1
|
Wetzlich B, Nyakundi BB, Yang J. Therapeutic applications and challenges in myostatin inhibition for enhanced skeletal muscle mass and functions. Mol Cell Biochem 2025; 480:1535-1553. [PMID: 39340593 PMCID: PMC11842502 DOI: 10.1007/s11010-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Myostatin, a potent negative regulator of skeletal muscle mass, has garnered significant attention as a therapeutic target for muscle dystrophies. Despite extensive research and promising preclinical results, clinical trials targeting myostatin inhibition in muscle dystrophies have failed to yield substantial improvements in muscle function or fitness in patients. This review details the mechanisms behind myostatin's function and the various inhibitors that have been tested preclinically and clinically. It also examines the challenges encountered in clinical translation, including issues with drug specificity, differences in serum myostatin concentrations between animal models and humans, and the necessity of neural input for functional improvements. Additionally, we explore promising avenues of research beyond muscle dystrophies, particularly in the treatment of metabolic syndromes and orthopedic disorders. Insights from these alternative applications suggest that myostatin inhibition may hold the potential for addressing a broader range of pathologies, providing new directions for therapeutic development.
Collapse
Affiliation(s)
- Brock Wetzlich
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Benard B Nyakundi
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
2
|
Kaur M, Misra S. Bimagrumab: an investigational human monoclonal antibody against activin type II receptors for treating obesity. J Basic Clin Physiol Pharmacol 2024; 35:325-334. [PMID: 39385353 DOI: 10.1515/jbcpp-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Bimagrumab is a human monoclonal antibody that prevents activin type II receptors (ActRII) from functioning. This antibody has a higher affinity for muscle activin-2 receptors than natural ligands such as activin and myostatin, which act as negative muscle growth regulators. Blocking the activin receptor with bimagrumab could be a new pharmaceutical approach for managing patients with obesity and type 2 diabetes mellitus (T2DM). Bimagrumab has anabolic effects on skeletal muscle mass by preventing myostatin binding and other negative muscle growth regulators. Preclinical animal models have also shown that ActRII blockade promotes actions beyond skeletal muscle, including effects on brown adipose tissue (BAT) differentiation and activity. In a phase 2 randomized clinical trial, ActRII blockade with bimagrumab led to significant loss of total body fat mass (FM), lean mass (LM) gain, and metabolic improvements over 48 weeks in overweight or obese patients with type 2 diabetes. The trial involved [number of participants], and the results showed [specific findings]. Currently, Bimagrumab is being evaluated for its potential to treat muscle wasting, functional loss in hip fractures and sarcopenia, as well as obesity. However, it is essential to note that Bimagrumab also blocks the effects of other ActRII ligands, which play a role in the neurohormonal axes, pituitary, gonads, and adrenal glands. These observations suggest that bimagrumab might represent a new approach for treating patients with obesity and related metabolic disturbances.
Collapse
MESH Headings
- Humans
- Activin Receptors, Type II/antagonists & inhibitors
- Obesity/drug therapy
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Diabetes Mellitus, Type 2/drug therapy
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
Collapse
Affiliation(s)
- Manmeet Kaur
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India
| | - Saurav Misra
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India
| |
Collapse
|
3
|
Dichtel LE, Kimball A, Bollinger B, Scarff G, Gerweck AV, Bredella MA, Haines MS. Higher serum myostatin levels are associated with lower insulin sensitivity in adults with overweight/obesity. Physiol Rep 2024; 12:e16169. [PMID: 39261976 PMCID: PMC11390341 DOI: 10.14814/phy2.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/13/2024] Open
Abstract
Myostatin inhibition improves insulin sensitivity in preclinical and clinical models; however, studies investigating the relationship between serum myostatin levels and insulin sensitivity are discrepant. Sensitive and specific myostatin LC-MS/MS assays are now available to accurately assess serum myostatin level in vivo. We sought to determine whether higher serum myostatin levels are independently associated with lower insulin sensitivity in adults with overweight/obesity. Participants included 74 adults, 20-65 years old, BMI ≥25 kg/m2 without type 2 diabetes. Appendicular lean mass (ALM) was measured by dual-energy x-ray absorptiometry; visceral adipose tissue (VAT) was measured by computed tomography. Main outcome measures were serum myostatin levels (LC-MS/MS) and insulin sensitivity (Matsuda index). Mean age was 48 ± 12 years, and BMI was 33.1 ± 5.6 kg/m2 (mean ± SD). Men had higher mean serum myostatin levels versus women (8.3 ± 1.9 vs. 7.2 ± 1.9 ng/mL, p = 0.01) and higher serum myostatin levels were associated with higher ALM (R = 0.34, p = 0.003). Higher serum myostatin levels were associated with lower Matsuda index (R = -0.44, p = 0.0004), which remained significant after controlling for BMI, VAT, ALM, and sex. In conclusion, higher serum myostatin levels are independently associated with lower insulin sensitivity in adults with overweight/obesity and may be a marker of or play a mechanistic role in the development of insulin resistance.
Collapse
Affiliation(s)
- Laura E. Dichtel
- Neuroendocrine Unit, Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Allison Kimball
- Neuroendocrine Unit, Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Bryan Bollinger
- Neuroendocrine Unit, Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Geetanjali Scarff
- Neuroendocrine Unit, Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Anu V. Gerweck
- Neuroendocrine Unit, Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Miriam A. Bredella
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Melanie S. Haines
- Neuroendocrine Unit, Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Sharma S, Patil AS. Myostatin's marvels: From muscle regulator to diverse implications in health and disease. Cell Biochem Funct 2024; 42:e4106. [PMID: 39140697 DOI: 10.1002/cbf.4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Myostatin, a member of the transforming growth factor-β superfamily, is a pivotal regulator of skeletal muscle growth in mammals. Its discovery has sparked significant interest due to its multifaceted roles in various physiological processes and its potential therapeutic implications. This review explores the diverse functions of myostatin in skeletal muscle development, maintenance and pathology. We delve into its regulatory mechanisms, including its interaction with other signalling pathways and its modulation by various factors such as microRNAs and mechanical loading. Furthermore, we discuss the therapeutic strategies aimed at targeting myostatin for the treatment of muscle-related disorders, including cachexia, muscular dystrophy and heart failure. Additionally, we examine the impact of myostatin deficiency on craniofacial morphology and bone development, shedding light on its broader implications beyond muscle biology. Through a comprehensive analysis of the literature, this review underscores the importance of further research into myostatin's intricate roles and therapeutic potential in human health and disease.
Collapse
Affiliation(s)
- Sonakshi Sharma
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| | - Amol S Patil
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
5
|
Methenitis S, Nomikos T, Mpampoulis T, Kontou E, Evangelidou E, Papadopoulos C, Papadimas G, Terzis G. Type IIx muscle fibers are related to poor body composition, glycemic and lipidemic blood profiles in young females: the protective role of type I and IIa muscle fibers. Eur J Appl Physiol 2024; 124:585-594. [PMID: 37656281 DOI: 10.1007/s00421-023-05302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE The aim of the present study was to investigate the association between muscle fiber composition, body composition, resting glycemic-lipidemic blood profiles, in apparently healthy, young, active females. METHODS Thirty-four young healthy female volunteers were allocated into two groups, depending on their Vastus Lateralis type IIx muscle fibers percent cross-sectional area (%CSA; H: high type IIx %CSA; L: low type IIx %CSA). Body composition was determined via dual-energy X-ray absorptiometry. Venous blood samples were collected for the determination of resting serum glucose, Insulin, Apo-A1, HOMA-IR, triglycerides (TG), total cholesterol (TC), High-density lipoprotein (HDL-C), and Low-density lipoprotein (LDL-C) concentrations. Nutritional intake was also evaluated. RESULTS Individuals of the H group have significantly higher body mass, body fat percentage-mass, and resting blood indices of glycemic and lipidemic profiles, compared to those of L group (p < 0.001). Increased type IIx and low type I, IIa muscle fibers %CSAs were linked with poorer body composition, glycemic and lipidemic blood profiles (r: - 0.722 to 0.740, p < 0.001). Linear regression analyses revealed that the impact of muscle fibers %CSA (B coefficients ranged between - 0.700 and 0.835) on the above parameters, was at least, of the same or even of greater magnitude as that of body composition and daily nutritional intake (B: - 0.700 to 0.666). CONCLUSION Increased type IIx and low Type I, IIa %CSAs are associated with poorer body composition and glycemic-lipidemic profiles in young healthy females. The contribution of the muscle fiber %CSA on health status seems to be comparable to that of nutrition and body composition.
Collapse
Affiliation(s)
- Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 172 37, Ethnikis Antistassis 41, Daphne, Athens, Greece.
- Theseus, Physical Medicine and Rehabilitation Center, 17671, Athens, Greece.
| | - T Nomikos
- Department of Nutrition & Dietetics, School of Health Sciences and Education, Harokopio University, 17671, Athens, Greece
| | - T Mpampoulis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 172 37, Ethnikis Antistassis 41, Daphne, Athens, Greece
| | - E Kontou
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 172 37, Ethnikis Antistassis 41, Daphne, Athens, Greece
- Theseus, Physical Medicine and Rehabilitation Center, 17671, Athens, Greece
| | - E Evangelidou
- Department of Infection Control, G.N.N. Ionias "Konstantopouleio-Patision" hospital, 142 33, N. Ionia, Greece
| | - C Papadopoulos
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, 15784, Zografou, Greece
| | - G Papadimas
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, 15784, Zografou, Greece
| | - G Terzis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 172 37, Ethnikis Antistassis 41, Daphne, Athens, Greece
| |
Collapse
|
6
|
Nyakundi BB, Wall MM, Yang J. Supplementation of papaya leaf juice has beneficial effects on glucose homeostasis in high fat/high sugar-induced obese and prediabetic adult mice. BMC Complement Med Ther 2024; 24:18. [PMID: 38172797 PMCID: PMC10765817 DOI: 10.1186/s12906-023-04320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Prediabetes is characterized by a cluster of glycemic parameters higher than normal but below the threshold of type 2 diabetes mellitus (T2DM). In recent years, phytochemical-rich plant extracts have gained popularity as therapeutic agents for metabolic disorders. This study investigated the effects of papaya leaf (PL) juice supplementation on blood glucose levels in diet-induced obese and prediabetic adult mice. B65JL F1 mice (n = 20) at 12-14 months old were fed a high fat/sugar diet (HFHS) for 120 days. Mice were switched to restricted rodent chow of 3 g feed/30 g body weight/day, supplemented with 3 g/100 mL PL juice for 30 days. HFHS diet remarkably increased fasting plasma glucose levels from 114 ± 6.54 mg/dL to 192.7 ± 10.1 mg/dL and body weight from 32.5 ± 1.6 to 50.3 ± 4.1 g. HFHS diet results in hyperglycemia, insulin resistance, hyperlipidemia, and liver steatosis. The combination of PL juice and restricted diet significantly reduced body weight and fasting blood glucose levels to 43.75 ± 1.4 g and 126.25 ± 3.2 mg/dl, respectively. Moreover, PL juice with a restricted diet significantly improved lipid profile: cholesterol from 204 to 150 mg/dL, LDL-c from 110.4 to 50 mg/dL, and triglyceride from 93.7 to 60 mg/dL. Additionally, PL juice combined with a restricted diet significantly reduced adiposity, reversed fatty liver, and restored skeletal muscle Glut4 and phosphorylated (p-AKT (ser473). This study demonstrated that supplementation of PL juice with a restricted diet was more effective than a restricted diet alone in reversing major symptoms related to prediabetic and obesity conditions.
