1
|
Ye H, Yang X, Feng B, Luo P, Torres Irizarry VC, Carrillo-Sáenz L, Yu M, Yang Y, Eappen BP, Munoz MD, Patel N, Schaul S, Ibrahimi L, Lai P, Qi X, Zhou Y, Kota M, Dixit D, Mun M, Liew CW, Jiang Y, Wang C, He Y, Xu P. 27-Hydroxycholesterol acts on estrogen receptor α expressed by POMC neurons in the arcuate nucleus to modulate feeding behavior. SCIENCE ADVANCES 2024; 10:eadi4746. [PMID: 38996023 PMCID: PMC11244552 DOI: 10.1126/sciadv.adi4746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/05/2024] [Indexed: 07/14/2024]
Abstract
Oxysterols are metabolites of cholesterol that regulate cholesterol homeostasis. Among these, the most abundant oxysterol is 27-hydroxycholesterol (27HC), which can cross the blood-brain barrier. Because 27HC functions as an endogenous selective estrogen receptor modulator, we hypothesize that 27HC binds to the estrogen receptor α (ERα) in the brain to regulate energy balance. Supporting this view, we found that delivering 27HC to the brain reduced food intake and activated proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (POMCARH) in an ERα-dependent manner. In addition, we observed that inhibiting brain ERα, deleting ERα in POMC neurons, or chemogenetic inhibition of POMCARH neurons blocked the anorexigenic effects of 27HC. Mechanistically, we further revealed that 27HC stimulates POMCARH neurons by inhibiting the small conductance of the calcium-activated potassium (SK) channel. Together, our findings suggest that 27HC, through its interaction with ERα and modulation of the SK channel, inhibits food intake as a negative feedback mechanism against a surge in circulating cholesterol.
Collapse
Affiliation(s)
- Hui Ye
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiaohua Yang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pei Luo
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Valeria C. Torres Irizarry
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Meng Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin P. Eappen
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Marcos David Munoz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nirali Patel
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xinyue Qi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuliang Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Maya Kota
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Madeline Mun
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chong Wee Liew
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Russo GI, Durukan E, Asmundo MG, Lo Giudice A, Salzano S, Cimino S, Rescifina A, Fode M, Abdelhameed AS, Caltabiano R, Broggi G. CYP7B1 as a Biomarker for Prostate Cancer Risk and Progression: Metabolic and Oncogenic Signatures (Diagnostic Immunohistochemistry Analysis by Tissue Microarray in Prostate Cancer Patients-Diamond Study). Int J Mol Sci 2024; 25:4762. [PMID: 38731981 PMCID: PMC11083792 DOI: 10.3390/ijms25094762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
We aimed to analyze the association between CYP7B1 and prostate cancer, along with its association with proteins involved in cancer and metabolic processes. A retrospective analysis was performed on 390 patients with prostate cancer (PC) or benign prostatic hyperplasia (BPH). We investigated the interactions between CYP7B1 expression and proteins associated with PC and metabolic processes, followed by an analysis of the risk of biochemical recurrence based on CYP7B1 expression. Of the 139 patients with elevated CYP7B1 expression, 92.8% had prostate cancer. Overall, no increased risk of biochemical recurrence was associated with CYP7B1 expression. However, in a non-diabetic subgroup analysis, higher CYP7B1 expression indicated a higher risk of biochemical recurrence, with an HR of 1.78 (CI: 1.0-3.2, p = 0.05). PC is associated with elevated CYP7B1 expression. In a subgroup analysis of non-diabetic patients, elevated CYP7B1 expression was associated with an increased risk of biochemical recurrence, suggesting increased cancer aggressiveness.
Collapse
Affiliation(s)
- Giorgio Ivan Russo
- Urology Section, Department of Surgery, University of Catania, 95123 Catania, Italy; (M.G.A.); (A.L.G.); (S.C.)
| | - Emil Durukan
- Department of Urology, Copenhagen University Hospital, Herlev Hospital, 2730 Copenhagen, Denmark; (E.D.); (M.F.)
| | - Maria Giovanna Asmundo
- Urology Section, Department of Surgery, University of Catania, 95123 Catania, Italy; (M.G.A.); (A.L.G.); (S.C.)
| | - Arturo Lo Giudice
- Urology Section, Department of Surgery, University of Catania, 95123 Catania, Italy; (M.G.A.); (A.L.G.); (S.C.)
| | - Serena Salzano
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (S.S.); (R.C.); (G.B.)
| | - Sebastiano Cimino
- Urology Section, Department of Surgery, University of Catania, 95123 Catania, Italy; (M.G.A.); (A.L.G.); (S.C.)
