1
|
Veenstra JA. Neuropeptides from a praying mantis: what the loss of pyrokinins and tryptopyrokinins suggests about the endocrine functions of these peptides. PeerJ 2025; 13:e19036. [PMID: 40034667 PMCID: PMC11874938 DOI: 10.7717/peerj.19036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Background Neuropeptides play important roles in insects, but in many cases their functions remain obscure. Comparative neuropeptidome analyses may provide clues to what these functions might be. Praying mantises are predators and close relatives of cockroaches that are scavengers. Cockroach neuropeptidomes are well established, but little is known about mantis neuropeptides. The recently published genome assembly of the praying mantis Tenodera sinensis makes it Possible to change that. Methods The genome assembly from T. sinensis was analyzed for the presence of genes coding neuropeptides. For comparison, publicly available short read archives from this and other mantis species were also examined for the presence and expression of neuropeptides. Results As a rule, the neuropeptidomes of the Mantodea and Blattodea are almost identical; praying mantises and cockroaches use very similar neuropeptides. However, there is one surprising exception. Praying mantises lack the receptors for pyrokinins, including those for the tryptopyrokinins. No typical pyrokinin genes were found, but some species do have a tryptopyrokinin gene, in others this has also been lost and, in one species it is a speudogene. For most praying mantises there is no information where tryptopyrokinin is expressed, but in Deroplatys truncata it is in the thorax and thus not in the suboesophageal ganglion, as in other insects. In the genomic short read archives of two species-out of 52-sequences were found for a tryptopyrokinin specific receptor. The phylogenetic position of those two species implies that the receptor gene was independently lost on multiple occasions. The loss of the tryptopyrokinin gene also happened more than once. Discussion The multiple independent losses of the pyrokinin receptors in mantises suggests that these receptors are irrelevant in praying mantises. This is very surprising, since expression of tryptopyrokinin is very strongly conserved in two neuroendocrine cells in the suboeosphageal ganglion. In those species for which this is known, the expression of its receptor is in the salivary gland. As a neuroendocrine, tryptopyrokinin is unlikely to acutely regulate salivation, which in other insects is regulated by well characterized neurons. If the action of tryptopyrokinin were to prime the salivary gland for subsequent salivation, it would make perfect sense for a praying mantis to lose this capacity, as they can not anticipate when they will catch their next prey. Priming the salivary gland days before it is actually needed would be energetically costly. The other pyrokinins are known to facilitate feeding and may in a similar fashion prime muscles needed for moving to the food source and digesting it. This hypothesis provides a good explanation as to why praying mantises do not need pyrokinins, and also what the function of these ubiquitous arthropod neuropeptides may be.
Collapse
Affiliation(s)
- Jan A. Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Dou X, Jurenka R. Pheromone biosynthesis activating neuropeptide family in insects: a review. Front Endocrinol (Lausanne) 2023; 14:1274750. [PMID: 38161974 PMCID: PMC10755894 DOI: 10.3389/fendo.2023.1274750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Neuropeptides are involved in almost all physiological activities of insects. Their classification is based on physiological function and the primary amino acid sequence. The pyrokinin (PK)/pheromone biosynthesis activating neuropeptides (PBAN) are one of the largest neuropeptide families in insects, with a conserved C-terminal domain of FXPRLamide. The peptide family is divided into two groups, PK1/diapause hormone (DH) with a WFGPRLa C-terminal ending and PK2/PBAN with FXPRLamide C-terminal ending. Since the development of cutting-edge technology, an increasing number of peptides have been sequenced primarily through genomic, transcriptomics, and proteomics, and their functions discovered using gene editing tools. In this review, we discussed newly discovered functions, and analyzed the distribution of genes encoding these peptides throughout different insect orders. In addition, the location of the peptides that were confirmed by PCR or immunocytochemistry is also described. A phylogenetic tree was constructed according to the sequences of the receptors of most insect orders. This review offers an understanding of the significance of this conserved peptide family in insects.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Russell Jurenka
- Department of Plant Pathology, Entomology, Microbiology Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Yun SH, Jang HS, Ahn SJ, Price BE, Hasegawa DK, Choi MY. Identification and characterisation of PRXamide peptides in the western flower thrips, Frankliniella occidentalis. INSECT MOLECULAR BIOLOGY 2023; 32:603-614. [PMID: 37265417 DOI: 10.1111/imb.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/12/2023] [Indexed: 06/03/2023]
Abstract
Insect CAPA-PVK (periviscerokinin) and pyrokinin (PK) neuropeptides belong to the PRX family peptides and are produced from capa and pyrokinin genes. We identified and characterised the two genes from the western flower thrips, Frankliniella occidentalis. The capa gene transcribes three splice variants, capa-a, -b, and -c, encoding two CAPA-PVKs (EVQGLFPFPRVamide; QGLIPFPRVamide) and two PKs (ASWMPSSSPRLamide; DSASFTPRLamide). The pyrokinin mRNA encodes three PKs: DLVTQVLQPGQTGMWFGPRLamide, SEGNLVNFTPRLamide, and ESGEQPEDLEGSMGGAATSRQLRTDSEPTWGFSPRLamide, the most extended pheromone biosynthesis activating neuropeptide (PBAN) ortholog in insects. Multiple potential endoproteolytic cleavage sites were presented in the prepropeptides from the pyrokinin gene, creating ambiguity to predict mature peptides. To solve this difficulty, we used three G protein-coupled receptors (GPCRs) for CAPA-PVK, tryptophan PK (trpPK), and PK peptides, and evaluated the binding affinities of the peptides. The binding activities revealed each subfamily of peptides exclusively bind to their corresponding receptors, and were significant for determining the CAPA-PVK and PK peptides. Our biological method using specific GPCRs would be a valuable tool for determining mature peptides, particularly with multiple and ambiguous cleavage sites in those prepropeptides. Both capa and pyrokinin mRNAs were strongly expressed in the head/thorax, but minimally expressed in the abdomen. The two genes also were clearly expressed during most of the life stages. Whole-mounting immunocytochemistry revealed that neurons contained PRXamide peptides throughout the whole-body: four to six neurosecretory cells in the head, and three and seven pairs of immunostained cells in the thorax and abdomen, respectively. Notably, the unusual PRXamide profiles of Thysanoptera are different from the other insect groups.
Collapse
Affiliation(s)
- Seung-Hwan Yun
- Gyeonggi-do Agricultural Research and Extension Services, Hwaseong-si, Republic of Korea
| | - Hyo Sang Jang
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon, USA
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Briana E Price
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon, USA
| | - Daniel K Hasegawa
- Crop Improvement and Protection Research Unit, USDA-ARS, Salinas, California, USA
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Marciniak P, Pacholska-Bogalska J, Ragionieri L. Neuropeptidomes of Tenebrio molitor L. and Zophobas atratus Fab. (Coleoptera, Polyphaga: Tenebrionidae). J Proteome Res 2022; 21:2247-2260. [PMID: 36107737 PMCID: PMC9552230 DOI: 10.1021/acs.jproteome.1c00694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/28/2022]
Abstract
Neuropeptides are signaling molecules that regulate almost all physiological processes in animals. Around 50 different genes for neuropeptides have been described in insects. In Coleoptera, which is the largest insect order based on numbers of described species, knowledge about neuropeptides and protein hormones is still limited to a few species. Here, we analyze the neuropeptidomes of two closely related tenebrionid beetles: Tenebrio molitor and Zophobas atratus─both of which are model species in physiological and pharmacological research. We combined transcriptomic and mass spectrometry analyses of the central nervous system to identify neuropeptides and neuropeptide-like and protein hormones. Several precursors were identified in T. molitor and Z. atratus, of which 50 and 40, respectively, were confirmed by mass spectrometry. This study provides the basis for further functional studies of neuropeptides as well as for the design of environmentally friendly and species-specific peptidomimetics to be used as biopesticides. Furthermore, since T. molitor has become accepted by the European Food Safety Authority as a novel food, a deeper knowledge of the neuropeptidome of this species will prove useful for optimizing production programs at an industrial scale.
Collapse
Affiliation(s)
- Paweł Marciniak
- Department
of Animal Physiology and Developmental Biology, Institute of Experimental
Biology, Faculty of Biology, Adam Mickiewicz
University, Poznań 61-614, Poland
| | - Joanna Pacholska-Bogalska
- Department
of Animal Physiology and Developmental Biology, Institute of Experimental
Biology, Faculty of Biology, Adam Mickiewicz
University, Poznań 61-614, Poland
| | - Lapo Ragionieri
- Department
for Biology, Institute of Zoology, University
of Cologne, Cologne 50674, Germany
| |
Collapse
|
5
|
Diesner M, Bläser M, Eckardt S, Iliffe TM, Boelen Theile E, Predel R. Expression pattern of CAPA/pyrokinin neuropeptide genes in Remipedia and silverfish: Rapid differentiation after gene duplication in early Hexapoda, followed by strong conservation of newly established features in insects. Peptides 2021; 144:170610. [PMID: 34242680 DOI: 10.1016/j.peptides.2021.170610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
Only few genes are known from insects that encode multiple neuropeptides, i.e., peptides that activate different receptors. Among those are the capa and pk genes, which differentiated within Hexapoda following gene duplication. In our study, we focus on the early stages of differentiation of these genes. Specifically: (1) What was the expression pattern of the ancestral capa/pk gene, i.e., prior to gene duplication? (2) What is the expression pattern of capa and pk in silverfish, whose ancestors diverged from Pterygota more than 400 mya? Our results suggest the location and projection of CAPA immunoreactive Va cells in abdominal ganglia (trunk ganglia in Remipedia) are a plesiomorphic trait that was already present in the ancestor of Remipedia and Hexapoda. General features of serial homology such as location of cells bodies, contralateral projection of primary neurites, and presumed peripheral peptide release from segmentally arranged neurohemal release sites could be observed in Remipedia and silverfish, but also in all Pterygota studied so far. Differences are mainly in the specific location of these peripheral release sites. This hypothetical basic pattern of capa/pk neurons underwent modifications in the anterior ganglia of the ventral nerve cord already in Remipedia. In silverfish, as in all Pterygota studied so far, pk expression in the CNS is apparently restricted to the gnathal ganglia, whereas capa expression is typical of abdominal Va cells. Thus, differentiation in the expression pattern of capa and pk genes occurred early in the evolution of Hexapoda; likely soon after the appearance of two separate genes.