Collapse
Affiliation(s)
- Benard B Nyakundi
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Marisa M Wall
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA-ARS, Hilo, HI, 96720, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA.
| |
Collapse
|
7
|
Gao K, Han S, Li Z, Luo Z, Lv S, Choe HM, Paek HJ, Quan B, Kang J, Yin X. Analysis of metabolome and transcriptome of longissimus thoracis and subcutaneous adipose tissues reveals the regulatory mechanism of meat quality in MSTN mutant castrated male finishing pigs. Meat Sci 2024; 207:109370. [PMID: 37864922 DOI: 10.1016/j.meatsci.2023.109370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/21/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
The underlying mechanism of myostatin (MSTN) gene mutation impact on porcine carcass and meat quality has not yet been fully understood. The meat quality trait testing of the second filial generation wild-type (WT) and homozygous MSTN mutant (MSTN-/-) castrated male finishing pigs, and RNA-seq and metabolomics on the longissimus thoracis (LT) and subcutaneous adipose tissues (SAT) were performed. Compared with WT pigs, MSTN-/- pigs had higher carcass lean percentage and lower backfat thickness (all P < 0.01), and also had lower shear force (P < 0.01) and meat redness (P < 0.05). The gene and metabolite expression profiles were different between two groups. Metabolites and genes related to purine metabolism (such as xanthine metabolite (P < 0.05), AMPD3 and XDH genes (all padj < 0.01)), PI3K/Akt/mTOR signaling pathway (such as Phe-Phe and Glu-Glu metabolites (all P < 0.05), WNT4 and AKT2 genes (all padj < 0.01)), antioxidant related pathway (such as GPX2, GPX3, and GPX7 genes (all padj < 0.01)), and extracellular matrix related pathway (such as COL1A1 and COL3A1 genes (all padj < 0.01)) were significantly altered in LT. While metabolites and genes associated to lipid metabolism (such as trans-elaidic acid and PE(18:1(9Z)/0:0) metabolites (all P < 0.05), ACOX1, ACAT1 and HADH genes (all padj < 0.01)) were significantly changed in SAT. This study revealed the biological mechanisms of homozygous MSTN mutation regulated porcine carcass and meat quality, such as lean meat percentage, fat deposition and tenderness, which provides reference for the utilization of MSTN-/- pigs.
Collapse
Affiliation(s)
- Kai Gao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Shengzhong Han
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Zhouyan Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Zhaobo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Sitong Lv
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Hak Myong Choe
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Hyo Jin Paek
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Biaohu Quan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Jindan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Xijun Yin
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China.
| |
Collapse
|
8
|
Abd-Eltawab Tammam A, Rizg WY, Fakhry Boushra A, Alhelf M, Alissa M, Soliman GF, Nady Ouais G, Hosny KM, Alkhalidi HM, Elebiary AM. Telmisartan versus metformin in downregulating myostatin gene expression and enhancing insulin sensitivity in the skeletal muscles of type 2 diabetic rat model. Front Pharmacol 2023; 14:1228525. [PMID: 37576807 PMCID: PMC10416801 DOI: 10.3389/fphar.2023.1228525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Objective: Telmisartan is an angiotensin receptor blocker (ARB) that specifically blocks angiotensin II type-1 receptors (AT1R). Telmisartan has been proven to have antidiabetic effects via a variety of mechanisms, and it can be utilized in some diabetic patients due to its dual benefit for hypertensive patients with type 2 DM (T2DM) and when the other oral antidiabetic medications are intolerable or contraindicated. However, its precise underlying hypoglycemic mechanism is still obscure. Aim of work: We sought to establish a link between telmisartan administration and myostatin expression in skeletal muscles of T2DM rat model as a potential hypoglycemic mechanism of telmisartan. Materials and Methods: 32 male albino rats were included in the study; 8 rats served as controls (group I). T2DM was inducted in the other 24 rats, which were then randomly subdivided into 3 groups (8 in each): (group II) the Diabetic group and (groups III and IV) which were treated with either telmisartan (8 mg/kg/day) or metformin (250 mg/kg/day) respectively via oral gavage for a 4-week period. Results: Telmisartan administration resulted in a significant improvement in OGTT, HOMA-IR, glucose uptake, and muscle mass/body ratios in Telmisartan group as compared to Diabetic group (p < 0.05). Additionally, telmisartan induced a significant boost in adiponectin and IL-10 serum levels with a substantial drop in TNF-α and IL-6 levels in Telmisartan group compared to diabetic rats (p < 0.05). Moreover, telmisartan significantly boosted SOD and GSH, and decreased MDA levels in the skeletal muscles of telmisartan group. Furthermore, a significant downregulation of myostatin and upregulation of insulin receptor, IRS-1, and IRS-3 genes in the skeletal muscles of Telmisartan group were also detected. Histologically, telmisartan attenuated the morphological damage in the skeletal muscle fibers compared to diabetic rats, as evidenced by a considerable decrease in the collagen deposition area percentage and a reduction in NF-kB expression in the muscle tissues of group III. Conclusion: Telmisartan administration dramatically reduced myostatin and NF-kB expressions in skeletal muscles, which improved insulin resistance and glucose uptake in these muscles, highlighting a novel antidiabetic mechanism of telmisartan in treating T2DM.
Collapse
Affiliation(s)
| | - Waleed Y. Rizg
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amy Fakhry Boushra
- Medical Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Maha Alhelf
- Biotechnology School, Nile University, Giza, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghada F. Soliman
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Pharmacology Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Ghada Nady Ouais
- Anatomy and Embryology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Anatomy and Embryology Department, Faculty of Medicine, New Giza University, Giza, Egypt
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala M. Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Magdy Elebiary
- Medical Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
9
|
Kostusiak P, Slósarz J, Gołębiewski M, Grodkowski G, Puppel K. Polymorphism of Genes and Their Impact on Beef Quality. Curr Issues Mol Biol 2023; 45:4749-4762. [PMID: 37367051 DOI: 10.3390/cimb45060302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The single-nucleotide polymorphism (SNP) form of genes is a valuable source of information regarding their suitability for use as specific markers of desirable traits in beef cattle breeding. For several decades, breeding work focused on improving production efficiency through optimizing the feed conversion ratio and improving daily gains and meat quality. Many research teams previously undertook research work on single-nucleotide polymorphism in myostatin (MSTN), thyroglobulin (TG), calpain (CAPN), and calpastatin (CAST) proteins. The literature review focuses on the most frequently addressed issues concerning these genes in beef cattle production and points to a number of relevant studies on the genes' polymorphic forms. The four genes presented are worth considering during breeding work as a set of genes that can positively influence productivity and production quality.
Collapse
Affiliation(s)
- Piotr Kostusiak
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Grzegorz Grodkowski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
10
|
Methenitis S, Nomikos T, Kontou E, Kiourelli KM, Papadimas G, Papadopoulos C, Terzis G. Skeletal muscle fiber composition may modify the effect of nutrition on body composition in young females. Nutr Metab Cardiovasc Dis 2023; 33:817-825. [PMID: 36725423 DOI: 10.1016/j.numecd.2022.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIM The aim of this study was to investigate the hypothesis that healthy, normal-weight females with greater proportions and sizes of the oxidative muscle fibers would also be characterized by a healthier body composition compared with individuals with increased glycolytic fibers, even if both follow similar nutritional plans. METHODS AND RESULTS Vastus lateralis muscle fiber-type composition, body composition through dual-energy X-ray absorptiometry, and dietary intakes through questionnaire were evaluated in twenty-two young, healthy, non-obese females (age: 21.3±1.8yrs, body mass: 67.5±6.2 kg, body height: 1.66±0.05m, body mass index (BMI): 24.2±2.6 kg m-2). The participants were allocated into two groups according to their type I muscle fibers percentage [high (HI) and low (LI)]. The participants of the LI group were characterized by significantly higher body mass, fat mass, BMI, and cross-sectional and percentage cross-sectional area (%CSA) of type IIx muscle fibers compared with participants of the HI group (p < 0.021). In contrast, the HI group was characterized by higher cross-sectional and %CSA of type I muscle fibers compared with the LI group (p < 0.038). Significant correlations were observed between body fat mass, lean body mass, total energy intake, fat energy intake, and %CSAs of type I and IIx muscle fibers (r: -0.505 to 0.685; p < 0.05). CONCLUSION In conclusion, this study suggests that muscle fiber composition is an important factor that at least partly could explain the observed differential inter-individual responses of the body composition to nutrition in female individuals. Increased %CSAs of type I muscle fibers seem to act as a protective mechanism against obesity and favor a healthier body composition, neutralizing the negative effect of increased caloric fats intake on body composition, probably because of their greater oxidative metabolic properties and fat utilization capacities. In contrast, female individuals with low type I and high type IIx %CSAs of type I seem to be more metabolically inflexible and dietinduced obesity prone, even if they consume fewer total daily calories and fats.
Collapse
Affiliation(s)
- Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Greece.
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Greece.
| | - Eleni Kontou
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Greece; Theseus, Physical Medicine and Rehabilitation Center, Athens, Greece.
| | - Kleio-Maria Kiourelli
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Greece.
| | - George Papadimas
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Constantinos Papadopoulos
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
11
|
Alves FM, Ayton S, Bush AI, Lynch GS, Koopman R. Age-Related Changes in Skeletal Muscle Iron Homeostasis. J Gerontol A Biol Sci Med Sci 2023; 78:16-24. [PMID: 35869751 DOI: 10.1093/gerona/glac139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 01/31/2023] Open
Abstract
Sarcopenia is an age-related condition of slow, progressive loss of muscle mass and strength, which contributes to frailty, increased risk of hospitalization and mortality, and increased health care costs. The incidence of sarcopenia is predicted to increase to >200 million affected older adults worldwide over the next 40 years, highlighting the urgency for understanding biological mechanisms and developing effective interventions. An understanding of the mechanisms underlying sarcopenia remains incomplete. Iron in the muscle is important for various metabolic functions, including oxygen supply and electron transfer during energy production, yet these same chemical properties of iron may be deleterious to the muscle when either in excess or when biochemically unshackled (eg, in ferroptosis), it can promote oxidative stress and induce inflammation. This review outlines the mechanisms leading to iron overload in muscle with aging and evaluates the evidence for the iron overload hypothesis of sarcopenia. Based on current evidence, studies are needed to (a) determine the mechanisms leading to iron overload in skeletal muscle during aging; and (b) investigate whether skeletal muscles are functionally deficient in iron during aging leading to impairments in oxidative metabolism.
