1
|
Zhang M, Li J, Meng X, Sun Q, Xue Z, Wang M, Du F, Zhang J. ITGA5 induces mesenchymal transformation to promote gliomas progression via PI3K/AKT/mTORC1 signaling pathway. Sci Rep 2025; 15:13539. [PMID: 40253517 PMCID: PMC12009355 DOI: 10.1038/s41598-025-98170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
Glioma is a common malignant tumor of the central nervous system, characterized by high malignancy, strong invasiveness and high recurrence rate. Integrin α5 (ITGA5), a member of the integrin adhesion molecule family, has been reported to be associated with tumor progression and metastasis. In this study, we first identified the overexpression of ITGA5 in glioma through bioinformatics analysis. Kaplan-Meier analysis, Cox regression analysis, and nomogram modeling revealed that high ITGA5 expression was significantly associated with poor prognosis in glioma patients. The ssGSEA showed that the high expression of ITGA5 had a higher level of immune cell infiltration, especially aDCs, B cells, CD8 + T cells, Macrophages, T helper cells, etc. To validate the results of bioinformatics analysis, we used qRT-PCR and Western blot assay confirmed that ITGA5 expression was up-regulated in glioma tissues and increased with pathological grade. Immunohistochemistry showed that high expression of ITGA5 was positively correlated with WHO grade, Ki67 expression and P53 status (P < 0.05). Univariate and multivariate Cox regression analysis showed that ITGA5 expression was an independent prognostic marker in gliomas. Functionally, silencing of ITGA5 significantly inhibited the proliferation, invasion, and migration of glioma cells. The GSEA analysis indicated that ITGA5 was involved in mesenchymal transformation, PI3K/AKT/mTORC1 pathways. In vitro experiments further confirmed that ITGA5 positively regulates mesenchymal transformation and activates the PI3K/AKT/mTORC1 pathway. Moreover, treatment with PI3K activator 740Y-P was able to reverse the effects of ITGA5 silencing on glioma cells growth and mesenchymal transformation. Therefore, ITGA5 may be a potential therapeutic target for the individualized treatment of glioma patients.
Collapse
Affiliation(s)
- Moxuan Zhang
- Beijing Neurosurgery Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Junhong Li
- Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong Province, China
| | - Xianglong Meng
- Department of Neurosurgery, Beijing Daxing District People's Hospital, Beijing, 102699, China
| | - Qiang Sun
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Zhengchun Xue
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Mingguang Wang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Fei Du
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Jian Zhang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China.
| |
Collapse
|
2
|
Montoya-Gómez A, Tonello F, Spolaore B, Massimino ML, Montealegre-Sánchez L, Castillo A, Rivera Franco N, Sevilla-Sánchez MJ, Solano-Redondo LM, Mosquera-Escudero M, Jiménez-Charris E. Pllans-II: Unveiling the Action Mechanism of a Promising Chemotherapeutic Agent Targeting Cervical Cancer Cell Adhesion and Survival Pathways. Cells 2023; 12:2715. [PMID: 38067143 PMCID: PMC10705806 DOI: 10.3390/cells12232715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
Despite advances in chemotherapeutic drugs used against cervical cancer, available chemotherapy treatments adversely affect the patient's quality of life. For this reason, new molecules from natural sources with antitumor potential and few side effects are required. In previous research, Pllans-II, a phospholipase A2 type-Asp49 from Porthidium lansbergii lansbergii snake venom, has shown selective attack against the HeLa and Ca Ski cervical cancer cell lines. This work suggests that the cytotoxic effect generated by Pllans-II on HeLa cells is triggered without affecting the integrity of the cytoplasmic membrane or depolarizing the mitochondrial membranes. The results allow us to establish that cell death in HeLa is related to the junction blockage between α5β1 integrins and fibronectin of the extracellular matrix. Pllans-II reduces the cells' ability of adhesion and affects survival and proliferation pathways mediated by intracellular communication with the external environment. Our findings confirmed Pllans-II as a potential prototype for developing a selective chemotherapeutic drug against cervical cancer.
Collapse
Affiliation(s)
- Alejandro Montoya-Gómez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Fiorella Tonello
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.T.); (M.L.M.)
| | - Barbara Spolaore
- Dipartimento di Scienze del Farmaco, Università di Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Maria Lina Massimino
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.T.); (M.L.M.)
| | - Leonel Montealegre-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
- Grupo de Investigación en Ingeniería Biomédica-GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - Andrés Castillo
- TAO-Lab, Centre for Bioinformatics and Photonics-CIBioFi, Department of Biology, Universidad del Valle, Cali 760032, Colombia; (A.C.); (N.R.F.)
| | - Nelson Rivera Franco
- TAO-Lab, Centre for Bioinformatics and Photonics-CIBioFi, Department of Biology, Universidad del Valle, Cali 760032, Colombia; (A.C.); (N.R.F.)
| | - María José Sevilla-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Luis Manuel Solano-Redondo
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Mildrey Mosquera-Escudero
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| |
Collapse
|
3
|
Park SE, El-Sayed NS, Shamloo K, Lohan S, Kumar S, Sajid MI, Tiwari RK. Targeted Delivery of Cabazitaxel Using Cyclic Cell-Penetrating Peptide and Biomarkers of Extracellular Matrix for Prostate and Breast Cancer Therapy. Bioconjug Chem 2021; 32:1898-1914. [PMID: 34309357 DOI: 10.1021/acs.bioconjchem.1c00319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted drug delivery for cancer therapy is an emerging area of research. Cancer cells overexpress certain biomarkers that can be exploited for their targeted therapy. Cyclic cell-penetrating peptides (cCPP) are increasingly assessed for intracellular cargo delivery in cancer cells. In this study, we have conjugated cabazitaxel (CBT) to the cCPP via an ester bond to assist CBT release in the tumor's acidic environment. Integrin targeting (RGDC, TP1) and extra domain B of fibronectin (EDB-Fn) targeting (CTVRTSAD, TP2) peptides were linked to the peptide-drug conjugate (cCPP-CBT) via a disulfide bond to provide targeting ability to the conjugates until they reach the tumor site. Conjugate 11 (TP1-cCPP-CBT) and conjugate 16 (TP2-cCPP-CBT) showed approximately 3-4-fold less antiproliferative activity on integrin and EDB-FN overexpressing cancer cell lines as compared to the CBT analogue used for comparison (CBT-GA, 5). Conjugates (11 and 16) were less toxic (31-34-fold less antiproliferative activity) to the normal human embryonic kidney (HEK-293) cells as compared to CBT. The flow cytometry and quantitative confocal microscopy data further confirm the selective efficacy of conjugates (TP1-cCPP-FAM (10) and TP1-cCPP-FAM (15)) toward biomarker overexpressing cancer cells. Furthermore, the stability and release studies of conjugate 11 revealed its therapeutic potential under different conditions, such as human plasma, different pHs, and redox conditions. This conjugation strategy was proven to enhance chemotherapeutics agents' efficacy and targeting and can be applied to other chemotherapeutic agents.
Collapse
Affiliation(s)
- Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States.,Cellulose and Paper Department, National Research Center, Dokki 12622, Cairo, Egypt
| | - Kiumars Shamloo
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Sumit Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana 131039, India
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States.,Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
4
|
Mazurkiewicz E, Makowiecka A, Mrówczyńska E, Kopernyk I, Nowak D, Mazur AJ. Gelsolin Contributes to the Motility of A375 Melanoma Cells and This Activity Is Mediated by the Fibrous Extracellular Matrix Protein Profile. Cells 2021; 10:1848. [PMID: 34440617 PMCID: PMC8394273 DOI: 10.3390/cells10081848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Skin melanocytes reside on the basement membrane (BM), which is mainly composed of laminin, collagen type IV, and proteoglycans. For melanoma cells, in order to invade into the skin, melanocytes must cross the BM. It has been reported that changes in the composition of the BM accompany melanocytes tumorigenesis. Previously, we reported high gelsolin (GSN)-an actin-binding protein-levels in melanoma cell lines and GSN's importance for migration of A375 cells. Here we investigate whether melanoma cells migrate differently depending on the type of fibrous extracellular matrix protein. We obtained A375 melanoma cells deprived of GSN synthesis and tested their migratory properties on laminin, collagens type I and IV, fibronectin, and Matrigel, which resembles the skin's BM. We applied confocal and structured illuminated microscopy (SIM), gelatin degradation, and diverse motility assays to assess GSN's influence on parameters associated with cells' ability to protrude. We show that GSN is important for melanoma cell migration, predominantly on laminin, which is one of the main components of the skin's BM.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (E.M.); (A.M.); (E.M.); (I.K.); (D.N.)
