1
|
Perez-Miller S, Gomez K, Khanna R. Peptide and Peptidomimetic Inhibitors Targeting the Interaction of Collapsin Response Mediator Protein 2 with the N-Type Calcium Channel for Pain Relief. ACS Pharmacol Transl Sci 2024; 7:1916-1936. [PMID: 39022365 PMCID: PMC11249630 DOI: 10.1021/acsptsci.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Ion channels serve pleiotropic functions. Often found in complexes, their activities and functions are sculpted by auxiliary proteins. We discovered that collapsin response mediator protein 2 (CRMP2) is a binding partner and regulator of the N-type voltage-gated calcium channel (CaV2.2), a genetically validated contributor to chronic pain. Herein, we trace the discovery of a new peptidomimetic modulator of this interaction, starting from the identification and development of CBD3, a CRMP2-derived CaV binding domain peptide. CBD3 uncouples CRMP2-CaV2.2 binding to decrease CaV2.2 surface localization and calcium currents. These changes occur at presynaptic sites of nociceptive neurons and indeed, CBD3 ameliorates chronic pain in preclinical models. In pursuit of a CBD3 peptidomimetic, we exploited a unique approach to identify a dipeptide with low conformational flexibility and high solvent accessibility that anchors binding to CaV2.2. From a pharmacophore screen, we obtained CBD3063, a small-molecule that recapitulated CBD3's activity, reversing nociceptive behaviors in rodents of both sexes without sensory, affective, or cognitive effects. By disrupting the CRMP2-CaV2.2 interaction, CBD3063 exerts these effects indirectly through modulating CaV2.2 trafficking, supporting CRMP2 as an auxiliary subunit of CaV2.2. The parent peptide CBD3 was also found by us and others to have neuroprotective properties at postsynaptic sites, through N-methyl-d-aspartate receptor and plasmalemmal Na+/Ca2+ exchanger 3, potentially acting as an auxiliary subunit for these pathways as well. Our new compound is poised to address several open questions regarding CRMP2's role in regulating the CaV2.2 pathways to treat pain with the potential added benefit of neuroprotection.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
| | - Kimberly Gomez
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
| | - Rajesh Khanna
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
- Pain
and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
2
|
Chang YH, Chang SW, Hsu WT, Yang CP, Lo YL, Chen CJ, Tsai HF, Shiau MY. Implication of Adipogenesis-Coupled CRMP2 Functional Profile in Metabolic Homeostasis and Imbalance. Biomedicines 2022; 10:2603. [PMID: 36289868 PMCID: PMC9599587 DOI: 10.3390/biomedicines10102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Our previous studies demonstrated that collapsin response mediator protein 2 (CRMP2) is associated with obesity and, in addition, that hyperglycemia-suppressed CRMP2 augments malignant traits of colorectal cancer and is associated with advanced tumor stage. Regulation of CRMP2 profile was further explored in this study using 3T3-L1 pre-adipocyte adipogenesis as a study model for illustrating the roles of CRMP2 in metabolic homeostasis. Hyperglycemia inhibited expression of CRMP2, adipogenic machinery and adipocyte markers. CRMP2 displayed f-CRMP2 (62~66 kDa) and s-CMRP2 (58 kDa) isoforms at the growth arrest phase. Expression of s-CRMP2 was coupled with the mitotic clonal expansion (MCE) phase to direct cell proliferation and rapidly down-regulated in post-mitotic cells. In the late differentiation phase, f-CRMP2 was co-localized with tubulin in the cortical area. Insulin-enhanced CRMP2-glucose transporter 4 (GLUT4) co-localization and CRMP2 puncta on lipid droplets (LDs) suggested participation of CRMP2 in GLUT4 translocation and LD fusion. Collectively, the CRMP2 functional profile must be finely controlled to adjust cytoskeletal stability for meeting dynamic cellular needs. Manipulating the s-CRMP2/f-CRMP2 ratio and thus the cytoskeleton dynamics is anticipated to improve glucose uptake and insulin sensitivity. In summary, our data provide molecular evidence explaining the functions of CRMP2 in physiological, pathological and disease progression in metabolic homeostasis and disorders related to metabolic abnormalities, including cancer.
Collapse
Affiliation(s)
- Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Wen Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Nursing, College of Nursing, Hungkuang University, Taichung 433, Taiwan
| | - Wei-Ting Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ching-Ping Yang
- Department of Medical Technology, Jenteh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Yu-Li Lo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| | - Hui-Fang Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ming-Yuh Shiau
- Department of Nursing, College of Nursing, Hungkuang University, Taichung 433, Taiwan
| |
Collapse
|
3
|
Jin Y, Bian S, Wang H, Mo J, Fei H, Li L, Chen T, Jiang H. CRMP2 derived from cancer associated fibroblasts facilitates progression of ovarian cancer via HIF-1α-glycolysis signaling pathway. Cell Death Dis 2022; 13:675. [PMID: 35927239 PMCID: PMC9352901 DOI: 10.1038/s41419-022-05129-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/21/2023]
Abstract
As the predominant stroma cells of tumor microenvironment (TME), cancer associated fibroblasts (CAFs) are robust tumor player of different malignancies. However, less is known about the regulatory mechanism of CAFs on promoting progression of ovarian cancer (OvCA). In the present study, the conditioned medium of primary CAFs (CAF-CM) from OvCA was used to culture cell lines of epithelial ovarian cancer (EOC), and showed a potent role in promoting proliferation, migration and invasion of cancer cells. Mass spectrum (MS) analysis identified that Collapsin response mediator protein-2 (CRMP2), a microtubule-associated protein involved in diverse malignancies, derived from CAFs was a key regulator responsible for mediating these cell events of OvCA. In vitro study using recombinant CRMP2 (r-CRMP2) revealed that the protein promoted proliferation, invasion, and migration of OvCA cells through activation of hypoxia-inducible factor (HIF)-1α-glycolysis signaling pathway. The CRMP2 was abundantly expressed in OvCA, with a well correlation with metastasis and poor prognosis, as analyzed from 118 patients' samples. Inhibition of the CRMP2 derived from CAFs by neutralizing antibodies significantly attenuated the tumor size, weights, and metastatic foci numbers of mice in vivo. Our finding has provided a novel therapeutic clue for OvCA based on TME.
Collapse
Affiliation(s)
- Yunfeng Jin
- grid.412312.70000 0004 1755 1415Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China ,grid.440642.00000 0004 0644 5481Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001 China
| | - Saiyan Bian
- grid.440642.00000 0004 0644 5481Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001 China
| | - Hui Wang
- grid.412312.70000 0004 1755 1415Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - Jiahang Mo
- grid.412312.70000 0004 1755 1415Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - He Fei
- grid.412312.70000 0004 1755 1415Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - Li Li
- grid.440642.00000 0004 0644 5481Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001 China
| | - Tong Chen
- grid.8547.e0000 0001 0125 2443Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Hua Jiang
- grid.412312.70000 0004 1755 1415Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| |
Collapse
|
4
|
Loya-López SI, Duran P, Ran D, Calderon-Rivera A, Gomez K, Moutal A, Khanna R. Cell specific regulation of NaV1.7 activity and trafficking in rat nodose ganglia neurons. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100109. [PMID: 36531612 PMCID: PMC9755031 DOI: 10.1016/j.ynpai.2022.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The voltage-gated sodium NaV1.7 channel sets the threshold for electrogenesis. Mutations in the gene encoding human NaV1.7 (SCN9A) cause painful neuropathies or pain insensitivity. In dorsal root ganglion (DRG) neurons, activity and trafficking of NaV1.7 are regulated by the auxiliary collapsin response mediator protein 2 (CRMP2). Specifically, preventing addition of a small ubiquitin-like modifier (SUMO), by the E2 SUMO-conjugating enzyme Ubc9, at lysine-374 (K374) of CRMP2 reduces NaV1.7 channel trafficking and activity. We previously identified a small molecule, designated 194, that prevented CRMP2 SUMOylation by Ubc9 to reduce NaV1.7 surface expression and currents, leading to a reduction in spinal nociceptive transmission, and culminating in normalization of mechanical allodynia in models of neuropathic pain. In this study, we investigated whether NaV1.7 control via CRMP2-SUMOylation is conserved in nodose ganglion (NG) neurons. This study was motivated by our desire to develop 194 as a safe, non-opioid substitute for persistent pain, which led us to wonder how 194 would impact NaV1.7 in NG neurons, which are responsible for driving the cough reflex. We found functioning NaV1.7 channels in NG neurons; however, they were resistant to downregulation via either CRMP2 knockdown or pharmacological inhibition of CRMP2 SUMOylation by 194. CRMP2 SUMOylation and interaction with NaV1.7 was consered in NG neurons but the endocytic machinery was deficient in the endocytic adaptor protein Numb. Overexpression of Numb rescued CRMP2-dependent regulation on NaV1.7, rendering NG neurons sensitive to 194. Altogether, these data point at the existence of cell-specific mechanisms regulating NaV1.7 trafficking.