Collapse
Affiliation(s)
- Francesca M Alves
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - René Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Methenitis S, Papadopoulou SK, Panayiotou G, Kaprara A, Hatzitolios A, Skepastianos P, Karali K, Feidantsis K. Nutrition, body composition and physical activity have differential impact on the determination of lipidemic blood profiles between young females with different blood cholesterol concentrations. Obes Res Clin Pract 2023; 17:25-33. [PMID: 36641266 DOI: 10.1016/j.orcp.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION This cross-sectional study explored whether nutrition, body composition, and physical activity energy expenditure (PAΕΝ) have a differential impact on lipidemic blood profiles among young females with different blood cholesterol concentrations. METHODS One hundred thirty-five young female students (N = 135) were allocated into three groups according to their blood cholesterol concentrations (Chol): (A) Normal [NL; Chol: < 200 mg·dL-1; n = 56 Age: 21.4 ± 2.6 yrs, Body Mass Index (BMI): 22.1 ± 2.0 kg·m-2], (B) Borderline (BL; Chol: ≥200 mg·dL-1 and <240 mg·dL-1; n = 44 Age: 21.6 ± 2.5 yrs, BMI: 24.2 ± 3.1 kg·m-2) and (C) High level (HL; Chol: ≥240 mg·dL-1; n = 35 Age: 22.5 ± 2.4 yrs, BMI: 28.9 ± 2.1 kg·m-2). Body composition [bioelectrical impedance analysis including lean body mass (LBM) and body fat mass], nutritional intake (recall questionnaire), daily physical activity energy expenditure through activity trackers and resting blood lipids concentrations were evaluated. RESULTS Multiple linear regression analyses revealed that in the NL group, lean mass, daily PAΕΝ and daily energy balance were the determinant parameters of blood lipidemic profiles (B: -0.815 to 0.700). In the BL group, nutrition, body composition and daily physical activity energy expenditure exhibited similar impacts (B: -0.440 to 0.478). In the HL group, nutritional intake and body fat mass determined blood lipidemic profile (B: -0.740 to 0.725). CONCLUSION Nutrition, body composition and daily PAΕΝ impact on blood lipids concentration is not universal among young females. In NL females, PAEN, energy expenditure and LBM are the strongest determinants of blood lipids, while in HL females, nutritional intake and body fat mass are. As PAΕΝ increases, the importance of nutrition and body fat decreases, and vice versa.
Collapse
Affiliation(s)
- Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Athens GR-17237, Greece; Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, P.O. Box 141, Sindos GR-57400, Thessaloniki, Greece; Theseus, Physical Medicine and Rehabilitation Center, Athens, Greece
| | - Sousana K Papadopoulou
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, P.O. Box 141, Sindos GR-57400, Thessaloniki, Greece
| | - George Panayiotou
- Laboratory of Exercise, Health and Human Performance, Applied Sport Science Postgraduate Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Athina Kaprara
- Laboratory of Sports Medicine, School of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Apostolos Hatzitolios
- 1st Department of Cardiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Petros Skepastianos
- Department of Biomedical Sciences, Faculty of Health Sciences, International Hellenic University, P.O. Box 141, Sindos GR-57400, Thessaloniki, Greece
| | - Konstantina Karali
- 1st Department of Cardiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Konstantinos Feidantsis
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, P.O. Box 141, Sindos GR-57400, Thessaloniki, Greece.
| |
Collapse
|
13
|
Nomikos T, Methenitis S, Panagiotakos DB. The emerging role of skeletal muscle as a modulator of lipid profile the role of exercise and nutrition. Lipids Health Dis 2022; 21:81. [PMID: 36042487 PMCID: PMC9425975 DOI: 10.1186/s12944-022-01692-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
The present article aims to discuss the hypothesis that skeletal muscle per se but mostly its muscle fiber composition could be significant determinants of lipid metabolism and that certain exercise modalities may improve metabolic dyslipidemia by favorably affecting skeletal muscle mass, fiber composition and functionality. It discusses the mediating role of nutrition, highlights the lack of knowledge on mechanistic aspects of this relationship and proposes possible experimental directions in this field.
Collapse
Affiliation(s)
- Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece.
| | - Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education and Sports. Science, National and Kapodistrian University of Athens, Athens, Greece.,Theseus, Physical Medicine and Rehabilitation Center, Athens, Greece
| | - Demosthenes B Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| |
Collapse
|
14
|
Baumgartner M, Lischka J, Schanzer A, de Gier C, Walleczek NK, Greber-Platzer S, Zeyda M. Plasma Myostatin Increases with Age in Male Youth and Negatively Correlates with Vitamin D in Severe Pediatric Obesity. Nutrients 2022; 14:nu14102133. [PMID: 35631274 PMCID: PMC9144022 DOI: 10.3390/nu14102133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity already causes non-communicable diseases during childhood, but the mechanisms of disease development are insufficiently understood. Myokines such as myostatin and irisin are muscle-derived factors possibly involved in obesity-associated diseases. This explorative study aims to investigate whether myostatin and irisin are associated with metabolic parameters, including the vitamin D status in pediatric patients with severe obesity. Clinical, anthropometric and laboratory data from 108 patients with severe obesity (>97th percentile) aged between 9 and 19 years were assessed. Myostatin, its antagonist follistatin, and irisin, were measured from plasma by ELISA. Myostatin concentrations, particularly in males, positively correlated with age and pubertal stage, as well as metabolic parameters such as insulin resistance. Irisin concentrations correlated positively with HDL and negatively with LDL cholesterol values. For follistatin, the associations with age and pubertal stage were inverse. Strikingly, a negative correlation of myostatin with serum vitamin D levels was observed that remained significant after adjusting for age and pubertal stage. In conclusion, there is an independent association of low vitamin D and elevated myostatin levels. Further research may focus on investigating means to prevent increased myostatin levels in interventional studies, which might open several venues to putative options to treat and prevent obesity-associated diseases.
Collapse
|
15
|
Pei Y, Song Y, Feng Z, Li H, Mu Y, Rehman SU, Liu Q, Li K. Myostatin Alteration in Pigs Enhances the Deposition of Long-Chain Unsaturated Fatty Acids in Subcutaneous Fat. Foods 2022; 11:foods11091286. [PMID: 35564009 PMCID: PMC9105368 DOI: 10.3390/foods11091286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
In animals, myostatin (MSTN) is a negative regulator that inhibits muscle growth and repair. The decreased level of functional MSTN gene expression can change the amount and proportions of fats in pigs. In this study we determined the lipidomics of subcutaneous fat in MSTN single copy mutant pigs and evaluated the variations in lipid contents of the subcutaneous fat from MSTN+/− and wild type Large White (LW) pigs via ultra-performance liquid chromatography–quadrupole/Orbitrap-mass spectrometry (MS). The results showed that the quantities of glycerolipids, sphingolipids, fatty acyls and glycerophospholipids were significantly changed, particularly, the molecular diacylglycerol in glycerolipids, long-chain unsaturated fatty acids, and ceramide non-hydroxy fatty acid-sphingosine in sphingolipids were remarkably increased in the MSTN+/− group. Due to their positive bioavailability demonstrated by previous researches, these three lipids might be beneficial for human health. Further, the results of our study confirm that MSTN participates in the regulation of fat metabolism, and reduced expression of MSTN can ultimately influence the accumulation of lipid contents in the subcutaneous fat of pigs.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.P.); (Y.S.); (Z.F.); (H.L.); (S.u.R.); (Q.L.)
| | - Yuxin Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.P.); (Y.S.); (Z.F.); (H.L.); (S.u.R.); (Q.L.)
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.P.); (Y.S.); (Z.F.); (H.L.); (S.u.R.); (Q.L.)
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.P.); (Y.S.); (Z.F.); (H.L.); (S.u.R.); (Q.L.)
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Saif ur Rehman
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.P.); (Y.S.); (Z.F.); (H.L.); (S.u.R.); (Q.L.)
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.P.); (Y.S.); (Z.F.); (H.L.); (S.u.R.); (Q.L.)
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Correspondence:
| |
Collapse
|
16
|
Balakrishnan R, Thurmond DC. Mechanisms by Which Skeletal Muscle Myokines Ameliorate Insulin Resistance. Int J Mol Sci 2022; 23:4636. [PMID: 35563026 PMCID: PMC9102915 DOI: 10.3390/ijms23094636] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The skeletal muscle is the largest organ in the body and secretes circulating factors, including myokines, which are involved in various cellular signaling processes. Skeletal muscle is vital for metabolism and physiology and plays a crucial role in insulin-mediated glucose disposal. Myokines have autocrine, paracrine, and endocrine functions, serving as critical regulators of myogenic differentiation, fiber-type switching, and maintaining muscle mass. Myokines have profound effects on energy metabolism and inflammation, contributing to the pathophysiology of type 2 diabetes (T2D) and other metabolic diseases. Myokines have been shown to increase insulin sensitivity, thereby improving glucose disposal and regulating glucose and lipid metabolism. Many myokines have now been identified, and research on myokine signaling mechanisms and functions is rapidly emerging. This review summarizes the current state of the field regarding the role of myokines in tissue cross-talk, including their molecular mechanisms, and their potential as therapeutic targets for T2D.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA;
| |
Collapse
|
17
|
Perry CA, Van Guilder GP, Butterick TA. Decreased myostatin in response to a controlled DASH diet is associated with improved body composition and cardiometabolic biomarkers in older adults: results from a controlled-feeding diet intervention study. BMC Nutr 2022; 8:24. [PMID: 35287731 PMCID: PMC8922920 DOI: 10.1186/s40795-022-00516-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Elevated concentrations of myostatin inhibit muscle growth, function and strength. Myostatin is a mediator of sarcopenia and is associated with insulin resistance. For this study we tested the response of a calorie-restricted Dietary Approaches to Stop Hypertension (DASH) diet on changes in myostatin, follistatin, and mystatin:follistatin ratio levels after 12 weeks in comparison to basline in adults aged 65 years and older. Furthermore we evaluated correlations between changes in myostatin, body composition and cardiometabolic biomarkers in this cohort of older adults. METHODS This was a controlled-feeding diet intervention study in which females (n = 17) and males (n = 11) aged 65 years and older consumed either 85 g (n = 15) or 170 g (n = 13) of fresh lean beef within a standardized DASH diet for 12-weeks. Myostatin and follistatin concentrations were measured from fasted blood samples collected at 5 timepoints throughout the 12-week feeding intervention period. Correlations were assessed between changes in myostatin and follistatin levels and measures of body composition and cardiometabolic biomarkers. RESULTS There were no differences (p > 0.05) in circulating myostatin or follistatin levels between the beef intake groups. However, with beef groups combined myostatin decreased by 17.6% (p = 0.006) and the myostatin-to-follistatin ratio decreased by 16.5% (p < 0.001) in response to the study diet. Decreased myostatin was positively correlated with reductions in waist circumference (R2 = 0.163; p = 0.033) and fat mass (R2 = 0.233; p = 0.009). There was an inverse relationship between decreased myostatin and increased strength-to-weight ratio (R2 = 0.162; p = 0.034). The change in myostatin-to-follistatin ratio was associated with the change in skeletal muscle mass-to-fat mass ratio (R2 = 0.176; p = 0.026). Decreased myostatin was positively correlated with reductions in total cholesterol (R2 = 0.193; p = 0.012), LDL-C (R2 = 0.163; p = 0.031), insulin (R2 = 0.234; p = 0.009), and HOMA-IR (R2 = 0.248; P = 0.007). There was no change (p > 0.05) in circulating follistatin concentrations in response to the diet intervention. CONCLUSIONS The outcomes from this study suggest that a calorie-restricted DASH diet has the potential to reduce myostatin concentrations in older adults. Furthermore these outcomes support interrelationships between myostatin, body composition and cardiometabolic health in adults aged 65 years and older. TRIAL REGISTRATION ClinicalTrials.gov; Identifier: NCT04127240 ; Registration Date: 15/10/ 2019.
