1
|
Chun W, Lu M, Chen J, Li J. Elevated Levels of Interleukin-18 are Associated with Lymph Node Metastasis in Papillary Thyroid Carcinoma. Horm Metab Res 2024; 56:654-661. [PMID: 38354749 DOI: 10.1055/a-2255-5718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Interleukin-18 (IL-18) is a proinflammatory cytokine that primarily stimulates the Th1 immune response. IL-18 exhibits anticancer activity and has been evaluated in clinical trials as a potential cancer treatment. However, evidence suggests that it may also facilitate the development and progression of some cancers. So far, the impact of IL-18 on papillary thyroid cancer (PTC) has not been investigated. In this study, we found that the expression of IL-18 was significantly increased in PTC compared to normal thyroid tissue. Elevated IL-18 expression was closely associated with lymphovascular invasion and lymph node metastases. Furthermore, compared to PTC patients with no nodal metastasis, serum IL-18 levels were slightly increased in patients with 1-4 nodal metastases and significantly elevated in patients with 5 or more nodal metastases. The pro-metastatic effect of IL-18 may be attributed to the simultaneous increase in the expression of S100A10, a known factor that is linked to nodal metastasis in PTC. In addition, the activation of several pathways, such as the intestinal immune network for lgA production and Staphylococcus aureus infection, may be involved in the metastasis process. Taken together, IL-18 may trigger pro-metastatic activity in PTC. Therefore, suppressing the function of IL-18 rather than enhancing it appears to be a reasonable strategy for treating aggressive PTC.
Collapse
Affiliation(s)
- Wang Chun
- Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Meiyin Lu
- Graduate School, Shantou University Medical College, Shantou, China
- Department of Biobank, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Jiakang Chen
- Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Li
- Pathology, Peking University Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
2
|
Nawaz S, Kulyar MFEA, Mo Q, Yao W, Iqbal M, Li J. Homeostatic Regulation of Pro-Angiogenic and Anti-Angiogenic Proteins via Hedgehog, Notch Grid, and Ephrin Signaling in Tibial Dyschondroplasia. Animals (Basel) 2023; 13:3750. [PMID: 38136788 PMCID: PMC10740744 DOI: 10.3390/ani13243750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-β (TGF-β), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.
Collapse
Affiliation(s)
- Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| |
Collapse
|
3
|
Wang J, Liu T, Huang T, Shang M, Wang X. The mechanisms on evasion of anti-tumor immune responses in gastric cancer. Front Oncol 2022; 12:943806. [PMID: 36439472 PMCID: PMC9686275 DOI: 10.3389/fonc.2022.943806] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 10/22/2023] Open
Abstract
The immune system and the tumor have been at each other's throats for so long that the neoplasm has learned to avoid detection and avoid being attacked, which is called immune evasion. Malignant tumors, such as gastric cancer (GC), share the ability to evade the body's immune system as a defining feature. Immune evasion includes alterations to tumor-associated antigens (TAAs), antigen presentation mechanisms (APMs), and the tumor microenvironment (TME). While TAA and APM are simpler in nature, they both involve mutations or epigenetic regulation of genes. The TME is comprised of numerous cell types, cytokines, chemokines and extracellular matrix, any one of which might be altered to have an effect on the surrounding ecosystem. The NF-kB, MAPK, PI3K/AKT, JAK/STAT, Wnt/β-catenin, Notch, Hippo and TGF-β/Smad signaling pathways are all associated with gastric cancer tumor immune evasion. In this review, we will delineate the functions of these pathways in immune evasion.
Collapse
Affiliation(s)
| | | | | | | | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Ma X, Ou K, Liu X, Yang L. Application progress of liquid biopsy in gastric cancer. Front Oncol 2022; 12:969866. [PMID: 36185234 PMCID: PMC9521037 DOI: 10.3389/fonc.2022.969866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors globally. Guiding the individualized treatment of GC is the focus of research. Obtaining representative biological samples to study the biological characteristics of GC is the focus of diagnosis and treatment of GC. Liquid biopsy technology can use high-throughput sequencing technology to detect biological genetic information in blood. Compared with traditional tissue biopsy, liquid biopsy can determine the dynamic changes of tumor. As a noninvasive auxiliary diagnostic method, liquid biopsy can provide diagnostic and prognostic information concerning the progression of the disease. Liquid biopsy includes circulating tumor cells, circulating tumor DNA, circulating tumor RNA, tumor educated platelets, exosomes, and cytokines. This article describes the classification of liquid biopsy and its application value in the occurrence, development, and therapeutic efficacy of GC.
Collapse
|
5
|
Tao Y, Murakami Y, Vavvas DG, Sonoda KH. Necroptosis and Neuroinflammation in Retinal Degeneration. Front Neurosci 2022; 16:911430. [PMID: 35844208 PMCID: PMC9277228 DOI: 10.3389/fnins.2022.911430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
Necroptosis mediates the chronic inflammatory phenotype in neurodegeneration. Receptor-interacting protein kinase (RIPK) plays a pivotal role in the induction of necroptosis in various cell types, including microglia, and it is implicated in diverse neurodegenerative diseases in the central nervous system and the retina. Targeting RIPK has been proven beneficial for alleviating both neuroinflammation and degeneration in basic/preclinical studies. In this review, we discuss the role of necroptosis in retinal degeneration, including (1) the molecular pathways involving RIPK, (2) RIPK-dependent microglial activation and necroptosis, and (3) the interactions between necroptosis and retinal neuroinflammation/degeneration. This review will contribute to a renewed focus on neuroinflammation induced by necroptosis and to the development of anti-RIPK drugs against retinal degeneration.