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy;
| | - Mikkel Fode
- Department of Urology, Copenhagen University Hospital, Herlev Hospital, 2730 Copenhagen, Denmark; (E.D.); (M.F.)
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (S.S.); (R.C.); (G.B.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (S.S.); (R.C.); (G.B.)
| |
Collapse
|
3
|
Estrogen receptor β and treatment with a phytoestrogen are associated with inhibition of nuclear translocation of EGFR in the prostate. Proc Natl Acad Sci U S A 2021; 118:2011269118. [PMID: 33771918 DOI: 10.1073/pnas.2011269118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Knockout of ERβ in the mouse leads to nuclear expression of epidermal growth factor receptor (EGFR) in the prostate. To examine whether ERβ plays a similar role in the human prostate, we used four cohorts of men: 1) a Swedish cohort of normal prostates and PCa (prostate cancer) of different Gleason grades; 2) men with benign prostatic hyperplasia (BPH) treated with the 5α-reductase inhibitor, finasteride, and finasteride together with the ERβ agonists, soy isoflavones; 3) men with PCa above Gleason grade 4 (GG4), treated with ADT (androgen deprivation therapy) and abiraterone (AA), the blocker of androgen synthesis for different durations; and 4) men with GG4 PCa on ADT or ADT with the AR (androgen receptor) blocker, enzalutamide, for 4 mo to 6 mo. In men with BPH, finasteride treatment induced EGFR nuclear expression, but, when finasteride was combined with isoflavones, EGFR remained on the cell membrane. In GG4 patients, blocking of AR for 4 mo to 6 mo resulted in loss of ERβ and PTEN expression and increase in patients with nuclear EGFR from 10 to 40%. In the men with GG4 PCa, blocking of adrenal synthesis of testosterone for 2 mo to 7 mo had the beneficial effect of increasing ERβ expression, but, on treatment longer than 8 mo, ERβ was lost and EGFR moved to the nucleus. Since nuclear EGFR is a predictor of poor outcome in PCa, addition of ERβ agonists together with abiraterone should be considered as a treatment that might sustain expression of ERβ and offer some benefit to patients.
Collapse
|
4
|
Christiansen S, Axelstad M, Scholze M, Johansson HKL, Hass U, Mandrup K, Frandsen HL, Frederiksen H, Isling LK, Boberg J. Grouping of endocrine disrupting chemicals for mixture risk assessment - Evidence from a rat study. ENVIRONMENT INTERNATIONAL 2020; 142:105870. [PMID: 32593051 DOI: 10.1016/j.envint.2020.105870] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 05/25/2023]
Abstract
Exposure to mixtures of endocrine disrupting chemicals may contribute to the rising incidence of hormone-related diseases in humans. Real-life mixtures are complex, comprised of chemicals with mixed modes of action, and essential knowledge is often lacking on how to group such chemicals into cumulative assessment groups, which is an essential prerequisite to conduct a chemical mixture risk assessment. We investigated if mixtures of chemicals with diverse endocrine modes of action can cause mixture effects on hormone sensitive endpoints in developing and adult rat offspring after perinatal exposure. Wistar rats were exposed during pregnancy and lactation simultaneously to either bisphenol A and butylparaben (Emix), diethylhexyl phthalate and procymidone (Amix), or a mixture of all four substances (Totalmix). In male offspring, the anogenital distance was significantly reduced and nipple retention increased in animals exposed to Amix and Totalmix, and the mixture effects were well approximated by the dose addition model. The combination of Amix and Emix responded with more marked changes on these and other endocrine-sensitive endpoints than each binary mixture on its own. Sperm counts were reduced by all exposures. These experimental outcomes suggest that the grouping of chemicals for mixture risk assessment should be based on common health outcomes rather than only similar modes or mechanisms of action. Mechanistic-based approaches such as the concept of Adverse Outcome Pathway (AOP) can provide important guidance if both the information on shared target tissues and the information on shared mode/mechanism of action are taken into account.
Collapse
Affiliation(s)
- Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark.