Collapse
Affiliation(s)
- Cydne A. Perry
- grid.411377.70000 0001 0790 959XDepartment of Applied Health Science, Indiana University School of Public Health, 1025 Seventh St., Bloomington, IN 47405 USA
| | - Gary P. Van Guilder
- Exercise and Sport Science Department, Western Colorado University, Gunnison, CO 81230 USA
| | - Tammy A. Butterick
- grid.410394.b0000 0004 0419 8667Department of Veterans Affairs, Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417 USA ,grid.17635.360000000419368657Department of Neuroscinece, University of Minnesota, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108 USA
| |
Collapse
|
18
|
Pei Y, Fan Z, Song Y, Chen C, Mu Y, Li B, Feng Z, Li H, Li K. Viscera Characteristics of MSTN-Edited Heterozygous Pigs. Front Genet 2022; 13:764965. [PMID: 35299949 PMCID: PMC8921262 DOI: 10.3389/fgene.2022.764965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Myostatin (MSTN) is a protein that negatively regulates growth of skeletal muscle, and inactivation of MSTN improves the mass of skeletal muscle. Our previous work found that MSTN+/− pigs have higher muscle depth and lower fat depth compared to wild type without any developmental problems. Therefore, MSTN-edited pigs are most likely to appear as heterozygotes in the potential future market, but the characteristics of organs in digestive and reproductive system of pigs with MSTN gene editing remains unclear. Here, we investigated the histological of the organs in the digestive system and reproductive system in MSTN gene heterozygotes at adult stages. The length of intestine was further compared between adult heterozygous and wild type pigs. We found no significant differences in histomorphology of organs, including heart, duodenum, jejunum, ileum, cecum, colon, testis, epididymis, ovaries, oviducts and uterus, between individuals from two genotypes. Moreover, there was no significant difference in the average length of intestine in adult pigs. Our data provide a reference for further clarifying the applications of MSTN gene edited pigs.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ziyao Fan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuxin Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chujie Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- *Correspondence: Kui Li,
| |
Collapse
|
19
|
Gu M, Zhou X, Zhu L, Gao Y, Gao L, Bai C, Yang L, Li G. Myostatin Mutation Promotes Glycolysis by Increasing Phosphorylation of Phosphofructokinase via Activation of PDE5A-cGMP-PKG in Cattle Heart. Front Cell Dev Biol 2022; 9:774185. [PMID: 35155444 PMCID: PMC8831326 DOI: 10.3389/fcell.2021.774185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Myostatin (MSTN) is a primary negative regulator of skeletal muscle mass and causes multiple metabolic changes. However, whether MSTN mutation affects heart morphology and physiology remains unclear. Myostatin mutation (MT) had no effect on cattle cardiac muscle in histological examination, but in biochemical assays, glycolysis increased in cattle hearts with MT. Compared with wild-type cattle, there were no differences in mRNA and protein levels of rate-limiting enzymes, but phosphofructokinase (PFK) phosphorylation increased in cattle hearts with MT. Transcriptome analysis showed that phosphodiesterase-5A (PDE5A), a target for inhibiting cGMP-PKG signaling, was downregulated. For the mechanism, chromatin immunoprecipitation qPCR showed that the SMAD2/SMAD3 complex in the canonical downstream pathway for MSTN combined with the promoter of PDE5A. The cGMP-PKG pathway was activated, and PKG increased phosphorylation of PFK in cattle hearts with MT. In addition, activation of PKG and the increase in PFK phosphorylation promoted glycolysis. Knockdown of PKG resulted in the opposite phenomena. The results indicated that MT potentiated PFK phosphorylation via the PDE5A-cGMP-PKG pathway and thereby promoted glycolysis in the heart.
Collapse
Affiliation(s)
- Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xinyu Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yajie Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Li Gao
- Baotou Teachers’ College, Baotou, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| |
Collapse
|
20
|
Bigford GE, Donovan A, Webster MT, Dietrich WD, Nash MS. Selective Myostatin Inhibition Spares Sublesional Muscle Mass and Myopenia-Related Dysfunction after Severe Spinal Cord Contusion in Mice. J Neurotrauma 2021; 38:3440-3455. [PMID: 34714134 DOI: 10.1089/neu.2021.0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Clinically relevant myopenia accompanies spinal cord injury (SCI), and compromises function, metabolism, body composition, and health. Myostatin, a transforming growth factor (TGF)β family member, is a key negative regulator of skeletal muscle mass. We investigated inhibition of myostatin signaling using systemic delivery of a highly selective monoclonal antibody - muSRK-015P (40 mg/kg) - that blocks release of active growth factor from the latent form of myostatin. Adult female mice (C57BL/6) were subjected to a severe SCI (65 kdyn) at T9 and were then immediately and 1 week later administered test articles: muSRK-015P (40 mg/kg) or control (vehicle or IgG). A sham control group (laminectomy only) was included. At euthanasia, (2 weeks post-SCI) muSRK-015P preserved whole body lean mass and sublesional gastrocnemius and soleus mass. muSRK-015P-treated mice with SCI also had significantly attenuated myofiber atrophy, lipid infiltration, and loss of slow-oxidative phenotype in soleus muscle. These outcomes were accompanied by significantly improved sublesional motor function and muscle force production at 1 and 2 weeks post-SCI. At 2 weeks post-SCI, lean mass was significantly decreased in SCI-IgG mice, but was not different in SCI-muSRK-015P mice than in sham controls. Total energy expenditure (kCal/day) at 2 weeks post-SCI was lower in SCI-immunoglobulin (Ig)G mice, but not different in SCI-muSRK-015P mice than in sham controls. We conclude that in a randomized, blinded, and controlled study in mice, myostatin inhibition using muSRK-015P had broad effects on physical, metabolic, and functional outcomes when compared with IgG control treated SCI animals. These findings may identify a useful, targeted therapeutic strategy for treating post-SCI myopenia and related sequelae in humans.
Collapse
Affiliation(s)
- Gregory E Bigford
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | - W Dalton Dietrich
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mark S Nash
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Physical Therapy, University of Miami, Miami, Florida, USA
| |
Collapse
|
21
|
Interaction of Fibromodulin and Myostatin to Regulate Skeletal Muscle Aging: An Opposite Regulation in Muscle Aging, Diabetes, and Intracellular Lipid Accumulation. Cells 2021; 10:cells10082083. [PMID: 34440852 PMCID: PMC8393414 DOI: 10.3390/cells10082083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 01/14/2023] Open
Abstract
The objective of this study was to investigate fibromodulin (FMOD) and myostatin (MSTN) gene expressions during skeletal muscle aging and to understand their involvements in this process. The expressions of genes related to muscle aging (Atrogin 1 and Glb1), diabetes (RAGE and CD163), and lipid accumulation (CD36 and PPARγ) and those of FMOD and MSTN were examined in CTX-injected, aged, MSTN−/−, and high-fat diet (HFD) mice and in C2C12 myoblasts treated with ceramide or grown under adipogenic conditions. Results from CTX-injected mice and gene knockdown experiments in C2C12 cells suggested the involvement of FMOD during muscle regeneration and myoblast proliferation and differentiation. Downregulation of the FMOD gene in MSTN−/− mice, and MSTN upregulation and FMOD downregulation in FMOD and MSTN knockdown C2C12 cells, respectively, during their differentiation, suggested FMOD negatively regulates MSTN gene expression, and MSTN positively regulates FMOD gene expression. The results of our in vivo and in vitro experiments indicate FMOD inhibits muscle aging by negatively regulating MSTN gene expression or by suppressing the action of MSTN protein, and that MSTN promotes muscle aging by positively regulating the expressions of Atrogin1, CD36, and PPARγ genes in muscle.
Collapse
|
22
|
Beneficial effects of whole-body cryotherapy on glucose homeostasis and amino acid profile are associated with a reduced myostatin serum concentration. Sci Rep 2021; 11:7097. [PMID: 33782504 PMCID: PMC8007810 DOI: 10.1038/s41598-021-86430-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/16/2021] [Indexed: 01/12/2023] Open
Abstract
The study investigated the effect of single and chronic (10 sessions) whole-body cryotherapy (WBC; 3-min, − 110 °C) on amino acid (AA) profile, myostatin, fibroblast growth factor 21 (FGF21), and concentrations of brain-derived neurotrophic factor (BDNF), irisin and adiponectin in relation to glucose homeostasis. Thirty-five, healthy men were randomly split into experimental (young: 28 ± 7 years and middle-aged: 51 ± 3 years) and control groups. Blood samples were taken before and 1 h after the first and last (10th) WBC session. Baseline myostatin correlated significantly with visceral fat area, glucose, insulin, HOMA-IR and irisin (all p < 0.05). The single session of WBC induced temporary changes in AA profile, whereas chronic exposure lowered valine and asparagine concentrations (p < 0.01 and p = 0.01, respectively) compared to the baseline. The chronic WBC reduced fasting glucose (p = 0.04), FGF21 (− 35.8%, p = 0.06) and myostatin (-18.2%, p = 0.06). Still, the effects were age-dependent. The decrease of myostatin was more pronounced in middle-aged participants (p < 0.01). Concentrations of irisin and adiponectin increased in response to chronic WBC, while BDNF level remained unchanged. By improving the adipo-myokine profile, chronic WBC may reduce effectively the risk of the metabolic syndrome associated with hyperinsulinemia, increased levels of valine and asparagine, and muscle atrophy.
Collapse
|
23
|
Omosule CL, Phillips CL. Deciphering Myostatin's Regulatory, Metabolic, and Developmental Influence in Skeletal Diseases. Front Genet 2021; 12:662908. [PMID: 33854530 PMCID: PMC8039523 DOI: 10.3389/fgene.2021.662908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Current research findings in humans and other mammalian and non-mammalian species support the potent regulatory role of myostatin in the morphology and function of muscle as well as cellular differentiation and metabolism, with real-life implications in agricultural meat production and human disease. Myostatin null mice (mstn−/−) exhibit skeletal muscle fiber hyperplasia and hypertrophy whereas myostatin deficiency in larger mammals like sheep and pigs engender muscle fiber hyperplasia. Myostatin’s impact extends beyond muscles, with alterations in myostatin present in the pathophysiology of myocardial infarctions, inflammation, insulin resistance, diabetes, aging, cancer cachexia, and musculoskeletal disease. In this review, we explore myostatin’s role in skeletal integrity and bone cell biology either due to direct biochemical signaling or indirect mechanisms of mechanotransduction. In vitro, myostatin inhibits osteoblast differentiation and stimulates osteoclast activity in a dose-dependent manner. Mice deficient in myostatin also have decreased osteoclast numbers, increased cortical thickness, cortical tissue mineral density in the tibia, and increased vertebral bone mineral density. Further, we explore the implications of these biochemical and biomechanical influences of myostatin signaling in the pathophysiology of human disorders that involve musculoskeletal degeneration. The pharmacological inhibition of myostatin directly or via decoy receptors has revealed improvements in muscle and bone properties in mouse models of osteogenesis imperfecta, osteoporosis, osteoarthritis, Duchenne muscular dystrophy, and diabetes. However, recent disappointing clinical trial outcomes of induced myostatin inhibition in diseases with significant neuromuscular wasting and atrophy reiterate complexity and further need for exploration of the translational application of myostatin inhibition in humans.
Collapse
Affiliation(s)
- Catherine L Omosule
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, United States.,Department of Child Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
24
|
Tallis J, Shelley S, Degens H, Hill C. Age-Related Skeletal Muscle Dysfunction Is Aggravated by Obesity: An Investigation of Contractile Function, Implications and Treatment. Biomolecules 2021; 11:372. [PMID: 33801275 PMCID: PMC8000988 DOI: 10.3390/biom11030372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic and coupled with the unprecedented growth of the world's older adult population, a growing number of individuals are both old and obese. Whilst both ageing and obesity are associated with an increased prevalence of chronic health conditions and a substantial economic burden, evidence suggests that the coincident effects exacerbate negative health outcomes. A significant contributor to such detrimental effects may be the reduction in the contractile performance of skeletal muscle, given that poor muscle function is related to chronic disease, poor quality of life and all-cause mortality. Whilst the effects of ageing and obesity independently on skeletal muscle function have been investigated, the combined effects are yet to be thoroughly explored. Given the importance of skeletal muscle to whole-body health and physical function, the present study sought to provide a review of the literature to: (1) summarise the effect of obesity on the age-induced reduction in skeletal muscle contractile function; (2) understand whether obesity effects on skeletal muscle are similar in young and old muscle; (3) consider the consequences of these changes to whole-body functional performance; (4) outline important future work along with the potential for targeted intervention strategies to mitigate potential detrimental effects.