Collapse
Affiliation(s)
- Max Diesner
- Department of Biology, Institute of Zoology, University of Cologne, D-50674, Cologne, Germany
| | - Marcel Bläser
- Department of Biology, Institute of Zoology, University of Cologne, D-50674, Cologne, Germany
| | - Sarah Eckardt
- Department of Biology, Institute of Zoology, University of Cologne, D-50674, Cologne, Germany
| | - Thomas M Iliffe
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77554, USA
| | - Erik Boelen Theile
- Department of Biology, Institute of Zoology, University of Cologne, D-50674, Cologne, Germany
| | - Reinhard Predel
- Department of Biology, Institute of Zoology, University of Cologne, D-50674, Cologne, Germany.
| |
Collapse
|
6
|
Mizuno Y, Imura E, Kurogi Y, Shimada-Niwa Y, Kondo S, Tanimoto H, Hückesfeld S, Pankratz MJ, Niwa R. A population of neurons that produce hugin and express the diuretic hormone 44 receptor gene projects to the corpora allata in Drosophila melanogaster. Dev Growth Differ 2021; 63:249-261. [PMID: 34021588 DOI: 10.1111/dgd.12733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
The corpora allata (CA) are essential endocrine organs that biosynthesize and secrete the sesquiterpenoid hormone, namely juvenile hormone (JH), to regulate a wide variety of developmental and physiological events in insects. CA are directly innervated with neurons in many insect species, implying the innervations to be important for regulating JH biosynthesis. Although this is also true for the model organism Drosophila melanogaster, neurotransmitters produced in the CA-projecting neurons are yet to be identified. In this study on D. melanogaster, we aimed to demonstrate that a subset of neurons producing the neuropeptide hugin, the invertebrate counterpart of the vertebrate neuromedin U, directly projects to the adult CA. A synaptic vesicle marker in the hugin neurons was observed at their axon termini located on the CA, which were immunolabeled with a newly-generated antibody to the JH biosynthesis enzyme JH acid O-methyltransferase. We also found the CA-projecting hugin neurons to likely express a gene encoding the specific receptor for diuretic hormone 44 (Dh44). Moreover, our data suggest that the CA-projecting hugin neurons have synaptic connections with the upstream neurons producing Dh44. Unexpectedly, the inhibition of CA-projecting hugin neurons did not significantly alter the expression levels of the JH-inducible gene Krüppel-homolog 1, which implies that the CA-projecting neurons are not involved in JH biosynthesis but rather in other known biological processes. This is the first study to identify a specific neurotransmitter of the CA-projecting neurons in D. melanogaster, and to anatomically characterize a neuronal pathway of the CA-projecting neurons and their upstream neurons.
Collapse
Affiliation(s)
- Yosuke Mizuno
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Eisuke Imura
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yoshitomo Kurogi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Liu N, Wang Y, Li T, Feng X. G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int J Mol Sci 2021; 22:ijms22105260. [PMID: 34067660 PMCID: PMC8156084 DOI: 10.3390/ijms22105260] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
- Correspondence: ; Tel.: +1-334-844-5076
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Xuechun Feng
- Department of Biology Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
8
|
Ahn SJ, Mc Donnell RJ, Corcoran JA, Martin RC, Choi MY. Identification and functional characterization of the first molluscan neuromedin U receptor in the slug, Deroceras reticulatum. Sci Rep 2020; 10:22308. [PMID: 33339848 PMCID: PMC7749107 DOI: 10.1038/s41598-020-79047-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
Neuromedin U (NmU) is a neuropeptide regulating diverse physiological processes. The insect homologs of vertebrate NmU are categorized as PRXamide family peptides due to their conserved C-terminal end. However, NmU homologs have been elusive in Mollusca, the second largest phylum in the animal kingdom. Here we report the first molluscan NmU/PRXamide receptor from the slug, Deroceras reticulatum. Two splicing variants of the receptor gene were functionally expressed and tested for binding with ten endogenous peptides from the slug and some insect PRXamide and vertebrate NmU peptides. Three heptapeptides (QPPLPRYa, QPPVPRYa and AVPRPRIa) triggered significant activation of the receptors, suggesting that they are true ligands for the NmU/PRXamide receptor in the slug. Synthetic peptides with structural modifications at different amino acid positions provided important insights on the core moiety of the active peptides. One receptor variant always exhibited higher binding activity than the other variant. The NmU-encoding genes were highly expressed in the slug brain, while the receptor gene was expressed at lower levels in general with relatively higher expression levels in both the brain and foot. Injection of the bioactive peptides into slugs triggered defensive behavior such as copious mucus secretion and a range of other anomalous behaviors including immobilization, suggesting their role in important physiological functions.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, OR, USA.,Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Rory J Mc Donnell
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Jacob A Corcoran
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, OR, USA.,Biological Control of Insects Research Unit, USDA-ARS, Columbia, MO, USA
| | - Ruth C Martin
- Forage Seed and Cereal Research Unit, USDA-ARS, Corvallis, OR, USA
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, OR, USA.
| |
Collapse
|
9
|
Lajevardi A, Paluzzi JPV. Receptor Characterization and Functional Activity of Pyrokinins on the Hindgut in the Adult Mosquito, Aedes aegypti. Front Physiol 2020; 11:490. [PMID: 32528310 PMCID: PMC7255104 DOI: 10.3389/fphys.2020.00490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 01/29/2023] Open
Abstract
Pyrokinins are structurally related insect neuropeptides, characterized by their myotropic, pheromonotropic and melanotropic roles in some insects, but their function is unclear in blood-feeding arthropods. In the present study, we functionally characterized the pyrokinin-1 and pyrokinin-2 receptors (PK1-R and PK2-R, respectively), in the yellow fever mosquito, Aedes aegypti, using a heterologous cell system to characterize their selective and dose-responsive activation by members of two distinct pyrokinin subfamilies. We also assessed transcript-level expression of these receptors in adult organs and found the highest level of PK1-R transcript in the posterior hindgut (rectum) while PK2-R expression was enriched in the anterior hindgut (ileum) as well as in reproductive organs, suggesting these to be prominent target sites for their peptidergic ligands. In support of this, PRXa-like immunoreactivity (where X = V or L) was localized to innervation along the hindgut. Indeed, we identified a myoinhibitory role for a PK2 on the ileum where PK2-R transcript was enriched. However, although we found that PK1 did not influence myoactivity or Na+ transport in isolated recta, the PRXa-like immunolocalization terminating in close association to the rectal pads and the significant enrichment of PK1-R transcript in the rectum suggests this organ could be a target of PK1 signaling and may regulate the excretory system in this important disease vector species.
Collapse
Affiliation(s)
- Aryan Lajevardi
- Laboratory of Integrative Vector Neuroendocrinology, Department of Biology, York University, Toronto, ON, Canada
| | - Jean-Paul V Paluzzi
- Laboratory of Integrative Vector Neuroendocrinology, Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
10
|
Ahn SJ, Corcoran JA, Vander Meer RK, Choi MY. Identification and Characterization of GPCRs for Pyrokinin and CAPA Peptides in the Brown Marmorated Stink Bug, Halyomorpha halys (Hemiptera: Pentatomidae). Front Physiol 2020; 11:559. [PMID: 32547421 PMCID: PMC7274154 DOI: 10.3389/fphys.2020.00559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/04/2020] [Indexed: 01/16/2023] Open
Abstract
The brown marmorated stink bug, Halyomorpha halys, is an invasive hemipteran that causes significant economic losses to various agricultural products around the world. Recently, the pyrokinin and capa genes that express multiple neuropeptides were described in this species. Here we report six pyrokinin and capa GPCRs including two splice variants, and evaluate their (a) ability to respond to neuropeptides in cell-based assays, and (b) expression levels by RT-PCR. Functional studies revealed that the H. halys pyrokinin receptor-1 (HalhaPK-R1a & b) responded to the pyrokinin 2 (PK2) type peptide. RT-PCR results revealed that these receptors had little or no expression in the tissues tested, including the whole body, central nervous system, midgut, Malpighian tubules, and reproductive organs of males and females. HalhaPK-R2 showed the strongest response to PK2 peptides and a moderate response to pyrokinin 1 (PK1) type peptides (= DH, diapause hormone), and was expressed in all tissues tested. HalhaPK-R3a & b responded to both PK1 and PK2 peptides. Their gene expression was restricted mostly to the central nervous system and Malpighian tubules. All PK receptors were dominantly expressed in the fifth nymph. HalhaCAPA-R responded specifically to CAPA-PVK peptides (PVK1 and PVK2), and was highly expressed in the Malpighian tubules with low to moderate expression in other tissues, and life stages. Of the six GPCRs, HalhaPK-R3b showed the strongest response to PK1. Our experiments associated the following peptide ligands to the six GPCRs: HalhaPK-R1a & b and HalhaPK-R2 are activated by PK2 peptides, HalhaPK-R3a & b are activated by PK1 (= DH) peptides, and HalhaCAPA-R is activated by PVK peptides. These results pave the way for investigations into the biological functions of H. halys PK and CAPA peptides, and possible species-specific management of H. halys.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- USDA Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, United States.,Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Jacob A Corcoran
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO, United States
| | - Robert K Vander Meer
- USDA Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, United States
| | - Man-Yeon Choi
- USDA Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, United States
| |
Collapse
|
11
|
Cao Z, Yan L, Shen Z, Chen Y, Shi Y, He X, Zhou N. A novel splice variant of Gαq-coupled Bombyx CAPA-PVK receptor 1 functions as a specific Gαi/o-linked receptor for CAPA-PK. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118718. [PMID: 32289337 DOI: 10.1016/j.bbamcr.2020.118718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023]
Abstract
Alternative splicing enables G protein-coupled receptor (GPCR) genes to greatly increase the number of structurally and functionally distinct receptor isoforms. However, the functional role and relevance of the individual GPCR splice variants in regulating physiological processes are still to be assessed. A naturally occurring alternative splice variant of Bombyx CAPA-PVK receptor, BomCAPA-PVK-R1-Δ341, has been shown to act as a dominant-negative protein to regulate cell surface expression and function of the canonical CAPA-PVK receptor. Herein, using functional assays, we identify the splice variant Δ341 as a specific receptor for neuropeptide CAPA-PK, and upon activation, Δ341 signals to ERK1/2 pathway. Further characterization demonstrates that Δ341 couples to Gαi/o, distinct from the Gαq-coupled canonical CAPA-PVK receptor, triggering ERK1/2 phosphorylation through Gβγ-PI3K-PKCζ signaling cascade. Moreover, our ELISA data show that the ligand-dependent internalization of the splice variant Δ341 is significantly impaired due to lack of GRKs-mediated phosphorylation sites. Our findings highlight the potential of this knowledge for molecular, pharmacological and physiological studies on GPCR splice variants in the future.