Collapse
Affiliation(s)
- Yan Tao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Demetrios G Vavvas
- Ines and Frederick Yeatts Retinal Research Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Zhong C, Wang R, Hua M, Zhang C, Han F, Xu M, Yang X, Li G, Hu X, Sun T, Ji C, Ma D. NLRP3 Inflammasome Promotes the Progression of Acute Myeloid Leukemia via IL-1β Pathway. Front Immunol 2021; 12:661939. [PMID: 34211462 PMCID: PMC8239362 DOI: 10.3389/fimmu.2021.661939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
NLRP3 inflammasome has been reported to be associated with the pathogenesis of multiple solid tumors. However, the role of NLRP3 inflammasome in acute myeloid leukemia (AML) remains unclear. We showed that NLRP3 inflammasome is over-expressed and highly activated in AML bone marrow leukemia cells, which is correlated with poor prognosis. The activation of NLRP3 inflammasome in AML cells promotes leukemia cells proliferation, inhibits apoptosis and increases resistance to chemotherapy, while inactivation of NLRP3 by caspase-1 or NF-κB inhibitor shows leukemia-suppressing effects. Bayesian networks analysis and cell co-culture tests further suggest that NLRP3 inflammasome acts through IL-1β but not IL-18 in AML. Knocking down endogenous IL-1β or anti-IL-1β antibody inhibits leukemia cells whereas IL-1β cytokine enhances leukemia proliferation. In AML murine model, up-regulation of NLRP3 increases the leukemia burden in bone marrow, spleen and liver, and shortens the survival time; furthermore, knocking out NLRP3 inhibits leukemia progression. Collectively, all these evidences demonstrate that NLRP3 inflammasome promotes AML progression in an IL-1β dependent manner, and targeting NLRP3 inflammasome may provide a novel therapeutic option for AML.
Collapse
Affiliation(s)
- Chaoqing Zhong
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.,Department of Hematology, Shandong Yantai Mountain Hospital, Yantai, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.,Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Devel Ther 2021; 15:2269-2287. [PMID: 34079226 PMCID: PMC8166316 DOI: 10.2147/dddt.s308578] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are key components of the immune system and play pivotal roles in anticancer immune response. Cytokines as either therapeutic agents or targets hold clinical promise for cancer precise treatment. Here, we provide an overview of the various roles of cytokines in the cancer immunity cycle, with a particular focus on the clinical researches of cytokine-based drugs in cancer therapy. We review 27 cytokines in 2630 cancer clinical trials registered with ClinicalTrials.gov that had completed recruitment up to January 2021 while summarizing important cases for each cytokine. We also discuss recent progress in methods for improving the delivery efficiency, stability, biocompatibility, and availability of cytokines in therapeutic applications.
Collapse
Affiliation(s)
- Yi Qiu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Mengxi Su
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Leyi Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yiqi Tang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yuan Pan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 1307] [Impact Index Per Article: 326.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Wang P, Zeng Z, Lin C, Wang J, Xu W, Ma W, Xiang Q, Liu H, Liu SL. Thrombospondin-1 as a Potential Therapeutic Target: Multiple Roles in Cancers. Curr Pharm Des 2020; 26:2116-2136. [PMID: 32003661 DOI: 10.2174/1381612826666200128091506] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 01/16/2023]
Abstract
Thrombospondin-1, an extracellular matrix protein, is the first identified natural angiogenesis inhibitor. Thrombospondin-1 participates in a great number of physiological and pathological processes, including cell-cell and cell-matrix interactions via a number of cell receptors, including CD36 and CD47, which plays a vital role in mediating inflammation and performs a promoting effect in pulmonary arterial vasculopathy and diabetes. Thrombospondin-1 consists of six domains, which combine with different molecules and participate in various functions in cancers, serving as a critical member in diverse pathways in cancers. Thrombospondin-1 works as a cancer promotor in some pathways but as a cancer suppressor in others, which makes it highly possible that its erroneous functioning might lead to opposite effects. Therefore, subdividing the roles of thrombospondin-1 and distinguishing them in cancers are necessary. Complex structure and multiple roles take disadvantage of the research and application of thrombospondin-1. Compared with the whole thrombospondin-1 protein, each thrombospondin- 1 active peptide performs an uncomplicated structure and, nevertheless, a specific role. In other words, various thrombospondin-1 active peptides may function differently. For instance, thrombospondin-1 could both promote and inhibit glioblastoma, which is significantly inhibited by the three type I repeats, a thrombospondin-1 active peptide but promoted by the fragment 167-569, a thrombospondin-1 active peptide consisting of the procollagen homology domain and the three type I repeats. Further studies of the functions of thrombospondin-1 active peptides and applying them reasonably are necessary. In addition to mediating cancerogenesis, thrombospondin-1 is also affected by cancer development, as reflected by its expression in plasma and the cancer tissue. Therefore, thrombospondin-1 may be a potential biomarker for pre-clinical and clinical application. This review summarizes findings on the multiple roles of thrombospondin-1 in cancer processes, with a focus on its use as a potential therapeutic target.