| |
Collapse
|
5
|
Madheswaran S, Mungra N, Biteghe FAN, De la Croix Ndong J, Arowolo AT, Adeola HA, Ramamurthy D, Naran K, Khumalo NP, Barth S. Antibody-Based Targeted Interventions for the Diagnosis and Treatment of Skin Cancers. Anticancer Agents Med Chem 2021; 21:162-186. [PMID: 32723261 DOI: 10.2174/1871520620666200728123006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/19/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cutaneous malignancies most commonly arise from skin epidermal cells. These cancers may rapidly progress from benign to a metastatic phase. Surgical resection represents the gold standard therapeutic treatment of non-metastatic skin cancer while chemo- and/or radiotherapy are often used against metastatic tumors. However, these therapeutic treatments are limited by the development of resistance and toxic side effects, resulting from the passive accumulation of cytotoxic drugs within healthy cells. OBJECTIVE This review aims to elucidate how the use of monoclonal Antibodies (mAbs) targeting specific Tumor Associated Antigens (TAAs) is paving the way to improved treatment. These mAbs are used as therapeutic or diagnostic carriers that can specifically deliver cytotoxic molecules, fluorophores or radiolabels to cancer cells that overexpress specific target antigens. RESULTS mAbs raised against TAAs are widely in use for e.g. differential diagnosis, prognosis and therapy of skin cancers. Antibody-Drug Conjugates (ADCs) particularly show remarkable potential. The safest ADCs reported to date use non-toxic photo-activatable Photosensitizers (PSs), allowing targeted Photodynamic Therapy (PDT) resulting in targeted delivery of PS into cancer cells and selective killing after light activation without harming the normal cell population. The use of near-infrared-emitting PSs enables both diagnostic and therapeutic applications upon light activation at the specific wavelengths. CONCLUSION Antibody-based approaches are presenting an array of opportunities to complement and improve current methods employed for skin cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Suresh Madheswaran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fleury A N Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, 8700 Beverly Blvd, Los Angeles, CA, United States
| | - Jean De la Croix Ndong
- Department of Orthopedic Surgery, New York University Langone Orthopedic Hospital, 301 East 17th Street, New York, NY, United States
| | - Afolake T Arowolo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Henry A Adeola
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Dharanidharan Ramamurthy
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Zhu H, Wang G, Zhu H, Xu A. ITGA5 is a prognostic biomarker and correlated with immune infiltration in gastrointestinal tumors. BMC Cancer 2021; 21:269. [PMID: 33711961 PMCID: PMC7953822 DOI: 10.1186/s12885-021-07996-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/28/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Integrin Subunit Alpha 5 (ITGA5), belongs to the integrin alpha chain family, is vital for promoting cancer cell invasion, metastasis. However, the correlation between ITGA5 expression and immune infiltration in gastrointestinal tumors remain unclear. METHODS The expression level of ITGA5 was detected by Oncomine and Tumor Immune Estimation Resource (TIMER). The association between ITGA5 and prognosis of patients was identified by Kaplan-Meier plotter, Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and PrognoScan. We evaluated the correlation between ITGA5 expression and immune infiltrating level via TIMER. Besides, TIMER, immunohistochemistry (IHC) staining and western blot were used to explore correlations between ITGA5 expression and markers of immune infiltrates cells. Furthermore, we constructed protein-protein interaction (PPI) network and performed functional enrichment by GeneMANIA and Metascape. RESULTS ITGA5 was generally overexpressed and correlated with worse prognosis in multiple types of gastrointestinal tumors. In addition, ITGA5 expression level was significantly associated with tumor purity and immune infiltration levels of different immune cells in gastrointestinal tumors. Interestingly, immune markers for monocytes, tumor - associated macrophages (TAMs), macrophages 2 (M2) cells and T-helper 2 (Th2) cells were found to be significantly and positively correlated with ITGA5 expression levels in colon and gastric cancer. Results from IHC staining and western blot further proved that markers of Th2 and M2 cell were significantly increased in gastric cancer patients with high ITGA5 expression levels. Lastly, interaction network and function enrichment analysis revealed ITGA5 was mainly involved in "integrin mediated signaling pathway", "leukocyte migration", "cell-substrate adhesion". CONCLUTIONS Our study demonstrated that ITGA5 may act as an essential regulator of tumor immune cell infiltration and a valuable prognostic biomarker in gastrointestinal tumors. Additional work is needed to fully elucidate the underlying mechanisms behind these observations.
Collapse
Affiliation(s)
- Hai Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Gang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Haixing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, People's Republic of China
| | - Aman Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China. .,Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China.
| |
Collapse
|
7
|
Takeda T, Tsubaki M, Asano R, Itoh T, Imano M, Satou T, Nishida S. Dimethyl fumarate suppresses metastasis and growth of melanoma cells by inhibiting the nuclear translocation of NF-κB. J Dermatol Sci 2020; 99:168-176. [PMID: 32693971 DOI: 10.1016/j.jdermsci.2020.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Malignant melanoma is among the deadliest forms of skin cancers, and its incidence has been increasing over the past decades. In malignant melanoma, activation of the nuclear factor kappa B (NF-κB) promotes survival, migration, and invasion of cancer cells. Anti-NF-κB agents for treating metastatic melanoma would be beneficial, but no such drug is approved as either monotherapy or adjuvant therapy. Dimethyl fumarate (DMF) is an approved anti-inflammatory drug already in clinical use for psoriasis and multiple sclerosis. OBJECTIVE We investigated the anti-tumour effect of DMF treatment in metastatic melanoma in vitro and in vivo. METHODS The cell viability was assessed via trypan blue exclusion assay. The migration and invasion was analyzed in a Boyden chamber assay. The anti-metastatic effects and anti-tumour activity of DMF was determined in an in-vivo model. The expressions of NF-κB pathway and NF-κB regulatory proteins were detected via western blotting. RESULTS DMF decreased the cell viability, migration and invasion in vitro. In addition, DMF inhibited spontaneous metastasis and tumour growth. Mechanistically, DMF prevented the nuclear translocation of NF-κB, whereas no changes were observed in the phosphorylation levels of inhibitor of kappa B (IκB). In addition, DMF inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs). Furthermore, DMF treatment decreased the expression of Survivin and Bcl-extra large (Bcl-XL) proteins. CONCLUSION Our results suggest that DMF as a novel inhibitor of NF-κB may be a potential therapeutic agent for metastatic melanoma.
Collapse
Affiliation(s)
- Tomoya Takeda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Osaka, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Osaka, Japan
| | - Ryota Asano
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Osaka, Japan
| | - Tatsuki Itoh
- Department of Food Science and Nutrition, Kindai University School of Agriculture, Nara, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University School of Medicine, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kindai University School of Medicine, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Osaka, Japan.
| |
Collapse
|
8
|
Kolasińska E, Janik ME, Lityńska A, Przybyło M. Contribution of sialic acids to integrin α5β1 functioning in melanoma cells. Adv Med Sci 2019; 64:267-273. [PMID: 30844664 DOI: 10.1016/j.advms.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/13/2018] [Accepted: 02/19/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To establish the relationship between sialylation of integrin α5β1 and possible alteration in the function of α5β1 receptor in melanoma cells. MATERIALS AND METHODS Integrin α5β1 was isolated from primary WM115 (RGP/VGP-like phenotype) and metastatic WM266-4 (lymph node metastasis) cells via affinity chromatography. Integrin α5β1 sialylation and the shift in relative masses of the enzymatically desialylated subunits were confirmed by confocal microscopy and SDS-PAGE, respectively. The ELISA assay was performed to evaluate sialic acid (SA) influence on integrin α5β1 binding to fibronectin (FN). Cell invasion was investigated by the Transwell invasion assay. The effect of neuraminidases treatment on melanoma cells was assessed by flow cytometry using Maackia amurensis and Sambucus nigra lectins. RESULTS Both subunits of integrin α5β1 were found to be more abundantly sialylated in primary than in metastatic cells. The removal of SA had no effect on the purified integrin α5β1 binding to FN. Although metastatic cells underwent more pronounced desialylation than primary cells, invasion of primary WM115 cells was more dependent on the presence of α2-3 linked SA than it was in the case of metastatic WM266-4 cells. In both melanoma cell lines not only integrin α5β1 was involved in invasion, however simultaneous desialylation and usage of anti-integrin α5β1 antibodies resulted in lower invasion abilities of primary WM115 cells. CONCLUSIONS Our data suggest that in primary melanoma cells integrin α5β1 action is more likely dependent on its glycosylation profile, i.e. the presence of SA residues, which influence (decreased) their invasion properties and may facilitate malignant melanoma progression.
Collapse
Affiliation(s)
- Ewa Kolasińska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Marcelina E Janik
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Anna Lityńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
9
|
Fuselier C, Terryn C, Berquand A, Crowet JM, Bonnomet A, Molinari M, Dauchez M, Martiny L, Schneider C. Low-diluted Phenacetinum disrupted the melanoma cancer cell migration. Sci Rep 2019; 9:9109. [PMID: 31235855 PMCID: PMC6591484 DOI: 10.1038/s41598-019-45578-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023] Open
Abstract
Dynamic and reciprocal interactions generated by the communication between tumor cells and their matrix microenvironment, play a major role in the progression of a tumor. Indeed, the adhesion of specific sites to matrix components, associated with the repeated and coordinated formation of membrane protrusions, allow tumor cells to move along a determined pathway. Our study analyzed the mechanism of action of low-diluted Phenacetinum on murine cutaneous melanoma process in a fibronectin matrix environment. We demonstrated a reduction of dispersed cell migration, early and for as long as 24 h, by altering the formation of cell protrusions. Moreover, low-diluted Phenacetinum decreased cell stiffness highly on peripheral areas, due to a disruption of actin filaments located just under the plasma membrane. Finally, it modified the structure of the plasma membrane by accumulating large ordered lipid domains and disrupted B16 cell migration by a likely shift in the balance between ordered and disordered lipid phases. Whereas the correlation between the excess of lipid raft and cytoskeleton disrupting is not as yet established, it is clear that low-diluted Phenacetinum acts on the actin cytoskeleton organization, as confirmed by a decrease of cell stiffness affecting ultimately the establishment of an effective migration process.
Collapse
Affiliation(s)
- Camille Fuselier
- CNRS UMR7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Christine Terryn
- Plateform PICT, University of Reims Champagne-Ardenne, Reims, France
| | | | - Jean-Marc Crowet
- CNRS UMR7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Arnaud Bonnomet
- Plateform PICT, University of Reims Champagne-Ardenne, Reims, France
| | - Michael Molinari
- LRN EA 4682, University of Reims Champagne-Ardenne, Reims, France
| | - Manuel Dauchez
- CNRS UMR7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Martiny
- CNRS UMR7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | | |
Collapse
|
10
|
Chen W, Qian X, Hu Y, Jin W, Shan Y, Fang X, Sun Y, Yu B, Luo Q, Xu Q. SBF-1 preferentially inhibits growth of highly malignant human liposarcoma cells. J Pharmacol Sci 2018; 138:271-278. [DOI: 10.1016/j.jphs.2018.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
|
11
|
Integrin α5 down-regulation by miR-205 suppresses triple negative breast cancer stemness and metastasis by inhibiting the Src/Vav2/Rac1 pathway. Cancer Lett 2018; 433:199-209. [PMID: 29964204 DOI: 10.1016/j.canlet.2018.06.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023]
Abstract
Triple negative breast cancer (TNBC) usually displays more aggressive metastasis, the underlying mechanism is unclear. Previous studies showed that microRNA-205 (miR-205) has controversial roles in cancer, however, its role in TNBC metastasis and the underlying mechanism have not been well-understood. In this study we found that miR-205 expression level is extremely low in basal mesenchymal-like highly migratory and invasive TNBC cells. Stably re-expressing miR-205 in TNBC cells significantly reduced their migration, invasion capability and cancer stem cell (CSC)-like property. Nude mouse orthotopic mammary xenograft tumor model study revealed that miR-205 re-expression greatly decreases TNBC tumor growth and abolishes spontaneous lung metastasis. Mechanistic studies demonstrated that miR-205 inhibits TNBC cell metastatic traits and tumor metastasis by down-regulating integrin α5 (ITGA5). Moreover, ITGA5 knockout using the CRISPR/Cas9 technique achieved the same strong inhibitory effect on TNBC cell CSC-like property and tumor metastasis as re-expressing miR-205 did. Further mechanistic studies indicated that ITGA5 down-regulation by miR-205 re-expression impairs TNBC cell metastatic traits by inhibiting the Src/Vav2/Rac1 pathway. Together, our findings suggest that miR-205 and ITGA5 may serve as potential targets for developing effective therapies for metastatic TNBC.