Collapse
Affiliation(s)
- Santiago I. Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, MO 63104, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| |
Collapse
|
5
|
Chang YH, Yang HJ, Chen HW, Hsiao CW, Hsieh YC, Chan YW, Chang SW, Hwang WL, Chen WS, Cheng HH, Chou TY, Chang FP, Ho HL, Chu FY, Lo YL, Chen CJ, Tsai HF, Shiau MY. Characterization of Collapsin Response Mediator Protein 2 in Colorectal Cancer Progression in Subjects with Diabetic Comorbidity. Cells 2022; 11:727. [PMID: 35203376 PMCID: PMC8869905 DOI: 10.3390/cells11040727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Common demographic risk factors are identified in colorectal cancer (CRC) and type 2 diabetes mellitus (DM), nevertheless, the molecular link and mechanism for CRC-DM comorbidity remain elusive. Dysregulated glycogen synthase kinase-3 beta under metabolic imbalance is suggested to accelerate CRC pathogenesis/progression via regulating collpasin response mediator protein-2 (CRMP2). Accordingly, roles of CRMP2 in CRC and CRC-DM patients were investigated for elucidating the molecular convergence of CRC and DM. METHODS CRMP2 profile in tumor tissues from CRC and CRC-DM patients was investigated to explore the link between CRC and DM etiology. Meanwhile, molecular mechanism of glucose to regulate CRMP2 profile and CRC characteristics was examined in vitro and in vivo. RESULTS CRMP2 was significantly lower in tumor lesions and associated with advanced tumor stage in CRC-DM patients. Physiological hyperglycemia suppressed CRMP2 expression/activity and augmented malignant characteristics of CRC cells. Hyperglycemia promotes actin de-polymerization, cytoskeleton flexibility and cell proliferation/metastasis by downregulating CRMP2 profile and thus contributes to CRC disease progression. CONCLUSIONS This study uncovers molecular evidence to substantiate and elucidate the link between CRC and T2DM, as well as characterizing the roles of CRMP2 in CRC-DM. Accordingly, altered metabolic adaptations are promising targets for anti-diabetic and cancer strategies.
Collapse
Affiliation(s)
- Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.C.); (H.-J.Y.); (H.-W.C.); (C.-W.H.); (Y.-C.H.); (Y.-W.C.); (S.-W.C.); (W.-L.H.)
| | - Hui-Ju Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.C.); (H.-J.Y.); (H.-W.C.); (C.-W.H.); (Y.-C.H.); (Y.-W.C.); (S.-W.C.); (W.-L.H.)
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-S.C.); (H.-H.C.)
| | - Huan-Wen Chen
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.C.); (H.-J.Y.); (H.-W.C.); (C.-W.H.); (Y.-C.H.); (Y.-W.C.); (S.-W.C.); (W.-L.H.)
| | - Chiao-Wan Hsiao
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.C.); (H.-J.Y.); (H.-W.C.); (C.-W.H.); (Y.-C.H.); (Y.-W.C.); (S.-W.C.); (W.-L.H.)
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
| | - Yi-Chen Hsieh
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.C.); (H.-J.Y.); (H.-W.C.); (C.-W.H.); (Y.-C.H.); (Y.-W.C.); (S.-W.C.); (W.-L.H.)
| | - Yu-Wei Chan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.C.); (H.-J.Y.); (H.-W.C.); (C.-W.H.); (Y.-C.H.); (Y.-W.C.); (S.-W.C.); (W.-L.H.)
| | - Shu-Wen Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.C.); (H.-J.Y.); (H.-W.C.); (C.-W.H.); (Y.-C.H.); (Y.-W.C.); (S.-W.C.); (W.-L.H.)
- Department of Nursing, College of Nursing, Hungkuang University, Taichung 433, Taiwan
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.C.); (H.-J.Y.); (H.-W.C.); (C.-W.H.); (Y.-C.H.); (Y.-W.C.); (S.-W.C.); (W.-L.H.)
| | - Wei-Shone Chen
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-S.C.); (H.-H.C.)
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Hou-Hsuan Cheng
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-S.C.); (H.-H.C.)
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Teh-Ying Chou
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (T.-Y.C.); (F.-P.C.); (H.-L.H.)
| | - Fu-Pang Chang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (T.-Y.C.); (F.-P.C.); (H.-L.H.)
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (T.-Y.C.); (F.-P.C.); (H.-L.H.)
| | - Fang-Yeh Chu
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu 300, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Li Lo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| | - Hui-Fang Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan;
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ming-Yuh Shiau
- Department of Nursing, College of Nursing, Hungkuang University, Taichung 433, Taiwan
| |
Collapse
|
6
|
Morales X, Peláez R, Garasa S, Ortiz de Solórzano C, Rouzaut A. CRMP2 as a Candidate Target to Interfere with Lung Cancer Cell Migration. Biomolecules 2021; 11:biom11101533. [PMID: 34680167 PMCID: PMC8533992 DOI: 10.3390/biom11101533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Collapsin response mediator protein 2 (CRMP2) is an adaptor protein that adds tubulin dimers to the growing tip of a microtubule. First described in neurons, it is now considered a ubiquitous protein that intervenes in processes such as cytoskeletal remodeling, synaptic connection and trafficking of voltage channels. Mounting evidence supports that CRMP2 plays an essential role in neuropathology and, more recently, in cancer. We have previously described a positive correlation between nuclear phosphorylation of CRMP2 and poor prognosis in lung adenocarcinoma patients. In this work, we studied whether this cytoskeleton molding protein is involved in cancer cell migration. To this aim, we evaluated CRMP2 phosphorylation and localization in the extending lamella of lung adenocarcinoma migrating cells using in vitro assays and in vivo confocal microscopy. We demonstrated that constitutive phosphorylation of CRMP2 impaired lamella formation, cell adhesion and oriented migration. In search of a mechanistic explanation of this phenomenon, we discovered that CRMP2 Ser522 phospho-mimetic mutants display unstable tubulin polymers, unable to bind EB1 plus-Tip protein and the cortical actin adaptor IQGAP1. In addition, integrin recycling is defective and invasive structures are less evident in these mutants. Significantly, mouse xenograft tumors of NSCLC expressing CRMP2 phosphorylation mimetic mutants grew significantly less than wild-type tumors. Given the recent development of small molecule inhibitors of CRMP2 phosphorylation to treat neurodegenerative diseases, our results open the door for their use in cancer treatment.
Collapse
Affiliation(s)
- Xabier Morales
- Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Avda Pío XII, 55, 31008 Pamplona, Spain; (X.M.); (C.O.d.S.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain;
| | - Rafael Peláez
- Center for Biomedical Research of La Rioja (CIBIR), Neurodegeneration Area, Biomarkers and Molecular Signaling Group, Piqueras 98, 26006 Logroño, Spain;
| | - Saray Garasa
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain;
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Carlos Ortiz de Solórzano
- Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Avda Pío XII, 55, 31008 Pamplona, Spain; (X.M.); (C.O.d.S.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain;
| | - Ana Rouzaut
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain;
- Department Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31080 Pamplona, Spain
- Correspondence:
| |
Collapse
|
7
|
Khanna R, Moutal A, Perez-Miller S, Chefdeville A, Boinon L, Patek M. Druggability of CRMP2 for Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:2492-2505. [PMID: 32693579 DOI: 10.1021/acschemneuro.0c00307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are ubiquitously expressed phosphoproteins that coordinate cytoskeletal formation and regulate cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. Accumulating evidence has also demonstrated a key role for CRMP2 in trafficking of voltage- and ligand-gated ion channels. These functions are tightly regulated by post-translational modifications including phosphorylation and SUMOylation (addition of a small ubiquitin like modifier). Over the past decade, it has become increasingly clear that dysregulated post-translational modifications of CRMP2 contribute to the pathomechanisms of diverse diseases, including cancer, neurodegenerative diseases, chronic pain, and bipolar disorder. Here, we review the discovery, functions, and current putative preclinical and clinical therapeutics targeting CRMP2. These potential therapeutics include CRMP2-based peptides that inhibit protein-protein interactions and small-molecule compounds. Capitalizing on the availability of structural information, we identify druggable pockets on CRMP2 and predict binding modes for five known CRMP2-targeting compounds, setting the stage for optimization and de novo drug discovery targeting this multifunctional protein.
Collapse
Affiliation(s)
- Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Graduate Interdisciplinary Program in Neuroscience, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
- Regulonix LLC, Tucson, Arizona 85718, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Marcel Patek
- BrightRock Path, LLC, Tucson, Arizona 85704, United States
| |
Collapse
|
8
|
Chang YH, Tsai JN, Chang SW, Hsu WT, Yang CP, Hsiao CW, Shiau MY. Regulation of Adipogenesis and Lipid Deposits by Collapsin Response Mediator Protein 2. Int J Mol Sci 2020; 21:ijms21062172. [PMID: 32245267 PMCID: PMC7139951 DOI: 10.3390/ijms21062172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
As emerging evidence suggesting neurodegenerative diseases and metabolic diseases have common pathogenesis, we hypothesized that the neurite outgrowth-controlling collapsin response mediator protein 2 (CRMP2) was involved in energy homeostasis. Therefore, putative roles of CRMP2 in adipocyte differentiation (adipogenesis) and lipid metabolism were explored and addressed in this study. CRMP2 expression profiles were in vitro and in vivo characterized during adipogenic process of 3T3-L1 pre-adipocytes and diet-induced obese (DIO) mice, respectively. Effects of CRMP2 on lipid metabolism and deposits were also analyzed. Our data revealed that CRMP2 expression pattern was coupled with adipogenic stages. CRMP2 overexpression inhibited cell proliferation at MCE phase, and significantly reduced lipid contents by down-regulating adipogenesis-driving transcription factors and lipid-synthesizing enzymes. Interestingly, GLUT4 translocation and the lipid droplets fusion were disturbed in CRMP2-silencing cells by affecting actin polymerization. Moreover, adipose CRMP2 was significantly increased in DIO mice, indicating CRMP2 is associated with obesity. Accordingly, CRMP2 exerts multiple functions in adipogenesis and lipid deposits through mediating cell proliferation, glucose/lipid metabolism and cytoskeleton dynamics. The present study identifies novel roles of CRMP2 in mediating adipogenesis and possible implication in metabolic disorders, as well as provides molecular evidence supporting the link of pathogenesis between neurodegenerative diseases and metabolic abnormalities.