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark
| | - Martin Scholze
- Institute of Environment, Health and Societies, Brunel University London, Quad North, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Hanna K L Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark
| | - Ulla Hass
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark
| | - Karen Mandrup
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark
| | - Henrik Lauritz Frandsen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Louise Krag Isling
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
5
|
Chiang JY, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. LIVER RESEARCH 2020; 4:47-63. [PMID: 34290896 PMCID: PMC8291349 DOI: 10.1016/j.livres.2020.05.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol 7 alpha-hydroxylase (CYP7A1, EC1.14) is the first and rate-limiting enzyme in the classic bile acid synthesis pathway. Much progress has been made in understanding the transcriptional regulation of CYP7A1 gene expression and the underlying molecular mechanisms of bile acid feedback regulation of CYP7A1 and bile acid synthesis in the last three decades. Discovery of bile acid-activated receptors and their roles in the regulation of lipid, glucose and energy metabolism have been translated to the development of bile acid-based drug therapies for the treatment of liver-related metabolic diseases such as alcoholic and non-alcoholic fatty liver diseases, liver cirrhosis, diabetes, obesity and hepatocellular carcinoma. This review will provide an update on the advances in our understanding of the molecular biology and mechanistic insights of the regulation of CYP7A1 in bile acid synthesis in the last 40 years.
Collapse
|
6
|
Le Cornet C, Walter B, Sookthai D, Johnson TS, Kühn T, Herpel E, Kaaks R, Fortner RT. Circulating 27-hydroxycholesterol and breast cancer tissue expression of CYP27A1, CYP7B1, LXR-β, and ERβ: results from the EPIC-Heidelberg cohort. Breast Cancer Res 2020; 22:23. [PMID: 32075687 PMCID: PMC7031866 DOI: 10.1186/s13058-020-1253-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Experimental and epidemiological studies demonstrate a role for 27-hydroxycholesterol (27HC) in breast cancer development, though results are conflicting. Cholesterol 27-hydroxylase (CYP27A1) and oxysterol 7-alpha-hydroxylase (CYP7B1) regulate 27HC concentrations, while differential expression of the liver X receptor (LXR) and estrogen receptor beta (ERβ) may impact the association between 27HC and breast cancer risk. Methods We evaluated correlates of tumor tissue expression of CYP27A1, CYP7B1, LXR-β, and ERβ and the association between circulating prediagnostic 27HC concentrations and breast cancer risk by marker expression in a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort including 287 breast cancer cases with tumor tissue available. Tumor protein expression was evaluated using immunohistochemistry, and serum 27HC concentrations quantified using liquid chromatography–mass spectrometry. Conditional logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Results A higher proportion of CYP7B1-positive cases were progesterone receptor (PR)-positive, relative to CYP7B1-negative cases, whereas a higher proportion of ERβ-positive cases were Bcl-2 low, relative to ERβ-negative cases. No differences in tumor tissue marker positivity were observed by reproductive and lifestyle factors. We observed limited evidence of heterogeneity in associations between circulating 27HC and breast cancer risk by tumor tissue expression of CYP27A1, CYP7B1, LXR-β, and ERβ, with the exception of statistically significant heterogeneity by LXR-β status in the subgroup of women perimenopausal at blood collection (p = 0.02). Conclusion This exploratory study suggests limited associations between tumor marker status and epidemiologic or breast cancer characteristics. Furthermore, the association between circulating 27HC and breast cancer risk may not vary by tumor expression of CYP27A1, CYP7B1, LXR-β, or ERβ. Electronic supplementary material The online version of this article (10.1186/s13058-020-1253-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Le Cornet
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Britta Walter
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Disorn Sookthai
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Theron S Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ester Herpel
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Phelps T, Snyder E, Rodriguez E, Child H, Harvey P. The influence of biological sex and sex hormones on bile acid synthesis and cholesterol homeostasis. Biol Sex Differ 2019; 10:52. [PMID: 31775872 PMCID: PMC6880483 DOI: 10.1186/s13293-019-0265-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity and elevated serum lipids are associated with a threefold increase in the risk of developing atherosclerosis, a condition that underlies stroke, myocardial infarction, and sudden cardiac death. Strategies that aim to reduce serum cholesterol through modulation of liver enzymes have been successful in decreasing the risk of developing atherosclerosis and reducing mortality. Statins, which inhibit cholesterol biosynthesis in the liver, are considered among the most successful compounds developed for the treatment of cardiovascular disease. However, recent debate surrounding their effectiveness and safety prompts consideration of alternative cholesterol-lowering therapies, including increasing cholesterol catabolism through bile acid (BA) synthesis. Targeting the enzymes that convert cholesterol to BAs represents a promising alternative to other cholesterol-lowering approaches that treat atherosclerosis as well as fatty liver diseases and diabetes mellitus. Compounds that modify the activity of these pathways have been developed; however, there remains a lack of consideration of biological sex. This is necessary in light of strong evidence for sexual dimorphisms not only in the incidence and progression of the diseases they influence but also in the expression and activity of the proteins affected and in the manner in which men and women respond to drugs that modify lipid handling in the liver. A thorough understanding of the enzymes involved in cholesterol catabolism and modulation by biological sex is necessary to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Taylor Phelps