Collapse
|
12
|
PTBP3 contributes to the metastasis of gastric cancer by mediating CAV1 alternative splicing. Cell Death Dis 2018; 9:569. [PMID: 29752441 PMCID: PMC5948206 DOI: 10.1038/s41419-018-0608-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022]
Abstract
Polypyrimidine tract-binding protein 3 (PTBP3) is an essential RNA-binding protein with roles in RNA splicing, 3' end processing and translation. Although increasing evidence implicates PTBP3 in several cancers, its role in gastric cancer metastasis remains poorly explored. In this study, we found that PTBP3 was upregulated in the gastric cancer tissues of patients with lymph node metastasis. Patients with high PTBP3 expression levels had significantly shorter survival than those with low PTBP3 expression. Overexpression/knockdown of PTBP3 expression had no effect on proliferation, whereas it regulated migration and invasion in vitro. In addition, when a mouse xenotransplant model of MKN45 was established, knockdown of PTBP3 in MKN45 cells caused the formation of tumours that were smaller in size than their counterparts, with suppression of tumour lymphangiogenesis and metastasis to regional lymph nodes. Furthermore, we identified caveolin 1 (CAV1) as a downstream target of PTBP3. RNA immunoprecipitation (RIP) assays and dual-luciferase reporter gene assays indicated that PTBP3 interacted with the CU-rich region of the CAV1 gene to downregulate CAV1α expression. Knockdown of CAV1α abrogated the reduction of FAK and Src induced by PTBP3 knockdown. In summary, our findings provide experimental evidence that PTBP3 may function as a metastatic gene in gastric cancer by regulating CAV1 through alternative splicing.
Collapse
|
13
|
Sato K, Watanabe O, Ohmiya S, Chiba F, Suzuki A, Okamoto M, Younghuang J, Hata A, Nonaka H, Kitaoka S, Nagai Y, Kawamura K, Hayashi M, Kumaki S, Suzuki T, Kawakami K, Nishimura H. Efficient isolation of human metapneumovirus using MNT-1, a human malignant melanoma cell line with early and distinct cytopathic effects. Microbiol Immunol 2017; 61:497-506. [PMID: 28940687 DOI: 10.1111/1348-0421.12542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 09/16/2017] [Indexed: 01/30/2023]
Abstract
Isolation of human metapneumovirus (HMPV) from clinical specimens is currently inefficient because of the lack of a cell culture system in which a distinct cytopathic effect (CPE) occurs. The cell lines LLC-MK2, Vero and Vero E6 are used for isolation of HMPV; however, the CPE in these cell lines is subtle and usually requires a long observation period and sometimes blind passages. Thus, a cell line in which an early and distinct CPE occurs following HMPV inoculation is highly desired by clinical virology laboratories. In this study, it was demonstrated that, in the human malignant melanoma cell line MNT-1, obvious syncytium formation occurs shortly after inoculation with HMPV-positive clinical specimens. In addition, the growth and efficiency of isolation of HMPV were greater using MNT-1 than using any other conventional cell line. Addition of this cell line to our routine viral isolation system for clinical specimens markedly enhanced isolation frequency, allowing isolation-based surveillance. MNT-1 has the potential to facilitate clinical and epidemiological studies of HMPV.
Collapse
Affiliation(s)
- Ko Sato
- Virus Research Center, Clinical Research Division, Sendai Medical Center, 2-8-8 Miyagino, Miyagino-ku, Japan
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Oshi Watanabe
- Virus Research Center, Clinical Research Division, Sendai Medical Center, 2-8-8 Miyagino, Miyagino-ku, Japan
| | - Suguru Ohmiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center, 2-8-8 Miyagino, Miyagino-ku, Japan
| | - Fumiko Chiba
- Virus Research Center, Clinical Research Division, Sendai Medical Center, 2-8-8 Miyagino, Miyagino-ku, Japan
| | - Akira Suzuki
- Virus Research Center, Clinical Research Division, Sendai Medical Center, 2-8-8 Miyagino, Miyagino-ku, Japan
| | - Michiko Okamoto
- Virus Research Center, Clinical Research Division, Sendai Medical Center, 2-8-8 Miyagino, Miyagino-ku, Japan
| | - Jiang Younghuang
- Tauns Laboratories, 761-1 Kamishima, Izunokuni, Shizuoka 410-2325, Japan
| | - Akihiro Hata
- Tauns Laboratories, 761-1 Kamishima, Izunokuni, Shizuoka 410-2325, Japan
| | - Hiroyuki Nonaka
- Tauns Laboratories, 761-1 Kamishima, Izunokuni, Shizuoka 410-2325, Japan
| | - Setsuko Kitaoka
- Department of Pediatrics, Sendai Medical Center, 2-8-8 Miyagino, Miyagino-ku, Sendai 983-8520, Japan
| | - Yukio Nagai
- Nagai Pediatric Clinic, 1-25-10 Miyagino, Miyagino-ku, Sendai, 983-0045, Japan
| | - Kazuhisa Kawamura
- Kawamura Children's Clinic, 1-16-1 Takamatsu, Aoba-ku, Sendai 981-0907, Japan
| | - Masahiro Hayashi
- Department of Dermatology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Satoru Kumaki
- Department of Pediatrics, Sendai Medical Center, 2-8-8 Miyagino, Miyagino-ku, Sendai 983-8520, Japan
| | - Tamio Suzuki
- Department of Dermatology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, 2-8-8 Miyagino, Miyagino-ku, Japan
| |
Collapse
|
14
|
STAT3 activation in endothelial cells is important for tumor metastasis via increased cell adhesion molecule expression. Oncogene 2017; 36:5445-5459. [DOI: 10.1038/onc.2017.148] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 12/18/2022]
|
15
|
Das K, Nimushakavi S, Chaudhuri A, Das PK. An Integrin-Targeting RGDK-Tagged Nanocarrier: Anticancer Efficacy of Loaded Curcumin. ChemMedChem 2017; 12:738-750. [DOI: 10.1002/cmdc.201700085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/10/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Krishnendu Das
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - Sahithi Nimushakavi
- Biomaterials Group; CSIR - Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Arabinda Chaudhuri
- Biomaterials Group; CSIR - Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Prasanta Kumar Das
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| |
Collapse
|
16
|
Williams AS, Trefts E, Lantier L, Grueter CA, Bracy DP, James FD, Pozzi A, Zent R, Wasserman DH. Integrin-Linked Kinase Is Necessary for the Development of Diet-Induced Hepatic Insulin Resistance. Diabetes 2017; 66:325-334. [PMID: 27899483 PMCID: PMC5248997 DOI: 10.2337/db16-0484] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/17/2016] [Indexed: 12/17/2022]
Abstract
The liver extracellular matrix (ECM) expands with high-fat (HF) feeding. This finding led us to address whether receptors for the ECM, integrins, are key to the development of diet-induced hepatic insulin resistance. Integrin-linked kinase (ILK) is a downstream integrin signaling molecule involved in multiple hepatic processes, including those related to differentiation, wound healing, and metabolism. We tested the hypothesis that deletion of ILK in mice on an HF diet would disrupt the ECM-integrin signaling axis, thereby preventing the transformation into the insulin-resistant liver. To determine the role of ILK in hepatic insulin action in vivo, male C57BL/6J ILKlox/lox mice were crossed with Albcre mice to produce a hepatocyte-specific ILK deletion (ILKlox/loxAlbcre). Results from this study show that hepatic ILK deletion has no effect on insulin action in lean mice but sensitizes the liver to insulin during the challenge of HF feeding. This effect corresponds to changes in the expression and activation of key insulin signaling pathways as well as a greater capacity for hepatic mitochondrial glucose oxidation. This demonstrates that ILK contributes to hepatic insulin resistance and highlights the previously undefined role of integrin signaling in the pathogenesis of diet-induced hepatic insulin resistance.
Collapse
Affiliation(s)
- Ashley S Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Elijah Trefts
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN
| | - Carrie A Grueter
- Department of Anesthesiology, Vanderbilt University, Nashville, TN
| | - Deanna P Bracy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Freyja D James
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Ambra Pozzi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, TN
- Department of Medicine, Veteran Affairs, Nashville, TN
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, TN
- Department of Medicine, Veteran Affairs, Nashville, TN
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
17
|
Nikolovska K, Spillmann D, Haier J, Ladányi A, Stock C, Seidler DG. Melanoma Cell Adhesion and Migration Is Modulated by the Uronyl 2-O Sulfotransferase. PLoS One 2017; 12:e0170054. [PMID: 28107390 PMCID: PMC5249195 DOI: 10.1371/journal.pone.0170054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/28/2016] [Indexed: 01/12/2023] Open
Abstract
Although the vast majority of melanomas are characterized by a high metastatic potential, if detected early, melanoma can have a good prognostic outcome. However, once metastasised, the prognosis is bleak. We showed previously that uronyl-2-O sulfotransferase (Ust) and 2-O sulfation of chondroitin/dermatan sulfate (CS/DS) are involved in cell migration. To demonstrate an impact of 2-O sulfation in metastasis we knocked-down Ust in mouse melanoma cells. This significantly reduced the amount of Ust protein and enzyme activity. Furthermore, in vitro cell motility and adhesion were significantly reduced correlating with the decrease of cellular Ust protein. Single cell migration of B16VshUst(16) cells showed a decreased cell movement phenotype. The adhesion of B16V cells to fibronectin depended on α5β1 but not αvβ3 integrin. Inhibition of glycosaminoglycan sulfation or blocking fibroblast growth factor receptor (FgfR) reduced α5 integrin in B16V cell lines. Interestingly, FgfR1 expression and activation was reduced in Ust knock-down cells. In vivo, pulmonary metastasis of B16VshUst cells was prevented due to a reduction of α5 integrin. As a proof of concept UST knock-down in human melanoma cells also showed a reduction in ITGa5 and adhesion. This is the first study showing that Ust, and consequently 2-O sulfation of the low affinity receptor for FgfR CS/DS, reduces Itga5 and leads to an impaired adhesion and migration of melanoma cells.