Collapse
Affiliation(s)
- Jason Tallis
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV15FB, UK;
| | - Sharn Shelley
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV15FB, UK;
| | - Hans Degens
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK;
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Cameron Hill
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK;
| |
Collapse
|
25
|
Pei Y, Chen C, Mu Y, Yang Y, Feng Z, Li B, Li H, Li K. Integrated Microbiome and Metabolome Analysis Reveals a Positive Change in the Intestinal Environment of Myostatin Edited Large White Pigs. Front Microbiol 2021; 12:628685. [PMID: 33679652 PMCID: PMC7925633 DOI: 10.3389/fmicb.2021.628685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/01/2021] [Indexed: 01/12/2023] Open
Abstract
Myostatin (MSTN) functional inactivation can change the proportion of lean meat and fat content in pigs. While both genotype and microbial composition are known to affect the host phenotype, so far there has been no systematic study to detect the changes in the intestinal microbial composition and metabolome of MSTN single copy mutant pigs. Here, we used 16S rDNA sequencing and metabolome analysis to investigate how MSTN gene editing affects changes in the microbial and metabolome composition in the jejunum and the cecum of Large White pigs. Our results showed that Clostridium_sensu_stricto_1, Bifidobacterium, Lachnospiraceae_UCG-007, Clostridium_sensu_stricto_6, Ruminococcaceae_UCG-002, and Ruminococcaceae_UCG-004 were significantly upregulated; while Treponema_2 and T34_unclassified were significantly downregulated in the jejunum of MSTN pigs. Similarly, Phascolarctobacterium, Ruminiclostridium_9, Succinivibrio, Longibaculum, and Candidatus_Stoquefichus were significantly upregulated, while Barnesiella was significantly downregulated in the cecum of MSTN pigs. Moreover, metabolomics analysis showed significant changes in metabolites involved in purine, sphingolipid and tryptophan metabolism in the jejunum, while those associated with glycerophospholipid and pyrimidine metabolism were changed in the cecum. Spearman correlation analysis further demonstrated that there was a significant correlation between microflora composition and metabolites. Our analyses indicated the MSTN editing affects the composition of metabolites and microbial strains in the jejunum and the cecum, which might provide more useable nutrients for the host of MSTN± Large White pigs.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Chujie Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Guignabert C, Humbert M. Targeting transforming growth factor-β receptors in pulmonary hypertension. Eur Respir J 2021; 57:2002341. [PMID: 32817256 DOI: 10.1183/13993003.02341-2020] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
The transforming growth factor-β (TGF-β) superfamily includes several groups of multifunctional proteins that form two major branches, namely the TGF-β-activin-nodal branch and the bone morphogenetic protein (BMP)-growth differentiation factor (GDF) branch. The response to the activation of these two branches, acting through canonical (small mothers against decapentaplegic (Smad) 2/3 and Smad 1/5/8, respectively) and noncanonical signalling pathways, are diverse and vary for different environmental conditions and cell types. An extensive body of data gathered in recent years has demonstrated a central role for the cross-talk between these two branches in a number of cellular processes, which include the regulation of cell proliferation and differentiation, as well as the transduction of signalling cascades for the development and maintenance of different tissues and organs. Importantly, alterations in these pathways, which include heterozygous germline mutations and/or alterations in the expression of several constitutive members, have been identified in patients with familial/heritable pulmonary arterial hypertension (PAH) or idiopathic PAH (IPAH). Consequently, loss or dysfunction in the delicate, finely-tuned balance between the TGF-β-activin-nodal branch and the BMP-GDF branch are currently viewed as the major molecular defect playing a critical role in PAH predisposition and disease progression. Here we review the role of the TGF-β-activin-nodal branch in PAH and illustrate how this knowledge has not only provided insight into understanding its pathogenesis, but has also paved the way for possible novel therapeutic approaches.
Collapse
Affiliation(s)
- Christophe Guignabert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Dept of Respiratory and Intensive Care Medicine, French Pulmonary Hypertension Reference Center, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| |
Collapse
|
27
|
Mizera Ł, Halupczok-Żyła J, Kolačkov K, Zembska A, Grzegrzółka J, Jędrzejuk D, Bolanowski M, Daroszewski J. Myokines in Acromegaly: An Altered Irisin Profile. Front Endocrinol (Lausanne) 2021; 12:728734. [PMID: 34795636 PMCID: PMC8593228 DOI: 10.3389/fendo.2021.728734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The muscle is an endocrine organ controlling metabolic homeostasis. Irisin and myostatin are key myokines mediating this process. Acromegaly is a chronic disease with a wide spectrum of complications, including metabolic disturbances. PURPOSE To examine the influence of acromegaly on irisin and myostatin secretion and their contribution to metabolic profile and body composition. MATERIALS AND METHODS In 43 patients with acromegaly and 60 controls, serum levels of irisin, myostatin, growth hormone (GH), insulin-like growth factor 1 (IGF-1), parameters of glucose, and lipid metabolism were determined. Body composition was assessed with dual-energy x-ray absorptiometry. RESULTS The irisin concentration was significantly lower in patients with acromegaly compared to controls (3.91 vs. 5.09 μg/ml, p = 0.006). There were no correlations between irisin and GH/IGF-1 levels. In the study group, irisin was negatively correlated with fasting insulin (r = -0.367; p = 0.042), HOMA-IR (r = -0.510; p = 0.011), and atherogenic factors: Castelli I (r = -0.416; p = 0.005), Castelli II (r = -0.400; p = 0.001), and atherogenic coefficient (AC) (r = -0.417; p = 0.05). Irisin and myostatin concentrations were also lower in acromegalics with insulin resistance than without (2.80 vs. 4.18 μg/ml, p = 0.047; 81.46 vs. 429.58 ng/L, p = 0.018, respectively). There were no differences between study group and controls in myostatin concentration. Myostatin levels negatively correlated with GH (r = -0.306; p = 0.049), HOMA-IR (r = -0.046; p = 0.411), and insulin levels (r = -0.429; p = 0.016). CONCLUSIONS Decreased irisin concentrations in acromegaly may suggest impaired hormonal muscle function contributing to metabolic complications in this disorder. However, learning more about the association between myostatin and GH in acromegaly requires further studies. Nevertheless, it appears that myostatin is not critical for muscle mass regulation in acromegaly.
Collapse
Affiliation(s)
- Łukasz Mizera
- Department of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wrocław, Poland
| | - Jowita Halupczok-Żyła
- Department of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wrocław, Poland
- *Correspondence: Jowita Halupczok-Żyła,
| | - Katarzyna Kolačkov
- Department of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wrocław, Poland
| | - Agnieszka Zembska
- Department of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wrocław, Poland
| | - Jędrzej Grzegrzółka
- Department of Histology and Embryology, Wrocław Medical University, Wrocław, Poland
| | - Diana Jędrzejuk
- Department of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wrocław, Poland
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wrocław, Poland
| | - Jacek Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
28
|
Xin XB, Yang SP, Li X, Liu XF, Zhang LL, Ding XB, Zhang S, Li GP, Guo H. Proteomics insights into the effects of MSTN on muscle glucose and lipid metabolism in genetically edited cattle. Gen Comp Endocrinol 2020; 291:113237. [PMID: 31374285 DOI: 10.1016/j.ygcen.2019.113237] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanism underlying myostatin (MSTN)-regulated metabolic cross-talk remains poorly understood. In this study, we performed comparative proteomic and phosphoproteomic analyses of gluteus muscle tissues from MSTN-/- transgenic cattle using a shotgun-based tandem mass tag (TMT) 6-plex labeling method to explore the signaling pathway of MSTN in metabolic cross-talk and cellular metabolism during muscle development. A total of 72 differentially expressed proteins (DEPs) and 36 differentially expressed phosphoproteins (DEPPs) were identified in MSTN-/- cattle compared to wild-type cattle. Bioinformatics analyses showed that MSTN knockout increased the activity of many key enzymes involved in fatty acid β-oxidation and glycolysis processes in cattle. Furthermore, comprehensive pathway analyses and hypothesis-driven AMP-activated protein kinase (AMPK) activity assays suggested that MSTN knockout triggers the activation of AMPK signaling pathways to regulate glucose and lipid metabolism by increasing the AMP/ATP ratio. Our results shed new light on the potential regulatory mechanism of MSTN associated with metabolic cross-talk in muscle development, which can be used in animal breeding to improve meat production in livestock animals, and can also provide valuable insight into treatments for obesity and diabetes mellitus in humans.
Collapse
Affiliation(s)
- Xiang-Bo Xin
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Shu-Ping Yang
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Xin-Feng Liu
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Lin-Lin Zhang
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Xiang-Bin Ding
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA.
| | - Guang-Peng Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010070, China.
| | - Hong Guo
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China.
| |
Collapse
|
29
|
Iron Status in Elderly Women Impacts Myostatin, Adiponectin and Osteocalcin Levels Induced by Nordic Walking Training. Nutrients 2020; 12:nu12041129. [PMID: 32316589 PMCID: PMC7231223 DOI: 10.3390/nu12041129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/26/2023] Open
Abstract
Impaired iron metabolism is associated with increased risk of many morbidities. Exercise was shown to have a beneficial role; however, the mechanism is not well understood. The purpose of this study was to assess the relationship between exerkines and iron metabolism in elderly women before and after 12 weeks of Nordic Walking (NW) training. Exerkines like myostatin, adiponectin, and osteocalcin have been shown to have several positive effects on metabolism. Thirty-six post-menopausal women (66 ± 5 years old, mean ± SD) were randomly assigned to a NW intervention group (n = 18; body mass, 68.8 ± 11.37 kg; fat, 23.43 ± 7.5 kg; free fat mass, 45.37 ± 5.92 kg) or a control group (n = 18; body mass, 68.34 ± 11.81 kg; fat, 23.61 ± 10.03 kg; free fat mass, 44.73 ± 3.9 kg). The training was performed three times a week for 12 weeks, with the intensity adjusted to 70% of the individual maximum ability. Before and one day after the 12-weeks intervention, performance indices were assessed using a senior fitness test. Blood samples (5 mL) were obtained from the participants between 7 and 8 AM, following an overnight fast, at baseline and one day immediately after the 12-week training program. A significant and large time × group interaction was observed for iron (NW: 98.6 ± 26.68 to 76.1 ± 15.31; CON: 100.6 ± 25.37 to 99.1 ± 27.2; p = 0.01; ηp2 = 0.21), myostatin (NW: 4.42 ± 1.97 to 3.83 ± 1.52; CON: 4.11 ± 0.95 to 4.84 ± 1.19; p = 0.00; ηp2 = 0.62), adiponectin (NW: 12.0 ± 9.46 to 14.6 ± 10.64; CON: 12.8 ± 8.99 to 11.9 ± 8.53; p = 0.00; ηp2 = 0.58), and osteocalcin (NW: 38.9 ± 26.04 to 41.6 ± 25.09; CON: 37.1 ± 33.2 to 37.2 ± 32.29; p = 0.03; ηp2 = 0.13). Furthermore, we have observed the correlations: basal ferritin levels were inversely correlated with changes in myostatin (r = −0.51, p = 0.05), change in adiponectin, and change in serum iron (r = −0.45, p = 0.05), basal iron, and osteocalcin after training (r = -0.55, p = 0.04). These findings indicate that iron modulates NW training-induced changes in exerkine levels.