Collapse
Affiliation(s)
- Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Chen
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaobai He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
12
|
Veenstra JA. Two Lys-vasopressin-like peptides, EFLamide, and other phasmid neuropeptides. Gen Comp Endocrinol 2019; 278:3-11. [PMID: 29705195 DOI: 10.1016/j.ygcen.2018.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 10/25/2022]
Abstract
Phasmid neuropeptide genes were identified in the genomes of two phasmids, Timema cristinae and Clitarchus hookeri. The two species belong to two sisters groups, the Timematodea and Euphasmatodea respectively. Neuropeptide genes were identified using the BLAST+ program on the genome assemblies and the absence of some neuropeptides was confirmed by the concomitant absence of their G-protein coupled receptors. Both genomes were assembled using short reads and the average coverage of the genome is more than 166 times for both species. This makes it virtually impossible that there would not be a single short read for at least one of the conserved transmembrane regions of a GPCR coded by such a genome. Hence, when not a single read can be found for a specific GPCR, it can be concluded that the particular gene is absent from that species. Most previously identified insect neuropeptides are used by these two species. Of the three arthropod allatostatin C related peptides, only allatostatins CC and CCC are present. Both species lack leucokinin, while sulfakinin and dilp8 signaling is absent from Clitarchus, but present in Timema. Interestingly, whereas Timema has lost a vasopressin-related peptide, the gene coding such a peptide is amplified in the Clitarchus genome. Furthermore, while Clitarchus has a specific tryptopyrokinin gene, Timema does not and in this species tryptopyrokinin is coded only by the pyrokinin and periviscerokinin genes. Finally, both species have genes coding EFLamide and its GPCR; in phasmids these genes codes for one (Clitarchus) or two (Timema) EFLamide paracopies.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA, UMR 5287 CNRS, Université de Bordeaux, allée Geoffroy St Hillaire, CS 50023, 33 615 Pessac Cedex, France.
| |
Collapse
|
13
|
Veenstra JA. Coleoptera genome and transcriptome sequences reveal numerous differences in neuropeptide signaling between species. PeerJ 2019; 7:e7144. [PMID: 31245184 PMCID: PMC6585902 DOI: 10.7717/peerj.7144] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Background Insect neuropeptides are interesting for the potential their receptors hold as plausible targets for a novel generation of pesticides. Neuropeptide genes have been identified in a number of different species belonging to a variety of insects. Results suggest significant neuropeptide variation between different orders, but much less is known of neuropeptidome variability within an insect order. I therefore compared the neuropeptidomes of a number of Coleoptera. Methodology Publicly available genome sequences, transcriptomes and the original sequence data in the form of short sequence read archives were analyzed for the presence or absence of genes coding neuropeptides as well as some neuropeptide receptors in seventeen beetle species. Results Significant differences exist between the Coleoptera analyzed here, while many neuropeptides that were previously characterized from Tribolium castaneum appear very similar in all species, some are not and others are lacking in one or more species. On the other hand, leucokinin, which was presumed to be universally absent from Coleoptera, is still present in non-Polyphaga beetles. Conclusion The variability in neuropeptidome composition between species from the same insect order may be as large as the one that exists between species from different orders.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Bordeaux, Pessac, France
| |
Collapse
|
14
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
15
|
Ly A, Ragionieri L, Liessem S, Becker M, Deininger SO, Neupert S, Predel R. Enhanced Coverage of Insect Neuropeptides in Tissue Sections by an Optimized Mass-Spectrometry-Imaging Protocol. Anal Chem 2019; 91:1980-1988. [DOI: 10.1021/acs.analchem.8b04304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alice Ly
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Lapo Ragionieri
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Sander Liessem
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Michael Becker
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | | | - Susanne Neupert
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Reinhard Predel
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
16
|
Pandit AA, Ragionieri L, Marley R, Yeoh JGC, Inward DJG, Davies SA, Predel R, Dow JAT. Coordinated RNA-Seq and peptidomics identify neuropeptides and G-protein coupled receptors (GPCRs) in the large pine weevil Hylobius abietis, a major forestry pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:94-107. [PMID: 30165105 DOI: 10.1016/j.ibmb.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Hylobius abietis (Linnaeus), or large pine weevil (Coleoptera, Curculionidae), is a pest of European coniferous forests. In order to gain understanding of the functional physiology of this species, we have assembled a de novo transcriptome of H. abietis, from sequence data obtained by Next Generation Sequencing. In particular, we have identified genes encoding neuropeptides, peptide hormones and their putative G-protein coupled receptors (GPCRs) to gain insights into neuropeptide-modulated processes. The transcriptome was assembled de novo from pooled paired-end, sequence reads obtained from RNA from whole adults, gut and central nervous system tissue samples. Data analysis was performed on the transcripts obtained from the assembly including, annotation, gene ontology and functional assignment as well as transcriptome completeness assessment and KEGG pathway analysis. Pipelines were created using Bioinformatics tools and techniques for prediction and identification of neuropeptides and neuropeptide receptors. Peptidomic analysis was also carried out using a combination of MALDI-TOF as well as Q-Exactive Orbitrap mass spectrometry to confirm the identified neuropeptide. 41 putative neuropeptide families were identified in H. abietis, including Adipokinetic hormone (AKH), CAPA and DH31. Neuropeptide F, which has not been yet identified in the model beetle T. castaneum, was identified. Additionally, 24 putative neuropeptide and 9 leucine-rich repeat containing G protein coupled receptor-encoding transcripts were determined using both alignment as well as non-alignment methods. This information, submitted to the NCBI sequence read archive repository (SRA accession: SRP133355), can now be used to inform understanding of neuropeptide-modulated physiology and behaviour in H. abietis; and to develop specific neuropeptide-based tools for H. abietis control.
Collapse
Affiliation(s)
- Aniruddha A Pandit
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lapo Ragionieri
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Joseph G C Yeoh
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Reinhard Predel
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
17
|
Koziol U. Precursors of neuropeptides and peptide hormones in the genomes of tardigrades. Gen Comp Endocrinol 2018; 267:116-127. [PMID: 29935140 DOI: 10.1016/j.ygcen.2018.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Tardigrades are a key group for understanding the evolution of the Ecdysozoa, a large clade of molting animals that also includes arthropods and nematodes. However, little is known about most aspects of their basic biology. Neuropeptide and peptide hormone signaling has been extensively studied in arthropods and nematodes (particularly regarding their roles in molting in arthropods), but very little is known about neuropeptide signaling in other ecdysozoans. In this work, different strategies were used to search for neuropeptide and peptide hormone precursors in the genomes of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. In general, there is a remarkable similarity in the complement of neuropeptides and their sequences between tardigrades and arthropods. The precursors found in tardigrades included homologs of achatin, allatostatins A, B and C, allatotropin, calcitonin, CCHamide, CCRFa, corazonin, crustacean cardioactive peptide, diuretic hormone 31, diuretic hormone 44, ecdysis triggering hormone, eclosion hormone, gonadotropin-releasing hormone (GnRH), GSEFLamide, insulin-like peptides, ion transport peptide, kinin, neuropeptide F, orcokinin, pigment dispersing hormone, proctolin, pyrokinin, RYamide, short neuropeptide F, sulfakinin, tachykinin, trissin and vasopressin. In most cases, homologs of known cognate receptors for each neuropeptide family could only be identified when the precursors were also present in the genome, further supporting their identification. Some neuropeptide precursor genes have undergone several duplications in tardigrades, including allatostatin A and C, corazonin, GnRH, eclosion hormone, sulfakinin and trissin. Furthermore, four novel families of candidate neuropeptide precursors were identified (two of which could also be found in several arthropods). To the best of my knowledge, this work represents the first genome-wide search for neuropeptide precursors in any ecdysozoan species outside arthropods and nematodes, and is a necessary first step towards understanding neuropeptide function in tardigrades.
Collapse
Affiliation(s)
- Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP11400 Montevideo, Uruguay.
| |
Collapse
|
18
|
Shen Z, Yang X, Chen Y, Shi L. CAPA periviscerokinin-mediated activation of MAPK/ERK signaling through Gq-PLC-PKC-dependent cascade and reciprocal ERK activation-dependent internalized kinetics of Bom-CAPA-PVK receptor 2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 98:1-15. [PMID: 29730398 DOI: 10.1016/j.ibmb.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/16/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Bombyx mori neuropeptide G protein-coupled receptor (BNGR)-A27 is a specific receptor for B. mori capability (CAPA) periviscerokinin (PVK), that is, Bom-CAPA-PVK receptor 2. Upon stimulation of Bom-CAPA-PVK-1 or -PVK-2, Bom-CAPA-PVK receptor 2 significantly increases cAMP-response element-controlled luciferase activity and Ca2+ mobilization in a Gq inhibitor-sensitive manner. However, the underlying mechanism(s) for CAPA/CAPA receptor system mediation of extracellular signal-regulated kinases1/2 (ERK1/2) activation remains to be explained further. Here, we discovered that Bom-CAPA-PVK receptor 2 stimulated ERK1/2 phosphorylation in a dose- and time-dependent manner in response to Bom-CAPA-PVK-1 or -PVK-2 with similar potencies. Furthermore, ERK1/2 phosphorylation can be inhibited by Gq inhibitor UBO-QIC, PLC inhibitor U73122, protein kinase C (PKC) inhibitor Go 6983, phospholipase D (PLD) inhibitor FIPI and Ca2+ chelators EGTA and BAPTA-AM. Moreover, Bom-CAPA-PVK-R2-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ-specific inhibitors, phosphatidylinositol 3-kinase (PI3K)-specific inhibitor Wortmannin and Src-specific inhibitor PP2. Our data also demonstrate that receptor tyrosine kinase (RTK) transactivation pathways are involved in the mechanisms of Bom-CAPA-PVK receptor to ERK1/2 phosphorylation. In addition, β-arrestin1/2 is not involved in Bom-CAPA-PVK-R2-mediated ERK1/2 activation but required for the agonist-independent, ERK1/2 activation-dependent internalization of the G protein-coupled receptor (GPCR).