Collapse
Affiliation(s)
- Pengfei Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Zheng Zeng
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Caiji Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Jiali Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenwen Xu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenqing Ma
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Qian Xiang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Huidi Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4N1, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
10
|
Isenberg JS, Roberts DD. The role of CD47 in pathogenesis and treatment of renal ischemia reperfusion injury. Pediatr Nephrol 2019; 34:2479-2494. [PMID: 30392076 PMCID: PMC6677644 DOI: 10.1007/s00467-018-4123-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023]
Abstract
Ischemia reperfusion (IR) injury is a process defined by the temporary loss of blood flow and tissue perfusion followed later by restoration of the same. Brief periods of IR can be tolerated with little permanent deficit, but sensitivity varies for different target cells and tissues. Ischemia reperfusion injuries have multiple causes including peripheral vascular disease and surgical interventions that disrupt soft tissue and organ perfusion as occurs in general and reconstructive surgery. Ischemia reperfusion injury is especially prominent in organ transplantation where substantial effort has been focused on protecting the transplanted organ from the consequences of IR. A number of factors mediate IR injury including the production of reactive oxygen species and inflammatory cell infiltration and activation. In the kidney, IR injury is a major cause of acute injury and secondary loss of renal function. Transplant-initiated renal IR is also a stimulus for innate and adaptive immune-mediated transplant dysfunction. The cell surface molecule CD47 negatively modulates cell and tissue responses to stress through limitation of specific homeostatic pathways and initiation of cell death pathways. Herein, a summary of the maladaptive activities of renal CD47 will be considered as well as the possible therapeutic benefit of interfering with CD47 to limit renal IR.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, Corresponding author: David D. Roberts, , 301-480-4368
| |
Collapse
|
11
|
Wang Z, Gao ZM, Huang HB, Sun LS, Sun AQ, Li K. Association of IL-8 gene promoter -251 A/T and IL-18 gene promoter -137 G/C polymorphisms with head and neck cancer risk: a comprehensive meta-analysis. Cancer Manag Res 2018; 10:2589-2604. [PMID: 30127645 PMCID: PMC6089118 DOI: 10.2147/cmar.s165631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purpose No consensus exists on the impact of polymorphisms in cytokines (such as interleukin IL-8 and IL-18) on cancer risk; moreover, there is very little evidence regarding head and neck cancer (HNC). Methods Thus, a meta-analysis including 22 studies with 4731 cases and 8736 controls was conducted to evaluate this association. The summary odds ratio (OR) and corresponding 95% confidence intervals (CIs) for C-X-C motif chemokine ligand 8 (CXCL8, which encodes IL-8) and IL-18 polymorphisms and HNC risk were estimated. Results The results showed a significantly increased risk of HNC susceptibility for IL18 −137 G/C in five genetic models, but, interestingly, no significant association was found for the CXCL8 −251 A/T polymorphism. When stratified by cancer type, an increased risk of nasopharyngeal cancer was found for both −137 G/C and −251A/T. When the studies were stratified by ethnicity and genotyping method, there were significant associations between Asian populations and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) studies for −137 G/C, and African populations for −251 A/T in some genetic models. A positive association was also found between the population-based groups in some models for −137 G/C; conversely, significantly decreased risk was found among the −251 A/T hospital-based group. Meta-regression was also conducted. The publication year, control source, and cancer type contributed to CXCL8 −251 A/T heterogeneity; however, no factors were found that contributed to IL-18 −137 G/C heterogeneity. Marginal significance was found in the recessive model for IL-18 −137 G/C by Egger’s test, whereas no publication bias was detected for CXCL8 −251 A/T. Conclusions The results indicate that the IL-18 −137 G/C polymorphism is associated with HNC risk, especially nasopharyngeal cancer, in Asian populations and, when using PCR-RFLP, CXCL8 −251 A/T polymorphisms play a complex role in HNC development.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zi-Ming Gao
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| | - Hai-Bo Huang
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| | - Li-Sha Sun
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| | - An-Qi Sun
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| | - Kai Li
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| |
Collapse
|
12
|
Li J, Qiu G, Fang B, Dai X, Cai J. Deficiency of IL-18 Aggravates Esophageal Carcinoma Through Inhibiting IFN-γ Production by CD8 +T Cells and NK Cells. Inflammation 2018; 41:667-676. [PMID: 29264744 DOI: 10.1007/s10753-017-0721-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To investigate the potential role of interleukin-18 (IL-18) in immunomodulation during tumorigenesis of esophageal carcinoma and elucidate the underlying molecular mechanism, we employed IL-18 knockout mice for this purpose. Carcinogen 4-nitroquinoline 1-oxide (4NQO) was administrated in drinking water to induce occurrence of esophageal squamous cell carcinoma (ESCC). T cell activation as indicated by the surface CD molecules was analyzed with flow cytometry. The serous content of interferon-γ (IFN-γ) along with other cytokines was determined by inflammatory human cytokine cytometric bead array. The cytotoxicity assay was performed by co-culture of tumor cells with immune cells and relative cell viability was determined by lactate dehydrogenase (LDH) assay. Apoptotic cells were stained with Annexin-V/propidium iodide (PI) and analyzed by flow cytometry. Cell proliferation was measured with Cell Counting Kit-8 (CCK-8) assay. Our data demonstrated that deficiency of IL-18 promoted the progression and development of 4NQO-induced ESCC. Loss of IL-18 suppressed the activation of T cells in the esophagus. Deficiency of IL-18 inhibited the IFN-γ production by CD8+ T cells and natural killer (NK) cells. Absence of IL-18 inhibited the cytotoxicity of CD8+ T cells and NK cell in vitro. Moreover, deficiency of IL-18 promoted the apoptosis of CD8+ T cells and inhibited the proliferation of CD8+ T cells in vitro. Our data elucidated the immunomodulatory role of IL-18 during tumorigenesis of ESCC, whose deficiency compromised antitumor immunity and contributed to immune escape of esophageal carcinoma. Our results also indicated the therapeutic potential of exogenous IL-18 against ESCC, which warrants further investigations.