Collapse
|
30
|
Effects of exosome-mediated delivery of myostatin propeptide on functional recovery of mdx mice. Biomaterials 2020; 236:119826. [DOI: 10.1016/j.biomaterials.2020.119826] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/30/2019] [Accepted: 01/25/2020] [Indexed: 01/08/2023]
|
31
|
Enhanced skeletal muscle growth in myostatin-deficient transgenic pigs had improved glucose uptake in stretozotocin-induced diabetes. Transgenic Res 2020; 29:253-261. [PMID: 32078127 DOI: 10.1007/s11248-020-00194-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
The size of skeletal muscle mass plays a significant role in glucose uptake in healthy and diabetic human subjects. Previously, we have generated myostatin-deficient (MSTN-/-) transgenic pigs via animal cloning technology. MSTN-/- pigs had dramatic phenotype with individual muscle mass increase by 100% over their wild-type controls, which provides a unique large animal model to investigate how enhanced skeletal muscles are beneficial to glucose update in diabetes. We employed intravenous administration of stretozotocin (STZ) to male MSTN-/- and wild-type pigs (100 mg/kg body weight). One month later, blood glucose and insulin concentrations and pancreas histology were examined, STZ-induced diabetes occurred in both MSTN transgenic and wild-type pigs. Histology of pancreas, analysis of pAKT and Glut4 transporter proteins by Western blotting, and real-time qPCR for MSTN gene expression were used in the study. The STZ-treated pigs had increased levels of fasting plasma glucose and insulin levels in comparison with animals receiving sodium citrate buffer, their pancreas also had reduced beta cells and slight increases in lymphocyte. There are significant lower concentrations of fasting plasma glucose and insulin in MSTN-/- pigs than that of wild-type pigs after STZ administration. Detections of pAKT and Glut4 transporter proteins by Western blotting in muscle tissue indicates significant elevations of both proteins in MSTN-/- pigs compared with the wild-type pigs. The results from this pig model suggest that enhanced skeletal muscle by manipulation of myostatin function can improve glucose uptake even in the status of diabetes.
Collapse
|
32
|
Ibrahim AHM, Tzanidakis N, Sotiraki S, Zhou H, Hickford J. Investigation of myostatin and calpain 3 gene polymorphisms and their association with milk-production traits in Sfakia sheep. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Genetic selection based on genetic markers for economically important traits in Sfakia sheep.
Aims
The aim of the present study was to investigate variation in the ovine myostatin gene (MSTN) and calpain 3 gene (CAPN3), and their association with milk-production traits.
Methods
Records for milk yield, milk fat content, protein content, lactose content, and non-fat solid content, pH and somatic-cell score (log), were obtained from 376 Sfakia ewes. Polymerase chain reaction–single-strand conformational polymorphism (PCR–SSCP) analyses were used to detect variation in intron 1 of MSTN and exon 10 of CAPN3. General linear models were then used to test for associations between the variation in MSTN and CAPN3, and milk-production traits.
Key results
The SSCP banding patterns for MSTN showed four variants (A1, A2, A3 and A4), which contained nine nucleotide sequence differences. Four SSCP banding patterns (C1, C2, C3 and C4) were observed for CAPN3 and these contained eight nucleotide-sequence differences. The MSTN variation was associated (P < 0.05) with variation in milk yield and non-fat milk solid content. Variation in CAPN3 was associated with milk yield (P < 0.001), fat content (P < 0.05) and lactose content (P < 0.05). Association analyses between the presence/absence of MSTN and CAPN3 variants and milk-production traits showed that a variant of MSTN that had previously between associated with muscle hypertrophy was associated with decreased milk yield (P < 0.05) and a lower non-fat milk solid content (P < 0.01). A CAPN3 variant that had previously been associated with increased sheep-carcass loin lean-meat yield was associated with a decreased milk yield (P < 0.01) and a decreased milk fat content (P < 0.05).
Conclusions
Our results have provided an insight into the effects of variation in ovine MSTN and CAPN3 on milk-production traits in sheep.
Implications
To preserve the dual-purpose characteristics of Sfakia sheep, breeding goals should take into account the possible antagonism between meat and milk traits.
Collapse
|
33
|
Meloux A, Rochette L, Maza M, Bichat F, Tribouillard L, Cottin Y, Zeller M, Vergely C. Growth Differentiation Factor-8 (GDF8)/Myostatin is a Predictor of Troponin I Peak and a Marker of Clinical Severity after Acute Myocardial Infarction. J Clin Med 2019; 9:E116. [PMID: 31906236 PMCID: PMC7019567 DOI: 10.3390/jcm9010116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Growth differentiation factor-8 (GDF8), also known as myostatin, is a member of the transforming growth factor-β superfamily that inhibits skeletal muscle growth. We aimed to investigate the association between GDF8 and peak troponin I levels after acute myocardial infarction (AMI). METHODS All consecutive patients admitted from June 2016 to February 2018 for type 1 AMI in the Coronary Care Unit of University Hospital of Dijon Bourgogne (France) were included in our prospective study. Blood samples were harvested on admission, and serum levels of GDF8 were measured using a commercially available enzyme-linked immunosorbent assay kit. RESULTS Among the 296 patients with type 1 AMI, median age was 68 years and 27% were women. GDF8 levels (median (IQR) = 2375 ng/L) were negatively correlated with age, sex and diabetes (p < 0.001 for all). GDF8 levels were higher in patients with in-hospital ventricular tachycardia or fibrillation (VT/VF) than those without in-hospital VT/VF. GDF8 was positively correlated with troponin I peak (r = 0.247; p < 0.001). In multivariate linear regression analysis, log GDF8 (OR: 21.59; 95% CI 34.08-119.05; p < 0.001) was an independent predictor of troponin I peak. CONCLUSIONS These results suggest that GDF8 levels could reflect the extent of myocardial damage during AMI, similar to peak troponin I, which is currently used to estimate infarct size. Further studies are needed to elucidate the underlying mechanisms linking the GDF8 cytokine with troponin I levels.
Collapse
Affiliation(s)
- Alexandre Meloux
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France;
| | - Luc Rochette
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
| | - Maud Maza
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France;
| | - Florence Bichat
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France;
| | - Laura Tribouillard
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France;
| | - Yves Cottin
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France;
| | - Marianne Zeller
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
| | - Catherine Vergely
- Laboratoire Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA 7460), Université de Bourgogne-Franche-Comté, UFR des Sciences de Santé; 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (M.M.); (F.B.); (Y.C.); (M.Z.)
| |
Collapse
|
34
|
Hassan Qomi M, Arshadi S, Banayifar A, Kazemzadeh Y. Effects of Eight Weeks of Resistance Training on Muscle Myostatin Gene Expression and Insulin Resistance in Male Wistar Rats with Type 2 Diabetes. NUTRITION AND FOOD SCIENCES RESEARCH 2019. [DOI: 10.29252/nfsr.6.4.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
35
|
Rovira Gonzalez YI, Moyer AL, LeTexier NJ, Bratti AD, Feng S, Sun C, Liu T, Mula J, Jha P, Iyer SR, Lovering R, O’Rourke B, Noh HL, Suk S, Kim JK, Essien Umanah GK, Wagner KR. Mss51 deletion enhances muscle metabolism and glucose homeostasis in mice. JCI Insight 2019; 4:122247. [PMID: 31527314 PMCID: PMC6824300 DOI: 10.1172/jci.insight.122247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
Myostatin is a negative regulator of muscle growth and metabolism and its inhibition in mice improves insulin sensitivity, increases glucose uptake into skeletal muscle, and decreases total body fat. A recently described mammalian protein called MSS51 is significantly downregulated with myostatin inhibition. In vitro disruption of Mss51 results in increased levels of ATP, β-oxidation, glycolysis, and oxidative phosphorylation. To determine the in vivo biological function of Mss51 in mice, we disrupted the Mss51 gene by CRISPR/Cas9 and found that Mss51-KO mice have normal muscle weights and fiber-type distribution but reduced fat pads. Myofibers isolated from Mss51-KO mice showed an increased oxygen consumption rate compared with WT controls, indicating an accelerated rate of skeletal muscle metabolism. The expression of genes related to oxidative phosphorylation and fatty acid β-oxidation were enhanced in skeletal muscle of Mss51-KO mice compared with that of WT mice. We found that mice lacking Mss51 and challenged with a high-fat diet were resistant to diet-induced weight gain, had increased whole-body glucose turnover and glycolysis rate, and increased systemic insulin sensitivity and fatty acid β-oxidation. These findings demonstrate that MSS51 modulates skeletal muscle mitochondrial respiration and regulates whole-body glucose and fatty acid metabolism, making it a potential target for obesity and diabetes.
Collapse
Affiliation(s)
- Yazmin I. Rovira Gonzalez
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program
| | - Adam L. Moyer
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program
| | - Nicolas J. LeTexier
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - August D. Bratti
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Siyuan Feng
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Congshan Sun
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology
- Department of Neuroscience, and
| | - Ting Liu
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jyothi Mula
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Pankhuri Jha
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shama R. Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brian O’Rourke
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Kathryn R. Wagner
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology
- Department of Neuroscience, and
| |
Collapse
|
36
|
Castillo‐Armengol J, Fajas L, Lopez‐Mejia IC. Inter-organ communication: a gatekeeper for metabolic health. EMBO Rep 2019; 20:e47903. [PMID: 31423716 PMCID: PMC6726901 DOI: 10.15252/embr.201947903] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Multidirectional interactions between metabolic organs in the periphery and the central nervous system have evolved concomitantly with multicellular organisms to maintain whole-body energy homeostasis and ensure the organism's adaptation to external cues. These interactions are altered in pathological conditions such as obesity and type 2 diabetes. Bioactive peptides and proteins, such as hormones and cytokines, produced by both peripheral organs and the central nervous system, are key messengers in this inter-organ communication. Despite the early discovery of the first hormones more than 100 years ago, recent studies taking advantage of novel technologies have shed light on the multiple ways used by cells in the body to communicate and maintain energy balance. This review briefly summarizes well-established concepts and focuses on recent advances describing how specific proteins and peptides mediate the crosstalk between gut, brain, and other peripheral metabolic organs in order to maintain energy homeostasis. Additionally, this review outlines how the improved knowledge about these inter-organ networks is helping us to redefine therapeutic strategies in an effort to promote healthy living and fight metabolic disorders and other diseases.
Collapse
Affiliation(s)
| | - Lluis Fajas
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | | |
Collapse
|
37
|
Liu X, Pan JP, Bauman WA, Cardozo CP. AdipoRon prevents myostatin-induced upregulation of fatty acid synthesis and downregulation of insulin activity in a mouse hepatocyte line. Physiol Rep 2019; 7:e14152. [PMID: 31250564 PMCID: PMC6597868 DOI: 10.14814/phy2.14152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases such as non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are characterized by excess hepatic accumulation of lipid droplets and triglycerides which are associated with defective insulin action. Myostatin (Mstn) and adiponectin, secreted by muscle cells and adipocytes, respectively, play important roles in regulating insulin signaling and energy metabolism. The mechanisms underlying the actions of Mstn and adiponectin remain largely unknown. Moreover, the interactions between Mstn and adiponectin in regulating gene expression critical for fatty acid metabolism and insulin action in hepatocytes have not been investigated. The effects of Mstn and AdipoRon, a synthetic adiponectin receptor agonist that is orally active, alone or in combination, on hepatic gene expression and function was investigated. While Mstn increased fatty acid (FA) accumulation and desensitized cellular responses to insulin, AdipoRon protected against Mstn-induced defects in hepatic gene expression and function. In addition, these effects of Mstn were associated with reduced AMPK and PPARα activities which were reversed by AdipoRon. Finally, AdipoRon was able to prevent Mstn-induced activation of the Smad2/3 pathway. These data suggest crosstalk between Mstn-induced Smad2/3 and adiponectin-induced AMPK/PPARα pathways, which may play important roles in the regulation of hepatic gene expression critical for FA metabolism and insulin signaling. In addition, the data suggest that AdipoRon, as an adiponectin receptor agonist, may serve a therapeutic role to reduce the hepatic contribution to the disorders of fat metabolism and insulin action.