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Erin Snyder
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Erin Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Hailey Child
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Pamela Harvey
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
8
|
Li G, Ni A, Yu M. Pretumor microenvironment of hepatocellular carcinoma: Cancerization or anticancerization? Gene 2019; 701:46-54. [PMID: 30902783 DOI: 10.1016/j.gene.2019.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tumor microenvironment (TM) has been deeply concerned. However, the pretumor microenvironment (PTM) was poorly understood. The purpose in this study was to explore the possible pathophysiological features of PTM before hepatocellular carcinoma (HCC) appearance. METHODS Mouse livers with no swelling but with tumors present elsewhere in the body after subcutaneous injection of H22 in the fore underarm were considered a PTM, HCC tumors presenting far away from the PTM were regarded as a TM, and the healthy livers of mice without injection of H22 were regarded as a physiological microenvironment (PM). The transcriptomes of samples were generated using RNA-seq and validated using RT-qPCR. RESULTS Overall, 4483 differentially expressed genes (DEGs) were found in the TM compared with the PTM (TM/PTM), but only 194 were altered in the PTM compared with the PM (PTM/PM). Among those 194 DEGs, 104 displayed upregulation and 90 downregulation. Some of these DEGs could promote the ability to resist cancerization or facilitate cancer metastasis, while others indicated liver impairment. The DEGs were involved in 16 relevant pathways. Additionally, the frequency of alternative splicing (AS) in the DEGs in various samples was positively related to the expression of those DEGs. CONCLUSIONS The PTM initiatively armed itself to combat cancerization when its indications appeared although the PTM did not manifest any tissue swelling. However, the cancer cells were negatively influencing immunity to prevent clearance and positively promoting transformation to construct a suitable environment. During transformation by cancer cells, some genes with acquired AS participated in the construction of the PTM. This alteration created an invadable space and an appropriate environment for cancer cells.
Collapse
Affiliation(s)
- Genliang Li
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Anni Ni
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Mengyao Yu
- Donghai county hospital, Lianyungang 222000, Jiangsu, China
| |
Collapse
|
9
|
Yang G, Liu J, Wang Y, Du Y, Ma A, Wang T. Lack of influence of sex hormones on Brugada syndrome-associated mutant Nav1.5 sodium channel. J Electrocardiol 2018; 52:82-87. [PMID: 30476647 DOI: 10.1016/j.jelectrocard.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Brugada syndrome (BS) is an autosomal dominant disease. The most common causes of BS are loss-of-function mutations occur in the SCN5A gene which encodes the sodium channel protein Nav1.5. BS has a higher incidence rate in males and the underlying mechanisms of the gender inequality are not yet fully understood. Considering sex hormones are among the most important factors behind gender differences and have previously been shown to regulate the activity of multiple cardiac ion channels, we hypothesized that sex hormones also affect Nav1.5 function which lead to BS predominantly affecting males. In this study, we investigate the protein expression level and current of Nav1.5 in the HEK293 cells cotransfected with SCN5A and sex hormone receptor plasmids using both wild-type SCN5A and BS-associated SCN5A channel mutants R878C and R104W. Our findings showed that sex hormones have no effects on the protein expression level and current of the wild-type Nav1.5, neither does it affect the protein expression level and current of BS-associated Nav1.5 mutants R878C and R104W, regardless of homozygous or heterozygous state. Our results suggest that the male preponderance of BS does not arise from the effects of the sex hormones on Nav1.5. Further studies are needed to explain the male preponderance of this disease.
Collapse
Affiliation(s)
- Guodong Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, PR China
| | - Jing Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, PR China
| | - Ya Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, PR China
| | - Yuan Du
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, PR China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, PR China; Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Shaanxi Province, PR China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, PR China.
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, PR China; Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Shaanxi Province, PR China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, PR China.
| |
Collapse
|
10
|
Xi XP, Zhuang J, Teng MJ, Xia LJ, Yang MY, Liu QG, Chen JB. MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer. Int J Mol Med 2016; 38:499-506. [PMID: 27278684 DOI: 10.3892/ijmm.2016.2624] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/26/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNA-17 (miRNA-17/miR‑17) expression has been confirmed to be significantly higher in colorectal cancer tissues than in normal tissues. However, its exact role in colorectal cancer has not yet been fully elucidated. In this study, we found that miR-17 not only promoted epithelial-mesenchymal transition (EMT), but also promoted the formation of a stem cell-like population in colon cancer DLD1 cells. We also wished to determine the role of cytochrome P450, family 7, subfamily B, polypeptide 1 (CYP7B1) in CRC. miR-17 was overexpressed using a recombinant plasmid and CYP7B1 was silenced by transfection with shRNA. Western blot analysis was used to determine protein expression in the DLD1 cells and in tumor tissues obtained from patients with colon cancer. Our results revealed that miR‑17 overexpression led to the degradation of CYP7B1 mRNA expression in DLD1 cells. In addition, we found that the silencing of CYB7B1 promoted EMT and the formation of a stem cell-like population in the cells. Thus, our findings demonstrate that miR‑17 induces EMT consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer.