Collapse
Affiliation(s)
- Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiaoyuan Yang
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Chen
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liangen Shi
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
19
|
Jiang L, Zhang F, Hou Y, Thakur K, Hu F, Zhang JG, Jiang XF, Liu YQ, Wei ZJ. Isolation and functional characterization of the pheromone biosynthesis activating neuropeptide receptor of Chinese oak silkworm, Antheraea pernyi. Int J Biol Macromol 2018; 117:42-50. [PMID: 29800669 DOI: 10.1016/j.ijbiomac.2018.05.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
Abstract
Insect pheromone biosynthesis activating neuropeptide (PBAN) controls the synthesis and actuating of sex pheromones of female adult. In the current examination, the full-length cDNA encoding the PBAN receptor was cloned from the pheromone gland (PG) of Antheraea pernyi (AntpePBANR). The AntpePBANR displayed the characteristic seven transmembrane areas of the G protein-coupled receptor (GPCR) and was closely related to the PBANR from Bombyx mori and Manduca sexta in the phylogenetic tree. The AntpePBANR expressed in mammalian cell lines were enacted by AntpePBAN in a concentration-dependent manner. AntpePBANR activation resulted in the calcium mobilization but did not activate the cAMP elevation pathway. Cells expressing AntpePBANR were profoundly responsive to Antpe-γ-SGNP (suboesophageal ganglion neuropeptides) and Antpe-DH (diapause hormone), different individuals from FXPRLamide (X = T, S or V) family in A. pernyi. Deletion of residues in the C-terminal hexapeptide (FSPRLamide) proved that P, R and L played the key parts in initiating the AntpePBANR, the amination to the last C terminal residues which can also likewise impact the activation of AntpePBAN receptor altogether. The mRNA of the AntpePBANR gene demonstrated the most noteworthy transcript levels in pheromone gland followed by fat body.
Collapse
Affiliation(s)
- Li Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Fang Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yang Hou
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Kiran Thakur
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Fei Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Xing-Fu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
20
|
Neupert S, Marciniak P, Köhler R, Nachman RJ, Suh CPC, Predel R. Different processing of CAPA and pyrokinin precursors in the giant mealworm beetle Zophobas atratus (Tenebrionidae) and the boll weevil Anthonomus grandis grandis (Curculionidae). Gen Comp Endocrinol 2018; 258:53-59. [PMID: 28867173 DOI: 10.1016/j.ygcen.2017.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 11/24/2022]
Abstract
Capa and pyrokinin (pk) genes in hexapods share a common evolutionary origin. Using transcriptomics and peptidomics, we analyzed products of these genes in two beetles, the giant mealworm beetle (Zophobas atratus; Tenebrionidae) and the boll weevil (Anthonomus grandis grandis; Curculionidae). Our data revealed that even within Coleoptera, which represents a very well-defined group of insects, highly different evolutionary developments occurred in the neuropeptidergic system. These differences, however, primarily affect the general structure of the precursors and differential processing of mature peptides and, to a lesser degree, the sequences of the active core motifs. With the differential processing of the CAPA-precursor in Z. atratus we found a perfect example of completely different products cleaved from a single neuropeptide precursor in different cells. The CAPA precursor in abdominal ganglia of this species yields primarily periviscerokinins (PVKs) whereas processing of the same precursor in neurosecretory cells of the subesophageal ganglion results in CAPA-tryptoPK and a novel CAPA-PK. Particularly important was the detection of that CAPA-PK which has never been observed in the CNS of insects before. The three different types of CAPA peptides (CAPA-tryptoPK, CAPA-PK, PVK) each represent potential ligands which activate different receptors. In contrast to the processing of the CAPA precursor from Z. atratus, no indications of a differential processing of the CAPA precursor were found in A. g. grandis. These data suggest that rapid evolutionary changes regarding the processing of CAPA precursors were still going on when the different beetle lineages diverged. The sequence of the single known PVK of A. g. grandis occupies a special position within the known PVKs of insects and might serve asa basis to develop lineage-specific peptidomimetics capable of disrupting physiological processes regulated by PVKs.
Collapse
Affiliation(s)
- Susanne Neupert
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany; Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture, College Station, TX 77845, United States
| | - Pawel Marciniak
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany; Department of Animal Physiology and Development, Adam Mickiewicz University in Poznan, Umutlowska Str. 89, 61-614 Poznań, Poland
| | - Rene Köhler
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany; Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture, College Station, TX 77845, United States
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture, College Station, TX 77845, United States
| | - Charles P-C Suh
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture, College Station, TX 77845, United States
| | - Reinhard Predel
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany.
| |
Collapse
|
21
|
Ragionieri L, Özbagci B, Neupert S, Salts Y, Davidovitch M, Altstein M, Predel R. Identification of mature peptides from pban and capa genes of the moths Heliothis peltigera and Spodoptera littoralis. Peptides 2017; 94:1-9. [PMID: 28502715 DOI: 10.1016/j.peptides.2017.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 11/18/2022]
Abstract
By transcriptome analysis, we identified PBAN and CAPA precursors in the moths Spodoptera littoralis and Heliothis peltigera which are among the most damaging pests of agriculture in tropical and subtropical Africa as well as in Mediterranean countries. A combination of mass spectrometry and immunocytochemistry was used to identify mature peptides processed from these precursors and to reveal their spatial distribution in the CNS. We found that the sites of expression of pban genes, the structure of PBAN precursors and the processed neuropeptides are very similar in noctuid moths. The sequence of the diapause hormone (DH; tryptopyrokinin following the signal peptide), however, contains two N-terminal amino acids more than expected from comparison with already published sequences of related species. Capa genes of S. littoralis and H. peltigera encode, in addition to periviscerokinins, a tryptopyrokinin showing sequence similarity with DH, which is the tryptopyrokinin of the pban gene. CAPA peptides, which were not known from any noctuid moth so far, are produced in cells of abdominal ganglia. The shape of the release sites of these hormones in H. peltigera represents an exceptionally derived trait state and does not resemble the well-structured abdominal perisympathetic organs which are known from many other insects. Instead, axons of CAPA cells extensively ramify within the ventral diaphragm. The novel information regarding the sequences of all mature peptides derived from pban and capa genes of H. peltigera and S. littoralis now enables a detailed analysis of the bioactivity and species-specificity of the native peptides, especially those from the hitherto unknown capa genes, and to explore their interactions with PBAN/DH receptors.
Collapse
Affiliation(s)
- Lapo Ragionieri
- Department of Biology, Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674 Cologne, Germany.
| | - Burak Özbagci
- Department of Biology, Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674 Cologne, Germany
| | - Susanne Neupert
- Department of Biology, Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674 Cologne, Germany
| | - Yuval Salts
- Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel
| | | | - Miriam Altstein
- Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel
| | - Reinhard Predel
- Department of Biology, Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
22
|
Choi MY, Ahn SJ, Kim AY, Koh Y. Identification and characterization of pyrokinin and CAPA peptides, and corresponding GPCRs from spotted wing drosophila, Drosophila suzukii. Gen Comp Endocrinol 2017; 246:354-362. [PMID: 28069423 DOI: 10.1016/j.ygcen.2017.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 11/29/2022]
Abstract
The family of FXPRLamide peptides serves as a major insect hormone. It is characterized by a core active amino acid sequence conserved at the C-terminal ends, and provides various physiological roles across the Insecta. In this study we identified and characterized pyrokinin (PK) and CAPA cDNAs encoding two FXPRLamide peptides, pyrokinin and CAPA-DH (diapause hormone), and two corresponding G protein-coupled receptors (GPCRs) from spotted wing drosophila (SWD), Drosophila suzukii. Expressions of PK and CAPA mRNAs were differentially observed during all life stages except the embryo, and the detection of CAPA transcription was relatively strong compared with the PK gene in SWD. Both D. suzukii pyrokinin receptor (DrosuPKr) and CAPA-DH receptor (DrosuCAPA-DHr) were functionally expressed and confirmed through binding to PK and DH peptides. Differential expression of two GPCRs occurred during all life stages; a strong transcription of DrosuPKr was observed in the 3rd instar. DrosuCAPA-DHr was clearly expressed from the embryo to the larva, but not detected in the adult. Gene regulation during the life stages was not synchronized between ligand and receptor. For example, SWD CAPA mRNA has been up-regulated in the adult while CAPA-DHr was down-regulated. The difference could be from the CAPA mRNA translating multiple peptides including CAPA-DH and two CAPA-PVK (periviscerokinin) peptides to act on different receptors. Comparing the genes of SWD PK, CAPA, PKr and CAPA-DHr to four corresponding genes of D. melanogaster, SWD CAPA and the receptor are more similar to D. melanogaster than PK and the receptor. These data suggest that the CAPA gene could be evolutionally more conserved to have a common biological role in insects. In addition, the effect of Kozak sequences was investigated by the expression of the GPCRs with or without Kozak sequences in Sf9 insect cells. The Kozak sequenced PK receptor was significantly less active than the original (= no Kozak sequenced) receptor. Our results provide a knowledge for potential biological function(s) of PK and CAPA-DH peptides in SWD, and possibly offer a novel control method for this pest insect in the future.
Collapse
Affiliation(s)
- Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Laboratory, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA.
| | - Seung-Joon Ahn
- USDA-ARS, Horticultural Crops Research Laboratory, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA; Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA
| | - A Young Kim
- Department of Bio-medical Gerontology, Ilsong Institute of Life Sciences, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Youngho Koh
- Department of Bio-medical Gerontology, Ilsong Institute of Life Sciences, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| |
Collapse
|
23
|
Redeker J, Bläser M, Neupert S, Predel R. Identification and distribution of products from novel tryptopyrokinin genes in the locust, Locusta migratoria. Biochem Biophys Res Commun 2017; 486:70-75. [DOI: 10.1016/j.bbrc.2017.02.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 11/16/2022]
|
24
|
Gondalia K, Qudrat A, Bruno B, Fleites Medina J, Paluzzi JPV. Identification and functional characterization of a pyrokinin neuropeptide receptor in the Lyme disease vector, Ixodes scapularis. Peptides 2016; 86:42-54. [PMID: 27667704 DOI: 10.1016/j.peptides.2016.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
Abstract
Pyrokinin-related peptides are pleiotropic factors that are defined by their conserved C-terminal sequence FXPRL-NH2. The pyrokinin nomenclature derives from their originally identified myotropic actions and, as seen in some family members, a blocked amino terminus with pyroglutamate. The black-legged tick, Ixodes scapularis, is well known as a vector of Lyme disease and various other illnesses; however, in comparison to blood-feeding insects, knowledge on its physiology (along with other Ixodid ticks) is rather limited. In this study, we have isolated, examined the expression profile, and functionally deorphanized the pyrokinin peptide receptor in the medically important tick, I. scapularis. Phylogenetic analysis supports that the cloned receptor is indeed a bona fide member of the pyrokinin-related peptide receptor family. The tick pyrokinin receptor transcript expression is most abundant in the central nervous system (i.e. synganglion), but is also detected in trachea, female reproductive tissues, and in a pooled sample comprised of Malpighian (renal) tubules and the hindgut. Finally, functional characterization of the identified receptor confirmed it as a pyrokinin peptide receptor as it was activated equally by four endogenous pyrokinin-related peptides. The receptor was slightly promiscuous as it was also activated by a peptide sharing some structural similarity, namely the CAPA-periviserokinin (CAPA-PVK) peptide. Nonetheless, the I. scapularis pyrokinin receptor required a CAPA-PVK peptide concentration of well over three orders of magnitude to achieve a comparable receptor activation response, which indicates it is quite selective for its native pyrokinin peptide ligands. This study sets the stage for future research to examine the prospective tissue targets identified in order to resolve the physiological roles of this family of peptides in Ixodid ticks.