Collapse
Affiliation(s)
- Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Jen-Ning Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan;
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shu-Wen Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Wei-Ting Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Ching-Ping Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Chiao-Wan Hsiao
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 112, Taiwan
| | - Ming-Yuh Shiau
- Department of Nursing, College of Nursing, Hungkuang University, Taichung 433, Taiwan
- Correspondence: or ; Tel.: +886-4-26318652 (ext. 7090); Fax: +886-4-26331198
| |
Collapse
|
9
|
Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, Weimer JM, Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019; 56:6736-6755. [PMID: 30915713 PMCID: PMC6728212 DOI: 10.1007/s12035-019-1568-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2's physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rachel N Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Peter F Vitiello
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Douglas Feinstein
- Department of Veterans Affairs, Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jill M Weimer
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA.
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA.
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
10
|
He J, Zhu J. Collapsin Response Mediator Protein-2 Ameliorates Sevoflurane-Mediated Neurocyte Injury by Targeting PI3K-mTOR-S6K Pathway. Med Sci Monit 2018; 24:4982-4991. [PMID: 30018280 PMCID: PMC6067039 DOI: 10.12659/msm.909056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Collapsin response mediator protein-2 (CRMP-2) is the first member of the CRMP family that has been identified in primary neuronal cells; it was originally found and identified in the regulation of microtubule dimerization into microtubules. Material/Methods In the present study, we aimed to investigate the roles and mechanisms of CRMP-2 in sevoflurane-induced neurocyte injury. Cell viability, proliferation, and apoptosis were measured by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Colorimetry was performed to measure the activity of caspase-3. Western blot and quantitative real-time reverse transcription assays were used to evaluate the related mRNAs and proteins expression. Results We found that CRMP-2 reversed the inhibitory effect of sevoflurane on the viability of nerve cells. Moreover, CRMP-2 accelerated the proliferation and suppressed the apoptosis of sevoflurane-induced nerve cells. CRMP-2 modulated the expression levels of apoptosis-associated protein in sevoflurane-induced nerve cells. Furthermore, it was demonstrated that CRMP-2 impacted the PI3K-mTOR-S6K pathway. Conclusions CRMP2 ameliorated sevoflurane-mediated neurocyte injury by targeting the PI3K-mTOR-S6K pathway. Thus, CRMP2 might be an effective target for sevoflurane-induced neurocyte injury therapies.
Collapse
Affiliation(s)
- Jiaxuan He
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Jianfang Zhu
- Department of Pharmacy, Hanzhong Central Hospital, Hanzhong, Shaanxi, China (mainland)
| |
Collapse
|
11
|
Nagai J, Baba R, Ohshima T. CRMPs Function in Neurons and Glial Cells: Potential Therapeutic Targets for Neurodegenerative Diseases and CNS Injury. Mol Neurobiol 2016; 54:4243-4256. [PMID: 27339876 DOI: 10.1007/s12035-016-0005-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Neurodegeneration in the adult mammalian central nervous system (CNS) is fundamentally accelerated by its intrinsic neuronal mechanisms, including its poor regenerative capacity and potent extrinsic inhibitory factors. Thus, the treatment of neurodegenerative diseases faces many obstacles. The degenerative processes, consisting of axonal/dendritic structural disruption, abnormal axonal transport, release of extracellular factors, and inflammation, are often controlled by the cytoskeleton. From this perspective, regulators of the cytoskeleton could potentially be a therapeutic target for neurodegenerative diseases and CNS injury. Collapsin response mediator proteins (CRMPs) are known to regulate the assembly of cytoskeletal proteins in neurons, as well as control axonal growth and neural circuit formation. Recent studies have provided some novel insights into the roles of CRMPs in several inhibitory signaling pathways of neurodegeneration, in addition to its functions in neurological disorders and CNS repair. Here, we summarize the roles of CRMPs in axon regeneration and its emerging functions in non-neuronal cells, especially in inflammatory responses. We also discuss the direct and indirect targeting of CRMPs as a novel therapeutic strategy for neurological diseases.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho Shinjuku-ku, Tokyo, 162-8480, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Rina Baba
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
12
|
Yang X, Zhang X, Li Y, Han S, Howells DW, Li S, Li J. Conventional protein kinase Cβ-mediated phosphorylation inhibits collapsin response-mediated protein 2 proteolysis and alleviates ischemic injury in cultured cortical neurons and ischemic stroke-induced mice. J Neurochem 2016; 137:446-59. [PMID: 26788931 DOI: 10.1111/jnc.13538] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
We previously reported that conventional protein kinase C (cPKC)β participated in hypoxic preconditioning-induced neuroprotection against cerebral ischemic injury, and collapsin response-mediated protein 2 (CRMP2) was identified as a cPKCβ interacting protein. In this study, we explored the regulation of CRMP2 phosphorylation and proteolysis by cPKCβ, and their role in ischemic injury of oxygen-glucose deprivation (OGD)-treated cortical neurons and brains of mice with middle cerebral artery occlusion-induced ischemic stroke. The results demonstrated that cPKCβ-mediated CRMP2 phosphorylation via the cPKCβ-selective activator 12-deoxyphorbol 13-phenylacetate 20-acetate (DOPPA) and inhibition of calpain-mediated CRMP2 proteolysis by calpeptin and a fusing peptide containing TAT peptide and the calpain cleavage site of CRMP2 (TAT-CRMP2) protected neurons against OGD-induced cell death through inhibiting CRMP2 proteolysis in cultured cortical neurons. The OGD-induced nuclear translocation of the CRMP2 breakdown product was inhibited by DOPPA, calpeptin, and TAT-CRMP2 in cortical neurons. In addition, both cPKCβ activation and CRMP2 proteolysis inhibition by hypoxic preconditioning and intracerebroventricular injections of DOPPA, calpeptin, and TAT-CRMP2 improved the neurological deficit in addition to reducing the infarct volume and proportions of cells with pyknotic nuclei in the peri-infact region of mice with ischemic stroke. These results suggested that cPKCβ modulates CRMP2 phosphorylation and proteolysis, and cPKCβ activation alleviates ischemic injury in the cultured cortical neurons and brains of mice with ischemic stroke through inhibiting CRMP2 proteolysis by phosphorylation. Focal cerebral ischemia induces a large flux of Ca(2+) to activate calpain which cleaves collapsin response mediator (CRMP) 2 into breakdown product (BDP). Inhibition of CRMP2 cleavage by calpeptin and TAT-CRMP2 alleviates ischemic injury. Conventional protein kinase C (cPKC)β-mediated phosphorylation could inhibit CRMP2 proteolysis and alleviate ischemic injury in cultured cortical neurons and ischemic stroke-induced mice.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xinxin Zhang
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - David W Howells
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Shujuan Li
- Department of Neurology, Capital Medical University Affiliated Beijing Chao-Yang Hospital, Beijing, China
| | - Junfa Li
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Moutal A, François-Moutal L, Brittain JM, Khanna M, Khanna R. Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides. Front Cell Neurosci 2015; 8:471. [PMID: 25674050 PMCID: PMC4306314 DOI: 10.3389/fncel.2014.00471] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/30/2014] [Indexed: 01/26/2023] Open
Abstract
The microtubule-associated axonal specification collapsin response mediator protein 2 (CRMP2) is a novel target for neuroprotection. A CRMP2 peptide (TAT-CBD3) conjugated to the HIV transactivator of transcription (TAT) protein's cationic cell penetrating peptide (CPP) motif protected neurons in the face of toxic levels of Ca(2+) influx leaked in via N-methyl-D-aspartate receptor (NMDAR) hyperactivation. Here we tested whether replacing the hydrophilic TAT motif with alternative cationic (nona-arginine (R9)), hydrophobic (membrane transport sequence (MTS) of k-fibroblast growth factor) or amphipathic (model amphipathic peptide (MAP)) CPPs could be superior to the neuroprotection bestowed by TAT-CBD3. In giant plasma membrane vesicles (GPMVs) derived from cortical neurons, the peptides translocated across plasma membranes with similar efficiencies. Cortical neurons, acutely treated with peptides prior to a toxic glutamate challenge, demonstrated enhanced efflux of R9-CBD3 compared to others. R9-CBD3 inhibited N-methyl-D-aspartate (NMDA)-evoked Ca(2+) influx to a similar extent as TAT-CBD3 while MTS-CBD3 was ineffective which correlated with the ability of R9- and TAT-CBD3, but not MTS-CBD3, to block NMDAR interaction with CRMP2. Unrestricted Ca(2+) influx through NMDARs leading to delayed calcium dysregulation and neuronal cell death was blocked by all peptides but MAP-CBD3. When applied acutely for 10 min, R9-CBD3 was more effective than TAT-CBD3 at neuroprotection while MTS- and MAP-CBD3 were ineffective. In contrast, long-term (>24 h) treatment with MTS-CBD3 conferred neuroprotection where TAT-CBD3 failed. Neither peptide altered surface trafficking of NMDARs. Neuroprotection conferred by MTS-CBD3 peptide is likely due to its increased uptake coupled with decreased efflux when compared to TAT-CBD3. Overall, our results demonstrate that altering CPPs can bestow differential neuroprotective potential onto the CBD3 cargo.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA
| | | | - Joel M Brittain
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine Indianapolis, IN, USA
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA ; Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona Tucson, AZ, USA
| |
Collapse
|
14
|
Proteomic and Mitochondrial Genomic Analyses of Pediatric Brain Tumors. Mol Neurobiol 2014; 52:1341-1363. [DOI: 10.1007/s12035-014-8930-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/07/2014] [Indexed: 11/26/2022]
|
15
|
Morgan-Fisher M, Couchman JR, Yoneda A. Phosphorylation and mRNA splicing of collapsin response mediator protein-2 determine inhibition of rho-associated protein kinase (ROCK) II function in carcinoma cell migration and invasion. J Biol Chem 2013; 288:31229-40. [PMID: 24036111 DOI: 10.1074/jbc.m113.505602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho-associated protein kinases (ROCK I and II) are central regulators of important cellular processes such as migration and invasion downstream of the GTP-Rho. Recently, we reported collapsin response mediator protein (CRMP)-2 as an endogenous ROCK II inhibitor. To reveal how the CRMP-2-ROCK II interaction is controlled, we further mapped the ROCK II interaction site of CRMP-2 and examined whether phosphorylation states of CRMP-2 affected the interaction. Here, we show that an N-terminal fragment of the long CRMP-2 splice variant (CRMP-2L) alone binds ROCK II and inhibits colon carcinoma cell migration and invasion. Furthermore, the interaction of CRMP-2 and ROCK II is partially regulated by glycogen synthase kinase (GSK)-3 phosphorylation of CRMP-2, downstream of PI3K. Inhibition of PI3K reduced interaction of CRMP-2 with ROCK II, an effect rescued by simultaneous inhibition of GSK3. Inhibition of PI3K also reduced colocalization of ROCK II and CRMP-2 at the cell periphery in human breast carcinoma cells. Mimicking GSK3 phosphorylation of CRMP-2 significantly reduced CRMP-2 binding of recombinant full-length and catalytic domain of ROCK II. These data implicate GSK3 in the regulation of ROCK II-CRMP-2 interactions. Using phosphorylation-mimetic and -resistant CRMP-2L constructs, it was revealed that phosphorylation of CRMP-2L negatively regulates its inhibitory function in ROCK-dependent haptotactic cell migration, as well as invasion of human colon carcinoma cells. Collectively, the presented data show that CRMP-2-dependent regulation of ROCK II activity is mediated through interaction of the CRMP-2L N terminus with the ROCK II catalytic domain as well as by GSK3-dependent phosphorylation of CRMP-2.
Collapse
Affiliation(s)
- Marie Morgan-Fisher
- From the Department of Biomedical Sciences, Faculty of Health and Medical Sciences, and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, 2200, Denmark and
| | | | | |
Collapse
|
16
|
Hashimoto Y, Akiyama Y, Yuasa Y. Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS One 2013; 8:e62589. [PMID: 23667495 PMCID: PMC3648557 DOI: 10.1371/journal.pone.0062589] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/24/2013] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) act as transcriptional regulators and play pivotal roles in carcinogenesis. According to miRNA target databases, one miRNA may regulate many genes as its targets, while one gene may be targeted by many miRNAs. These findings indicate that relationships between miRNAs and their targets may not be one-to-one. However, many reports have described only a one-to-one, one-to-multiple or multiple-to-one relationship between miRNA and its target gene in human cancers. Thus, it is necessary to determine whether or not a combination of some miRNAs would regulate multiple targets and be involved in carcinogenesis. To find some groups of miRNAs that may synergistically regulate their targets in human gastric cancer (GC), we re-analyzed our previous miRNA expression array data and found that 50 miRNAs were up-regulated on treatment with 5-aza-2'-deoxycytidine in a GC cell line. The “TargetScan” miRNA target database predicted that some of these miRNAs have common target genes. We also referred to the GEO database for expression of these common target genes in human GCs, which might be related to gastric carcinogenesis. In this study, we analyzed two miRNA combinations, miR-224 and -452, and miR-181c and -340. Over-expression of both miRNA combinations dramatically down-regulated their target genes, DPYSL2 and KRAS, and KRAS and MECP2, respectively. These miRNA combinations synergistically decreased cell proliferation upon transfection. Furthermore, we revealed that these miRNAs were down-regulated through promoter hypermethylation in GC cells. Thus, it is likely that the relationships between miRNAs and their targets are not one-to-one but multiple-to-multiple in GCs, and that these complex relationships may be related to gastric carcinogenesis.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
17
|
Identification of a new CRMP5 isoform present in the nucleus of cancer cells and enhancing their proliferation. Exp Cell Res 2013; 319:588-99. [DOI: 10.1016/j.yexcr.2012.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 11/28/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022]
|
18
|
Khanna R, Wilson SM, Brittain JM, Weimer J, Sultana R, Butterfield A, Hensley K. Opening Pandora's jar: a primer on the putative roles of CRMP2 in a panoply of neurodegenerative, sensory and motor neuron, and central disorders. FUTURE NEUROLOGY 2012; 7:749-771. [PMID: 23308041 DOI: 10.2217/fnl.12.68] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CRMP2, also known as DPYSL2/DRP2, Unc-33, Ulip or TUC2, is a cytosolic phosphoprotein that mediates axon/dendrite specification and axonal growth. Mapping the CRMP2 interactome has revealed previously unappreciated functions subserved by this protein. Together with its canonical roles in neurite growth and retraction and kinesin-dependent axonal transport, it is now known that CRMP2 interacts with numerous binding partners to affect microtubule dynamics; protein endocytosis and vesicular cycling, synaptic assembly, calcium channel regulation and neurotransmitter release. CRMP2 signaling is regulated by post-translational modifications, including glycosylation, oxidation, proteolysis and phosphorylation; the latter being a fulcrum of CRMP2 functions. Here, the putative roles of CRMP2 in a panoply of neurodegenerative, sensory and motor neuron, and central disorders are discussed and evidence is presented for therapeutic strategies targeting CRMP2 functions.
Collapse
Affiliation(s)
- Rajesh Khanna
- Program in Medical Neurosciences, Paul & Carole Stark Neurosciences Research Institute Indianapolis, IN 46202, USA ; Departments of Pharmacology & Toxicology, Indianapolis, IN 46202, USA ; Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA ; Sophia Therapeutics LLC, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Oliemuller E, Peláez R, Garasa S, Pajares MJ, Agorreta J, Pío R, Montuenga LM, Teijeira A, Llanos S, Rouzaut A. Phosphorylated tubulin adaptor protein CRMP-2 as prognostic marker and candidate therapeutic target for NSCLC. Int J Cancer 2012; 132:1986-95. [PMID: 23023514 DOI: 10.1002/ijc.27881] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/18/2012] [Indexed: 11/08/2022]
Abstract
Collapsin response mediator protein-2 (CRMP-2) is the first described and most studied member of a family of proteins that mediate the addition of tubulin dimers to the growing microtubule. CRMPs have mainly been studied in the nervous system, but recently, they have been described in other tissues where they participate in vesicle transport, migration and mitosis. In this work, we aimed at studying the role of CRMP-2 in lung cancer cell division. We first explored the expression of CRMP-2 and phosphorylated (Thr 514) CRMP-2 in 91 samples obtained from patients with localized nonsmall cell lung cancer. We observed a significant correlation between high levels of nuclear phosphorylated CRMP-2 and poor prognosis in those patients. Interestingly, this association was only positive for untreated patients. To provide a mechanistic explanation to these findings, we used in vitro models to analyze the role of CRMP-2 and its phosphorylated forms in cell division. Thus, we observed by confocal microscopy and immunoprecipitation assays that CRMP-2 differentially colocalizes with the mitotic spindle during cell division. The use of phosphodefective or phosphomimetic mutants of CRMP-2 allowed us to prove that anomalies in the phosphorylation status of CRMP-2 result in changes in the mitotic tempo, and increments in the number of multinucleated cells. Finally, here we demonstrate that CRMP-2 phosphorylation impairment, or silencing induces p53 expression and promotes apoptosis through caspase 3 activation. These results pointed to CRMP-2 phosphorylation as a prognostic marker and potential new target to be explored in cancer therapy.
Collapse
Affiliation(s)
- Erik Oliemuller
- Oncology Division, Center for Applied Medical Research (CIMA), University of Navarra, 55 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
A collapsin response mediator protein 2 isoform controls myosin II-mediated cell migration and matrix assembly by trapping ROCK II. Mol Cell Biol 2012; 32:1788-804. [PMID: 22431514 DOI: 10.1128/mcb.06235-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two binding domains but also trapped and inhibited the kinase. CRMP-2L protein levels profoundly affected haptotactic migration and the actin-myosin cytoskeleton of carcinoma cells as well as nontransformed epithelial cell migration in a ROCK activity-dependent manner. Moreover, the ectopic expression of CRMP-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions through the inhibition of ROCK II in nonneuronal cells.