Collapse
Affiliation(s)
- Xiang-Peng Xi
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jing Zhuang
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Mu-Jian Teng
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Li-Jian Xia
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ming-Yu Yang
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qing-Gen Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jing-Bo Chen
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
11
|
Umetani M. Re-adopting classical nuclear receptors by cholesterol metabolites. J Steroid Biochem Mol Biol 2016; 157:20-6. [PMID: 26563834 PMCID: PMC4724260 DOI: 10.1016/j.jsbmb.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/10/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
Since the first cloning of the human estrogen receptor (ER) α in 1986 and the subsequent cloning of human ERβ, there has been extensive investigation of the role of estrogen/ER. Estrogens/ER play important roles not only in sexual development and reproduction but also in a variety of other functions in multiple tissues. Selective Estrogen Receptor Modulators (SERMs) are ER lignds that act as agonists or antagonists depending on the target genes and tissues, and until recently, only synthetic SERMs have been recognized. However, the discovery of the first endogenous SERM, 27-hydroxycholesterol (27HC), opened a new dimension of ER action in health and disease. In addition to the identification of 27HC as a SERM, oxysterols have been recently demonstrated as indirect modulators of ER through interaction with the nuclear receptor Liver X Receptor (LXR) β. In this review, the recent progress on these novel roles of oxysterols in ER modulation is summarized.
Collapse
Affiliation(s)
- Michihisa Umetani
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3517 Cullen Blvd, SERC 545, Houston, TX 77204-5056, USA.
| |
Collapse
|
12
|
Slominski AT, Zmijewski MA, Semak I, Zbytek B, Pisarchik A, Li W, Zjawiony J, Tuckey RC. Cytochromes p450 and skin cancer: role of local endocrine pathways. Anticancer Agents Med Chem 2014; 14:77-96. [PMID: 23869782 DOI: 10.2174/18715206113139990308] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
Abstract
Skin is the largest body organ forming a metabolically active barrier between external and internal environments. The metabolic barrier is composed of cytochromes P450 (CYPs) that regulate its homeostasis through activation or inactivation of biologically relevant molecules. In this review we focus our attention on local steroidogenic and secosteroidogenic systems in relation to skin cancer, e.g., prevention, attenuation of tumor progression and therapy. The local steroidogenic system is composed of locally expressed CYPs involved in local production of androgens, estrogens, gluco- and mineralo-corticosteroids from cholesterol (initiated by CYP11A1) or from steroid precursors delivered to the skin, and of their metabolism and/or inactivation. Cutaneous 7-hydroxylases (CYP7A1, CYP7B1 and CYP39) potentially can produce 7-hydroxy/oxy-steroids/sterols with modifying effects on local tumorigenesis. CYP11A1 also transforms 7-dehydrocholesterol (7DHC)→22(OH)7DHC→20,22(OH)2-7DHC→7-dehydropregnenolone, which can be further metabolized to other 5,7- steroidal dienes. These 5,7-dienal intermediates are converted by ultraviolet radiation B (UVB) into secosteroids which show pro-differentiation and anti-cancer properties. Finally, the skin is the site of activation of vitamin D3 through two alternative pathways. The classical one involves sequential hydroxylation at positions 25 and 1 to produce active 1,25(OH)2D3, which is further inactivated through hydroxylation at C24. The novel pathway is initiated by CYP11A1 with predominant production of 20(OH)D3 which is further metabolized to biologically active but non-calcemic D3-hydroxyderivatives. Classical and non-classical (novel) vitamin D analogs show pro-differentiation, anti-proliferative and anticancer properties. In addition, melatonin is metabolized by local CYPs. In conclusion cutaneously expressed CYPs have significant effects on skin physiology and pathology trough regulation of its chemical milieu.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Robert C Tuckey
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, RM525, Memphis, TN 38163, USA.