Collapse
Affiliation(s)
- Xin‐Hua Liu
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Jiang Ping Pan
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
38
|
Gao L, Yang M, Wang X, Yang L, Bai C, Li G. Mstn knockdown decreases the trans-differentiation from myocytes to adipocytes by reducing Jmjd3 expression via the SMAD2/SMAD3 complex. Biosci Biotechnol Biochem 2019; 83:2090-2096. [PMID: 31334687 DOI: 10.1080/09168451.2019.1644152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Myostatin (Mstn) is an important growth/differentiation factor, and knockdown of Mstn reduces fat content. Here, we knocked down Mstn expression in C2C12 myoblasts and then induced adipogenic trans-differentiation in the cells. The effects of Mstn knockdown on lipid droplet contents and H3K27me3 marker expression on adipocyte-specific genes were detected. The results showed that Mstn knockdown reduced the formation of lipid droplets, downregulated the expression of adipocyte-specific genes, and increased H3K27me3 marker expression on adipocyte-specific genes. Chromatin immunoprecipitation analysis showed that the SMAD2/SMAD3 complex could combine with the Jumonji D3 (Jmjd3) promoter and that Mstn regulated Jmjd3 expression through this process. Jmjd3 overexpression removed the H3K27me3 marker and increased the expression of adipocyte-specific genes. Overall, our results showed that Mstn regulated Jmjd3 expression through SMAD2/SMAD3, thus affecting the H3K27me3 marker on adipocyte-specific genes and the trans-differentiation from myocytes to adipocytes.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University , Hohhot , China
| | - Miaomiao Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University , Hohhot , China
| | - Xueqiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University , Hohhot , China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University , Hohhot , China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University , Hohhot , China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University , Hohhot , China
| |
Collapse
|
39
|
Yan H, Meng J, Zhang S, Zhuang H, Song Y, Xiao X, Wang DW, Jiang J. Pretreatment of rAAV-Mediated Expression of Myostatin Propeptide Lowers Type 2 Diabetes Incidence inC57BL/6Mice on a High-Fat Diet. Hum Gene Ther 2019; 30:661-671. [DOI: 10.1089/hum.2018.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hui Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| | - Jiejie Meng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| | - Shasha Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| | - Hang Zhuang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| | - YuE Song
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| | - Xiao Xiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| | - Jiangang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders (Huazhong University of Science and Technology), Wuhan, P.R. China
| |
Collapse
|
40
|
Kim JH, Kim JH, Sutikno LA, Lee SB, Jin DH, Hong YK, Kim YS, Jin HJ. Identification of the minimum region of flatfish myostatin propeptide (Pep45-65) for myostatin inhibition and its potential to enhance muscle growth and performance in animals. PLoS One 2019; 14:e0215298. [PMID: 30998775 PMCID: PMC6472743 DOI: 10.1371/journal.pone.0215298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/30/2019] [Indexed: 12/31/2022] Open
Abstract
Myostatin (MSTN) negatively regulates skeletal muscle growth, and its activity is inhibited by the binding of MSTN propeptide (MSTNpro), the N-terminal domain of proMSTN that is proteolytically cleaved from the proMSTN. Partial sequences from the N-terminal side of MSTNpro have shown to be sufficient to inhibit MSTN activity. In this study, to determine the minimum size of flatfish MSTNpro for MSTN inhibition, various truncated forms of flatfish MSTNpro with N-terminal maltose binding protein (MBP) fusion were expressed in E. coli and purified. MSTNpro regions consisting of residues 45–68, -69, and -70 with MBP fusion suppressed MSTN activity with a potency comparable to that of full-sequence flatfish MSTNpro in a pGL3-(CAGA)12-luciferase reporter assay. Even though the MSTN-inhibitory potency was about 1,000-fold lower, the flatfish MSTNpro region containing residues 45–65 (MBP-Pro45-65) showed MSTN-inhibitory capacity but not the MBP-Pro45-64, indicating that the region 45–65 is the minimum domain required for MSTN binding and suppression of its activity. To examine the in vivo effect of MBP-fused, truncated flatfish MSTNpro, MBP-Pro45-70-His6 (20 mg/kg body wt) was subcutaneously injected 5 times for 14 days in mice. Body wt gain and bone mass were not affected by the administration. Grip strength and swimming time were significantly enhanced at 7 d after the administration. At 14 d, the effect on grip strength disappeared, and the extent of the effect on swimming time significantly diminished. The presence of antibody against MBP-Pro45-70-His6 was observed at both 7 and 14 d after the administration with the titer value at 14 d being much greater than that at 7 d, suggesting that antibodies against MBP-Pro45-70-His6 neutralized the MSTN-inhibitory effect of MBP-Pro45-70-His6. We, thus, examined the MSTN-inhibitory capacity and in vivo effect of flatfish MSTNpro region 45–65 peptide (Pep45-65-NH2), which was predicted to have no immunogenicity in silico analysis. Pep45-65-NH2 suppressed MSTN activity with a potency similar to that of MBP-Pro45-65 but did not suppress GDF11, or activin A. Pep45-65-NH2 blocked MSTN-induced Smad2 phosphorylation in HepG2 cells. The administration of Pep45-65 (20 mg/kg body wt, 5 times for 2 weeks) increased the body wt gain with a greater gain at 14 d than at 7 d and muscle wt. Grip strength and swimming time were also significantly enhanced by the administration. Antibody titer against Pep45-65 was not detected. In conclusion, current results indicate that MSTN-inhibitory proteins with heterologous fusion partner may not be effective in suppressing MSTN activity in vivo due to an immune response against the proteins. Current results also show that the region of flatfish MSTNpro consisting of 45–65 (Pep45-65) can suppress mouse MSTN activity and increase muscle mass and function without invoking an immune response, implying that Pep45-65 would be a potential agent to enhance skeletal muscle growth and function in animals or to treat muscle atrophy caused by various clinical conditions.
Collapse
Affiliation(s)
- Jeong Hwan Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | - Jeong Han Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | | | - Sang Beum Lee
- Department of Human Nurtrition, Food and Animal Sciences, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Deuk-Hee Jin
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namgu, Busan, Korea
| | - Yong Soo Kim
- Department of Human Nurtrition, Food and Animal Sciences, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail: (YK); (HJ)
| | - Hyung-Joo Jin
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
- * E-mail: (YK); (HJ)
| |
Collapse
|
41
|
Leal LG, Lopes MA, Batista ML. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front Physiol 2018; 9:1307. [PMID: 30319436 PMCID: PMC6166321 DOI: 10.3389/fphys.2018.01307] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/29/2018] [Indexed: 01/19/2023] Open
Abstract
Physical exercise has beneficial effects on metabolic diseases, and a combined therapeutic regimen of regular exercise and pharmaceutical treatment is often recommended for their clinical management. However, the mechanisms by which exercise produces these beneficial effects are not fully understood. Myokines, a group of skeletal muscle (SkM) derived peptides may play an important part in this process. Myokines are produced, expressed and released by muscle fibers under contraction and exert both local and pleiotropic effects. Myokines such as IL-6, IL-10, and IL-1ra released during physical exercise mediate its health benefits. Just as exercise seems to promote the myokine response, physical inactivity seems to impair it, and could be a mechanism to explain the association between sedentary behavior and many chronic diseases. Myokines help configure the immune-metabolic factor interface and the health promoting effects of physical exercise through the release of humoral factors capable of interacting with other tissues, mainly adipose tissue (AT). AT itself secretes proinflammatory cytokines (adipokines) as a result of physical inactivity and it is well recognized that AT inflammation can lead to the development of metabolic diseases, such as type 2 diabetes mellitus (T2DM) and atherosclerosis. On the other hand, the browning phenotype of AT has been suggested to be one of the mechanisms through which physical exercise improves body composition in overweight/obese individuals. Although, many cytokines are involved in the crosstalk between SkM and AT, in respect of these effects, it is IL-6, IL-15, irisin, and myostatin which seem to have the decisive role in this “conversation” between AT and SkM. This review article proposes to bring together the latest “state of the art” knowledge regarding Myokines and muscle-adipose tissue crosstalk. Furthermore, it is intended to particularly focus on the immune-metabolic changes from AT directly mediated by myokines.
Collapse
Affiliation(s)
- Luana G Leal
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, São Paulo, Brazil.,Technological Research Group, University of Mogi das Cruzes, São Paulo, Brazil
| | - Magno A Lopes
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, São Paulo, Brazil
| | - Miguel L Batista
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, São Paulo, Brazil.,Technological Research Group, University of Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
42
|
Liu X, Bauman WA, Cardozo CP. Myostatin inhibits glucose uptake via suppression of insulin-dependent and -independent signaling pathways in myoblasts. Physiol Rep 2018; 6:e13837. [PMID: 30252210 PMCID: PMC6121119 DOI: 10.14814/phy2.13837] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022] Open
Abstract
The glucose transporter 4 (Glut4) mediates insulin-dependent glucose uptake. Glut4 expression levels are correlated with whole-body glucose homeostasis. Insulin signaling is known to recruit Glut4 to the cell surface. Expression of Glut4 is subject to tissue-specific hormonal and metabolic regulation. The molecular mechanisms regulating skeletal muscle Glut4 expression remain to be elucidated. Myostatin (Mstn) is reported to be involved in the regulation of energy metabolism. While elevated Mstn levels in muscle are associated with obesity and type-2 diabetes in both human and mouse models, Mstn null mice exhibit immunity to dietary-induced obesity and insulin resistance. The molecular mechanisms by which Mstn initiates the development of insulin resistance and disorders of glucose disposal are not well delineated. Here we investigated effects of Mstn on insulin action in C2C12 cells. Mstn significantly reduced basal and insulin-induced IRS-1 tyrosine (Tyr495) phosphorylation, and expression and activation of PI3K, associated with diminished AKT phosphorylation and elevated GSK3β phosphorylation at Ser9. In addition, Mstn inhibited Glut4 mRNA and protein expression, and reduced insulin-induced Glut4 membrane translocation and glucose uptake. Conversely, SB431542, a Smad2/3 inhibitor, significantly increased cellular response to insulin. Mstn decreased AMP-activated protein kinase (AMPK) activity accompanied by reduced Glut4 gene expression and glucose uptake, which were partially reversed by AICAR, an AMPK activator. These data suggest that Mstn inhibits Glut4 expression and insulin-induced Glut4 integration into cytoplasmic membranes and glucose uptake and that these changes are mediated by direct insulin-desensitizing effect and indirect suppression of AMPK activation.