Collapse
Affiliation(s)
- Jiantao Li
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China
- Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, Hebei, 050051, China
| | - Gang Qiu
- Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, Hebei, 050051, China
| | - Baoshuan Fang
- Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, Hebei, 050051, China
| | - Xiaohui Dai
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China
| | - Jianhui Cai
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
13
|
Victor AR, Nalin AP, Dong W, McClory S, Wei M, Mao C, Kladney RD, Youssef Y, Chan WK, Briercheck EL, Hughes T, Scoville SD, Pitarresi JR, Chen C, Manz S, Wu LC, Zhang J, Ostrowski MC, Freud AG, Leone GW, Caligiuri MA, Yu J. IL-18 Drives ILC3 Proliferation and Promotes IL-22 Production via NF-κB. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2333-2342. [PMID: 28842466 PMCID: PMC5624342 DOI: 10.4049/jimmunol.1601554] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 07/27/2017] [Indexed: 12/13/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) are important regulators of the immune system, maintaining homeostasis in the presence of commensal bacteria, but activating immune defenses in response to microbial pathogens. ILC3s are a robust source of IL-22, a cytokine critical for stimulating the antimicrobial response. We sought to identify cytokines that can promote proliferation and induce or maintain IL-22 production by ILC3s and determine a molecular mechanism for this process. We identified IL-18 as a cytokine that cooperates with an ILC3 survival factor, IL-15, to induce proliferation of human ILC3s, as well as induce and maintain IL-22 production. To determine a mechanism of action, we examined the NF-κB pathway, which is activated by IL-18 signaling. We found that the NF-κB complex signaling component, p65, binds to the proximal region of the IL22 promoter and promotes transcriptional activity. Finally, we observed that CD11c+ dendritic cells expressing IL-18 are found in close proximity to ILC3s in human tonsils in situ. Therefore, we identify a new mechanism by which human ILC3s proliferate and produce IL-22, and identify NF-κB as a potential therapeutic target to be considered in pathologic states characterized by overproduction of IL-18 and/or IL-22.
Collapse
Affiliation(s)
- Aaron R Victor
- Medical Scientist Training Program, Ohio State University, Columbus, OH 43210
| | - Ansel P Nalin
- Medical Scientist Training Program, Ohio State University, Columbus, OH 43210
| | - Wenjuan Dong
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Susan McClory
- Medical Scientist Training Program, Ohio State University, Columbus, OH 43210
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Min Wei
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Charlene Mao
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Raleigh D Kladney
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, OH 43210
| | - Youssef Youssef
- Department of Pathology, The Ohio State University, Columbus, OH 43210
| | - Wing Keung Chan
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Edward L Briercheck
- Medical Scientist Training Program, Ohio State University, Columbus, OH 43210
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Tiffany Hughes
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Steven D Scoville
- Medical Scientist Training Program, Ohio State University, Columbus, OH 43210
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Jason R Pitarresi
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Charlie Chen
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Sarah Manz
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Lai-Chu Wu
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Jianying Zhang
- Center for Biostatistics, Department of Bioinformatics, The Ohio State University, Columbus, OH 43210; and
| | - Michael C Ostrowski
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Aharon G Freud
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
- Department of Pathology, The Ohio State University, Columbus, OH 43210
| | - Gustavo W Leone
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, OH 43210
| | - Michael A Caligiuri
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210;
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Jianhua Yu
- The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210;
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
14
|
Bagheri V, Memar B, Momtazi AA, Sahebkar A, Gholamin M, Abbaszadegan MR. Cytokine networks and their association with Helicobacter pylori infection in gastric carcinoma. J Cell Physiol 2017; 233:2791-2803. [PMID: 28121015 DOI: 10.1002/jcp.25822] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
Cytokine networks as dynamic networks are pivotal aspects of tumor immunology, especially in gastric cancer (GC), in which infection, inflammation, and antitumor immunity are key elements of disease progression. In this review, we describe functional roles of well-known GC-modulatory cytokines, highlight the functions of cytokines with more recently described roles in GC, and emphasize the therapeutic potential of targeting the complex cytokine milieu. We also focus on the role of Helicobacter pylori (HP)-induced inflammation in GC and discuss how HP-induced chronic inflammation can lead to the induction of stem cell hyperplasia, morphological changes in gastric mucosa and GC development.