| |
Collapse
|
13
|
Aka JA, Mazumdar M, Chen CQ, Poirier D, Lin SX. 17beta-hydroxysteroid dehydrogenase type 1 stimulates breast cancer by dihydrotestosterone inactivation in addition to estradiol production. Mol Endocrinol 2010; 24:832-45. [PMID: 20172961 DOI: 10.1210/me.2009-0468] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The active estrogen estradiol (E2) stimulates breast cancer cell (BCC) growth, whereas the androgen dihydrotestosterone (DHT) has shown an antiproliferative effect. The principal product synthesized by the 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is E2, although we have demonstrated that the purified enzyme also inactivates DHT. However, the direct roles of 17beta-HSD1 in sex-hormone regulation and BCC proliferation have not been completely established. Here, we show that 17beta-HSD1 inhibition suppresses DHT catabolism by 19%, whereas knockdown of the gene expression increases the concentration of DHT by 41% in the T47D BCC line. The 17beta-HSD1/DHT complex crystal structure reveals that DHT binds in both normal and reverse modes, but the latter mode leading to O3 reduction is preferred with stronger interactions. Using RNA interference and an inhibitor of 17beta-HSD1, we demonstrate that 17beta-HSD1 expression is negatively correlated to DHT levels in BCC but positively correlated to estrone reduction, E2 levels, and cell proliferation. 17beta-HSD1 inhibition reduces DHT inactivation, increasing the antiproliferative effect by DHT in T47D cells after 8 d treatment. Thus, 17beta-HSD1 up-regulates BCC growth by a dual action on estradiol synthesis and DHT inactivation. We have further demonstrated that 17beta-HSD1 can enhance the E2-induced expression of the endogenous estrogen-responsive gene pS2, providing an important information regarding the modulation of the estrogen responsiveness by 17beta-HSD1 that may also contribute to BCC growth. These results strongly support the rationale for inhibiting 17beta-HSD1 in breast cancer therapy to eliminate estrogen activation via the sulfatase pathway while avoiding the deprivation of DHT.
Collapse
Affiliation(s)
- Juliette A Aka
- Research Center of the Laval University Hospital Center (CHUQ-CHUL) and Laval University, Québec, Canada
| | | | | | | | | |
Collapse
|
14
|
Leuenberger N, Pradervand S, Wahli W. Sumoylated PPARalpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. J Clin Invest 2010; 119:3138-48. [PMID: 19729835 DOI: 10.1172/jci39019] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 07/01/2009] [Indexed: 12/28/2022] Open
Abstract
As most metabolic studies are conducted in male animals, understanding the sex specificity of the underlying molecular pathways has been broadly neglected; for example, whether PPARs elicit sex-dependent responses has not been determined. Here we show that in mice, PPARalpha has broad female-dependent repressive actions on hepatic genes involved in steroid metabolism and immunity. In male mice, this effect was reproduced by the administration of a synthetic PPARalpha ligand. Using the steroid oxysterol 7alpha-hydroxylase cytochrome P4507b1 (Cyp7b1) gene as a model, we elucidated the molecular mechanism of this sex-specific PPARalpha-dependent repression. Initial sumoylation of the ligand-binding domain of PPARalpha triggered the interaction of PPARalpha with GA-binding protein alpha (GABPalpha) bound to the target Cyp7b1 promoter. Histone deacetylase and DNA and histone methylases were then recruited, and the adjacent Sp1-binding site and histones were methylated. These events resulted in loss of Sp1-stimulated expression and thus downregulation of Cyp7b1. Physiologically, this repression conferred on female mice protection against estrogen-induced intrahepatic cholestasis, the most common hepatic disease during pregnancy, suggesting a therapeutic target for prevention of this disease.
Collapse
Affiliation(s)
- Nicolas Leuenberger
- Center for Integrative Genomics, National Research Center "Frontiers in Genetics," Switzerland
| | | | | |
Collapse
|
15
|
Pettersson H, Lundqvist J, Oliw E, Norlin M. CYP7B1-mediated metabolism of 5alpha-androstane-3alpha,17beta-diol (3alpha-Adiol): a novel pathway for potential regulation of the cellular levels of androgens and neurosteroids. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1206-15. [PMID: 19732851 DOI: 10.1016/j.bbalip.2009.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 08/18/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
The current study presents data indicating that 5alpha-androstane-3alpha,17beta-diol (3alpha-Adiol) undergoes a previously unknown metabolism into hydroxymetabolites, catalyzed by CYP7B1. 3alpha-Adiol is an androgenic steroid which serves as a source for the potent androgen dihydrotestosterone and also can modulate gamma-amino butyric acid A (GABA(A)) receptor function in the brain. The steroid hydroxylase CYP7B1 is known to metabolize cholesterol derivatives, sex hormone precursors and certain estrogens, but has previously not been thought to act on androgens or 3alpha-hydroxylated steroids. 3alpha-Adiol was found to undergo NADPH-dependent metabolism into 6- and 7-hydroxymetabolites in incubations with porcine microsomes and human kidney-derived HEK293 cells, which are high in CYP7B1 content. This metabolism was suppressed by addition of steroids known to be metabolized by CYP7B1. In addition, 3alpha-Adiol significantly suppressed CYP7B1-mediated catalytic reactions, in a way as would be expected for substrates that compete for the same enzyme. Recombinant expression of human CYP7B1 in HEK293 cells significantly increased the rate of 3alpha-Adiol hydroxylation. Furthermore, the observed hydroxylase activity towards 3alpha-Adiol was very low or undetectable in livers of Cyp7b1(-/-) knockout mice. The present results indicate that CYP7B1-mediated catalysis may play a role for control of the cellular levels of androgens, not only of estrogens. These findings suggest a previously unknown mechanism for metabolic elimination of 3alpha-Adiol which may impact intracellular levels of dihydrotestosterone and GABA(A)-modulating steroids.
