incidence of various inflammatory diseases. To assess the adhesive potency of CX3CR1 and the molecular diversity of its variants, we assayed their clustering status and their possible structural differences by fluorescence/bioluminescence resonance energy transfer (FRET or BRET) techniques. FRET assays by flow cytometry showed that the CX3CR1 variants cluster, in comparison with appropriate controls. BRET assays showed low nonspecific signals for VT and IT variants and high specific signals for IM, and thus pointed out a structural difference in this variant. We used molecular modeling to show how natural point mutations of CX3CR1 affect the packing of the 6th and 7th helices of this G-protein coupled receptor. Moreover, we found that the BRET technique is sensitive enough to detect these tiny changes. Consistently with our previous finding that CX3CL1 aggregates, our data here indicate that CX3CR1 clustering may contribute to the adhesiveness of the CX3CL1-CX3CR1 pair and may thus represent a new target for anti-inflammatory therapies.
Collapse
|
21
|
Winnicka B, O'Conor C, Schacke W, Vernier K, Grant CL, Fenteany FH, Pereira FE, Liang B, Kaur A, Zhao R, Montrose DC, Rosenberg DW, Aguila HL, Shapiro LH. CD13 is dispensable for normal hematopoiesis and myeloid cell functions in the mouse. J Leukoc Biol 2010; 88:347-59. [PMID: 20430777 PMCID: PMC2908940 DOI: 10.1189/jlb.0210065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
While the myeloid marker CD13 has been implicated in numerous myeloid cell functions, its genetic ablation reveals a nominal contribution of CD13 to these functions. The robust and consistent expression of the CD13 cell surface marker on very early as well as differentiated myeloid hematopoietic cells has prompted numerous investigations seeking to define roles for CD13 in myeloid cells. To address the function of myeloid CD13 directly, we created a CD13 null mouse and assessed the responses of purified primary macrophages or DCs from WT and CD13 null animals in cell assays and inflammatory disease models, where CD13 has been implicated previously. We find that mice lacking CD13 develop normally with normal hematopoietic profiles except for an increase in thymic but not peripheral T cell numbers. Moreover, in in vitro assays, CD13 appears to be largely dispensable for the aspects of phagocytosis, proliferation, and antigen presentation that we tested, although we observed a slight decrease in actin‐independent erythrocyte uptake. However, in agreement with our published studies, we show that lack of monocytic CD13 completely ablates anti‐CD13‐dependent monocyte adhesion to WT endothelial cells. In vivo assessment of four inflammatory disease models showed that lack of CD13 has little effect on disease onset or progression. Nominal alterations in gene expression levels between CD13 WT and null macrophages argue against compensatory mechanisms. Therefore, although CD13 is highly expressed on myeloid cells and is a reliable marker of the myeloid lineage of normal and leukemic cells, it is not a critical regulator of hematopoietic development, hemostasis, or myeloid cell function.