Collapse
|
21
|
Lees G, Errington AC. Lacosamide: Novel action mechanisms and emerging targets in epilepsy and pain. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2011. [DOI: 10.1016/j.tacc.2011.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Lin PC, Chan PM, Hall C, Manser E. Collapsin response mediator proteins (CRMPs) are a new class of microtubule-associated protein (MAP) that selectively interacts with assembled microtubules via a taxol-sensitive binding interaction. J Biol Chem 2011; 286:41466-41478. [PMID: 21953449 DOI: 10.1074/jbc.m111.283580] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Collapsin response mediator proteins are ubiquitously expressed from multiple genes (CRMPs 1-5) and play important roles in dividing cells and during semaphorin 3A (Sema3A) signaling. Nonetheless, their mode of action remains opaque. Here we carried out in vivo and in vitro assays that demonstrate that CRMPs are a new class of microtubule-associated protein (MAP). In experiments with CRMP1 or CRMP2 and their derivatives, only the C-terminal region (residues 490-572) mediated microtubule binding. The in vivo microtubule association of CRMPs was abolished by taxol or epothilone B, which is highly unusual. CRMP2-depleted cells exhibited destabilized anaphase astral microtubules and altered spindle position. In a cell-based assay, all CRMPs stabilized interphase microtubules against nocodazole-mediated depolymerization, with CRMP1 being the most potent. Remarkably, a 82-residue C-terminal region of CRMP1 or CRMP2, unrelated to other microtubule binding motifs, is sufficient to stabilize microtubules. In cells, we demonstrate that glycogen synthase kinase-3β (GSK3β) inhibition potentiates this activity. Thus, CRMPs are a new class of MAP that binds through a unique motif, but in common with others such as Tau, is antagonized by GSK3β. This regulation is consistent with such kinases being critical for the Sema3A (collapsin) pathway. These findings have implications for cancer and neurodegeneration.
Collapse
Affiliation(s)
- Pao-Chun Lin
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648
| | - Perry M Chan
- Small G-protein Signaling and Kinases (sGSK-NRP) Group, Neuroscience Research Partnership, 61 Biopolis Drive, Singapore 138673
| | - Christine Hall
- Institute of Neurology, University College London, 1 Wakefield Street, London WC1N 1PJ, United Kingdom
| | - Ed Manser
- Small G-protein Signaling and Kinases (sGSK-NRP) Group, Neuroscience Research Partnership, 61 Biopolis Drive, Singapore 138673; Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648.
| |
Collapse
|
23
|
Fukui K, Takatsu H, Koike T, Urano S. Hydrogen peroxide induces neurite degeneration: Prevention by tocotrienols. Free Radic Res 2011; 45:681-91. [PMID: 21417547 DOI: 10.3109/10715762.2011.567984] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) may attack several types of tissues and chronic exposure to ROS may attenuate various biological functions and increase the risk of several types of serious disorders. It is known that treatments with ROS attack neurons and induce cell death. However, the mechanisms of neuronal change by ROS prior to induction of cell death are not yet understood. Here, it was found that treatment of neurons with low concentrations of hydrogen peroxide induced neurite injury, but not cell death. Unusual bands located above the original collapsin response mediator protein (CRMP)-2 protein were detected by western blotting. Treatment with tocopherol or tocotrienols significantly inhibited these changes in neuro2a cells and cerebellar granule neurons (CGCs). Furthermore, prevention by tocotrienols of hydrogen peroxide-induced neurite degeneration was stronger than that by tocopherol. These findings indicate that neurite beading is one of the early events of neuronal degeneration prior to induction of death of hydrogen peroxide-treated neurons. Treatment with tocotrienols may protect neurite function through its neuroprotective function.
Collapse
Affiliation(s)
- Koji Fukui
- Physiological Chemistry Laboratory, Department of Bioscience and Engineering, College of Systems Engineering and Sciences, Shibaura Institute of Technology,Fukasaku 307, Minuma-ku, Saitama, 337-8570, Japan.
| | | | | | | |
Collapse
|
24
|
Daire V, Poüs C. Kinesins and protein kinases: key players in the regulation of microtubule dynamics and organization. Arch Biochem Biophys 2011; 510:83-92. [PMID: 21345331 DOI: 10.1016/j.abb.2011.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/05/2011] [Accepted: 02/11/2011] [Indexed: 02/04/2023]
Abstract
Microtubule dynamics is controlled and amplified in vivo by complex sets of regulators. Among these regulatory proteins, molecular motors from the kinesin superfamily are taking an increasing importance. Here we review how microtubule disassembly or assembly into interphase microtubules, mitotic spindle or cilia may involve kinesins and how protein kinases may participate in these kinesin-dependent regulations.
Collapse
Affiliation(s)
- Vanessa Daire
- UPRES EA, Univ. Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
| | | |
Collapse
|
25
|
Rahajeng J, Giridharan SSP, Naslavsky N, Caplan S. Collapsin response mediator protein-2 (Crmp2) regulates trafficking by linking endocytic regulatory proteins to dynein motors. J Biol Chem 2010; 285:31918-22. [PMID: 20801876 DOI: 10.1074/jbc.c110.166066] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endocytosis is a conserved cellular process in which nutrients, lipids, and receptors are internalized and transported to early endosomes, where they are sorted and either channeled to degradative pathways or recycled to the plasma membrane. MICAL-L1 and EHD1 are important regulatory proteins that control key endocytic transport steps. However, the precise mechanisms by which they mediate transport, and particularly the mode by which they connect to motor proteins, have remained enigmatic. Here we have identified the collapsin response mediator protein-2 (Crmp2) as an interaction partner of MICAL-L1 in non-neuronal cells. Crmp2 interacts with tubulin dimers and kinesin and negatively regulates dynein-based transport in neuronal cells, but its expression and function in non-neuronal cells have remained poorly characterized. Upon Crmp2 depletion, we observed dramatic relocalization of internalized transferrin (Tf) from peripheral vesicles to the endocytic recycling compartment (ERC), similar to the effect of depleting either MICAL-L1 or EHD1. Moreover, Tf relocalization to the ERC could be inhibited by interfering with microtubule polymerization, consistent with a role for uncoupled motor protein-based transport upon depletion of Crmp2, MICAL-L1, or EHD1. Finally, transfection of dynamitin, a component of the dynactin complex whose overexpression inhibits dynein activity, prevented the relocalization of internalized Tf to the ERC upon depletion of Crmp2, MICAL-L1, or EHD1. These data provide the first trafficking regulatory role for Crmp2 in non-neuronal cells and support a model in which Crmp2 is an important endocytic regulatory protein that links MICAL-L1·EHD1-based vesicular transport to dynein motors.
Collapse
Affiliation(s)
- Juliati Rahajeng
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | |
Collapse
|
26
|
Gögel S, Lange S, Leung KY, Greene NDE, Ferretti P. Post-translational regulation of Crmp in developing and regenerating chick spinal cord. Dev Neurobiol 2010; 70:456-71. [PMID: 20162635 DOI: 10.1002/dneu.20789] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is becoming apparent that regulation at the protein level plays crucial roles in developmental and pathological processes. Therefore, we performed a proteomics screen to identify proteins that are differently expressed or modified at stages of development permissive (E11) and nonpermissive for regeneration (E15) of the chick spinal cord. Proteins regulated either developmentally or in response to spinal-cord injury included collapsin-response-mediator proteins (Crmps), known to modulate microtubule dynamic and axonal growth. No significant changes in Crmp transcripts following injury were observed, indicating regulation mainly at the protein level. Analysis of Crmp-2 protein and its phosphorylated forms, pS522 and pT514, showed that Crmp-2 is developmentally regulated and also expressed in neural progenitors in vivo and in neurospheres. Its cellular localization changed both with development and following spinal-cord injury. In addition, although overall levels of Crmp-2 expression were not affected by injury, abundance of certain phosphorylated forms was altered. pT514 Crmp-2 appeared to be associated with dividing neural progenitors and was greatly reduced at nonpermissive stages for regeneration, whereas it did not seem affected by injury. In contrast, phosphorylation of Crmp-2 at S522 was upregulated early after injury in regenerating spinal cords and the ratio between phosphorylated to total Crmp-2 increased, as indicated by 2D Western blots. Altogether, this study shows highly dynamic regulation of Crmp-2 forms during development and identifies post-translational changes in Crmp-2 as putative contributors to the maintenance of spinal-cord regenerative ability, possibly via a transient stabilization of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Stefanie Gögel
- Developmental Biology Unit, UCL Institute of Child Health, London, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Wang Y, Brittain JM, Jarecki BW, Park KD, Wilson SM, Wang B, Hale R, Meroueh SO, Cummins TR, Khanna R. In silico docking and electrophysiological characterization of lacosamide binding sites on collapsin response mediator protein-2 identifies a pocket important in modulating sodium channel slow inactivation. J Biol Chem 2010; 285:25296-307. [PMID: 20538611 DOI: 10.1074/jbc.m110.128801] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The anti-epileptic drug (R)-lacosamide ((2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide (LCM)) modulates voltage-gated sodium channels (VGSCs) by preferentially interacting with slow inactivated sodium channels, but the observation that LCM binds to collapsin response mediator protein 2 (CRMP-2) suggests additional mechanisms of action for LCM. We postulated that CRMP-2 levels affects the actions of LCM on VGSCs. CRMP-2 labeling by LCM analogs was competitively displaced by excess LCM in rat brain lysates. Manipulation of CRMP-2 levels in the neuronal model system CAD cells affected slow inactivation of VGSCs without any effects on other voltage-dependent properties. In silico docking was performed to identify putative binding sites in CRMP-2 that may modulate the effects of LCM on VGSCs. These studies identified five cavities in CRMP-2 that can accommodate LCM. CRMP-2 alanine mutants of key residues within these cavities were functionally similar to wild-type CRMP-2 as assessed by similar levels of enhancement in dendritic complexity of cortical neurons. Next, we examined the effects of expression of wild-type and mutant CRMP-2 constructs on voltage-sensitive properties of VGSCs in CAD cells: 1) steady-state voltage-dependent activation and fast-inactivation properties were not affected by LCM, 2) CRMP-2 single alanine mutants reduced the LCM-mediated effects on the ability of endogenous Na(+) channels to transition to a slow inactivated state, and 3) a quintuplicate CRMP-2 alanine mutant further decreased this slow inactivated fraction. Collectively, these results identify key CRMP-2 residues that can coordinate LCM binding thus making it more effective on its primary clinical target.