Collapse
Affiliation(s)
- Vahid Bagheri
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Human Genetic Division, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, Faculty of Medicine, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi
- Department of Medical Biotechnology, Student Research Committee, Nanotechnology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Gholamin
- Human Genetic Division, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Human Genetic Division, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Wang Y, Kong H, Zeng X, Liu W, Wang Z, Yan X, Wang H, Xie W. Activation of NLRP3 inflammasome enhances the proliferation and migration of A549 lung cancer cells. Oncol Rep 2016; 35:2053-64. [PMID: 26782741 DOI: 10.3892/or.2016.4569] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/24/2015] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is the leading cause of cancer death, and it is widely accepted that chronic inflammation is an important risk for the development of lung cancer. Now, it is recognized that the nucleotide-binding and oligomerization domain (NOD) like receptors (NLRs)-containing inflammasomes are involved in cancer-related inflammation. This study was designed to investigate the effects of NLR family pyrin domain containing protein 3 (NLRP3) inflammasome on the proliferation and migration of lung adenocarcinoma cell line A549. Using 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, scratch assay, and Transwell migration assay, we showed that activation of the NLRP3 inflammasome by LPS+ATP enhanced the proliferation and migration of A549 cells. Western blot analysis showed that activation of phosphorylation of Akt, ERK1/2, CREB and the expression of Snail increased, while the expression of E-cadherin decreased after the activation of NLRP3 inflammasome. Moreover, these effects were inhibited by the following treatments: i) downregulating the expression of NLRP3 by short hairpin RNA (shRNA) interference, ii) inhibiting the activation of NLRP3 inflammasome with a caspase-1 inhibitor, iii) blocking the interleukin-1β (IL-1β) and IL-18 signal transduction with IL-1 receptor antagonist (IL-1Ra) and IL-18 binding protein (IL-18BP). Collectively, these results indicate that NLRP3 inflammasome plays a vital role in regulating the proliferation and migration of A549 cells and it might be a potential target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Kong
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaoning Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenrui Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zailiang Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaopei Yan
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiping Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
16
|
Ko CY, Wang WL, Li CF, Jeng YM, Chu YY, Wang HY, Tseng JT, Wang JM. IL-18-induced interaction between IMP3 and HuR contributes to COX-2 mRNA stabilization in acute myeloid leukemia. J Leukoc Biol 2016; 99:131-141. [PMID: 26342105 DOI: 10.1189/jlb.2a0414-228rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/24/2015] [Indexed: 11/24/2022] Open
Abstract
Acute myeloid leukemia is the majority type presented in leukemia patients. Forcing malignant cells to undergo differentiation is 1 strategy for acute myeloid leukemia therapy. However, the failure of acute myeloid leukemia patients to achieve remission as a result of drug resistance remains a challenge. In this study, we found that the abundances of the proinflammatory cytokine IL-18 and its receptor (IL-18R) correlated with the occurrence of drug resistance in AML patients during standard treatment. Cyclooxygenase 2 (COX-2) has been suggested to have an antiapoptotic role in chemoresistant cancer cells. IL-18 treatment resulted in an increase in COX-2 expression through the post-transcriptional regulation of COX-2 mRNA in differentiated U937 cells and showed antiapoptotic activity in U937 and THP-1 cells. Two RNA-binding proteins, human antigen R and insulin-like growth factor mRNA-binding protein 3, mediated the stabilization of COX-2 mRNA. IL-18 induced the shuttling of human antigen R and insulin-like growth factor mRNA-binding protein 3 from the nucleus to the cytoplasm and facilitated their interaction; subsequently, this complex bound to the 3' untranslated region of COX-2 mRNA and affected its stability. We demonstrated further that JNK and/or ERK1/2 regulated human antigen R nucleocytoplasmic shuttling, mediating IL-18 stabilization of cyclooxygenase 2 mRNA.
Collapse
Affiliation(s)
- Chiung-Yuan Ko
- *Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, and Center for Neurotrauma and Neuroregeneration and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan; Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University, Tainan, Taiwan; Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan; and **Institute of Bioinformatics and Biosignal Transduction and Infectious Disease and Signaling Research Center and Center of Molecular Inflammation, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Ling Wang
- *Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, and Center for Neurotrauma and Neuroregeneration and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan; Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University, Tainan, Taiwan; Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan; and **Institute of Bioinformatics and Biosignal Transduction and Infectious Disease and Signaling Research Center and Center of Molecular Inflammation, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Feng Li
- *Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, and Center for Neurotrauma and Neuroregeneration and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan; Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University, Tainan, Taiwan; Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan; and **Institute of Bioinformatics and Biosignal Transduction and Infectious Disease and Signaling Research Center and Center of Molecular Inflammation, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Ming Jeng
- *Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, and Center for Neurotrauma and Neuroregeneration and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan; Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University, Tainan, Taiwan; Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan; and **Institute of Bioinformatics and Biosignal Transduction and Infectious Disease and Signaling Research Center and Center of Molecular Inflammation, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yi Chu
- *Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, and Center for Neurotrauma and Neuroregeneration and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan; Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University, Tainan, Taiwan; Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan; and **Institute of Bioinformatics and Biosignal Transduction and Infectious Disease and Signaling Research Center and Center of Molecular Inflammation, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ying Wang
- *Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, and Center for Neurotrauma and Neuroregeneration and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan; Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University, Tainan, Taiwan; Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan; and **Institute of Bioinformatics and Biosignal Transduction and Infectious Disease and Signaling Research Center and Center of Molecular Inflammation, National Cheng Kung University, Tainan, Taiwan
| | - Joseph T Tseng
- *Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, and Center for Neurotrauma and Neuroregeneration and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan; Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University, Tainan, Taiwan; Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan; and **Institute of Bioinformatics and Biosignal Transduction and Infectious Disease and Signaling Research Center and Center of Molecular Inflammation, National Cheng Kung University, Tainan, Taiwan
| | - Ju-Ming Wang
- *Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, and Center for Neurotrauma and Neuroregeneration and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan; Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University, Tainan, Taiwan; Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan; and **Institute of Bioinformatics and Biosignal Transduction and Infectious Disease and Signaling Research Center and Center of Molecular Inflammation, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Tokumoto MW, Tanaka H, Tauchi Y, Kasashima H, Kurata K, Yashiro M, Sakurai K, Toyokawa T, Kubo N, Amano R, Kimura K, Muguruma K, Maeda K, Ohira M, Hirakawa K. Identification of tumour-reactive lymphatic endothelial cells capable of inducing progression of gastric cancer. Br J Cancer 2015; 113:1046-54. [PMID: 26355233 PMCID: PMC4651131 DOI: 10.1038/bjc.2015.282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/26/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022] Open
Abstract
Background: Tumour cells and stromal cells interact in the tumour microenvironment; moreover, stromal cells can acquire abnormalities that contribute to tumour progression. However, interactions between lymphatic endothelial cells (LECs) and tumour cells are largely unexamined. In this study, we aimed to determine whether tumour-specific LECs inhabit the tumour microenvironment and examine their influence on this microenvironment. Methods: We isolated normal LECs (NLECs) from a non-metastatic lymph node and tumour-associated LECs (TLECs) from cancerous lymph nodes. We examined proliferative and migratory potency, growth factor production, and gene expression of each type of LEC. Moreover, we developed a co-culture system to investigate the interactions between gastric cancer cells and LECs. Results: When compared with NLEC, TLECs had an abnormal shape, high proliferative and migratory abilities, and elevated expression of genes associated with inflammation, cell growth, and cell migration. NLECs co-cultured with gastric cancer cells from the OCUM12 cell line acquired TLEC-like phenotypes. Also, OCUM12 cells co-cultured with TLECs expressed high levels of genes responsible for metastasis. Conclusions: Our results demonstrated that LECs interacted with tumour cells and obtained abnormal phenotypes that could have important roles in tumour progression.