Collapse
Affiliation(s)
- Hanna Pettersson
- Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Biomedical Centre Box 578, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
16
|
Penaloza C, Estevez B, Orlanski S, Sikorska M, Walker R, Smith C, Smith B, Lockshin RA, Zakeri Z. Sex of the cell dictates its response: differential gene expression and sensitivity to cell death inducing stress in male and female cells. FASEB J 2009; 23:1869-79. [PMID: 19190082 DOI: 10.1096/fj.08-119388] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sexual dimorphisms are typically attributed to the hormonal differences arising once sex differentiation has occurred. However, in some sexually dimorphic diseases that differ in frequency but not severity, the differences cannot be logically connected to the sex hormones. Therefore, we asked whether any aspect of sexual dimorphism could be attributed to chromosomal rather than hormonal differences. Cells taken from mice at d 10.5 postconception (PC) before sexual differentiation, at d 17.5 PC after the first embryonic assertion of sexual hormones, and at postnatal day 17 (puberty) were cultured and exposed to 400 microM ethanol or 20 microM camptothecin or to infection with influenza A virus (multiplicity of infection of 5). The results showed that untreated male and female cells of the same age grew at similar rates and manifested similar morphology. However, they responded differently to the applied stressors, even before the production of fetal sex hormones. Furthermore, microarray and qPCR analyses of the whole 10.5 PC embryos also revealed differences in gene expression between male and female tissues. Likewise, the exposure of cells isolated from fetuses and adolescent mice to the stressors and/or sex hormones yielded expression patterns that reflected chromosomal sex, with ethanol feminizing male cells and masculinizing female cells. We conclude that cells differ innately according to sex irrespective of their history of exposure to sex hormones. These differences may have consequences in the course of sexually dimorphic diseases and their therapy.
Collapse
Affiliation(s)
- Carlos Penaloza
- Queens College and Graduate Center of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tang W, Pettersson H, Norlin M. Involvement of the PI3K/Akt pathway in estrogen-mediated regulation of human CYP7B1: identification of CYP7B1 as a novel target for PI3K/Akt and MAPK signalling. J Steroid Biochem Mol Biol 2008; 112:63-73. [PMID: 18790053 DOI: 10.1016/j.jsbmb.2008.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/16/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
The steroid hydroxylase CYP7B1 metabolizes neurosteroids, cholesterol derivatives, and estrogen receptor (ER) ligands. Previous studies identified CYP7B1 as a target for regulation by estrogen. The present study examines the mechanism for estrogen-mediated regulation of the human CYP7B1 gene promoter. Treatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), abolished ER-mediated up-regulation of a CYP7B1 promoter-luciferase reporter in HepG2 cells, whereas overexpression of PI3K or Akt significantly increased estrogenic up-regulation of CYP7B1. Overexpression of dominant-negative mutant Akt abolished ER-mediated stimulation of CYP7B1 in HepG2 cells. Data indicated no binding of ER to CYP7B1 promoter sequences, suggesting that ER interacts with the PI3K/Akt pathway without binding to the gene. At low ER levels, overexpression of Akt suppressed CYP7B1 promoter activity, suggesting that its effect on CYP7B1 is different when estrogens are absent. In HEK293 cells, CYP7B1 transcription was much less affected by Akt, indicating that the mechanism for up-regulation of CYP7B1 is different in different cell types. Other experiments indicated that MAPK signalling may affect basal CYP7B1 levels. The current results, indicating that regulation of CYP7B1 by ER can be mediated via the PI3K/Akt signal pathway, a regulatory pathway important for cellular survival and growth, suggest an important role for CYP7B1 in cellular growth, particularly in connection with estrogenic signalling.