Collapse
Affiliation(s)
- Yuying Wang
- Department of Pharmacology and Toxicology, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yan X, Liu J, Luo Z, Ding Q, Mao X, Yan M, Yang S, Hu X, Huang J, Luo Z. Proteomic profiling of proteins in rat spinal cord induced by contusion injury. Neurochem Int 2010; 56:971-83. [PMID: 20399821 DOI: 10.1016/j.neuint.2010.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 03/28/2010] [Accepted: 04/09/2010] [Indexed: 01/05/2023]
Abstract
It is widely accepted that mechanical injury to spinal cord can cause nervous system dysfunction, which leads to the loss of movement and sensation. However, the exact molecular mechanism is currently unclear. In this study, contused rat spinal cords were collected at 8h, 1 day, 3, and 5 days after injury and the expression patterns of the proteins were monitored and quantified with two-dimensional gel electrophoresis-based proteomics. Fifty-one protein spots showed significant regulation at least at one time point. Of the 39 proteins, identified by mass spectrometry analysis and clustered into three down-regulation profiles and two up-regulation profiles, eight contusion-related proteins have been reported in previous proteomic studies of spinal cord whereas 31 proteins were described for the first time. For example, apoptosis-related protein of heat shock 70 kDa protein 1B increased after contusion, reaching the peak at 1 day; septin 7, a protein involved in cytoskeleton organization, maintained a steady increase for the first 5 days after injury; metabolism-related protein of 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 was constantly down-regulated during the whole time course observed; tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide, associated with cell cycle progression, showed a gradual increase after contusion. To our knowledge, this is the first case of detailed and dynamic proteomic snapshots of contusion-induced spinal cord injury. Most of the identified proteins were found for the first time to be differentially expressed after spinal cord contusion, which may help explore the complex molecular cascades underlying the progressive pathologic changes in the contused spinal cord.
Collapse
Affiliation(s)
- Xiaodong Yan
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R. An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J Biol Chem 2009; 284:31375-90. [PMID: 19755421 PMCID: PMC2781534 DOI: 10.1074/jbc.m109.009951] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/11/2009] [Indexed: 11/06/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) specify axon/dendrite fate and axonal growth of neurons through protein-protein interactions. Their functions in presynaptic biology remain unknown. Here, we identify the presynaptic N-type Ca(2+) channel (CaV2.2) as a CRMP-2-interacting protein. CRMP-2 binds directly to CaV2.2 in two regions: the channel domain I-II intracellular loop and the distal C terminus. Both proteins co-localize within presynaptic sites in hippocampal neurons. Overexpression in hippocampal neurons of a CRMP-2 protein fused to enhanced green fluorescent protein caused a significant increase in Ca(2+) channel current density, whereas lentivirus-mediated CRMP-2 knockdown abolished this effect. Interestingly, the increase in Ca(2+) current density was not due to a change in channel gating. Rather, cell surface biotinylation studies showed an increased number of CaV2.2 at the cell surface in CRMP-2-overexpressing neurons. These neurons also exhibited a significant increase in vesicular release in response to a depolarizing stimulus. Depolarization of CRMP-2-enhanced green fluorescent protein-overexpressing neurons elicited a significant increase in release of glutamate compared with control neurons. Toxin block of Ca(2+) entry via CaV2.2 abolished this stimulated release. Thus, the CRMP-2-Ca(2+) channel interaction represents a novel mechanism for modulation of Ca(2+) influx into nerve terminals and, hence, of synaptic strength.
Collapse
Affiliation(s)
- Joel M. Brittain
- From the Paul and Carole Stark Neurosciences Research Institute and
| | - Andrew D. Piekarz
- From the Paul and Carole Stark Neurosciences Research Institute and
- Departments of Pharmacology and Toxicologyand
| | - Yuying Wang
- From the Paul and Carole Stark Neurosciences Research Institute and
| | - Takako Kondo
- Otolaryngology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Theodore R. Cummins
- From the Paul and Carole Stark Neurosciences Research Institute and
- Departments of Pharmacology and Toxicologyand
| | - Rajesh Khanna
- From the Paul and Carole Stark Neurosciences Research Institute and
- Departments of Pharmacology and Toxicologyand
| |
Collapse
|
30
|
Liu W, Zhou XW, Liu S, Hu K, Wang C, He Q, Li M. Calpain-truncated CRMP-3 and -4 contribute to potassium deprivation-induced apoptosis of cerebellar granule neurons. Proteomics 2009; 9:3712-28. [PMID: 19639589 DOI: 10.1002/pmic.200800979] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increasing evidence shows that calpain-mediated proteolytic processing of a selective number of proteins plays an important role in neuronal apoptosis. Study of calpain-mediated cleavage events and related functions may contribute to a better understanding of neuronal apoptosis and neurodegenerative diseases. We, therefore, investigated the role of calpain substrates in potassium deprivation-induced apoptosis of cerebellar granule neurons (CGNs). Twelve previously known and seven novel candidates of calpain substrates were identified by 2-D DIGE and MALDI-TOF/TOF MS analysis. Further, the identified novel calpain substrates were validated by Western blot analysis. Moreover, we focused on the collapsin response mediator proteins (CRMP-1, -2, -3 and -4 isoforms) and found that CRMPs were proteolytically processed by calpain but not by caspase, both in vivo and in vitro. To clarify the properties of the calpain-mediated proteolysis of CRMPs, we constructed the deletion mutants of CRMPs for additional biochemical studies. In vitro cleavage assays revealed that CRMP-1, -2 and -4 were truncated by calpain at the C-terminus, whereas CRMP-3 was cleaved at the N-terminus. Finally, we assessed the role of CRMPs in the process of potassium deprivation-triggered neuronal apoptosis by overexpressing the truncated CRMPs in CGNs. Our data clearly showed that the truncated CRMP-3 and -4, but not CRMP-1 and -2, significantly induced neuronal apoptosis. These findings demonstrated that calpain-truncated CRMP-3 and -4 act as pro-apoptotic players when CGNs undergo apoptosis.
Collapse
Affiliation(s)
- Wei Liu
- Proteomics Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Varrin-Doyer M, Vincent P, Cavagna S, Auvergnon N, Noraz N, Rogemond V, Honnorat J, Moradi-Améli M, Giraudon P. Phosphorylation of collapsin response mediator protein 2 on Tyr-479 regulates CXCL12-induced T lymphocyte migration. J Biol Chem 2009; 284:13265-76. [PMID: 19276087 DOI: 10.1074/jbc.m807664200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the central nervous system, collapsin response mediator protein 2 (CRMP2) is a transducer protein that supports the semaphorin-induced guidance of axons toward their cognate target. However, we previously showed that CRMP2 is also expressed in immune cells and plays a crucial role in T lymphocyte migration. Here we further investigated the molecular mechanisms underlying CRMP2 function in chemokine-directed T-cell motility. Examining Jurkat T-cells treated with the chemokine CXCL12, we found that 1) CXCL12 induces a dynamic re-localization of CRMP2 to uropod, the flexible structure of migrating lymphocyte, and increases its binding to the cytoskeletal protein vimentin; 2) CXCL12 decreases phosphorylation of the glycogen synthase kinase-3beta-targeted residues CRMP2-Thr-509/514; and 3) tyrosine Tyr-479 is a new phosphorylation CRMP2 residue and a target for the Src-family kinase Yes. Moreover, phospho-Tyr-479 increased under CXCL12 signaling while phospho-Thr-509/514 decreased. The functional importance of this tyrosine phosphorylation was demonstrated by Y479F mutation that strongly reduced CXCL12-mediated T-cell polarization and motility as tested in a transmigration model and on neural tissue. We propose that differential phosphorylation by glycogen synthase kinase-3beta and Yes modulates the contribution of CRMP2 to cytoskeletal reorganization during chemokine-directed T-cell migration. In addition to providing a novel mechanism for T lymphocyte motility, our findings reveal CRMP2 as a transducer of chemokine signaling.