Collapse
Affiliation(s)
- Mao Watanabe Tokumoto
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroaki Tanaka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Yukie Tauchi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kento Kurata
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Katsunobu Sakurai
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Takahiro Toyokawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Naoshi Kubo
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Ryosuke Amano
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kenjiro Kimura
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kazuya Muguruma
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
18
|
YE XIAOLEI, ZHAO YARONG, WENG GUOBIN, CHEN YICHEN, WEI XUENI, SHAO JINGPING, JI HUI. IL-33-induced JNK pathway activation confers gastric cancer chemotherapy resistance. Oncol Rep 2015; 33:2746-52. [DOI: 10.3892/or.2015.3898] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/15/2014] [Indexed: 02/06/2023] Open
|
19
|
Yang Y, Cheon S, Jung MK, Song SB, Kim D, Kim HJ, Park H, Bang SI, Cho D. Interleukin-18 enhances breast cancer cell migration via down-regulation of claudin-12 and induction of the p38 MAPK pathway. Biochem Biophys Res Commun 2015; 459:379-86. [PMID: 25727011 DOI: 10.1016/j.bbrc.2015.02.108] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
Interleukin-18 (IL-18) was recently reported to have a pro-tumor effect in various cancers. Increased IL-18 levels in the serum of cancer patients correlated with malignancy, and IL-18 acts a crucial factor for cell migration in gastric cancer and melanoma. Claudins, which are the most important tight junction proteins, are also linked with cancer progression and metastasis. However, the relationship between claudins and IL-18 is not well-understood. Here, we show that the migratory ability of MCF-7 cells was reduced when endogenous IL-18 expression was inhibited with IL-18 siRNA. Moreover, exogenous IL-18 enhanced breast cancer cell migration and suppressed the expression of the tight junction proteins claudin-1, claudin-3, claudin-4, and claudin-12 in MCF-7 cells. Knockdown of claudin-3, claudin-4, and claudin-12, but not claudin-1, increased breast cancer migration with maximal effects observed in claudin-12 siRNA-transfected cells. To investigate whether the mitogen-activated protein kinase (MAPK) signaling pathway is involved in IL-18-induced cell migration and claudin-12 expression, cells were pretreated with SB203580 (an inhibitor of p38 MAPK) or PD98059 (an inhibitor of ERK1/2) prior to the addition of IL-18. Although pretreatment of MCF-7 cells with SB203580 blocked both the enhanced cell migration and the decreased claudin-12 expression, PD98059 only blocked cell migration and did not affect claudin-12 expression. In addition, exogenous IL-18 induced rapid phosphorylation of p38 MAPK. These results suggest that IL-18 is an important factor inducing breast cancer cell migration through down-regulation of claudin-12 and activation of the p38 MAPK pathway.
Collapse
Affiliation(s)
- Yoolhee Yang
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soyoung Cheon
- Department of Life Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Min Kyung Jung
- Department of Life Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Seok Bean Song
- Department of Life Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, College of Medicine, Chung Ang University, Seoul, Republic of Korea
| | - Hee Jung Kim
- Department of Dermatology, St Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunjeong Park
- Department of Dermatology, St Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sa Ik Bang
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Daeho Cho
- Department of Life Science, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Zhang B, Gu Y. Bortezomib inhibits gastric carcinoma HGC-27 cells through the phospho-Jun N-terminal kinase (p-JNK) pathway in vitro. Gene 2015; 559:164-71. [PMID: 25602436 DOI: 10.1016/j.gene.2015.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/03/2015] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
The study is designed to explore the anticancer mechanism of Bortezomib. The effects of Bortezomib on the proliferation of human gastric cancer cells HGC-27 and expression levels of the phospho-Jun N-terminal kinase (p-JNK) pathway-related proteins in vitro were investigated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the Bortezomib significantly decreased the viability of HGC-27 cells and induced apoptosis. Western blot showed that the Bortezomib strongly increased the levels of p-JNK, caspase-3, PARP, and bax proteins while it increased the level of bcl-2. However, SP600125 can significantly decrease antitumour effects of Bortezomib in HGC-27 cells. It can be concluded that Bortezomib has significant inhibitory effects on the growth of HGC-27 cells. The effect may be achieved partly via upregulating JNK pathway and its down-stream apoptosis-related proteins. Therefore, Bortezomib may be beneficial in gastric carcinoma treatment.