Collapse
Affiliation(s)
- Beata Winnicka
- Center for Vascular Biology, Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-3501, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Malorni W, Farrace MG, Matarrese P, Tinari A, Ciarlo L, Mousavi-Shafaei P, D'Eletto M, Di Giacomo G, Melino G, Palmieri L, Rodolfo C, Piacentini M. The adenine nucleotide translocator 1 acts as a type 2 transglutaminase substrate: implications for mitochondrial-dependent apoptosis. Cell Death Differ 2009; 16:1480-92. [PMID: 19644512 DOI: 10.1038/cdd.2009.100] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In this study we provide in vitro and in vivo evidence showing that the protein disulphide isomerase (PDI) activity of type 2 transglutaminase (TG2) regulates the correct assembly and function of the mitochondrial ADP/ATP transporter adenine nucleotide translocator 1 (ANT1). We demonstrate, by means of biochemical and morphological analyses, that ANT1 and TG2 physically interact in the mitochondria. Under physiological conditions, TG2's PDI activity regulates the ADP/ATP transporter function by controlling the oligomerization of ANT1. In fact, mitochondria isolated from hearts of TG2(-/-) mice exhibit increased polymerization of ANT1, paralleled by an enhanced ADP/ATP carrier activity, as compared to mitochondria belonging to TG2(+/+) mice. Interestingly, upon cell-death induction, ANT1 becomes a substrate for TG2's cross-linking activity and the lack of TG2 results in a reduction of apoptosis as well as in a marked sensitivity to the ADP/ATP exchange inhibition by atractyloside. These findings suggest a complex TG2-dependent regulation of the ADP/ATP transporter and reveal new important avenues for its potential applications in the treatment of some mitochondrial-dependent diseases, including cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- W Malorni
- Department of Therapeutic Research and Medicine Evaluation, National Institute of Health, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sorice M, Matarrese P, Tinari A, Giammarioli AM, Garofalo T, Manganelli V, Ciarlo L, Gambardella L, Maccari G, Botta M, Misasi R, Malorni W. Raft component GD3 associates with tubulin following CD95/Fas ligation. FASEB J 2009; 23:3298-308. [PMID: 19509307 DOI: 10.1096/fj.08-128140] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In a previous investigation, we demonstrated that after CD95/Fas triggering, raft-associated GD3 ganglioside, normally localized at the plasma membrane of T cells, can be detected in mitochondria, where they contribute to apoptogenic events. Here, we show the association of the glycosphingolipid GD3 with microtubular cytoskeleton at very early time points following Fas ligation. This was assessed by different methodological approaches, including fluorescence resonance energy transfer, immunoelectron microscopy, and coimmunoprecipitation. Furthermore, docking analysis also showed that GD3 has a high affinity for the pore formed by 4 tubulin heterodimers (type I pore), thus suggesting a possible direct interaction between tubulin and GD3. Finally, time-course analyses indicated that the relocalization of GD3 to the mitochondria was time related with the alterations of the mitochondrial membrane potential. Hence, microtubules could act as tracks for ganglioside redistribution following apoptotic stimulation, possibly contributing to the mitochondrial alterations leading to cell death.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Federici C, Brambilla D, Lozupone F, Matarrese P, de Milito A, Lugini L, Iessi E, Cecchetti S, Marino M, Perdicchio M, Logozzi M, Spada M, Malorni W, Fais S. Pleiotropic function of ezrin in human metastatic melanomas. Int J Cancer 2009; 124:2804-12. [PMID: 19235924 DOI: 10.1002/ijc.24255] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The membrane cytoskeleton cross-linker, ezrin, has recently been depicted as a key regulator in the progression and metastasis of several pediatric tumors. Less defined appears the role of ezrin in human adult tumors, especially melanoma. We therefore addressed ezrin involvement in the metastatic phenotype of human adult metastatic melanoma cells. Our results show that cells resected from melanoma metastatic lesions of patients, display marked metastatic spreading capacity in SCID mice organs. Stable transfection of human melanoma cells with an ezrin deletion mutant comprising only 146 N-terminal aminoacids led to the abolishment of metastatic dissemination. In vitro experiments revealed ezrin direct molecular interactions with molecules related to metastatic functions such as CD44, merlin and Lamp-1, consistent with its participation to the formation of phagocitic vacuoles, vesicular sorting and migration capacities of melanoma cells. Moreover, the ezrin fragment capable of binding to CD44 was shorter than that previously reported, and transfection with the ezrin deletion mutant abrogated plasma membrane Lamp-1 recruitment. This study highlights key involvement of ezrin in a complex machinery, which allows metastatic cancer cells to migrate, invade and survive in very unfavorable conditions. Our in vivo and in vitro data reveal that ezrin is the hub of the metastatic behavior also in human adult tumors.