Collapse
Affiliation(s)
- Kinsi Gondalia
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Anam Qudrat
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Brigida Bruno
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Janet Fleites Medina
- Vivarium Facility, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
25
|
Schlegel P, Texada MJ, Miroschnikow A, Schoofs A, Hückesfeld S, Peters M, Schneider-Mizell CM, Lacin H, Li F, Fetter RD, Truman JW, Cardona A, Pankratz MJ. Synaptic transmission parallels neuromodulation in a central food-intake circuit. eLife 2016; 5:16799. [PMID: 27845623 PMCID: PMC5182061 DOI: 10.7554/elife.16799] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
NeuromedinU is a potent regulator of food intake and activity in mammals. In Drosophila, neurons producing the homologous neuropeptide hugin regulate feeding and locomotion in a similar manner. Here, we use EM-based reconstruction to generate the entire connectome of hugin-producing neurons in the Drosophila larval CNS. We demonstrate that hugin neurons use synaptic transmission in addition to peptidergic neuromodulation and identify acetylcholine as a key transmitter. Hugin neuropeptide and acetylcholine are both necessary for the regulatory effect on feeding. We further show that subtypes of hugin neurons connect chemosensory to endocrine system by combinations of synaptic and peptide-receptor connections. Targets include endocrine neurons producing DH44, a CRH-like peptide, and insulin-like peptides. Homologs of these peptides are likewise downstream of neuromedinU, revealing striking parallels in flies and mammals. We propose that hugin neurons are part of an ancient physiological control system that has been conserved at functional and molecular level. DOI:http://dx.doi.org/10.7554/eLife.16799.001
Collapse
Affiliation(s)
- Philipp Schlegel
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Michael J Texada
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Anton Miroschnikow
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Andreas Schoofs
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Sebastian Hückesfeld
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Marc Peters
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | | | - Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Veenstra JA. Neuropeptide Evolution: Chelicerate Neurohormone and Neuropeptide Genes may reflect one or more whole genome duplications. Gen Comp Endocrinol 2016:S0016-6480(15)00248-8. [PMID: 27838380 DOI: 10.1016/j.ygcen.2015.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/16/2015] [Accepted: 07/26/2015] [Indexed: 12/16/2022]
Abstract
Four genomes and two transcriptomes from six Chelicerate species were analyzed for the presence of neuropeptide and neurohormone precursors and their GPCRs. The genome from the spider Stegodyphus mimosarum yielded 87 neuropeptide precursors and 101 neuropeptide GPCRs. High neuropeptide transcripts were also found in the trancriptomes of three other spiders, Latrodectus hesperus, Parasteatoda tepidariorum and Acanthoscurria geniculata. For the scorpion Mesobuthus martensii the numbers are 79 and 74 respectively. The very small genome of the house dust mite, Dermatophagoides farinae, on the other hand contains a much smaller number of such genes. A few new putative Arthropod neuropeptide genes were discovered. Thus, both spiders and the scorpion have an achatin gene and in spiders there are two different genes encoding myosuppressin-like peptides while spiders also have two genes encoding novel LGamides. Another finding is the presence of trissin in spiders and scorpions, while neuropeptide genes that seem to be orthologs of Lottia LFRYamide and Platynereis CCRFamide were also found. Such genes were also found in various insect species, but seem to be lacking from the Holometabola. The Chelicerate neuropeptide and neuropeptide GPCR genes often have paralogs. As the large majority of these are probably not due to local gene duplications, is not impossible that they reflect the effects of one or more ancient whole genome duplications.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, France.
| |
Collapse
|
27
|
Veenstra JA. Similarities between decapod and insect neuropeptidomes. PeerJ 2016; 4:e2043. [PMID: 27257538 PMCID: PMC4888303 DOI: 10.7717/peerj.2043] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Neuropeptides are important regulators of physiological processes and behavior. Although they tend to be generally well conserved, recent results using trancriptome sequencing on decapod crustaceans give the impression of significant differences between species, raising the question whether such differences are real or artefacts. Methods. The BLAST+ program was used to find short reads coding neuropeptides and neurohormons in publicly available short read archives. Such reads were then used to find similar reads in the same archives, and the DNA assembly program Trinity was employed to construct contigs encoding the neuropeptide precursors as completely as possible. Results. The seven decapod species analyzed in this fashion, the crabs Eriocheir sinensis, Carcinus maenas and Scylla paramamosain, the shrimp Litopenaeus vannamei, the lobster Homarus americanus, the fresh water prawn Macrobrachium rosenbergii and the crayfish Procambarus clarkii had remarkably similar neuropeptidomes. Although some neuropeptide precursors could not be assembled, in many cases individual reads pertaining to the missing precursors show unambiguously that these neuropeptides are present in these species. In other cases, the tissues that express those neuropeptides were not used in the construction of the cDNA libraries. One novel neuropeptide was identified: elongated PDH (pigment dispersing hormone), a variation on PDH that has a two-amino-acid insertion in its core sequence. Hyrg is another peptide that is ubiquitously present in decapods and is likely a novel neuropeptide precursor. Discussion. Many insect species have lost one or more neuropeptide genes, but apart from elongated PDH and hyrg all other decapod neuropeptides are present in at least some insect species, and allatotropin is the only insect neuropeptide missing from decapods. This strong similarity between insect and decapod neuropeptidomes makes it possible to predict the receptors for decapod neuropeptides that have been deorphanized in insects. This includes the androgenic insulin-like peptide that seems to be homologous to drosophila insulin-like peptide 8.
Collapse
Affiliation(s)
- Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (CNRS UMR5287), University of Bordeaux , Pessac , France
| |
Collapse
|
28
|
Veenstra JA. Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications. Gen Comp Endocrinol 2016; 229:41-55. [PMID: 26928473 DOI: 10.1016/j.ygcen.2015.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/20/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
Four genomes and two transcriptomes from six Chelicerate species were analyzed for the presence of neuropeptide and neurohormone precursors and their GPCRs. The genome from the spider Stegodyphus mimosarum yielded 87 neuropeptide precursors and 120 neuropeptide GPCRs. Many neuropeptide transcripts were also found in the transcriptomes of three other spiders, Latrodectus hesperus, Parasteatoda tepidariorum and Acanthoscurria geniculata. For the scorpion Mesobuthus martensii the numbers are 79 and 93 respectively. The very small genome of the house dust mite, Dermatophagoides farinae, on the other hand contains a much smaller number of such genes. A few new putative Arthropod neuropeptide genes were discovered. Thus, both spiders and the scorpion have an achatin gene and in spiders there are two different genes encoding myosuppressin-like peptides while spiders also have two genes encoding novel LGamides. Another finding is the presence of trissin in spiders and scorpions, while neuropeptide genes that seem to be orthologs of Lottia LFRYamide and Platynereis CCRFamide were also found. Such genes were also found in various insect species, but seem to be lacking from the Holometabola. The Chelicerate neuropeptide and neuropeptide GPCR genes often have paralogs. As the large majority of these are probably not due to local gene duplications, is plausible that they reflect the effects of one or more ancient whole genome duplications.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, France.
| |
Collapse
|
29
|
Derst C, Dircksen H, Meusemann K, Zhou X, Liu S, Predel R. Evolution of neuropeptides in non-pterygote hexapods. BMC Evol Biol 2016; 16:51. [PMID: 26923142 PMCID: PMC4770511 DOI: 10.1186/s12862-016-0621-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/15/2016] [Indexed: 01/29/2023] Open
Abstract
Background Neuropeptides are key players in information transfer and act as important regulators of development, growth, metabolism, and reproduction within multi-cellular animal organisms (Metazoa). These short protein-like substances show a high degree of structural variability and are recognized as the most diverse group of messenger molecules. We used transcriptome sequences from the 1KITE (1K Insect Transcriptome Evolution) project to search for neuropeptide coding sequences in 24 species from the non-pterygote hexapod lineages Protura (coneheads), Collembola (springtails), Diplura (two-pronged bristletails), Archaeognatha (jumping bristletails), and Zygentoma (silverfish and firebrats), which are often referred to as “basal” hexapods. Phylogenetically, Protura, Collembola, Diplura, and Archaeognatha are currently placed between Remipedia and Pterygota (winged insects); Zygentoma is the sistergroup of Pterygota. The Remipedia are assumed to be among the closest relatives of all hexapods and belong to the crustaceans. Results We identified neuropeptide precursor sequences within whole-body transcriptome data from these five hexapod groups and complemented this dataset with homologous sequences from three crustaceans (including Daphnia pulex), three myriapods, and the fruit fly Drosophila melanogaster. Our results indicate that the reported loss of several neuropeptide genes in a number of winged insects, particularly holometabolous insects, is a trend that has occurred within Pterygota. The neuropeptide precursor sequences of the non-pterygote hexapods show numerous amino acid substitutions, gene duplications, variants following alternative splicing, and numbers of paracopies. Nevertheless, most of these features fall within the range of variation known from pterygote insects. However, the capa/pyrokinin genes of non-pterygote hexapods provide an interesting example of rapid evolution, including duplication of a neuropeptide gene encoding different ligands. Conclusions Our findings delineate a basic pattern of neuropeptide sequences that existed before lineage-specific developments occurred during the evolution of pterygote insects. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0621-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Derst
- Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674, Cologne, Germany.