Collapse
Affiliation(s)
- BeiLi Zhang
- Department of General Surgery, Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yan Gu
- Department of General Surgery, Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
21
|
Fabbi M, Carbotti G, Ferrini S. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J Leukoc Biol 2014; 97:665-75. [DOI: 10.1189/jlb.5ru0714-360rr] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
22
|
Shen J, Choy DF, Yoshida T, Iwase T, Hafiz G, Xie B, Hackett SF, Arron JR, Campochiaro PA. Interleukin-18 has antipermeablity and antiangiogenic activities in the eye: reciprocal suppression with VEGF. J Cell Physiol 2014; 229:974-83. [PMID: 24515951 DOI: 10.1002/jcp.24575] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/06/2014] [Indexed: 12/26/2022]
Abstract
Interleukin-18 (IL-18) is increased along with IL-1β by activation of the inflammasome and has been implicated in inflammatory and autoimmune diseases, but its role in the eye is uncertain. In patients with macular edema due to retinal vein occlusion, intraocular IL-18 levels increased significantly (P < 0.001) after treatment with ranibizumab particularly in patients with high baseline IL-18 which correlated with good visual outcome (P < 0.05). In mice with ischemic retinopathy, suppression of VEGF caused an increase in IL18 mRNA due to an increase in IL-18-positive myeloid cells. VEGF significantly and specifically inhibited IL-18 production by myeloid cells stimulated with lipopolysaccharide (P < 0.001). Intraocular injection of IL-18 reduced VEGF-induced leakage and neovascularization, and reversed VEGF-induced suppression of Claudin5 expression and Claudin 5 labeling of vascular tight junctions. Injection of IL-18 also increased expression of Thrombospondin 1 and reduced ischemia-induced retinal neovascularization relevant to diabetic retinopathy and subretinal neovascularization relevant to neovascular age-related macular degeneration. Thus, VEGF and IL-18 suppress each other's production and effects on the vasculature suggesting that IL-18 may provide benefit in multiple retinal/choroidal vascular diseases.
Collapse
Affiliation(s)
- Jikui Shen
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hamakawa T, Sasaki S, Shibata Y, Imura M, Kubota Y, Kojima Y, Kohri K. Interleukin-18 may lead to benign prostatic hyperplasia via thrombospondin-1 production in prostatic smooth muscle cells. Prostate 2014; 74:590-601. [PMID: 24615654 DOI: 10.1002/pros.22773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/18/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Although inflammation plays an important role in the development of benign prostatic hyperplasia (BPH), little is known about the exact mechanism underlying this pathogenesis. Here, we investigated the relationship between the inflammatory reaction and BPH. METHODS cDNA microarray analysis was used to identify changes in inflammation-related gene expression in a recently established rat model that mimics human BPH. To investigate the genes identified in the analysis, quantitative (q)RT-PCR, Western blotting, immunostaining, and a cell proliferation assay were conducted using BPH model tissues, human prostate tissues, and normal human prostate cultured cells. RESULTS Of the 31,100 genes identified in the cDNA analysis, seven inflammatory-response-related genes were expressed at a >2-fold higher level in rat BPH tissues than in normal rat prostate tissues. The levels of the most commonly expressed pro-inflammatory cytokine, IL-18, significantly increased in rat BPH tissues. In humans, IL-18 was localized in the epithelial and stromal components, while its receptor was strongly localized in smooth muscle cells. Furthermore, in human prostate smooth muscle cell line (PrSMC), IL-18 effected dose-dependent increases in the phosphorylated Akt and thrombospondin-1 (TSP-1) levels. TSP-1 promoted proliferation of the human prostate stromal cells (PrSC). CONCLUSIONS IL-18 may act directly in BPH pathogenesis by inducing TSP-1 production in prostatic smooth muscle cells via Akt phosphorylation.
Collapse
Affiliation(s)
- Takashi Hamakawa
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Uzan B, Poglio S, Gerby B, Wu CL, Gross J, Armstrong F, Calvo J, Cahu X, Deswarte C, Dumont F, Passaro D, Besnard-Guérin C, Leblanc T, Baruchel A, Landman-Parker J, Ballerini P, Baud V, Ghysdael J, Baleydier F, Porteu F, Pflumio F. Interleukin-18 produced by bone marrow-derived stromal cells supports T-cell acute leukaemia progression. EMBO Mol Med 2014; 6:821-34. [PMID: 24778454 PMCID: PMC4203358 DOI: 10.1002/emmm.201303286] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Development of novel therapies is critical for T-cell acute leukaemia (T-ALL). Here, we investigated the effect of inhibiting the MAPK/MEK/ERK pathway on T-ALL cell growth. Unexpectedly, MEK inhibitors (MEKi) enhanced growth of 70% of human T-ALL cell samples cultured on stromal cells independently of NOTCH activation and maintained their ability to propagate in vivo. Similar results were obtained when T-ALL cells were cultured with ERK1/2-knockdown stromal cells or with conditioned medium from MEKi-treated stromal cells. Microarray analysis identified interleukin 18 (IL-18) as transcriptionally up-regulated in MEKi-treated MS5 cells. Recombinant IL-18 promoted T-ALL growth in vitro, whereas the loss of function of IL-18 receptor in T-ALL blast cells decreased blast proliferation in vitro and in NSG mice. The NFKB pathway that is downstream to IL-18R was activated by IL-18 in blast cells. IL-18 circulating levels were increased in T-ALL-xenografted mice and also in T-ALL patients in comparison with controls. This study uncovers a novel role of the pro-inflammatory cytokine IL-18 and outlines the microenvironment involvement in human T-ALL development.