Collapse
Affiliation(s)
- Katerina Nikolovska
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
- Centre for Internal Medicine, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Dorothe Spillmann
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Jörg Haier
- Comprehensive Cancer Center Münster, University Hospital Münster, Münster, Germany
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Christian Stock
- Centre for Internal Medicine, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Daniela G. Seidler
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
- Centre for Internal Medicine, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
18
|
Ortiz R, Díaz J, Díaz N, Lobos-Gonzalez L, Cárdenas A, Contreras P, Díaz MI, Otte E, Cooper-White J, Torres V, Leyton L, Quest AF. Extracellular matrix-specific Caveolin-1 phosphorylation on tyrosine 14 is linked to augmented melanoma metastasis but not tumorigenesis. Oncotarget 2016; 7:40571-40593. [PMID: 27259249 PMCID: PMC5130029 DOI: 10.18632/oncotarget.9738] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
Caveolin-1 (CAV1) is a scaffolding protein that plays a dual role in cancer. In advanced stages of this disease, CAV1 expression in tumor cells is associated with enhanced metastatic potential, while, at earlier stages, CAV1 functions as a tumor suppressor. We recently implicated CAV1 phosphorylation on tyrosine 14 (Y14) in CAV1-enhanced cell migration. However, the contribution of this modification to the dual role of CAV1 in cancer remained unexplored. Here, we used in vitro [2D and transendothelial cell migration (TEM), invasion] and in vivo (metastasis) assays, as well as genetic and biochemical approaches to address this question in B16F10 murine melanoma cells. CAV1 promoted directional migration on fibronectin or laminin, two abundant lung extracellular matrix (ECM) components, which correlated with enhanced Y14 phosphorylation during spreading. Moreover, CAV1-driven migration, invasion, TEM and metastasis were ablated by expression of the phosphorylation null CAV1(Y14F), but not the phosphorylation mimicking CAV1(Y14E) mutation. Finally, CAV1-enhanced focal adhesion dynamics and surface expression of beta1 integrin were required for CAV1-driven TEM. Importantly, CAV1 function as a tumor suppressor in tumor formation assays was not altered by the Y14F mutation. In conclusion, our results provide critical insight to the mechanisms of CAV1 action during cancer development. Specific ECM-integrin interactions and Y14 phosphorylation are required for CAV1-enhanced melanoma cell migration, invasion and metastasis to the lung. Because Y14F mutation diminishes metastasis without inhibiting the tumor suppressor function of CAV1, Y14 phosphorylation emerges as an attractive therapeutic target to prevent metastasis without altering beneficial traits of CAV1.
Collapse
Affiliation(s)
- Rina Ortiz
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Universidad Bernardo O Higgins, Facultad de Salud, Departamento de Ciencias Químicas y Biológicas, Santiago, Chile
- Biomedical Neuroscience Institute (BNI) Santiago, Chile
| | - Jorge Díaz
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Natalia Díaz
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI) Santiago, Chile
| | - Lorena Lobos-Gonzalez
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Andes Biotechnologies SA, Ñuñoa, Santiago, Chile
- Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Areli Cárdenas
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI) Santiago, Chile
| | - Pamela Contreras
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Inés Díaz
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ellen Otte
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Vicente Torres
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI) Santiago, Chile
| | - Andrew F.G. Quest
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Zhao CM, Chen Q, Zhang WJ, Huang AB, Zhang W, Yang HL, Zhang ZM. 17β-Estradiol Protects Rat Annulus Fibrosus Cells Against Apoptosis via α1 Integrin-Mediated Adhesion to Type I Collagen: An In-vitro Study. Med Sci Monit 2016; 22:1375-83. [PMID: 27108411 PMCID: PMC4846184 DOI: 10.12659/msm.897906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background 17β-Estradiol (E2) has been reported to protect annulus fibrosus (AF) cells in vitro against interleukin-1β (IL-1β)-induced apoptosis in a concentration-dependent manner. However, its time-response effect remains unexplored. In addition, integrin α2/collagen II interaction has been reported to influence the apoptosis of nucleus pulposus cells in vitro. Thus, we hypothesized that integrin α1/collagen II might play a role in exerting the anti-apoptosis effect by E2. The aim of the current study was to further investigate the anti-apoptotic effect of E2 and determine the role of integrin α1/collagen II interaction. Material/Methods Rat AF cells were primary cultured and used for the following experiments. AF cells were identified by immunocytochemistry of type I collagen. Cell apoptosis was detected by fluorescence-activated cell sorter (FACS) analysis. The activity of active caspase-3 was determined by use of a caspase-3 detection kit. AF cell adhesion to type I collagen was determined by cell adhesion assay. Protein level of integrin subunit α1 was quantified by Western blot and mRNA expression was determined by real-time qPCR. Results The immunocytochemistry of type I collagen revealed that cell purity was eligible for the following experiments with 98% of purity. FACS analysis indicated time-dependent anti-apoptosis effect of E2 at time points of 6 h, 12 h, and 24 h, which was confirmed by Caspase-3 activity. Furthermore, cell adhesion assay showed that E2 significantly increased cell binding to 95% of control, and qPCR and Western blot analysis showed that E2 effectively upregulated integrin α1. However, estrogen receptor antagonist ICI182780 prohibited the effect of E2. Conclusions This study shows that E2 protects against apoptosis in a time-dependent manner, and α1 integrin-mediated adhesion to collagen II is essential for estrogen-dependent anti-apoptosis in rat annulus fibrosus cells in vitro.
Collapse
Affiliation(s)
- Chun-Ming Zhao
- Department of Orthopedic Surgery, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou, Jiangsu, China (mainland)
| | - Qian Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China (mainland)
| | - Wen-Jie Zhang
- Department of Orthopaedic Surgery, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou, Jiangsu, China (mainland)
| | - Ai-Bing Huang
- Department of Orthopedic Surgery, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou, Jiangsu, China (mainland)
| | - Wei Zhang
- Department of Orthopedic Surgery, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou, Jiangsu, China (mainland)
| | - Hui-Lin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Zhi-Ming Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
20
|
Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD. Elucidation of the Roles of Tumor Integrin β1 in the Extravasation Stage of the Metastasis Cascade. Cancer Res 2016; 76:2513-24. [PMID: 26988988 DOI: 10.1158/0008-5472.can-15-1325] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 02/27/2016] [Indexed: 12/22/2022]
Abstract
Tumor integrin β1 (ITGB1) contributes to primary tumor growth and metastasis, but its specific roles in extravasation have not yet been clearly elucidated. In this study, we engineered a three-dimensional microfluidic model of the human microvasculature to recapitulate the environment wherein extravasation takes place and assess the consequences of β1 depletion in cancer cells. Combined with confocal imaging, these tools allowed us to decipher the detailed morphology of transmigrating tumor cells and associated endothelial cells in vitro at high spatio-temporal resolution not easily achieved in conventional transmigration assays. Dynamic imaging revealed that β1-depleted cells lacked the ability to sustain protrusions into the subendothelial matrix in contrast with control cells. Specifically, adhesion via α3β1 and α6β1 to subendothelial laminin was a critical prerequisite for successful transmigration. β1 was required to invade past the endothelial basement membrane, whereas its attenuation in a syngeneic tumor model resulted in reduced metastatic colonization of the lung, an effect not observed upon depletion of other integrin alpha and beta subunits. Collectively, our findings in this novel model of the extravasation microenvironment revealed a critical requirement for β1 in several steps of extravasation, providing new insights into the mechanisms underlying metastasis. Cancer Res; 76(9); 2513-24. ©2016 AACR.
Collapse
Affiliation(s)
- Michelle B Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - John M Lamar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ran Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Richard O Hynes
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
21
|
Liu J, Lin PC, Zhou BP. Inflammation fuels tumor progress and metastasis. Curr Pharm Des 2016; 21:3032-40. [PMID: 26004407 DOI: 10.2174/1381612821666150514105741] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/12/2015] [Indexed: 12/14/2022]
Abstract
Inflammation is a beneficial response that can remove pathogens, repair injured tissue and restore homeostasis to damaged tissues and organs. However, increasing evidence indicate that chronic inflammation plays a pivotal role in tumor development, as well as progression, metastasis, and resistance to chemotherapy. We will review the current knowledge regarding the contribution of inflammation to epithelial mesenchymal transition. We will also provide some perspectives on the relationship between ER-stress signals and metabolism, and the role of these processes in the development of inflammation.
Collapse
Affiliation(s)
| | | | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, 741 South Limestone Street, Lexington, KY 40536.
| |
Collapse
|
22
|
Carpinteiro A, Becker KA, Japtok L, Hessler G, Keitsch S, Požgajovà M, Schmid KW, Adams C, Müller S, Kleuser B, Edwards MJ, Grassmé H, Helfrich I, Gulbins E. Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Mol Med 2016; 7:714-34. [PMID: 25851537 PMCID: PMC4459814 DOI: 10.15252/emmm.201404571] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Metastatic dissemination of cancer cells is the ultimate hallmark of malignancy and accounts for approximately 90% of human cancer deaths. We investigated the role of acid sphingomyelinase (Asm) in the hematogenous metastasis of melanoma cells. Intravenous injection of B16F10 melanoma cells into wild-type mice resulted in multiple lung metastases, while Asm-deficient mice (Smpd1−/− mice) were protected from pulmonary tumor spread. Transplanting wild-type platelets into Asm-deficient mice reinstated tumor metastasis. Likewise, Asm-deficient mice were protected from hematogenous MT/ret melanoma metastasis to the spleen in a mouse model of spontaneous tumor metastasis. Human and mouse melanoma cells triggered activation and release of platelet secretory Asm, in turn leading to ceramide formation, clustering, and activation of α5β1 integrins on melanoma cells finally leading to adhesion of the tumor cells. Clustering of integrins by applying purified Asm or C16 ceramide to B16F10 melanoma cells before intravenous injection restored trapping of tumor cells in the lung in Asm-deficient mice. This effect was revertable by arginine-glycine-aspartic acid peptides, which are known inhibitors of integrins, and by antibodies neutralizing β1 integrins. These findings indicate that melanoma cells employ platelet-derived Asm for adhesion and metastasis.