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| | - Karen Meusemann
- Center for Molecular Biodiversity Research, Zoological Research Museum A. Koenig, D-53113, Bonn, Germany. .,Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, ACT, 2601, Canberra, Australia.
| | - Xin Zhou
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.
| | - Shanlin Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.
| | - Reinhard Predel
- Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674, Cologne, Germany.
| |
Collapse
|
30
|
Nässel DR, Vanden Broeck J. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cell Mol Life Sci 2016; 73:271-90. [PMID: 26472340 PMCID: PMC11108470 DOI: 10.1007/s00018-015-2063-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/02/2023]
Abstract
Insulin, insulin-like growth factors (IGFs) and insulin-like peptides (ILPs) are important regulators of metabolism, growth, reproduction and lifespan, and mechanisms of insulin/IGF signaling (IIS) have been well conserved over evolution. In insects, between one and 38 ILPs have been identified in each species. Relatively few insect species have been investigated in depth with respect to ILP functions, and therefore we focus mainly on the well-studied fruitfly Drosophila melanogaster. In Drosophila eight ILPs (DILP1-8), but only two receptors (dInR and Lgr3) are known. DILP2, 3 and 5 are produced by a set of neurosecretory cells (IPCs) in the brain and their biosynthesis and release are controlled by a number of mechanisms differing between larvae and adults. Adult IPCs display cell-autonomous sensing of circulating glucose, coupled to evolutionarily conserved mechanisms for DILP release. The glucose-mediated DILP secretion is modulated by neurotransmitters and neuropeptides, as well as by factors released from the intestine and adipocytes. Larval IPCs, however, are indirectly regulated by glucose-sensing endocrine cells producing adipokinetic hormone, or by circulating factors from the intestine and fat body. Furthermore, IIS is situated within a complex physiological regulatory network that also encompasses the lipophilic hormones, 20-hydroxyecdysone and juvenile hormone. After release from IPCs, the ILP action can be modulated by circulating proteins that act either as protective carriers (binding proteins), or competitive inhibitors. Some of these proteins appear to have additional functions that are independent of ILPs. Taken together, the signaling with multiple ILPs is under complex control, ensuring tightly regulated IIS in the organism.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Louvain, Belgium
| |
Collapse
|
31
|
Jiang H, Wei Z, Nachman RJ, Kaczmarek K, Zabrocki J, Park Y. Functional characterization of five different PRXamide receptors of the red flour beetle Tribolium castaneum with peptidomimetics and identification of agonists and antagonists. Peptides 2015; 68:246-52. [PMID: 25447413 PMCID: PMC4437919 DOI: 10.1016/j.peptides.2014.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 11/30/2022]
Abstract
The neuropeptidergic system in insects is an excellent target for pest control strategies. One promising biorational approach is the use of peptidomimetics modified from endogenous ligands to enhance biostability and bioavailability. In this study, we functionally characterized five different G protein-coupled receptors in a phylogenetic cluster, containing receptors for PRXamide in the red flour beetle Tribolium castaneum, by evaluating a series of 70 different peptides and peptidomimetics. Three pyrokinin receptors (TcPKr-A, -B, and -C), cardioacceleratory peptide receptor (TcCAPAr) and ecdysis triggering hormone receptor (TcETHr) were included in the study. Strong agonistic or antagonistic peptidomimetics were identified, and included beta-proline (β(3)P) modification of the core amino acid residue proline and also a cyclo-peptide. It is common for a ligand to act on multiple receptors. In a number of cases, a ligand acting as an agonist on one receptor was an efficient antagonist on another receptor, suggesting complex outcomes of a peptidomimetic in a biological system. Interestingly, TcPK-A was highly promiscuous with a high number of agonists, while TcPK-C and TcCAPAr had a lower number of agonists, but a higher number of compounds acting as an antagonist. This observation suggests that a target GPCR with more promiscuity will provide better success for peptidomimetic approaches. This study is the first description of peptidomimetics on a CAPA receptor and resulted in the identification of peptidomimetic analogs that demonstrate antagonism of CAPA ligands. The PRXamide receptor assays with peptidomimetics provide useful insights into the biochemical properties of receptors.
Collapse
Affiliation(s)
- Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - Zhaojun Wei
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
| | - Krzysztof Kaczmarek
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States; Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Janusz Zabrocki
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States; Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
32
|
Yang Y, Nachman RJ, Pietrantonio PV. Molecular and pharmacological characterization of the Chelicerata pyrokinin receptor from the southern cattle tick, Rhipicephalus (Boophilus) microplus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 60:13-23. [PMID: 25747529 DOI: 10.1016/j.ibmb.2015.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
We identified the first pyrokinin receptor (Rhimi-PKR) in Chelicerata and analyzed structure-activity relationships of cognate ligand neuropeptides and their analogs. Based on comparative and phylogenetic analyses, this receptor, which we cloned from larvae of the cattle tick Rhipicephalus microplus (Acari: Ixodidae), is the ortholog of the insect pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN)/diapause hormone (DH) neuropeptide family receptor. Rhimi-PKR functional analyses using calcium bioluminescence were performed with a developed stable recombinant CHO-K1 cell line. Rhimi-PKR was activated by four endogenous PKs from the Lyme disease vector, the tick Ixodes scapularis (EC50s range: 85.4 nM-546 nM), and weakly by another tick PRX-amide peptide, periviscerokinin (PVK) (EC50 = 24.5 μM). PK analogs with substitutions of leucine, isoleucine or valine at the C-terminus for three tick PK peptides, Ixosc-PK1, Ixosc-PK2, and Ixosc-PK3, retained their potency on Rhimi-PKR. Therefore, Rhimi-PKR is less selective and substantially more tolerant than insect PK receptors of C-terminal substitutions of leucine to isoleucine or valine, a key structural feature that serves to distinguish insect PK from PVK/CAP2b receptors. In females, ovary and synganglion had the highest Rhimi-PKR relative transcript abundance followed by the rectal sac, salivary glands, Malpighian tubules, and midgut. This is the first pharmacological analysis of a PK/PBAN/DH-like receptor from the Chelicerata, which will now permit the discovery of the endocrinological roles of this neuropeptide family in vectors of vertebrate pathogens.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX 77845, USA
| | | |
Collapse
|
33
|
Abstract
The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.
Collapse
|
34
|
Alfa RW, Park S, Skelly KR, Poffenberger G, Jain N, Gu X, Kockel L, Wang J, Liu Y, Powers AC, Kim SK. Suppression of insulin production and secretion by a decretin hormone. Cell Metab 2015; 21:323-334. [PMID: 25651184 PMCID: PMC4349554 DOI: 10.1016/j.cmet.2015.01.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/16/2014] [Accepted: 01/13/2015] [Indexed: 01/06/2023]
Abstract
Decretins, hormones induced by fasting that suppress insulin production and secretion, have been postulated from classical human metabolic studies. From genetic screens, we identified Drosophila Limostatin (Lst), a peptide hormone that suppresses insulin secretion. Lst is induced by nutrient restriction in gut-associated endocrine cells. limostatin deficiency led to hyperinsulinemia, hypoglycemia, and excess adiposity. A conserved 15-residue polypeptide encoded by limostatin suppressed secretion by insulin-producing cells. Targeted knockdown of CG9918, a Drosophila ortholog of Neuromedin U receptors (NMURs), in insulin-producing cells phenocopied limostatin deficiency and attenuated insulin suppression by purified Lst, suggesting CG9918 encodes an Lst receptor. NMUR1 is expressed in islet β cells, and purified NMU suppresses insulin secretion from human islets. A human mutant NMU variant that co-segregates with familial early-onset obesity and hyperinsulinemia fails to suppress insulin secretion. We propose Lst as an index member of an ancient hormone class called decretins, which suppress insulin output.
Collapse
Affiliation(s)
- Ronald W Alfa
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Neuroscience Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sangbin Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen-Rose Skelly
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregory Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Nimit Jain
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lutz Kockel
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jing Wang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yinghua Liu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Shalev AH, Altstein M. Pheromonotropic and melanotropic PK/PBAN receptors: differential ligand-receptor interactions. Peptides 2015; 63:81-9. [PMID: 25451335 DOI: 10.1016/j.peptides.2014.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to further characterize the PK/PBAN receptors and their interaction with various PK/PBAN peptides in order to get a better understanding of their ubiquitous and multifunctional nature. Two cloned receptors stably expressed in Spodoptera frugiperda (Sf9) cells were used in this study: a Heliothis peltigera pheromone gland receptor (Hep-PK/PBAN-R) (which stimulates sex pheromone biosynthesis) and Spodoptera littoralis larval receptor (Spl-PK/PBAN-R) (which mediates cuticular melanization in moth larvae) and their ability to respond to several native PK/PBAN peptides: β-subesophageal neuropeptide (β-SGNP), myotropin (MT) and Leucophaea maderae pyrokinin (LPK), as well as linear and cyclic analogs was tested by monitoring their ability to stimulate Ca(2+) release. The receptors exhibited a differential response to β-SGNP, which activated the Hep-PK/PBAN-R but not the Spl-PK/PBAN-R - a response opposite to that previously demonstrated with diapause hormone (DH). MT was somewhat more active on Spl-PK/PBAN-R than on Hep-PK/PBAN-R. LPK elicited similar positive responses in both receptors (like that with PBAN). A differential response toward both receptors was also noticed with the PBAN-derived backbone cyclic (BBC) conformationally constrained peptide BBC-5. The peptides BBC-7 and BBC-8 activated both receptors. The results correlate between two PK/PBAN mediated function (cuticular melanization and sex pheromone biosynthesis) and the peptides that activate them and thus advance our understanding of the mode of action of the PK/PBAN family, and might help in exploring novel high-affinity receptor-specific antagonists that could serve as a basis for development of new families of insect-control agents.