Collapse
Affiliation(s)
- Michel Varrin-Doyer
- Department of Neurooncology and Neuroinflammation, INSERM, U842, Université de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang Z, Majava V, Greffier A, Hayes RL, Kursula P, Wang KKW. Collapsin response mediator protein-2 is a calmodulin-binding protein. Cell Mol Life Sci 2009; 66:526-36. [PMID: 19151921 PMCID: PMC4428678 DOI: 10.1007/s00018-008-8362-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Collapsin response mediator protein-2 (CRMP-2) plays a crucial role in axonal guidance and neurite outgrowth during neural development and regeneration. We have studied the interaction between calmodulin (CaM) and CRMP-2 and how Ca(2+)/CaM binding modulates the biological functions of CRMP-2. We have shown that CRMP-2 binds to CaM directly in a Ca(2+)-dependent manner. The CaM binding site of CRMP-2 is proposed to reside in the last helix of the folded domain, and in line with this, a synthesized peptide representing this helix bound to CaM. In addition, CaM binding inhibits a homotetrameric assembly of CRMP-2 and attenuates calpainmediated CRMP-2 proteolysis. Furthermore, a CaM antagonist reduces the number and length of process induced by CRMP-2 overexpression in HEK293 cells. Take together, our data suggest that CRMP-2 is a novel CaM-binding protein and that CaM binding may play an important role in regulating CRMP-2 functions.
Collapse
Affiliation(s)
- Z. Zhang
- Center of Innovative Research, Banyan Biomarkers Inc, 12805 Research Drive, Alachua, FL 32615 USA
| | - V. Majava
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - A. Greffier
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - R. L. Hayes
- Center of Innovative Research, Banyan Biomarkers Inc, 12805 Research Drive, Alachua, FL 32615 USA
- Department of Anesthesiology, McKnight Brain Institute of the University of Florida, Gainesville, FL USA
| | - P. Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - K. K. W. Wang
- Center of Innovative Research, Banyan Biomarkers Inc, 12805 Research Drive, Alachua, FL 32615 USA
- Department of Psychiatry, McKnight Brain Institute of the University of Florida, Gainesville, FL USA
| |
Collapse
|
33
|
Majava V, Löytynoja N, Chen WQ, Lubec G, Kursula P. Crystal and solution structure, stability and post-translational modifications of collapsin response mediator protein 2. FEBS J 2008; 275:4583-96. [PMID: 18699782 DOI: 10.1111/j.1742-4658.2008.06601.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The collapsin response mediator protein 2 (CRMP-2) is a central molecule regulating axonal growth cone guidance. It interacts with the cytoskeleton and mediates signals related to myelin-induced axonal growth inhibition. CRMP-2 has also been characterized as a constituent of neurofibrillary tangles in Alzheimer's disease. CD spectroscopy and thermal stability assays using the Thermofluor method indicated that Ca2+ and Mg2+ affect the stability of CRMP-2 and prevent the formation of beta-aggregates upon heating. Gel filtration showed that the presence of Ca2+ or Mg2+ promoted the formation of CRMP-2 homotetramers, and this was further proven by small-angle X-ray scattering experiments, where a 3D solution structure for CRMP-2 was obtained. Previously, we described a crystal structure of human CRMP-2 complexed with calcium. In the present study, we determined the structure of CRMP-2 in the absence of calcium at 1.9 A resolution. When Ca2+ was omitted, crystals could only be grown in the presence of Mg2+ ions. By a proteomic approach, we further identified a number of post-translational modifications in CRMP-2 from rat brain hippocampus and mapped them onto the crystal structure.
Collapse
Affiliation(s)
- Viivi Majava
- Department of Biochemistry, University of Oulu, Finland
| | | | | | | | | |
Collapse
|
34
|
Van Troys M, Lambrechts A, David V, Demol H, Puype M, Pizarro-Cerda J, Gevaert K, Cossart P, Vandekerckhove J. The actin propulsive machinery: the proteome of Listeria monocytogenes tails. Biochem Biophys Res Commun 2008; 375:194-9. [PMID: 18694727 DOI: 10.1016/j.bbrc.2008.07.152] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 07/26/2008] [Indexed: 01/09/2023]
Abstract
Actin-based comet tails produced by Listeria monocytogenes are considered as representative models for cellular force-producing machineries crucial for cell migration. We here present a proteomic picture of these tails formed in extracts from brain and platelets. This provides a comprehensive view, revealing high molecular complexity and novel host cell proteins as tail components, and suggests the participation of specific multicomponent regulatory complexes. This work forms a new basis to expand current models of cellular protrusion.
Collapse
|
35
|
Wu CC, Chen HC, Chen SJ, Liu HP, Hsieh YY, Yu CJ, Tang R, Hsieh LL, Yu JS, Chang YS. Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics 2008; 8:316-32. [PMID: 18203259 DOI: 10.1002/pmic.200700819] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cancer cell secretome may contain many potentially useful biomarkers. We therefore sought to identify proteins in the conditioned media of colorectal carcinoma (CRC) cell lines but not in those from other cancer cell lines. The secretomes of 21 cancer cell lines derived from 12 cancer types were analyzed by SDS-PAGE combined with MALDI-TOF MS. Among the 325 proteins identified, collapsin response mediator protein-2 (CRMP-2) was chosen for evaluation as a potential CRC biomarker, since it was selectively detected in the CRC cell line secretome and has never been reported as a cancer biomarker. Immunohistochemical analysis of 169 CRC specimens showed that CRMP-2 was positively detected in 58.6% of the tumors, but weakly or not detected in >90% of the adjacent nontumor epithelial cells. Moreover, the CRMP-2-positive rate was significantly increased in earlier stage tumors and lymph node metastasis. Plasma CRMP-2 levels were significantly higher in CRC patients (N = 201) versus healthy controls (N = 201) (61.3 +/- 34.6 vs. 40.2 +/- 24.3 ng/mL, p = 0.001). Our results indicate that comparative analysis of cancer cell secretome is a feasible strategy for identifying potential cancer biomarkers, and that CRMP-2 may be a novel CRC biomarker.
Collapse
Affiliation(s)
- Chih-Ching Wu
- Proteomics Core Laboratory, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rogemond V, Auger C, Giraudon P, Becchi M, Auvergnon N, Belin MF, Honnorat J, Moradi-Améli M. Processing and nuclear localization of CRMP2 during brain development induce neurite outgrowth inhibition. J Biol Chem 2008; 283:14751-61. [PMID: 18332147 DOI: 10.1074/jbc.m708480200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are believed to play a crucial role in neuronal differentiation and axonal outgrowth. Among them, CRMP2 mediates axonal guidance by collapsing growth cones during development. This activity is correlated with the reorganization of cytoskeletal proteins. CRMP2 is implicated in the regulation of several intracellular signaling pathways. Two subtypes, A and B, and multiple cytosolic isoforms of CRMP2B with apparent masses between 62 and 66 kDa have previously been reported. Here, we show a new short isoform of 58 kDa, expressed during brain development, derived from C-terminal processing of the CRMP2B subtype. Although full-length CRMP2 is restricted to the cytoplasm, using transfection experiments, we demonstrate that a part of the short isoform is found in the nucleus. Interestingly, at the tissue level, this short CRMP2 is also found in a nuclear fraction of brain extract. By mutational analysis, we demonstrate, for the first time, that nuclear translocation occurs via nuclear localization signal (NLS) within residues Arg(471)-Lys(472) in CRMP2 sequence. The NLS may be unmasked after C-terminal processing; thereby, this motif may be surface-exposed. This short CRMP2 induces neurite outgrowth inhibition in neuroblastoma cells and suppressed axonal growth in cultured cortical neurons, whereas full-length CRMP2 promotes neurite elongation. The NLS-mutated short isoform, restricted to the cytoplasm, abrogates both neurite outgrowth and axon growth inhibition, indicating that short nuclear CRMP2 acts as a dominant signal. Therefore, post-transcriptional processing of CRMP2 together with its nuclear localization may be an important key in the regulation of neurite outgrowth in brain development.
Collapse
|
37
|
Lin YL, Hsueh YP. Neurofibromin interacts with CRMP-2 and CRMP-4 in rat brain. Biochem Biophys Res Commun 2008; 369:747-52. [PMID: 18313395 DOI: 10.1016/j.bbrc.2008.02.095] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 11/29/2022]
Abstract
Neurofibromin, encoded by the neurofibromatosis type 1 (NF1) gene, regulates the Ras and cAMP pathways and plays a role in proliferation and neuronal morphogenesis. The details of the molecular mechanism of neurofibromin action in these processes are still unclear. In this study, immunoprecipitation and proteomics were used to identify novel proteins from rat brain that interact with neurofibromin. Mass spectrometry analysis showed that two proteins, the collapsin response mediator protein-2 (CRMP-2) and propionyl-CoA carboxylase alpha chain (PCCA), associated with neurofibromin. Immunoprecipitation-immunoblotting analysis confirmed the interactions between neurofibromin and CRMP-2 and CRMP-4, but not CRMP-1, in rat brain. CDK5, a kinase that regulates CRMP-2 in axonal outgrowth, was required for the interaction between neurofibromin and CRMP-2. Since both neurofibromin and CRMP proteins are involved in proliferation and axonal morphogenesis, these results suggest that the interaction with CRMPs contributes to the function of neurofibromin in tumorigenesis and neuronal morphogenesis.