Collapse
Affiliation(s)
- Xin‐Hua Liu
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineMount Sinai School of MedicineNew YorkNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineMount Sinai School of MedicineNew YorkNew York
- Department of Rehabilitation MedicineMount Sinai School of MedicineNew YorkNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineMount Sinai School of MedicineNew YorkNew York
- Department of Rehabilitation MedicineMount Sinai School of MedicineNew YorkNew York
| |
Collapse
|
43
|
Carvalho LP, Basso-Vanelli RP, Di Thommazo-Luporini L, Mendes RG, Oliveira-Junior MC, Vieira RDP, Bonjorno-Junior JC, Oliveira CR, Luporini R, Borghi-Silva A. Myostatin and adipokines: The role of the metabolically unhealthy obese phenotype in muscle function and aerobic capacity in young adults. Cytokine 2018; 107:118-124. [PMID: 29246653 DOI: 10.1016/j.cyto.2017.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/16/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
Abstract
Obesity is often associated with metabolic disorders. However, some obese people can present a metabolically healthy phenotype, despite having excessive body fat. Obesity-related cytokines, such as myostatin (MSTN), leptin (LP) and adiponectin (ADP) appear to be key factors for the regulation of muscle and energy metabolism. Our aim was to compare lipid, glucose-insulin and inflammatory (tumor necrosis factor alpha; TNF-α) profiles, muscle function, energy expenditure and aerobic capacity between healthy normal-weight (NW) adults, metabolically healthy obese (MHO) and metabolically unhealthy obese (MUHO) adults; to study the associations between these outcomes and the cytokines MSTN, ADP, LP; and to establish cutoffs for MSTN and LP/ADP to identify the MUHO phenotype. Sixty-one young adults (NW, n = 24; MHO, n = 16; MUHO, n = 21) underwent body composition (body fat -BF and muscle mass - MM), energy expenditure at rest (RER) and aerobic capacity (VO2peak) evaluation, muscle strength and endurance tests and blood profile characterization (glucose-insulin homeostasis and serum MSTN, ADP, LP and TNF-α). MHO and MUHO had a BMI ≥ 30 kg m-2. MUHO was defined as presenting ≥3 criteria for metabolic syndrome (NCEP/ATPIII) in association with insulin resistance (HOMA-IR ≥3.46). MSTN and LP/ADP were associated with MM, MetS and glucose-insulin profile; MSTN was associated with TNF-α and only LP/ADP was associated with parameters of obesity and VO2peak. Neither MSTN nor LP/ADP was associated with muscle functions (p < .05 for adjusted correlations). Both of them were able to discriminate the MUHO phenotype: MSTN [AUC(95%CI) = 0.71(0.55-0.86), MSTN > 517.3 pg/mL] and LP/ADP [AUC(95%CI) = 0.89(0.81-0.97), LP/ADP > 2.14 pg/ng]. In conclusion, high MSTN and LP/ADP are associated with MetS, glucose-insulin homeostasis impairment and low muscle mass. Myostatin is associated with TNF-α and leptin-to-adiponectin ratio is associated with body fatness and aerobic capacity. Neither MSTN nor LP/ADP is associated with energy expenditure, muscle strength and endurance. Myostatin and adipokines cutoffs can identify the metabolically unhealthy obese phenotype in young adults with acceptable accuracy.
Collapse
Affiliation(s)
- Lívia Pinheiro Carvalho
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil.
| | - Renata Pedrolongo Basso-Vanelli
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Luciana Di Thommazo-Luporini
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Renata Gonçalves Mendes
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Manoel Carneiro Oliveira-Junior
- Laboratory of Pulmonary and Exercise Immunology (LABPEI)/Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University, Sao Paulo, SP, Brazil
| | - Rodolfo de Paula Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), School of Medical Sciences of Sao Jose dos Campos Humanitas and Universidade Brasil, Sao Jose dos Campos, SP, Brazil
| | | | | | - Rafael Luporini
- Medicine Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Audrey Borghi-Silva
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| |
Collapse
|
44
|
Cai C, Qian L, Jiang S, Sun Y, Wang Q, Ma D, Xiao G, Li B, Xie S, Gao T, Chen Y, Liu J, An X, Cui W, Li K. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs. Oncotarget 2018; 8:34911-34922. [PMID: 28432282 PMCID: PMC5471021 DOI: 10.18632/oncotarget.16822] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/22/2017] [Indexed: 01/16/2023] Open
Abstract
Myostatin-deficient mice showed a remarkable hypertrophy of skeletal muscle, with a decreased fat mass and enhanced insulin sensitivity. Currently, it is unclear if the inhibition of myostatin could be used as an approach to treat human obesity and insulin resistance. In this study, we investigated if the inhibition of porcine myostatin has any effect on fat deposition and insulin sensitivity using genetically engineered Meishan pigs containing a myostatin loss-of-function mutation (Mstn−/− ). Our results indicated that, when compared with wild-type pigs, the amount of subcutaneous fat and leaf fat of Mstn−/− pigs were significantly decreased mainly due to the browning of subcutaneous adipose tissue. Additionally, the serum insulin level decreased and the insulin sensitivity increased significantly in Mstn−/− pigs. Moreover, we found a significant increase in levels of insulin receptor and insulin receptor substrate proteins in skeletal muscle of Mstn−/− pigs, which then activating the insulin signaling pathway. Irisin-mediated regulation is not the only pathway for the activation of insulin signal in Mstn−/− skeletal muscle. This study provides valuable insight for the treatment of human obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Chunbo Cai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.,State Key Laboratory of Agro Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Lili Qian
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.,State Key Laboratory of Agro Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Shengwang Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Youde Sun
- Institute of Animal Sciences, Qingdao, 266100, P. R. China
| | - Qingqing Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Dezun Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Gaojun Xiao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Biao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Shanshan Xie
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Ting Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.,College of Animal Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Yaoxing Chen
- College of Animal Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Jie Liu
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiaorong An
- State Key Laboratory of Agro Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Wentao Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| |
Collapse
|
45
|
Yang S, Li X, Liu X, Ding X, Xin X, Jin C, Zhang S, Li G, Guo H. Parallel comparative proteomics and phosphoproteomics reveal that cattle myostatin regulates phosphorylation of key enzymes in glycogen metabolism and glycolysis pathway. Oncotarget 2018; 9:11352-11370. [PMID: 29541418 PMCID: PMC5834288 DOI: 10.18632/oncotarget.24250] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/23/2017] [Indexed: 01/09/2023] Open
Abstract
MSTN-encoded myostatin is a negative regulator of skeletal muscle development. Here, we utilized the gluteus tissues from MSTN gene editing and wild type Luxi beef cattle which are native breed of cattle in China, performed tandem mass tag (TMT) -based comparative proteomics and phosphoproteomics analyses to investigate the regulatory mechanism of MSTN related to cellular metabolism and signaling pathway in muscle development. Out of 1,315 proteins, 69 differentially expressed proteins (DEPs) were found in global proteomics analysis. Meanwhile, 149 differentially changed phosphopeptides corresponding to 76 unique phosphorylated proteins (DEPPs) were detected from 2,600 identified phosphopeptides in 702 phosphorylated proteins. Bioinformatics analyses suggested that majority of DEPs and DEPPs were closely related to glycolysis, glycogenolysis, and muscle contractile fibre processes. The global discovery results were validated by Multiple Reaction Monitoring (MRM)-based targeted peptide quantitation analysis, western blotting, and muscle glycogen content measurement. Our data revealed that increase in abundance of key enzymes and phosphorylation on their regulatory sites appears responsible for the enhanced glycogenolysis and glycolysis in MSTN-/- . The elevated glycogenolysis was assocaited with an enhanced phosphorylation of Ser1018 in PHKA1, and Ser641/Ser645 in GYS1, which were regulated by upstream phosphorylated AKT-GSK3β pathway and highly consistent with the lower glycogen content in gluteus of MSTN-/- . Collectively, this study provides new insights into the regulatory mechanisms of MSTN involved in energy metabolism and muscle growth.
Collapse
Affiliation(s)
- Shuping Yang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinfeng Liu
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiangbin Ding
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiangbo Xin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Congfei Jin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, U.S.A
| | - Guangpeng Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot 010070, China
| | - Hong Guo
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
46
|
Wang L, Cai B, Zhou S, Zhu H, Qu L, Wang X, Chen Y. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout. PLoS One 2017; 12:e0187966. [PMID: 29228005 PMCID: PMC5724853 DOI: 10.1371/journal.pone.0187966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the MSTN knockout goat, which is a valuable resource for studying goat genomics.
Collapse
Affiliation(s)
- Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shiwei Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
47
|
The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 2017; 41:14-29. [DOI: 10.1007/s12272-017-0994-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022]
|
48
|
Hoffmann C, Weigert C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029793. [PMID: 28389517 DOI: 10.1101/cshperspect.a029793] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise stimulates the release of proteins with autocrine, paracrine, or endocrine functions produced in skeletal muscle, termed myokines. Based on the current state of knowledge, the major physiological function of myokines is to protect the functionality and to enhance the exercise capacity of skeletal muscle. Myokines control adaptive processes in skeletal muscle by acting as paracrine regulators of fuel oxidation, hypertrophy, angiogenesis, inflammatory processes, and regulation of the extracellular matrix. Endocrine functions attributed to myokines are involved in body weight regulation, low-grade inflammation, insulin sensitivity, suppression of tumor growth, and improvement of cognitive function. Muscle-derived regulatory RNAs and metabolites, as well as the design of modified myokines, are promising novel directions for treatment of chronic diseases.
Collapse
Affiliation(s)
- Christoph Hoffmann
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Cora Weigert
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
49
|
Hu Z, Zhou L, He T. Potential effect of exercise in ameliorating insulin resistance at transcriptome level. J Sports Med Phys Fitness 2017; 59:116-125. [PMID: 29072034 DOI: 10.23736/s0022-4707.17.07862-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Insulin resistance can lead to the pathogenesis of type 2 diabetes and exercise can increase insulin sensitivity. And different exercises may have different influences on the mitigation of insulin resistance. It is still unclear how exercise affects inherited insulin resistance at transcriptome level. The purpose of our study was to analyze the potential effects of exercise in ameliorating insulin resistance at transcriptome level. METHODS Herein, we analyzed two skeletal muscle transcriptome profiles, including gene profiles between inherited insulin resistant patients and matched healthy controls, and between trained and sedentary subjects (young and old subjects, respectively). RESULTS Analysis of differentially expressed genes revealed that 12 genes (SGK1, LOC101929876, MYL5, COL6A3, MLF1, LUM, MSTN, COL1A2, COL3A1, IL32, IRS2, and ID1) associated with insulin resistance were reversed by exercise in young subjects, while six genes (MSTN, CFHR1, PFKFB3, IL32, RGCC, and NMRK2) were identified in old subjects, suggesting that those genes play potential roles in insulin resistance response to exercise. In addition, we observed that two insulin resistance-related genes, MSTN and IL32, were identified in muscle cells of both young and old subjects, indicating their important roles in the mechanisms behind the beneficial effects of exercise on humans with inherited insulin resistance. Several pathways were also identified, such as "collagen metabolic process," "focal adhesion," and "negative regulation of myoblast differentiation." CONCLUSIONS Taken together, our findings provide novel markers in insulin resistant patients and exercise, and some valuable information for future functional studies on how exercise ameliorating insulin resistance.
Collapse
Affiliation(s)
- Zhigang Hu
- Institute of Physical Education, Jiangxi Normal University, Nanchang, China -
| | - Lei Zhou
- Nanchang Institute of Science and Technology, Nanchang, China
| | - Tingting He
- Institute of Physical Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
50
|
Barbé C, Bray F, Gueugneau M, Devassine S, Lause P, Tokarski C, Rolando C, Thissen JP. Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy. J Proteome Res 2017; 16:3477-3490. [PMID: 28810121 DOI: 10.1021/acs.jproteome.7b00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes.
Collapse
Affiliation(s)
- Caroline Barbé
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Fabrice Bray
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Marine Gueugneau
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Stéphanie Devassine
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Pascale Lause
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Caroline Tokarski
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Christian Rolando
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| |
Collapse
|