Collapse
Affiliation(s)
- Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany Department of Hematology, University of Duisburg-Essen, Essen, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Lukasz Japtok
- Institute for Nutritional Science University of Potsdam, Nuthetal, Germany
| | - Gabriele Hessler
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Miroslava Požgajovà
- Department of Genetics and Breeding Biology, Slovak University of Agriculture, Nitra, Slovakia
| | - Kurt W Schmid
- Department of Pathology and Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Constantin Adams
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Müller
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany
| | - Burkhard Kleuser
- Institute for Nutritional Science University of Potsdam, Nuthetal, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Iris Helfrich
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
23
|
Matsuzaki T, Ito K, Masuda K, Kakinuma E, Sakamoto R, Iketaki K, Yamamoto H, Suganuma M, Kobayashi N, Nakabayashi S, Tanii T, Yoshikawa HY. Quantitative Evaluation of Cancer Cell Adhesion to Self-Assembled Monolayer-Patterned Substrates by Reflection Interference Contrast Microscopy. J Phys Chem B 2016; 120:1221-7. [PMID: 26845066 DOI: 10.1021/acs.jpcb.5b11870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adhesion of cancer cells with different metastatic potential and anticancer drug resistance has been quantitatively evaluated by using self-assembled monolayer (SAM)-patterned substrates and reflection interference contrast microscopy (RICM). Cell-adhesive SAM spots with optimized diameter could prevent cell-cell adhesion and thus allowed the systematic evaluation of statistically reliable numbers of contact area between single cancer cells and substrates by RICM. The statistical image analysis revealed that highly metastatic mouse melanoma cells showed larger contact area than lowly metastatic cells. We also found that both cancer cell types exhibited distinct transition from the "strong" to "weak" adhesion states with increase in the concentration of (-)-epigallocatechin gallate (EGCG), which is known to exhibit cancer preventive activity. Mathematical analysis of the adhesion transition revealed that adhesion of the highly metastatic mouse melanoma cells showed more EGCG tolerance than that of lowly metastatic cells. Moreover, time-lapse RICM observation revealed that EGCG weakened cancer cell adhesion in a stepwise manner, probably via focal adhesion complex. These results clearly indicate that contact area can be used as a quantitative measure for the determination of cancer phenotypes and their drug resistance, which will provide physical insights into the mechanism of cancer metastasis and cancer prevention.
Collapse
Affiliation(s)
| | | | - Kentaro Masuda
- School of Science and Engineering, Waseda University , Okubo 3-4-1, Shinjuku, Tokyo 169-855, Japan
| | - Eisuke Kakinuma
- School of Science and Engineering, Waseda University , Okubo 3-4-1, Shinjuku, Tokyo 169-855, Japan
| | - Rumi Sakamoto
- School of Science and Engineering, Waseda University , Okubo 3-4-1, Shinjuku, Tokyo 169-855, Japan
| | | | - Hideaki Yamamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University , 6-3 Aramakiazaaoba, Aoba, Sendai, Miyagi 980-8578, Japan
| | | | | | | | - Takashi Tanii
- School of Science and Engineering, Waseda University , Okubo 3-4-1, Shinjuku, Tokyo 169-855, Japan
| | | |
Collapse
|
24
|
Hang Q, Isaji T, Hou S, Im S, Fukuda T, Gu J. Integrin α5 Suppresses the Phosphorylation of Epidermal Growth Factor Receptor and Its Cellular Signaling of Cell Proliferation via N-Glycosylation. J Biol Chem 2015; 290:29345-60. [PMID: 26483551 DOI: 10.1074/jbc.m115.682229] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 12/26/2022] Open
Abstract
Integrin α5β1-mediated cell adhesion regulates a multitude of cellular responses, including cell proliferation, survival, and cross-talk between different cellular signaling pathways. Integrin α5β1 is known to convey permissive signals enabling anchorage-dependent receptor tyrosine kinase signaling. However, the effects of integrin α5β1 on cell proliferation are controversial, and the molecular mechanisms involved in the regulation between integrin α5β1 and receptor tyrosine kinase remain largely unclear. Here we show that integrin α5 functions as a negative regulator of epidermal growth factor receptor (EGFR) signaling through its N-glycosylation. Expression of WT integrin α5 suppresses the EGFR phosphorylation and internalization upon EGF stimulation. However, expression of the N-glycosylation mutant integrin α5, S3-5, which contains fewer N-glycans, reversed the suppression of the EGFR-mediated signaling and cell proliferation. In a mechanistic manner, WT but not S3-5 integrin α5 forms a complex with EGFR and glycolipids in the low density lipid rafts, and the complex formation is disrupted upon EGF stimulation, suggesting that the N-glycosylation of integrin α5 suppresses the EGFR activation through promotion of the integrin α5-glycolipids-EGFR complex formation. Furthermore, consistent restoration of those N-glycans on the Calf-1,2 domain of integrin α5 reinstated the inhibitory effects as well as the complex formation with EGFR. Taken together, these data are the first to demonstrate that EGFR activation can be regulated by the N-glycosylation of integrin α5, which is a novel molecular paradigm for the cross-talk between integrins and growth factor receptors.
Collapse
Affiliation(s)
- Qinglei Hang
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sicong Hou
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sanghun Im
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomohiko Fukuda
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Jianguo Gu
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
25
|
Antineoplastic effects of Rhodiola crenulata treatment on B16-F10 melanoma. Tumour Biol 2015; 36:9795-805. [DOI: 10.1007/s13277-015-3742-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022] Open
|
26
|
Williams AS, Kang L, Wasserman DH. The extracellular matrix and insulin resistance. Trends Endocrinol Metab 2015; 26:357-66. [PMID: 26059707 PMCID: PMC4490038 DOI: 10.1016/j.tem.2015.05.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a highly-dynamic compartment that undergoes remodeling as a result of injury and repair. Over the past decade, mounting evidence in humans and rodents suggests that ECM remodeling is associated with diet-induced insulin resistance in several metabolic tissues. In addition, integrin receptors for the ECM have also been implicated in the regulation of insulin action. This review addresses what is currently known about the ECM, integrins, and insulin action in the muscle, liver, and adipose tissue. Understanding how ECM remodeling and integrin signaling regulate insulin action may aid in the development of new therapeutic targets for the treatment of insulin resistance and type 2 diabetes (T2D).
Collapse
Affiliation(s)
- Ashley S Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Li Kang
- Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
27
|
Abstract
Glioblastoma multiforme (GBM) tumor invasion is facilitated by cell migration and degradation of the extracellular matrix. Invadopodia are actin-rich structures that protrude from the plasma membrane in direct contact with the extracellular matrix and are proposed to participate in epithelial-mesenchymal transition. We characterized the invasiveness of 9 established GBM cell lines using an invadopodia assay and performed quantitative mass spectrometry-based proteomic analyses on enriched membrane fractions. All GBM cells produced invadopodia, with a 65% difference between the most invasive cell line (U87MG) and the least invasive cell line (LN229) (p = 0.0001). Overall, 1,141 proteins were identified in the GBM membrane proteome; the levels of 49 proteins correlated with cell invasiveness. Ingenuity Pathway Analysis predicted activation "cell movement" (z-score = 2.608, p = 3.94E(-04)) in more invasive cells and generated a network of invasion-associated proteins with direct links to key regulators of invadopodia formation. Gene expression data relating to the invasion-associated proteins ITGA5 (integrin α5), CD97, and ANXA1 (annexin A1) showed prognostic significance in independent GBM cohorts. Fluorescence microscopy demonstrated ITGA5, CD97, and ANXA1 localization in invadopodia assays, and small interfering RNA knockdown of ITGA5 reduced invadopodia formation in U87MG cells. Thus, invasion-associated proteins, including ITGA5, may prove to be useful anti-invasive targets; volociximab, a therapeutic antibody against integrin α5β1, may be useful for treatment of patients with GBM.
Collapse
|
28
|
Nam EH, Lee Y, Moon B, Lee JW, Kim S. Twist1 and AP-1 cooperatively upregulate integrin α5 expression to induce invasion and the epithelial–mesenchymal transition. Carcinogenesis 2015; 36:327-37. [DOI: 10.1093/carcin/bgv005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
29
|
Jin ZH, Furukawa T, Kumata K, Xie L, Yui J, Wakizaka H, Fujibayashi Y, Zhang MR, Saga T. Development of the Fibronectin–Mimetic Peptide KSSPHSRN(SG) 5RGDSP as a Novel Radioprobe for Molecular Imaging of the Cancer Biomarker α 5β 1 Integrin. Biol Pharm Bull 2015; 38:1722-31. [DOI: 10.1248/bpb.b15-00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhao-Hui Jin
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Takako Furukawa
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Katsushi Kumata
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Joji Yui
- Molecular Imaging Center, National Institute of Radiological Sciences
| | | | | | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Tsuneo Saga
- Molecular Imaging Center, National Institute of Radiological Sciences
| |
Collapse
|
30
|
Carmona FJ, Davalos V, Vidal E, Gomez A, Heyn H, Hashimoto Y, Vizoso M, Martinez-Cardus A, Sayols S, Ferreira HJ, Sánchez-Mut JV, Morán S, Margelí M, Castella E, Berdasco M, Stefansson OA, Eyfjord JE, Gonzalez-Suarez E, Dopazo J, Orozco M, Gut IG, Esteller M. A comprehensive DNA methylation profile of epithelial-to-mesenchymal transition. Cancer Res 2014; 74:5608-19. [PMID: 25106427 DOI: 10.1158/0008-5472.can-13-3659] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a plastic process in which fully differentiated epithelial cells are converted into poorly differentiated, migratory and invasive mesenchymal cells, and it has been related to the metastasis potential of tumors. This is a reversible process and cells can also eventually undergo mesenchymal-to-epithelial transition. The existence of a dynamic EMT process suggests the involvement of epigenetic shifts in the phenotype. Herein, we obtained the DNA methylomes at single-base resolution of Madin-Darby canine kidney cells undergoing EMT and translated the identified differentially methylated regions to human breast cancer cells undergoing a gain of migratory and invasive capabilities associated with the EMT phenotype. We noticed dynamic and reversible changes of DNA methylation, both on promoter sequences and gene-bodies in association with transcription regulation of EMT-related genes. Most importantly, the identified DNA methylation markers of EMT were present in primary mammary tumors in association with the epithelial or the mesenchymal phenotype of the studied breast cancer samples.