Collapse
Affiliation(s)
- Yi-Ling Lin
- Faculty of Life Science and Institute of Genome Science, National Yang-Ming University, Taiwan, ROC
| | | |
Collapse
|
38
|
Zhang Z, Ottens AK, Sadasivan S, Kobeissy FH, Fang T, Hayes RL, Wang KKW. Calpain-mediated collapsin response mediator protein-1, -2, and -4 proteolysis after neurotoxic and traumatic brain injury. J Neurotrauma 2007; 24:460-72. [PMID: 17402852 DOI: 10.1089/neu.2006.0078] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are important molecules in neurite outgrowth and axonal guidance. Within the CRMP family, CRMP-2 has been implicated in several neurological diseases (Alzheimer's, epilepsy, and ischemia). Here, we investigated the integrity of CRMPs (CRMP-1, -2, -4, -5) after in vitro neurotoxin treatment and in vivo traumatic brain injury (TBI). After maitotoxin (MTX) and NMDA treatment of primary cortical neurons, a dramatic decrease of intact CRMP-1, -2 and -4 proteins were observed, accompanied by the appearance of distinct 55-kDa and 58-kDa breakdown products (BDP) for CRMP-2 and -4, respectively. Inhibition of calpain activation prevented NMDA-induced CRMP-2 proteolysis and redistribution of CRMP-2 from the neurites to the cell body, while attenuating neurite damage and neuronal cell injury. Similarly, CRMP-1, -2, and -4 were also found degraded in rat cortex and hippocampus following controlled cortical impact (CCI), an in vivo model of TBI. The appearance of the 55-kDa CRMP-2 BDP was observed to increase, in a time-dependent manner, between 24 and 48 h in the ipsilateral cortex, and by 48 hours in the hippocampus. The observed 55-kDa CRMP-2 BDP following TBI was reproduced by in vitro incubation of naive brain lysate with activated calpain-2, but not activated caspase-3. Sequence analysis revealed several possible cleavage sites near the C-terminus of CRMP-2. Collectively, this study demonstrated that CRMP-1, -2, and -4 are degraded following both acute traumatic and neurotoxic injury. Furthermore, calpain-2 was identified as the possible proteolytic mediator of CRMP-2 following excitotoxic injury and TBI, which appears to correlate well with neuronal cell injury and neurite damage. It is possible that the calpain-mediated truncation of CRMPs following TBI may be an inhibiting factor for post-injury neurite regeneration.
Collapse
Affiliation(s)
- Zhiqun Zhang
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Katano T, Mabuchi T, Okuda-Ashitaka E, Inagaki N, Kinumi T, Ito S. Proteomic identification of a novel isoform of collapsin response mediator protein-2 in spinal nerves peripheral to dorsal root ganglia. Proteomics 2007; 6:6085-94. [PMID: 17051644 DOI: 10.1002/pmic.200600300] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Primary afferent fibers are originated from pseudounipolar sensory cells in dorsal root ganglia (DRG) and transmit external stimuli received in the skin to the spinal cord. Here we undertook a proteomic approach to uncover the polarity of primary afferent fibers. Lumbar spinal nerve segments, peripheral and central to DRG, were dissected from 5-wk-old Wistar rats and the lysates were subjected to large-sized 2-DE at pH 5-6. Among approximately 800 protein spots detected in the central and peripheral fractions, one of the unique spots in the peripheral fraction with MW of 60 kDa and pI of 5.6 was identified as an isoform of collapsin response mediator protein-2 (CRMP-2) by MALDI-TOF MS and Western blots with anti-CRMP-2 antibodies that recognize 1-17 and 486-528 residues. Since this novel spot was detected only in the peripheral fraction, but not in the central fraction, DRG, and other regions of the brain, it was named periCRMP-2. The C-terminal fragment of CRMP-2 was not detected in periCRMP-2 by MS analyses. Expression of periCRMP-2 decreased following sciatic nerve injury. These results suggest that periCRMP-2 is a C-terminal truncated isoform polarized in the peripheral side of spinal nerves and may be involved in nerve degeneration and regeneration.
Collapse
Affiliation(s)
- Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Moriguchi, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Fontán-Gabás L, Oliemuller E, Martínez-Irujo JJ, de Miguel C, Rouzaut A. All-trans-retinoic acid inhibits collapsin response mediator protein-2 transcriptional activity during SH-SY5Y neuroblastoma cell differentiation. FEBS J 2006; 274:498-511. [PMID: 17229153 DOI: 10.1111/j.1742-4658.2006.05597.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurons are highly polarized cells composed of two structurally and functionally distinct parts, the axon and the dendrite. The establishment of this asymmetric structure is a tightly regulated process. In fact, alterations in the proteins involved in the configuration of the microtubule lattice are frequent in neuro-oncologic diseases. One of these cytoplasmic mediators is the protein known as collapsin response mediator protein-2, which interacts with and promotes tubulin polymerization. In this study, we investigated collapsin response mediator protein-2 transcriptional regulation during all-trans-retinoic acid-induced differentiation of SH-SY5Y neuroblastoma cells. All-trans-retinoic acid is considered to be a potential preventive and therapeutic agent, and has been extensively used to differentiate neuroblastoma cells in vitro. Therefore, we first demonstrated that collapsin response mediator protein-2 mRNA levels are downregulated during the differentiation process. After completion of deletion construct analysis and mutagenesis and mobility shift assays, we concluded that collapsin response mediator protein-2 basal promoter activity is regulated by the transcription factors AP-2 and Pax-3, whereas E2F, Sp1 and NeuroD1 seem not to participate in its regulation. Furthermore, we finally established that reduced expression of collapsin response mediator protein-2 after all-trans-retinoic acid exposure is associated with impaired Pax-3 and AP-2 binding to their consensus sequences in the collapsin response mediator protein-2 promoter. Decreased attachment of AP-2 is a consequence of its accumulation in the cytoplasm. On the other hand, Pax-3 shows lower binding due to all-trans-retinoic acid-mediated transcriptional repression. Unraveling the molecular mechanisms behind the action of all-trans-retinoic acid on neuroblastoma cells may well offer new perspectives for its clinical application.
Collapse
|
41
|
Stenmark P, Ogg D, Flodin S, Flores A, Kotenyova T, Nyman T, Nordlund P, Kursula P. The structure of human collapsin response mediator protein 2, a regulator of axonal growth. J Neurochem 2006; 101:906-17. [PMID: 17250651 DOI: 10.1111/j.1471-4159.2006.04401.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Axonal growth cone guidance is a central process in nervous system development and repair. Collapsin response mediator protein 2 (CRMP-2) is a neurite extension-promoting neuronal cytosolic molecule involved in the signalling of growth inhibitory cues from external stimuli, such as semaphorin 3A and the myelin-associated glycoprotein. We have determined the crystal structure of human tetrameric CRMP-2, which is structurally related to the dihydropyriminidases; however, the active site is not conserved. The wealth of earlier functional mapping data for CRMP-2 are discussed in light of the three-dimensional structure of the protein. The differences in oligomerisation interfaces between CRMP-1 and CRMP-2 are used to model CRMP-1/2 heterotetramers.
Collapse
Affiliation(s)
- Pål Stenmark
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Charrier E, Mosinger B, Meissirel C, Aguera M, Rogemond V, Reibel S, Salin P, Chounlamountri N, Perrot V, Belin MF, Goshima Y, Honnorat J, Thomasset N, Kolattukudy P. Transient alterations in granule cell proliferation, apoptosis and migration in postnatal developing cerebellum of CRMP1?/?mice. Genes Cells 2006; 11:1337-52. [PMID: 17121542 DOI: 10.1111/j.1365-2443.2006.01024.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Collapsin response mediator proteins (CRMPs) consist of five homologous cytosolic proteins that participate in signal transduction involved in a variety of physiological events. CRMP1 is highly expressed during brain development; however, its functions remains unclear. To gain insight into its function, we generated CRMP1(-/-) mice with a knock-in LacZ gene. No gross anatomical changes or behavioral alterations were observed. Expression of CRMP1 was examined by the expression of the knocked-in LacZ gene, in situ hybridization with riboprobes and by imunohistochemistry. CRMP1 was found to be highly expressed in the developing the cerebellum, olfactory bulbs, hypothalamus and retina. In adults, expression level was high in the olfactory bulbs and hippocampus but very low in the retina and cerebellum and undetectable in hypothalamus. To study potential roles of CRMP1, we focused on cerebellum development. CRMP1(-/-) mice showed a decrease in the number of granule cells migrating out of explants of developing cerebellum, as did treatment of the explants from normal mice with anti-CRMP1 specific antibodies. CRMP1(-/-) mice showed a decrease in granule cell proliferation and apoptosis in external granule cell layers in vivo. Adult cerebellum of CRMP1(-/-) did not show any abnormalities.
Collapse
Affiliation(s)
- Emmanuelle Charrier
- INSERM U433, Institut Fédératif des Neurosciences, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon F-69372, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|