Collapse
Affiliation(s)
- Wanjin Tang
- Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Uppsala, Sweden
| | | | | |
Collapse
|
18
|
Isensee J, Ruiz Noppinger P. Sexually dimorphic gene expression in mammalian somatic tissue. ACTA ACUST UNITED AC 2008; 4 Suppl B:S75-95. [PMID: 18156105 DOI: 10.1016/s1550-8579(07)80049-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2007] [Indexed: 01/06/2023]
Abstract
BACKGROUND The sexually dimorphic differentiation of the bipotential gonad into testis or ovary initiates the sexually dimorphic development of mammals and leads to divergent hormone concentrations between the sexes throughout life. However, despite the fact that anatomic and hormonal differences between the sexes are well described, only a few studies have investigated the manifestation of these differences at the transcriptional level in mammalian somatic tissue. OBJECTIVE This review focuses on basic regulatory mechanisms of sex-specific gene expression and examines recent gene expression profiling studies to outline basic differences between the sexes at the transcriptome level in somatic tissues. METHODS To identify gene expression profiling studies addressing sexually dimorphic gene expression, the PubMed database was searched using the terms sex and dimorp and gene expression not drosophila not elegans. Abstracts of all identified publications were screened for studies explicitly using microarrays to identify sex differences in somatic tissues of rodents or humans. The search was restricted to English-language articles published in the past 5 years. Reference lists of identified articles as well as microarray databases (Gene Expression Omnibus and ArrayExpress) were also used. RESULTS The application of microarray technology has enabled the systematic assessment of sex-biased gene expression on the transcriptome level, indicating that the regulatory pathways underlying sexual differentiation give rise to extensive differences in somatic gene expression across organisms. CONCLUSION Sustainable annotation of sex-biased gene expression provides a key to understanding basic physiological differences between healthy males and females as well as those with diseases.
Collapse
Affiliation(s)
- Jörg Isensee
- Center for Cardiovascular Research, Center for Gender in Medicine, Charité Universitätsmedizin, Berlin, Germany
| | | |
Collapse
|
19
|
Tang W, Norlin M, Wikvall K. Regulation of human CYP27A1 by estrogens and androgens in HepG2 and prostate cells. Arch Biochem Biophys 2007; 462:13-20. [PMID: 17482558 DOI: 10.1016/j.abb.2007.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/16/2007] [Accepted: 04/02/2007] [Indexed: 11/21/2022]
Abstract
The regulation of the human CYP27A1 gene by estrogens and androgens was studied in human liver-derived HepG2 and prostate cells. Our results show that the promoter activity, enzymatic activity and mRNA levels of CYP27A1 in HepG2 cells are downregulated by estrogen in presence of ERalpha or ERbeta. Similar effects by estrogen were found in RWPE-1 prostate cells. In contrast, estrogen markedly upregulated the transcriptional activity of CYP27A1 in LNCaP prostate cancer cells. 5alpha-Dihydrotestosterone and androgen receptor upregulated the transcriptional activity of CYP27A1 in HepG2 cells. Progressive deletion experiments indicate that the ERbeta-mediated effects in HepG2 and LNCaP cells are conferred to the same region (-451/+42) whereas ERalpha-mediated effects on this promoter are more complex. The results indicate that the stimulating effect of androgen in HepG2 cells is conferred to a region upstream from -792 in the CYP27A1 promoter. In summary, we have identified the human CYP27A1 gene as a target for estrogens and androgens. The results imply that expression of CYP27A1 may be affected by endogenous sex hormones and pharmacological compounds with estrogenic or androgenic effects.
Collapse
Affiliation(s)
- Wanjin Tang
- Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Uppsala, Sweden
| | | | | |
Collapse
|
20
|
Abstract
Ageing of the male reproductive system is characterized by changes in the endocrine system, hypogonadism, erectile dysfunction and proliferative disorders of the prostate gland. Stochastic damage accumulating within ageing leads to progressive dysregulation at each level of the hypothalamic-pituitary-gonadal (HPG) axis and in local auto/paracrine interactions, thereby inducing morphological changes in reproductive target organs, such as the prostate, testis and penis. Despite age-related changes in the HPG axis, endocrine functions are generally sufficient to maintain fertility in elderly men. Ageing of the male reproductive system can give rise to clinically relevant manifestations, such as benign prostatic hyperplasia (BPH), prostate cancer (PCa) and erectile dysfunction (ED). In this review, we discuss morphological/histological changes occurring in these organs and current views and concepts of the underlying pathology. Moreover, we emphasize the molecular/cellular pathways leading to reduced testicular/penile function and proliferative disorders of the prostate gland.
Collapse
Affiliation(s)
- N Sampson
- Institute for Biomedical Ageing Research, Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | |
Collapse
|