Collapse
Affiliation(s)
- F Javier Carmona
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Veronica Davalos
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Enrique Vidal
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Antonio Gomez
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Holger Heyn
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Yutaka Hashimoto
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Miguel Vizoso
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Anna Martinez-Cardus
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Sergi Sayols
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Humberto J Ferreira
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Jose V Sánchez-Mut
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Sebastián Morán
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | | | - Eva Castella
- Pathology Department, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Maria Berdasco
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Olafur A Stefansson
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Jorunn E Eyfjord
- Cancer Research Laboratory, Faculty of Medicine, University of Iceland, Reykjavik, Iceland. Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eva Gonzalez-Suarez
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Joaquín Dopazo
- Department of Bioinformatics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain. CIBER de Enfermedades Raras (CIBERER), Valencia, Spain. Functional Genomics Node (INB) at CIPF, Valencia, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain. Joint IRB-BSC Research Program on Computational Biology, Barcelona, Spain. Barcelona Supercomputing Center, Barcelona, Spain. Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Ivo G Gut
- Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain. Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain. Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
31
|
Hase H, Jingushi K, Ueda Y, Kitae K, Egawa H, Ohshio I, Kawakami R, Kashiwagi Y, Tsukada Y, Kobayashi T, Nakata W, Fujita K, Uemura M, Nonomura N, Tsujikawa K. LOXL2 status correlates with tumor stage and regulates integrin levels to promote tumor progression in ccRCC. Mol Cancer Res 2014; 12:1807-17. [PMID: 25092917 DOI: 10.1158/1541-7786.mcr-14-0233] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Clear cell renal cell carcinoma (ccRCC) is the most common histologically defined subtype of renal cell carcinoma (RCC). To define the molecular mechanism in the progression of ccRCC, we focused on LOX-like protein 2 (LOXL2), which is critical for the first step in collagen and elastin cross-linking. Using exon array analysis and quantitative validation, LOXL2 was shown to be significantly upregulated in clinical specimens of human ccRCC tumor tissues, compared with adjacent noncancerous renal tissues, and this elevated expression correlated with the pathologic stages of ccRCC. RNAi-mediated knockdown of LOXL2 resulted in marked suppression of stress-fiber and focal adhesion formation in ccRCC cells. Moreover, LOXL2 siRNA knockdown significantly inhibited cell growth, migration, and invasion. Mechanistically, LOXL2 regulated the degradation of both integrins α5 (ITGAV5) and β1 (ITGB1) via protease- and proteasome-dependent systems. In clinical ccRCC specimens, the expression levels of LOXL2 and integrin α5 correlated with the pathologic tumor grades. In conclusion, LOXL2 is a potent regulator of integrin α5 and integrin β1 protein levels and functions in a tumor-promoting capacity in ccRCC. IMPLICATIONS This is the first report demonstrating that LOXL2 is highly expressed and involved in ccRCC progression by regulating the levels of integrins α5 and β1.
Collapse
Affiliation(s)
- Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan.
| | - Yuko Ueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Hiroshi Egawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Ikumi Ohshio
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Ryoji Kawakami
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Yuri Kashiwagi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Yohei Tsukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Takumi Kobayashi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Wataru Nakata
- Department of Urology, Graduate School of Medicine, Osaka University, Yamadaoka, Osaka, Japan
| | - Kazutoshi Fujita
- Department of Urology, Graduate School of Medicine, Osaka University, Yamadaoka, Osaka, Japan
| | - Motohide Uemura
- Department of Urology, Graduate School of Medicine, Osaka University, Yamadaoka, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, Yamadaoka, Osaka, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
32
|
Mierke CT. Phagocytized beads reduce the α5β1 integrin facilitated invasiveness of cancer cells by regulating cellular stiffness. Cell Biochem Biophys 2014; 66:599-622. [PMID: 23329175 DOI: 10.1007/s12013-012-9506-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell invasion through the extracellular matrix (ECM) of connective tissue is an important biomechanical process, which plays a prominent role in tumor progression. The malignancy of tumors depends mainly on the capacity of cancer cells to migrate and metastasize. A prerequisite for metastasis is the invasion of cancer cells through connective tissue to targeted organs. Cellular stiffness and cytoskeletal remodeling dynamics have been proposed to affect the invasiveness of cancer cells. Here, this study investigated whether highly invasive cancer cells are capable of invading into dense 3D-ECMs with an average pore-size of 1.3 or 3.0 μm when phagocytized beads (2.7 and 4.5 μm diameter) increased their cellular stiffness and reduced their cytoskeletal remodeling dynamics compared to weakly invasive cancer cells. The phagocytized beads decreased the invasiveness of the α5β1(high) cancer cells into 3D-ECMs, whereas the invasiveness of the α5β1(low) cancer cells was not affected. The effect of phagocytized beads on the highly invasive α5β1(high) cells was abolished by specific knock-down of the α5 integrin subunit or addition of an anti-α5 integrin blocking antibody. Furthermore, the reduction of contractile forces using MLCK and ROCK inhibitors abolished the effect of phagocytized beads on the invasiveness of α5β1(high) cells. In addition, the cellular stiffness of α5β1(high) cells was increased after bead phagocytosis, whereas the bead phagocytosis did not alter the stiffness of α5β1(low) cells. Taken together, the α5β1 integrin dependent invasiveness was reduced after bead phagocytosis by altered biomechanical properties, suggesting that the α5β1(high) cells need an appropriate intermediate cellular stiffness to overcome the steric hindrance of 3D-ECMs, whereas the α5β1(low) cells were not affected by phagocytized beads.
Collapse
Affiliation(s)
- Claudia T Mierke
- Biological Physics Division, Institute of Experimental Physics I, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
33
|
Gao Z, Chen W, Zhang X, Cai P, Fang X, Xu Q, Sun Y, Gu Y. Icotinib, a potent and specific EGFR tyrosine kinase inhibitor, inhibits growth of squamous cell carcinoma cell line A431 through negatively regulating AKT signaling. Biomed Pharmacother 2013; 67:351-6. [DOI: 10.1016/j.biopha.2013.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/10/2013] [Indexed: 12/21/2022] Open
|
34
|
McKenzie JA, Liu T, Jung JY, Jones BB, Ekiz HA, Welm AL, Grossman D. Survivin promotion of melanoma metastasis requires upregulation of α5 integrin. Carcinogenesis 2013; 34:2137-44. [PMID: 23640047 DOI: 10.1093/carcin/bgt155] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Survivin is an apoptotic and mitotic regulator that is overexpressed in melanoma and a poor prognostic marker in patients with metastatic disease. We recently showed that Survivin enhances melanoma cell motility through Akt-dependent upregulation of α5 integrin. However, the functional role of Survivin in melanoma metastasis is not clearly understood. We found that overexpression of Survivin in LOX and YUSAC2 human melanoma cells increased colony formation in soft agar, and this effect was abrogated by knockdown of α5 integrin by RNA interference. We employed melanoma cell xenografts to determine the in vivo effect of Survivin overexpression on melanoma metastasis. Although Survivin overexpression did not affect primary tumor growth of YUSAC2 or LOX subcutaneous tumors, or indices of proliferation or apoptosis, it significantly increased expression of α5 integrin in the primary tumors and formation of metastatic colonies in the lungs. Additionally, Survivin overexpression resulted in enhanced lung colony formation following intravenous (i.v.) injection of tumor cells in vivo and increased adherence to fibronectin-coated plastic in vitro. Importantly, in vivo inhibition of α5 integrin via intraperitoneal injection of an α5β1 integrin-blocking antibody significantly slowed tumor growth and reduced Survivin-enhanced pulmonary metastasis. Knockdown of α5 integrin in cells prior to i.v. injection also blocked Survivin-enhanced lung colony formation. These findings support a direct role for Survivin in melanoma metastasis, which requires α5 integrin and suggest that inhibitors of α5 integrin may be useful in combating this process.
Collapse
|
35
|
Schaffner F, Ray AM, Dontenwill M. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors. Cancers (Basel) 2013; 5:27-47. [PMID: 24216697 PMCID: PMC3730317 DOI: 10.3390/cancers5010027] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/11/2022] Open
Abstract
Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also called the fibronectin receptor, in solid tumors. We summarize data showing that α5β1 integrin is a pertinent therapeutic target expressed by tumoral neovessels and tumoral cells. Although mainly evaluated in preclinical models, α5β1 integrin merits interest in particular in colon, breast, ovarian, lung and brain tumors where its overexpression is associated with a poor prognosis for patients. Specific α5β1 integrin antagonists will be listed that may represent new potential therapeutic agents to fight defined subpopulations of particularly aggressive tumors.