Collapse
Affiliation(s)
- Cristina Federici
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Berg KD, Tamas RM, Riemann A, Niels-Christiansen LL, Hansen GH, Michael Danielsen E. Caveolae in fibroblast-like synoviocytes: static structures associated with vimentin-based intermediate filaments. Histochem Cell Biol 2008; 131:103-14. [PMID: 18648844 PMCID: PMC7087690 DOI: 10.1007/s00418-008-0475-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2008] [Indexed: 01/19/2023]
Abstract
The fibroblast-like synoviocyte is a CD13-positive cell-type containing numerous caveolae, both single and interconnected clusters. In unstimulated cells, all single caveolae at the cell surface and the majority of those localized deeper into the cytoplasm were freely accessible from the medium, as judged from electron microscopy of synoviocytes exposed to the membrane impermeable marker Ruthenium Red. Caveolar internalization could be induced by a CD13 antibody or by cholera toxin B subunit (CTB). Thus, in experiments using sequential labeling with Alexa 488- and 594-conjugated CTB, about 50% of CTB-positive caveolae were internalized by 5 min of chase, and these remained inaccessible from the cell surface for periods up to 24 h. No colocalization with an endosomal marker, EEA1, or Lysotracker was observed, indicating that internalized caveolae clusters represent a static compartment. Vimentin was identified as the most abundant protein in detergent resistant membranes (DRM's), and by immunogold electron microscopy caveolae were seen in intimate contact with intermediate-size filaments. These observations indicate that vimentin-based filaments are responsible for the spatio-temporal fixation of caveolae clusters. RECK, a glycosylphosphatidylinositol-anchored protein acting as a negative regulator of cell surface metalloproteinases, was also localized to the caveolae clusters. We propose that these clusters function as static reservoirs of specialized lipid raft domains where proteins involved in cell-cell interactions, such as CD13, can be sequestered by binding to RECK in a regulatory manner.
Collapse
Affiliation(s)
- Kasper D. Berg
- Department of Cellular and Molecular Medicine, The Panum Institute, Building 6.4, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Raluca M. Tamas
- Department of Cellular and Molecular Medicine, The Panum Institute, Building 6.4, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Present Address: Biochemistry and Cell Biology Program, School of Engineering and Science, Jacobs University of Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Anne Riemann
- Department of Cellular and Molecular Medicine, The Panum Institute, Building 6.4, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Present Address: Julius-Bernstein-Institut für Physiologie, Martin-Luther-Universität, Halle, Germany
| | - Lise-Lotte Niels-Christiansen
- Department of Cellular and Molecular Medicine, The Panum Institute, Building 6.4, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Gert H. Hansen
- Department of Cellular and Molecular Medicine, The Panum Institute, Building 6.4, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - E. Michael Danielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, Building 6.4, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
26
|
Regulation of aminopeptidase N (EC 3.4.11.2; APN; CD13) on the HL-60 cell line by TGF-β1. Int Immunopharmacol 2008; 8:613-23. [DOI: 10.1016/j.intimp.2007.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 11/21/2022]
|
27
|
Venneri MA, De Palma M, Ponzoni M, Pucci F, Scielzo C, Zonari E, Mazzieri R, Doglioni C, Naldini L. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 2007; 109:5276-85. [PMID: 17327411 DOI: 10.1182/blood-2006-10-053504] [Citation(s) in RCA: 377] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), have been implicated in tumor progression. We recently described a lineage of mouse monocytes characterized by expression of the Tie2 angiopoietin receptor and required for the vascularization and growth of several tumor models. Here, we report that TIE2 expression in human blood identifies a subset of monocytes distinct from classical inflammatory monocytes and comprised within the less abundant "resident" population. These TIE2-expressing monocytes (TEMs) accounted for 2% to 7% of blood mononuclear cells in healthy donors and were distinct from rare circulating endothelial cells and progenitors. In human cancer patients, TEMs were observed in the blood and, intriguingly, within the tumors, where they represented the main monocyte population distinct from TAMs. Conversely, TEMs were hardly detected in nonneoplastic tissues. In vitro, TEMs migrated toward angiopoietin-2, a TIE2 ligand released by activated endothelial cells and angiogenic vessels, suggesting a homing mechanism for TEMs to tumors. Purified human TEMs, but not TEM-depleted monocytes, markedly promoted angiogenesis in xenotransplanted human tumors, suggesting a potentially critical role of TEMs in human cancer progression. Human TEMs may provide a novel, biologically relevant marker of angiogenesis and represent a previously unrecognized target of cancer therapy.