Collapse
Affiliation(s)
| | - Miriam Altstein
- Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
36
|
De Haes W, Van Sinay E, Detienne G, Temmerman L, Schoofs L, Boonen K. Functional neuropeptidomics in invertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:812-26. [PMID: 25528324 DOI: 10.1016/j.bbapap.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/27/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Neuropeptides are key messengers in almost all physiological processes. They originate from larger precursors and are extensively processed to become bioactive. Neuropeptidomics aims to comprehensively identify the collection of neuropeptides in an organism, organ, tissue or cell. The neuropeptidome of several invertebrates is thoroughly explored since they are important model organisms (and models for human diseases), disease vectors and pest species. The charting of the neuropeptidome is the first step towards understanding peptidergic signaling. This review will first discuss the latest developments in exploring the neuropeptidome. The physiological roles and modes of action of neuropeptides can be explored in two ways, which are largely orthogonal and therefore complementary. The first way consists of inferring the functions of neuropeptides by a forward approach where neuropeptide profiles are compared under different physiological conditions. Second is the reverse approach were neuropeptide collections are used to screen for receptor-binding. This is followed by localization studies and functional tests. This review will focus on how these different functional screening methods contributed to the field of invertebrate neuropeptidomics and expanded our knowledge of peptidergic signaling. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Wouter De Haes
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Elien Van Sinay
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Giel Detienne
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Liesbet Temmerman
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Kurt Boonen
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
37
|
Veenstra JA. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front Physiol 2014; 5:454. [PMID: 25477824 PMCID: PMC4237046 DOI: 10.3389/fphys.2014.00454] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/03/2014] [Indexed: 12/29/2022] Open
Abstract
The genomes of the migratory locust Locusta migratoria and the termite Zootermopsis nevadensis were mined for the presence of genes encoding neuropeptides, neurohormones, and their G-protein coupled receptors (GPCRs). Both species have retained a larger number of neuropeptide and neuropeptide GPCRs than the better known holometabolous insect species, while other genes that in holometabolous species appear to have a single transcript produce two different precursors in the locust, the termite or both. Thus, the recently discovered CNMa neuropeptide gene has two transcripts predicted to produce two structurally different CNMa peptides in the termite, while the locust produces two different myosuppressin peptides in the same fashion. Both these species also have a calcitonin gene, which is different from the gene encoding the calcitonin-like insect diuretic hormone. This gene produces two types of calcitonins, calcitonins A and B. It is also present in Lepidoptera and Coleoptera and some Diptera, but absent from mosquitoes and Drosophila. However, in holometabolous insect species, only the B transcript is produced. Their putative receptors were also identified. In contrast, Locusta has a highly unusual gene that codes for a salivation stimulatory peptide. The Locusta genes for neuroparsin and vasopressin are particularly interesting. The neuroparsin gene produces five different transcripts, of which only one codes for the neurohormone identified from the corpora cardiaca. The other four transcripts code for neuroparsin-like proteins, which lack four amino acid residues, and that for that reason we called neoneuroparsins. The number of transcripts for the neoneuroparsins is about 200 times larger than the number of neuroparsin transcripts. The first exon and the putative promoter of the vasopressin genes, of which there are about seven copies in the genome, is very well-conserved, but the remainder of these genes is not. The relevance of these findings is discussed.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux Pessac, France
| |
Collapse
|
38
|
Functional phylogenetics reveals contributions of pleiotropic peptide action to ligand-receptor coevolution. Sci Rep 2014; 4:6800. [PMID: 25348027 PMCID: PMC4210869 DOI: 10.1038/srep06800] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/08/2014] [Indexed: 11/11/2022] Open
Abstract
The evolution of peptidergic signaling has been accompanied by a significant degree of ligand-receptor coevolution. Closely related clusters of peptide signaling molecules are observed to activate related groups of receptors, implying that genes encoding these ligands may orchestrate an array of functions, a phenomenon known as pleiotropy. Here we examine whether pleiotropic actions of peptide genes might influence ligand-receptor coevolution. Four test groups of neuropeptides characterized by conserved C-terminal amino acid sequence motifs and their cognate receptors were examined in the red flour beetle (Tribolium castaneum): 1) cardioacceleratory peptide 2b (CAPA); CAPAr, 2) pyrokinin/diapause hormone (PK1/DH); PKr-A, -B, 3) pyrokinin/pheromone biosynthesis activating hormone (PK2/PBAN); PKr-C, and 4) ecdysis triggering hormone (ETH); ETHr-b. Ligand-receptor specificities were established through heterologous expression of receptors in cell-based assays for 9 endogenous ligands. Based on ligand-receptor specificity analysis, we found positive pleiotropism exhibited by ETH on ETHR-b and CAPAr, whereas PK1/DH and CAPA are more highly selective for their respective authentic receptors than would be predicted by phylogenetic analysis. Disparities between evolutionary trees deduced from receptor sequences vs. functional ligand-receptor specificities lead to the conclusion that pleiotropy exhibited by peptide genes influences ligand-receptor coevolution.
Collapse
|
39
|
Sturm S, Predel R. Serine phosphorylation of CAPA pyrokinin in cockroaches-a taxon-specific posttranslational modification. Peptides 2014; 57:52-8. [PMID: 24793144 DOI: 10.1016/j.peptides.2014.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
In insects, posttranslational modifications of neuropeptides are largely restricted to C- and N-terminal amino acids. The most common modifications, N-terminal pyroglutamate formation and C-terminal α-amidation, may prevent a fast degradation of these messenger molecules. This is particularly important for peptide hormones. Other common posttranslational modifications of proteins such as glycosylation and phosphorylation seem to be very rare in insect neuropeptides. To check this assumption, we used a computer algorithm to search an extensive data set of MALDI-TOF mass spectra from cockroach tissues for ion signal patterns indicating peptide phosphorylation. The results verify that phosphorylation is indeed very rare. However, a candidate was found and experimentally verified as phosphorylated CAPA pyrokinin (GGGGpSGETSGMWFGPRL-NH2) in the cockroach Lamproblatta albipalpus (Blattidae, Lamproblattinae). Tandem mass spectrometry revealed the phosphorylation site as Ser(5). Phosphorylated CAPA pyrokinin was then also detected in most other cockroach lineages (e.g. Blaberidae, Polyphagidae) but not in closely related blattid species such as Periplaneta americana. This is remarkable since the sequence of CAPA pyrokinin is identical in Lamproblatta and Periplaneta. A consensus sequence of CAPA pyrokinins of cockroaches revealed a conserved motif that suggests phosphorylation by a Four-jointed/FAM20C related kinase.
Collapse
Affiliation(s)
- Sebastian Sturm
- Cologne Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Reinhard Predel
- Cologne Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany.
| |
Collapse
|
40
|
Pauls D, Chen J, Reiher W, Vanselow JT, Schlosser A, Kahnt J, Wegener C. Peptidomics and processing of regulatory peptides in the fruit fly Drosophila. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Kawai T, Katayama Y, Guo L, Liu D, Suzuki T, Hayakawa K, Lee JM, Nagamine T, Hull JJ, Matsumoto S, Nagasawa H, Tanokura M, Nagata K. Identification of functionally important residues of the silkmoth pheromone biosynthesis-activating neuropeptide receptor, an insect ortholog of the vertebrate neuromedin U receptor. J Biol Chem 2014; 289:19150-63. [PMID: 24847080 DOI: 10.1074/jbc.m113.488999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of sex pheromone components in many lepidopteran insects is regulated by the interaction between pheromone biosynthesis-activating neuropeptide (PBAN) and the PBAN receptor (PBANR), a class A G-protein-coupled receptor. To identify functionally important amino acid residues in the silkmoth PBANR, a series of 27 alanine substitutions was generated using a PBANR chimera C-terminally fused with enhanced GFP. The PBANR mutants were expressed in Sf9 insect cells, and their ability to bind and be activated by a core PBAN fragment (C10PBAN(R2K)) was monitored. Among the 27 mutants, 23 localized to the cell surface of transfected Sf9 cells, whereas the other four remained intracellular. Reduced binding relative to wild type was observed with 17 mutants, and decreased Ca(2+) mobilization responses were observed with 12 mutants. Ala substitution of Glu-95, Glu-120, Asn-124, Val-195, Phe-276, Trp-280, Phe-283, Arg-287, Tyr-307, Thr-311, and Phe-319 affected both binding and Ca(2+) mobilization. The most pronounced effects were observed with the E120A mutation. A molecular model of PBANR indicated that the functionally important PBANR residues map to the 2nd, 3rd, 6th, and 7th transmembrane helices, implying that the same general region of class A G-protein-coupled receptors recognizes both peptidic and nonpeptidic ligands. Docking simulations suggest similar ligand-receptor recognition interactions for PBAN-PBANR and the orthologous vertebrate pair, neuromedin U (NMU) and NMU receptor (NMUR). The simulations highlight the importance of two glutamate residues, Glu-95 and Glu-120, in silkmoth PBANR and Glu-117 and Glu-142 in human NMUR1, in the recognition of the most functionally critical region of the ligands, the C-terminal residue and amide.
Collapse
Affiliation(s)
- Takeshi Kawai
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukie Katayama
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Linjun Guo
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Desheng Liu
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tatsuya Suzuki
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kou Hayakawa
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jae Min Lee
- the Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, and
| | - Toshihiro Nagamine
- the Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, and
| | - J Joe Hull
- the United States Department of Agriculture-Arid Land Agricultural Research Center, Maricopa, Arizona 85138
| | - Shogo Matsumoto
- the Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, and
| | - Hiromichi Nagasawa
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| | - Koji Nagata
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
42
|
Choi MY, Köhler R, Vander Meer RK, Neupert S, Predel R. Identification and expression of capa gene in the fire ant, Solenopsis invicta. PLoS One 2014; 9:e94274. [PMID: 24718032 PMCID: PMC3981796 DOI: 10.1371/journal.pone.0094274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Recent genome analyses suggested the absence of a number of neuropeptide genes in ants. One of the apparently missing genes was the capa gene. Capa gene expression in insects is typically associated with the neuroendocrine system of abdominal ganglia; mature CAPA peptides are known to regulate diuresis and visceral muscle contraction. The apparent absence of the capa gene raised questions about possible compensation of these functions. In this study, we re-examined this controversial issue and searched for a potentially unrecognized capa gene in the fire ant, Solenopsis invicta. We employed a combination of data mining and a traditional PCR-based strategy using degenerate primers designed from conserved amino acid sequences of insect capa genes. Our findings demonstrate that ants possess and express a capa gene. As shown by MALDI-TOF mass spectrometry, processed products of the S. invicta capa gene include three CAPA periviscerokinins and low amounts of a pyrokinin which does not have the C-terminal WFGPRLa motif typical of CAPA pyrokinins in other insects. The capa gene was found with two alternative transcripts in the CNS. Within the ventral nerve cord, two capa neurons were immunostained in abdominal neuromeres 2–5, respectively, and projected into ventrally located abdominal perisympathetic organs (PSOs), which are the major hormone release sites of abdominal ganglia. The ventral location of these PSOs is a characteristic feature and was also found in another ant, Atta sexdens.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida, United States of America
- * E-mail: (MYC); (RP)
| | - Rene Köhler
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
| | - Robert K. Vander Meer
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida, United States of America
| | - Susanne Neupert
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
| | - Reinhard Predel
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
- * E-mail: (MYC); (RP)
| |
Collapse
|
43
|
Li C, Yun X, Hu X, Zhang Y, Sang M, Liu X, Wu W, Li B. Identification of G protein-coupled receptors in the pea aphid, Acyrthosiphon pisum. Genomics 2013; 102:345-54. [PMID: 23792713 DOI: 10.1016/j.ygeno.2013.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 11/29/2022]
Abstract
GPCRs play crucial roles in the growth, development and reproduction of organisms. In insects, a large number of GPCRs have been reported for Holometabola but not Hemimetabola. The recently sequenced pea aphid genome provides us with the opportunity to analyze the evolution and potential functions of GPCRs in Hemimetabola. 82 GPCRs were identified from the representative model hemimetabolous insect Acyrthosiphon pisum, 37 of which have ESTs evidence, and 73 are annotated for the first time. A striking difference between A. pisum, Drosophila melanogaster and Tribolium castaneum is the duplication of the kinin and SIFamide receptors in A. pisum. Another divergence is the loss of the sulfakinin receptor in A. pisum. These duplications/losses are likely involved in the osmoregulation, reproduction and energy metabolism of A. pisum. Moreover, this work will promote functional analyses of GPCRs in A. pisum and may advance new drug target discovery for biological control of the aphid.