Collapse
Affiliation(s)
- Florence Schaffner
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | | | | |
Collapse
|
36
|
A randomized phase II study of cilengitide (EMD 121974) in patients with metastatic melanoma. Melanoma Res 2012; 22:294-301. [PMID: 22668797 DOI: 10.1097/cmr.0b013e32835312e4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cilengitide (EMD 121974) is a selective inhibitor of integrins αvβ3 and αvβ5. The αvβ3 promotes the proliferation of tumor-associated endothelial cells and potentially the survival of melanoma cells. We conducted a randomized phase II trial in patients with metastatic melanoma to evaluate the clinical efficacy of cilengitide. Patients with stage IV or unresectable stage III melanoma who were either chemonaive or who had previously received one systemic therapy were enrolled. Patients were randomly assigned to either 500 or 2000 mg of cilengitide administered intravenously twice weekly. The primary aim of this study was to determine the progression-free survival rate at 8 weeks. Tumor samples and blood samples were collected for pharmacodynamic and pharmacokinetic studies. Twenty-nine patients were enrolled, of whom 26 were treated (14 at 500 mg and 12 at 2000 mg). Among those treated, only three were progression free at 8 weeks: two in the 500 mg arm and one in the 2000 mg arm. One patient in the 2000 mg arm showed a prolonged partial response after an initial 28% enlargement of her target lesions. The treatment was well tolerated without clinically significant adverse events. The sole responder and one of two patients with stable disease had no αvβ3 expression at baseline. Overall, αvβ3 expression was decreased by day 8 of the treatment (P=0.05). Cilengitide was well tolerated by patients in both the treatment arms but had minimal clinical efficacy as a single-agent therapy for metastatic melanoma, and the efficacy was not related to baseline αvβ3 expression.
Collapse
|
37
|
Lee K, Nelson CM. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:171-221. [PMID: 22364874 DOI: 10.1016/b978-0-12-394305-7.00004-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue fibrosis often presents as the final outcome of chronic disease and is a significant cause of morbidity and mortality worldwide. Fibrosis is driven by continuous expansion of fibroblasts and myofibroblasts. Epithelial-mesenchymal transition (EMT) is a form of cell plasticity in which epithelia acquire mesenchymal phenotypes and is increasingly recognized as an integral aspect of tissue fibrogenesis. In this review, we describe recent insight into the molecular and cellular factors that regulate EMT and its underlying signaling pathways. We also consider how mechanical cues from the microenvironment affect the regulation of EMT. Finally, we discuss the role of EMT in fibrotic diseases and propose approaches for detecting and treating fibrogenesis by targeting EMT.
Collapse
Affiliation(s)
- KangAe Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
38
|
Scanlon CS, Van Tubergen EA, Inglehart RC, D'Silva NJ. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res 2012; 92:114-21. [PMID: 23128109 DOI: 10.1177/0022034512467352] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An understanding of the process by which tumor cells destroy the basement membrane of the surface epithelium, invade, and metastasize is essential to the development of novel treatment of head and neck squamous cell carcinoma (HNSCC). In recent years, there has been increased interest in the role of epithelial-mesenchymal transition (EMT) in invasion. EMT is a process that describes the development of motile, mesenchymal-like cells from non-motile parent epithelial cells. There are 3 known types of EMT that mediate development, wound healing, and carcinogenesis. This review summarizes studies of known EMT biomarkers in the context of HNSCC progression. The biomarkers discussed come from a wide range of proteins, including cell-surface proteins (E-cadherin, N-cadherin, and Integrins), cytoskeletal proteins (α-Smooth Muscle Actin, Vimentin, and β-catenin), extracellular matrix proteins (Collagens, Fibronectin, and Laminin), and transcription factors (SNAIL1, SNAIL2, TWIST, and LEF-1). Overall, the findings of these studies suggest that EMT mediates HNSCC progression. The mechanistic role of the EMT markers that have been associated with HNSCC should be more clearly defined if new anti-HNSCC therapies to block EMT progression are to be developed.
Collapse
Affiliation(s)
- C S Scanlon
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
39
|
Yao W, Yu X, Fang Z, Yin P, Zhao C, Li N, Wang L, Li Z, Zha X. Profilin1 facilitates staurosporine-triggered apoptosis by stabilizing the integrin β1-actin complex in breast cancer cells. J Cell Mol Med 2012; 16:824-35. [PMID: 21692986 PMCID: PMC3822851 DOI: 10.1111/j.1582-4934.2011.01369.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Profilin1 (Pfn1) functions as a tumour suppressor against malignant phenotypes of cancer cells. A minimum level of Pfn1 is critical for the differentiation of human epithelial cells, and its lower expression correlates with the tumourigenesis of breast cancer cells and tissues. However, the molecular mechanisms underlying its anti-tumour action remain largely unknown. In this study, we found that stable expression of ectopic Pfn1 sensitized the breast cancer cell line MDA-MB-468 to apoptosis induced by staurosporine, a widely used natural apoptosis-inducing agent. Pfn1 overexpression could also up-regulate the expression of integrin α5β1, which has been shown to inhibit the transformed phenotype of cancer cells. Furthermore, the Pfn1-facilitated apoptosis induced by staurosporine was blocked in cells attached to a supplementary fibronectin substrate, which serves as a ligand of integrin α5β1. These results suggest that the insufficient fibronectin caused by the integrin α5β1 up-regulation might activate a signalling pathway leading to an increase of cellular apoptosis. Moreover, Pfn1 that primarily functions to promote local superstructure formation involving actin filaments and integrin β1 may contribute to its promotion on apoptosis. Our study indicated a previously uncharacterized role of Pfn1 in mediating staurosporine-inducing apoptosis in breast cancer cells via up-regulating integrin α5β1, and suggested a new target for breast cancer therapy.
Collapse
Affiliation(s)
- Wantong Yao
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kamoshida G, Matsuda A, Miura R, Takashima Y, Katsura A, Tsuji T. Potentiation of tumor cell invasion by co-culture with monocytes accompanying enhanced production of matrix metalloproteinase and fibronectin. Clin Exp Metastasis 2012; 30:289-97. [DOI: 10.1007/s10585-012-9536-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/14/2012] [Indexed: 11/29/2022]
|
41
|
Ozawa H, Sonoda Y, Kato S, Suzuki E, Matsuoka R, Kanaya T, Kiuchi F, Hada N, Kasahara T. Sulfatides inhibit adhesion, migration, and invasion of murine melanoma B16F10 cell line in vitro. Biol Pharm Bull 2012; 35:2054-8. [PMID: 22972421 DOI: 10.1248/bpb.b12-00492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous sulfatide, such as 3-sulfated galactosylceramide (3-sulfatide) has been reported to be involved in neuronal development and regulation of tumor cell metastasis. Recently, a new 6-sulfated glucosylceramide (6-sulfatide) has been isolated from the ascidian, Ciona intestinalis. To determine the antitumor function of the new sulfatide, we examined the effects of synthetic 6-sulfatide and 3-sulfatide on the metastatic features of a murine melanoma cell line, B16F10. Both sulfatides significantly inhibited the adhesion of melanoma cells onto fibronectin-coated tissue plates and, the motility and invasion of the cells, with 6-sulfatide showing stronger inhibitory activities. In addition, both sulfatides inhibited α(5)-, and β(1)- but not α(v)- or β(3)-integrin expression. Furthermore, these sulfatides inhibited the activation of focal adhesion kinase, Akt, and extracellular signal-regulated kinase signaling pathways, which are thought to be important for cell migration and invasion. Therefore, these sulfatides may serve as promising drug candidates for the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Hiroki Ozawa
- Faculty of Pharmacy, Keio University, 1–5–30 Shibakoen, Tokyo 105–8512, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li W, Song R, Fang X, Wang L, Chen W, Tang P, Yu B, Sun Y, Xu Q. SBF-1, a synthetic steroidal glycoside, inhibits melanoma growth and metastasis through blocking interaction between PDK1 and AKT3. Biochem Pharmacol 2012; 84:172-81. [DOI: 10.1016/j.bcp.2012.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/30/2022]
|
43
|
Xiang W, Ke Z, Zhang Y, Cheng GHY, Irwan ID, Sulochana KN, Potturi P, Wang Z, Yang H, Wang J, Zhuo L, Kini RM, Ge R. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice. J Cell Mol Med 2012; 15:359-74. [PMID: 19874420 PMCID: PMC3822802 DOI: 10.1111/j.1582-4934.2009.00961.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen-tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nam EH, Lee Y, Park YK, Lee JW, Kim S. ZEB2 upregulates integrin α5 expression through cooperation with Sp1 to induce invasion during epithelial-mesenchymal transition of human cancer cells. Carcinogenesis 2012; 33:563-71. [PMID: 22227038 DOI: 10.1093/carcin/bgs005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process implicated in tumor invasion, metastasis, embryonic development and wound healing. ZEB2 is a transcription factor involved in EMT that represses E-cadherin transcription. Although E-cadherin downregulation is a major event during EMT and tumor progression, E-cadherin reduction is probably not sufficient for full invasiveness. The mechanisms by which E-cadherin transcriptional repressors induce mesenchymal genes during EMT remain largely unknown. Here, we investigated the role of ZEB2 in the induction of integrin α5 during cancer EMT and its underlying mechanism. In human cancer cells, ZEB2 was found to directly upregulate integrin α5 transcription in a manner that is independent of the regulation of E-cadherin expression. Conversely, depletion of ZEB2 by small interfering RNA suppressed integrin α5 expression, leading to reduced invasion. Suppression of integrin α5 inhibited cancer cell invasion, suggesting an important role for integrin α5 in cancer progression. Furthermore, ZEB2 was found to activate the integrin α5 and vimentin promoters by interacting with and activating the transcription factor Sp1, suggesting that cooperation between ZEB2 and Sp1 represents a novel mechanism of mesenchymal gene activation during EMT. These findings increase our understanding of the pathways beyond E-cadherin reduction that regulate mesenchymal gene expression during EMT and cancer progression.