Collapse
|
28
|
Fluur C, De Milito A, Fry TJ, Vivar N, Eidsmo L, Atlas A, Federici C, Matarrese P, Logozzi M, Rajnavölgyi E, Mackall CL, Fais S, Chiodi F, Rethi B. Potential Role for IL-7 in Fas-Mediated T Cell Apoptosis During HIV Infection. THE JOURNAL OF IMMUNOLOGY 2007; 178:5340-50. [PMID: 17404319 DOI: 10.4049/jimmunol.178.8.5340] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-7 promotes survival of resting T lymphocytes and induces T cell proliferation in lymphopenic conditions. As elevated IL-7 levels occur in HIV-infected individuals in addition to high Fas expression on T cells and increased sensitivity to Fas-induced apoptosis, we analyzed whether IL-7 has a regulatory role in Fas-mediated T cell apoptosis. We show that IL-7 up-regulates Fas expression on naive and memory T cells through a mechanism that involves translocation of Fas molecules from intracellular compartments to the cell membrane. IL-7 induced the association of Fas with the cytoskeletal component ezrin and a polarized Fas expression on the cell surface. The potential role of IL-7 in Fas up-regulation in vivo was verified in IL-7-treated macaques and in HIV-infected or chemotherapy treated patients by the correlation between serum IL-7 levels and Fas expression on T cells. IL-7 treatment primed T cells for Fas-induced apoptosis in vitro and serum IL-7 levels correlated with the sensitivity of T cells to Fas-induced apoptosis in HIV-infected individuals. Our data suggest an important role for IL-7 in Fas-mediated regulation of T cell homeostasis. Elevated IL-7 levels associated with lymphopenic conditions, including HIV-infection, might participate in the increased sensitivity of T cells for activation-induced apoptosis.
Collapse
Affiliation(s)
- Caroline Fluur
- Department of Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Babusiak M, Man P, Petrak J, Vyoral D. Native proteomic analysis of protein complexes in murine intestinal brush border membranes. Proteomics 2007; 7:121-9. [PMID: 17205597 DOI: 10.1002/pmic.200600382] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intestinal epithelial cell protrusions referred as microvilli or brush border membranes (BBMs) are specialized in the digestion, uptake, and transport of nutrients, trace elements and vitamins from intestinal lumen into the circulation. Disorders of intestinal absorption are common in human pathology and include serious defects such as malabsorption. A detailed description of native digestive protein complexes in BBMs is therefore essential for understanding the physiology and pathology of digestion and absorption. In this study, we employed blue native PAGE (BN-PAGE) technique to separate protein complexes from purified mouse intestinal BBMs. We found 23 distinct protein complexes, which were cut off from the gel, and their protein composition was determined by LC-MS/MS. A total of 55 individual proteins were identified including peptidases, enzymes of carbohydrate metabolism, membrane transporters, cytoskeletal proteins, chaperones, and regulatory enzymes. From the identified proteins, 50% represent molecules with at least one predicted transmembrane domain as predicted by SOSUI software. To the best of our knowledge, this work is the first attempt aimed to characterize the native membrane proteome of intestinal BBM. As demonstrated here, BN-PAGE is a powerful tool for the separation of not only mitochondrial, but also membrane hydrophobic proteins in general. In addition, BN-PAGE technique preserves metal-protein interactions, as shown by the presence of 65Zn in metalloprotein complexes, isolated from zinc-radiolabeled BBMs.
Collapse
Affiliation(s)
- Marek Babusiak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | |
Collapse
|