Collapse
Affiliation(s)
- Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hariton-Shalev A, Shalev M, Adir N, Belausov E, Altstein M. Structural and functional differences between pheromonotropic and melanotropic PK/PBAN receptors. Biochim Biophys Acta Gen Subj 2013; 1830:5036-48. [PMID: 23850474 DOI: 10.1016/j.bbagen.2013.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/17/2013] [Accepted: 06/29/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The pyrokinin/pheromone biosynthesis-activating neuropeptide (PK/PBAN) plays a major role in regulating a wide range of physiological processes in insects. The ubiquitous and multifunctional nature of the PK/PBAN peptide family raises many questions regarding the mechanisms by which these neuropeptides elicit their effects and the nature of the receptors that mediate their functions. METHODS A sex pheromone gland receptor of the PK/PBAN family from Heliothis peltigera female moth and a Spodoptera littoralis larval receptor were cloned and stably expressed, and their structural models, electrostatic potentials and cellular functional properties were evaluated. RESULTS Homology modeling indicated highly conserved amino-acid residues in appropriate structural positions as experimentally shown for class A G-protein coupled receptors. Structural differences could be proposed and electrostatic potentials of the two receptor models revealed net charge differences. Calcium mobilization assays demonstrated that both receptors were fully functional and could initiate extracellular calcium influx to start PK/PBAN signal transduction. Evaluation of the signaling response of both receptors to PBAN and diapause hormone (DH) revealed a highly sensitive, though differential response. Both receptors responded to PBAN whereas only Spl-PK/PBAN-R exhibited a high response toward DH. CONCLUSIONS The structural, electrostatic and cellular functional differences indicate that different PK/PBAN in vivo functions may be mediated by different PK/PBAN receptors and elicited by different peptide(s). GENERAL SIGNIFICANCE The results advance our understanding of the mode of action of the PK/PBAN family, and might help in exploring novel high-affinity receptor-specific antagonists that can serve as a basis for the development of new families of insect-control agents.
Collapse
|
45
|
Nusawardani T, Kroemer JA, Choi MY, Jurenka RA. Identification and characterization of the pyrokinin/pheromone biosynthesis activating neuropeptide family of G protein-coupled receptors from Ostrinia nubilalis. INSECT MOLECULAR BIOLOGY 2013; 22:331-340. [PMID: 23551811 DOI: 10.1111/imb.12025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Insects have two closely related G protein-coupled receptors belonging to the pyrokinin/pheromone biosynthesis activating neuropeptide (pyrokinin/PBAN) family, one with the ligand PBAN or pyrokinin-2 and another with diapause hormone or pyrokinin-1 as a ligand. A related receptor is activated by products of the capa gene, periviscerokinins. Here we characterized the PBAN receptor and the diapause hormone receptor from the European corn borer, Ostrinia nubilalis. We also identified a partial sequence for the periviscerokinin receptor. Quantitative PCR of mRNA for all three receptors indicated differential expression in various life stages and tissues. All three splice variants of the PBAN receptor were identified with all variants found in pheromone gland tissue. Immunohistochemistry of V5 tags of expressed receptors indicated that all three variants and the diapause hormone receptor were expressed at similar levels in Spodoptera frugiperda 9 (Sf9) cells. However, the A- and B-variants were not active in our functional assay, which confirms studies from other moths. Functional expression of the C-variant indicated that it is has a 44 nM half effective concentration for activation by PBAN. The diapause hormone receptor was activated by diapause hormone with a 150 nM half effective concentration.
Collapse
Affiliation(s)
- T Nusawardani
- Department of Entomology, Iowa State University, Ames, IA, USA
| | | | | | | |
Collapse
|
46
|
Predel R, Neupert S, Russell WK, Hauser F, Russell DH, Li A, Nachman RJ. CAPA-gene products in the haematophagous sandfly Phlebotomus papatasi (Scopoli)--vector for leishmaniasis disease. Peptides 2013; 41:2-7. [PMID: 23266568 DOI: 10.1016/j.peptides.2012.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 11/20/2022]
Abstract
Sandflies (Phlebotominae, Nematocera, Diptera) are responsible for transmission of leishmaniasis and other protozoan-borne diseases in humans, and these insects depend on the regulation of water balance to cope with the sudden and enormous intake of blood over a very short time period. The sandfly inventory of neuropeptides, including those that regulate diuretic processes, is completely unknown. Direct MALDI-TOF/TOF mass spectrometric analysis of dissected ganglia of Phlebotomus papatasi, combined with a data-mining of sandfly genome 'contigs', was used to identify native CAPA-peptides, a peptide class associated with the regulation of diuresis in other hematophagous insects. The CAPA-peptides identified in this study include two CAPA-PVKs, differentially processed CAPA-PK, and an additional CAPA precursor peptide. The mass spectrometric analysis of different parts of the neuroendocrine system of the sandfly indicate that it represents the first insect which accumulates CAPA-PVKs exclusively in hormone release sites of abdominal ganglia and CAPA-PK (nearly) exclusively in the corpora cardiaca. Additionally, sandflies feature the smallest abdominal ganglia (~35 μm) where CAPA-peptides could be detected so far. The small size of the abdominal ganglia does not appear to affect the development of the median neurosecretory system as it obviously does in another comparably small insect species, Nasonia vitripennis, in which no capa-gene expression was found. Rather, immunocytochemical analyses confirm that the general architecture in sandflies appears identical to that of much larger mosquitoes.
Collapse
Affiliation(s)
- Reinhard Predel
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Vogel KJ, Brown MR, Strand MR. Phylogenetic investigation of Peptide hormone and growth factor receptors in five dipteran genomes. Front Endocrinol (Lausanne) 2013; 4:193. [PMID: 24379806 PMCID: PMC3863949 DOI: 10.3389/fendo.2013.00193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022] Open
Abstract
Peptide hormones and growth factors bind to membrane receptors and regulate a myriad of processes in insects and other metazoans. The evolutionary relationships among characterized and uncharacterized ("orphan") receptors can provide insights into receptor-ligand biology and narrow target choices in deorphanization studies. However, the large number and low sequence conservation of these receptors make evolutionary analysis difficult. Here, we characterized the G-protein-coupled receptors (GPCRs), receptor guanylyl cyclases (RGCs), and protein kinase receptors (PKRs) of mosquitoes and select other flies by interrogating the genomes of Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster, and D. mojavensis. Sequences were grouped by receptor type, clustered using the program CLANS, aligned using HMMR, and phylogenetic trees built using PhyML. Our results indicated that PKRs had relatively few orphan clades whereas GPCRs and RGCs had several. In addition, more than half of the Class B secretin-like GPCRs and RGCs remained uncharacterized. Additional studies revealed that Class B GPCRs exhibited more gain and loss events than other receptor types. Finally, using the neuropeptide F family of insect receptors and the neuropeptide Y family of vertebrate receptors, we also show that functional sites considered critical for ligand binding are conserved among distinct family members and between distantly related taxa. Overall, our results provide the first comprehensive analysis of peptide hormone and growth factor receptors for a major insect group.
Collapse
Affiliation(s)
- Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, GA, USA
- *Correspondence: Kevin J. Vogel, Department of Entomology, The University of Georgia, 413 Biological Sciences Building, Athens, GA 30602, USA e-mail:
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, GA, USA
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
48
|
Choi MY, Vander Meer RK. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone. PLoS One 2012; 7:e50400. [PMID: 23226278 PMCID: PMC3511524 DOI: 10.1371/journal.pone.0050400] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/19/2012] [Indexed: 01/09/2023] Open
Abstract
Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta.
Collapse
Affiliation(s)
- Man-Yeon Choi
- USDA-ARS, Center of Medical, Agricultural and Veterinary Entomology, Florida, United States of America
| | - Robert K. Vander Meer
- USDA-ARS, Center of Medical, Agricultural and Veterinary Entomology, Florida, United States of America
| |
Collapse
|
49
|
Paluzzi JP, O'Donnell MJ. Identification, spatial expression analysis and functional characterization of a pyrokinin-1 receptor in the Chagas' disease vector, Rhodnius prolixus. Mol Cell Endocrinol 2012; 363:36-45. [PMID: 22820129 DOI: 10.1016/j.mce.2012.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/24/2012] [Accepted: 07/11/2012] [Indexed: 11/21/2022]
Abstract
The capability or capa gene, encodes a pyrokinin-related peptide (known as pyrokinin-1, PK1) that contains the consensus carboxy-terminal sequence of WFGPRL-NH(2). Although the CAPA precursor polypeptide in Rhodnius prolixus yields the anti-diuretic hormone, RhoprCAPA-α2, no function has yet been elucidated for the pyrokinin-1 peptide, RhoprCAPA-αPK1. In order to elucidate the possible physiological roles of the PK1-related peptides in R. prolixus, we have isolated and functionally characterized the PK1 receptor, RhoprPK1-R. Additionally, we have determined a set of three optimal reference genes to utilize for normalization of data obtained when carrying out spatial expression analyses via quantitative reverse transcriptase PCR (RT-qPCR) in various tissues of fifth instar R. prolixus. The RhoprPK1-R expression profile differs strikingly from the receptor for the anti-diuretic hormone RhoprCAPA-α2, which is localized mainly to gut epithelial tissues. Instead, RhoprPK1-R expression in fifth instar stage insects was identified in tissues that are not involved in osmotic and ionic balance, including the prothoracic glands, male reproductive tissues and a pooled sample composed of fat body, dorsal vessel, abdominal nerves and female reproductive tissues. Thus, this research establishes novel possibilities for the physiological roles of the pyrokinin-related peptides in this medically relevant disease vector.
Collapse
Affiliation(s)
- Jean-Paul Paluzzi
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1.
| | | |
Collapse
|
50
|
Paluzzi JPV. Anti-diuretic factors in insects: the role of CAPA peptides. Gen Comp Endocrinol 2012; 176:300-8. [PMID: 22226757 DOI: 10.1016/j.ygcen.2011.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Insects have adapted to live in a wide variety of habitats and utilize an array of feeding strategies that present challenges to their ability to maintain osmotic balance. Regardless of the feeding strategy, water and ion levels within the haemolymph (insect blood) are maintained within a narrow range. This homeostasis involves the action of a variety of tissues, but is often chiefly regulated by the excretory system. Until recently, most research on the hormonal control of the excretory tissues has focused on factors known to have diuretic activities. In this mini-review, the current state of knowledge on anti-diuretic factors in insects will be discussed with a particular emphasis on the CAPA peptides in the blood-feeding Chagas' disease vector, Rhodnius prolixus.
Collapse
Affiliation(s)
- Jean-Paul V Paluzzi
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1.
| |
Collapse
|