Collapse
Affiliation(s)
- Eun-Hee Nam
- Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 305-806, Korea
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Baranwal S, Wang Y, Rathinam R, Lee J, Jin L, McGoey R, Pylayeva Y, Giancotti F, Blobe GC, Alahari SK. Molecular characterization of the tumor-suppressive function of nischarin in breast cancer. J Natl Cancer Inst 2011; 103:1513-28. [PMID: 21917605 DOI: 10.1093/jnci/djr350] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nischarin (encoded by NISCH), an α5 integrin-binding protein, has been identified as a regulator of breast cancer cell invasion. We hypothesized that it might be a tumor suppressor and were interested in its regulation. METHODS We examined nischarin expression in approximately 300 human breast cancer and normal tissues using quantitative polymerase chain reaction and immunohistochemistry. Loss of heterozygosity analysis was performed by examining three microsatellite markers located near the NISCH locus in normal and tumor tissues. We generated derivatives of MDA-MB-231 human metastatic breast cancer cells that overexpressed nischarin and measured tumor growth from these cells as xenografts in mice; metastasis by these cells after tail vein injection; and α5 integrin expression, Rac, and focal adhesion kinase (FAK) signaling using western blotting. We also generated clones of MCF-7 human breast cancer cells in which nischarin expression was silenced and measured tumor growth in mouse xenograft models (n = 5 for all mouse experiments). P values were from two-sided Student t tests in pairwise comparisons. RESULTS Normal human breast tissue samples had statistically significantly higher expression of nischarin mRNA compared with tumor tissue samples (mean level in normal breast = 50.7 [arbitrary units], in breast tumor = 16.49 [arbitrary units], difference = 34.21, 95% confidence interval [CI] = 11.63 to 56.79, P = .003), and loss of heterozygosity was associated with loss of nischarin expression. MDA-MB-231 cells in which nischarin was overexpressed had statistically significantly reduced tumor growth and metastasis compared with parental MDA-MB-231 cells (mean volume at day 40, control vs nischarin-expressing tumors, 1977 vs 42.27 mm(3), difference = 1935 mm(3), 95% CI = 395 to 3475 mm(3), P = .025). Moreover, MCF-7 tumor xenografts in which nischarin expression was silenced grew statistically significantly faster than parental cells (mean volume at day 63, tumors with scrambled short hairpin RNA [shRNA] vs with nischarin shRNA, 224 vs 1262 mm(3), difference = 1038 mm(3), 95% CI = 899.6 to 1176 mm(3), P < .001). Overexpression of nischarin was associated with decreased α5 integrin expression, FAK phosphorylation, and Rac activation. CONCLUSION Nischarin may be a novel tumor suppressor that limits breast cancer progression by regulating α5 integrin expression and subsequently α5 integrin-, FAK-, and Rac-mediated signaling.
Collapse
Affiliation(s)
- Somesh Baranwal
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University School Of Medicine, 1901 Perdido St, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Arpaia E, Blaser H, Quintela-Fandino M, Duncan G, Leong HS, Ablack A, Nambiar SC, Lind EF, Silvester J, Fleming CK, Rufini A, Tusche MW, Brüstle A, Ohashi PS, Lewis JD, Mak TW. The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene 2011; 31:884-96. [PMID: 21765460 PMCID: PMC3289793 DOI: 10.1038/onc.2011.288] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteins containing a caveolin-binding domain (CBD), such as the Rho-GTPases, can interact with caveolin-1 (Cav1) through its caveolin scaffold domain. Rho-GTPases are important regulators of p130(Cas), which is crucial for both normal cell migration and Src kinase-mediated metastasis of cancer cells. However, although Rho-GTPases (particularly RhoC) and Cav1 have been linked to cancer progression and metastasis, the underlying molecular mechanisms are largely unknown. To investigate the function of Cav1-Rho-GTPase interaction in metastasis, we disrupted Cav1-Rho-GTPase binding in melanoma and mammary epithelial tumor cells by overexpressing CBD, and examined the loss-of-function of RhoC in metastatic cancer cells. Cancer cells overexpressing CBD or lacking RhoC had reduced p130(Cas) phosphorylation and Rac1 activation, resulting in an inhibition of migration and invasion in vitro. The activity of Src and the activation of its downstream targets FAK, Pyk2, Ras and extracellular signal-regulated kinase (Erk)1/2 were also impaired. A reduction in α5-integrin expression, which is required for binding to fibronectin and thus cell migration and survival, was observed in CBD-expressing cells and cells lacking RhoC. As a result of these defects, CBD-expressing melanoma cells had a reduced ability to metastasize in recipient mice, and impaired extravasation and survival in secondary sites in chicken embryos. Our data indicate that interaction between Cav1 and Rho-GTPases (most likely RhoC but not RhoA) promotes metastasis by stimulating α5-integrin expression and regulating the Src-dependent activation of p130(Cas)/Rac1, FAK/Pyk2 and Ras/Erk1/2 signaling cascades.
Collapse
Affiliation(s)
- E Arpaia
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang Y, Shenouda S, Baranwal S, Rathinam R, Jain P, Bao L, Hazari S, Dash S, Alahari SK. Integrin subunits alpha5 and alpha6 regulate cell cycle by modulating the chk1 and Rb/E2F pathways to affect breast cancer metastasis. Mol Cancer 2011; 10:84. [PMID: 21752283 PMCID: PMC3163626 DOI: 10.1186/1476-4598-10-84] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/13/2011] [Indexed: 11/25/2022] Open
Abstract
Background Although integrins have been implicated in the progression of breast cancer, the exact mechanism whereby they exert this regulation is clearly not understood. To understand the role of integrins in breast cancer, we examined the expression levels of several integrins in mouse breast cancer cell lines by flow cytometry and the data were validated by Western and RT-PCR analysis. The importance of integrins in cell migration and cell invasion was examined by in vitro assays. Further the effect of integrins on metastasis was investigated by in vivo experimental metastasis assays using mouse models. Results Integrin α5 subunit is highly expressed in the nonmetastatic cell line 67NR and is significantly low in the highly invasive cell line 4T1. In contrast, expression levels of integrin α6 subunit are high in 4T1 cells and low in 67NR cells. In vitro data indicated that overexpression of α5 subunit and knockdown of α6 integrin subunit inhibited cell proliferation, migration, and invasion. Our in vivo findings indicated that overexpression of integrin α5 subunit and knockdown of α6 subunit decreased the pulmonary metastasis property of 4T1 cells. Our data also indicated that overexpression of alpha 5 integrin subunit and suppression of alpha6 integrin subunit inhibited cells entering into S phase by up-regulating p27, which results in downregulation of cyclinE/CDK2 complexes, This suggests that these integrins regulate cell growth through their effects on cell-cycle-regulated proteins. We also found that modulation of these integrins upregulates E2F, which may induce the expression of chk1 to regulate cdc25A/cyclin E/CDK2/Rb in a feedback loop mechanism. Conclusion This study indicates that Integrin α5 subunit functions as a potential metastasis suppressor, while α6 subunit functions as a metastasis promoter. The modulation of integrins reduces cdc25 A, another possible mechanism for downregulation of CDK2. Taken together we demonstrate a link between integrins and the chk1-cdc25-cyclin E/CDK2-Rb pathway.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Biochemistry and Molecular Biology, Stanley Scott Cancer Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mierke CT, Frey B, Fellner M, Herrmann M, Fabry B. Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces. J Cell Sci 2011; 124:369-83. [PMID: 21224397 DOI: 10.1242/jcs.071985] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell migration through connective tissue, or cell invasion, is a fundamental biomechanical process during metastasis formation. Cell invasion usually requires cell adhesion to the extracellular matrix through integrins. In some tumors, increased integrin expression is associated with increased malignancy and metastasis formation. Here, we have studied the invasion of cancer cells with different α5β1 integrin expression levels into loose and dense 3D collagen fiber matrices. Using a cell sorter, we isolated from parental MDA-MB-231 breast cancer cells two subcell lines expressing either high or low amounts of α5β1 integrins (α5β1(high) or α5β1(low) cells, respectively). α5β1(high) cells showed threefold increased cell invasiveness compared to α5β1(low) cells. Similar results were obtained for 786-O kidney and T24 bladder carcinoma cells, and cells in which the α5 integrin subunit was knocked down using specific siRNA. Knockdown of the collagen receptor integrin subunit α2 also reduced invasiveness, but to a lesser degree than knockdown of integrin subunit α5. Fourier transform traction microscopy revealed that the α5β1(high) cells generated sevenfold greater contractile forces than α5β1(low) cells. Cell invasiveness was reduced after addition of the myosin light chain kinase inhibitor ML-7 in α5β1(high) cells, but not in α5β1(low) cells, suggesting that α5β1 integrins enhance cell invasion through enhanced transmission and generation of contractile forces.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute for Experimental Physics I, Soft Matter Physics Division, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
50
|
Li Y, Galileo DS. Soluble L1CAM promotes breast cancer cell adhesion and migration in vitro, but not invasion. Cancer Cell Int 2010; 10:34. [PMID: 20840789 PMCID: PMC2949617 DOI: 10.1186/1475-2867-10-34] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 09/15/2010] [Indexed: 11/17/2022] Open
Abstract
Background Neural recognition molecule L1CAM, which is a key protein involved in early nervous system development, is known to be abnormally expressed and shed in several types of cancers where it participates in metastasis and progression. The distinction of L1CAM presence in cancerous vs. normal tissues has suggested it to be a new target for cancer treatment. Our current study focused on the potential role of soluble L1CAM in breast cancer cell adhesion to extracellular matrix proteins, migration, and invasion. Results We found L1 expression levels were correlated with breast cancer stage of progression in established data sets of clinical samples, and also were high in more metastatic breast cancer cell lines MDA-MB-231 and MDA-MB-435, but low in less migratory MDA-MB-468 cells. Proteolysis of L1 into its soluble form (sL1) was detected in cell culture medium from all three above cell lines, and can be induced by PMA activation. Over-expression of the L1 ectodomain in MDA-MB-468 cells by using a lentiviral vector greatly increased the amount of sL1 released by those cells. Concomitantly, cell adhesion to extracellular matrix and cell transmigration ability were significantly promoted, while cell invasion ability through Matrigel™ remained unaffected. On the other hand, attenuating L1 expression in MDA-MB-231 cells by using a shRNA lentiviral vector resulted in reduced cell-matrix adhesion and transmigration. Similar effects were also shown by monoclonal antibody blocking of the L1 extracellular region. Moreover, sL1 in conditioned cell culture medium induced a directional migration of MDA-MB-468 cells, which could be neutralized by antibody treatment. Conclusions Our data provides new evidence for the function of L1CAM and its soluble form in promoting cancer cell adhesion to ECM and cell migration. Thus, L1CAM is validated further to be a potential early diagnostic marker in breast cancer progression and a target for breast cancer therapy.
Collapse
Affiliation(s)
- Yupei Li
- Department of Biological Sciences, University of Delaware, Wolf Hall, Newark, DE 19716 USA.
| | | |
Collapse
|