Collapse
Affiliation(s)
- Benjamin Uzan
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL Equipe Labellisée Ligue Contre le Cancer UMR 967, Fontenay-aux-Roses, France INSERM U967, Fontenay-aux-Roses, France Université Paris Diderot Sorbonne Paris Cité UMR 967, Fontenay-aux-Roses, France Université Paris-Sud UMR 967, Fontenay-aux-Roses, France
| | - Sandrine Poglio
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL Equipe Labellisée Ligue Contre le Cancer UMR 967, Fontenay-aux-Roses, France INSERM U967, Fontenay-aux-Roses, France Université Paris Diderot Sorbonne Paris Cité UMR 967, Fontenay-aux-Roses, France Université Paris-Sud UMR 967, Fontenay-aux-Roses, France
| | - Bastien Gerby
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL Equipe Labellisée Ligue Contre le Cancer UMR 967, Fontenay-aux-Roses, France INSERM U967, Fontenay-aux-Roses, France Université Paris Diderot Sorbonne Paris Cité UMR 967, Fontenay-aux-Roses, France Université Paris-Sud UMR 967, Fontenay-aux-Roses, France
| | - Ching-Lien Wu
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL Equipe Labellisée Ligue Contre le Cancer UMR 967, Fontenay-aux-Roses, France INSERM U967, Fontenay-aux-Roses, France Université Paris Diderot Sorbonne Paris Cité UMR 967, Fontenay-aux-Roses, France Université Paris-Sud UMR 967, Fontenay-aux-Roses, France
| | - Julia Gross
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL Equipe Labellisée Ligue Contre le Cancer UMR 967, Fontenay-aux-Roses, France INSERM U967, Fontenay-aux-Roses, France Université Paris Diderot Sorbonne Paris Cité UMR 967, Fontenay-aux-Roses, France Université Paris-Sud UMR 967, Fontenay-aux-Roses, France
| | - Florence Armstrong
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL Equipe Labellisée Ligue Contre le Cancer UMR 967, Fontenay-aux-Roses, France INSERM U967, Fontenay-aux-Roses, France Université Paris Diderot Sorbonne Paris Cité UMR 967, Fontenay-aux-Roses, France Université Paris-Sud UMR 967, Fontenay-aux-Roses, France
| | - Julien Calvo
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL Equipe Labellisée Ligue Contre le Cancer UMR 967, Fontenay-aux-Roses, France INSERM U967, Fontenay-aux-Roses, France Université Paris Diderot Sorbonne Paris Cité UMR 967, Fontenay-aux-Roses, France Université Paris-Sud UMR 967, Fontenay-aux-Roses, France
| | - Xavier Cahu
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL Equipe Labellisée Ligue Contre le Cancer UMR 967, Fontenay-aux-Roses, France INSERM U967, Fontenay-aux-Roses, France Université Paris Diderot Sorbonne Paris Cité UMR 967, Fontenay-aux-Roses, France Université Paris-Sud UMR 967, Fontenay-aux-Roses, France
| | - Caroline Deswarte
- Service D'hématologie Pédiatrique, Assistance Publique - Hôpitaux de Paris Hôpital A. Trousseau, Paris, France
| | - Florent Dumont
- INSERM U1016 Institut Cochin, Paris, France CNRS UMR8104, Paris, France Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Diana Passaro
- Institut Curie Centre Universitaire, Orsay, France CNRS UMR 3306, Orsay, France Institut National de la Santé et de la Recherche Médicale U1005, Orsay, France
| | - Corinne Besnard-Guérin
- INSERM U1016 Institut Cochin, Paris, France CNRS UMR8104, Paris, France Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Thierry Leblanc
- Service D'hématologie Pédiatrique, Assistance Publique - Hôpitaux de Paris Hôpital Robert Debré, Paris, France
| | - André Baruchel
- Service D'hématologie Pédiatrique, Assistance Publique - Hôpitaux de Paris Hôpital Robert Debré, Paris, France
| | - Judith Landman-Parker
- Service D'hématologie Pédiatrique, Assistance Publique - Hôpitaux de Paris Hôpital A. Trousseau, Paris, France
| | - Paola Ballerini
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL Equipe Labellisée Ligue Contre le Cancer UMR 967, Fontenay-aux-Roses, France INSERM U967, Fontenay-aux-Roses, France Université Paris Diderot Sorbonne Paris Cité UMR 967, Fontenay-aux-Roses, France Université Paris-Sud UMR 967, Fontenay-aux-Roses, France Service D'hématologie Pédiatrique, Assistance Publique - Hôpitaux de Paris Hôpital A. Trousseau, Paris, France
| | - Véronique Baud
- INSERM U1016 Institut Cochin, Paris, France CNRS UMR8104, Paris, France Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Jacques Ghysdael
- Institut Curie Centre Universitaire, Orsay, France CNRS UMR 3306, Orsay, France Institut National de la Santé et de la Recherche Médicale U1005, Orsay, France
| | - Frédéric Baleydier
- Institut d'Hématologie et Oncologie Pédiatrique Hospices Civils de Lyon et Université Claude Bernard, Lyon, France
| | - Francoise Porteu
- INSERM U1016 Institut Cochin, Paris, France CNRS UMR8104, Paris, France Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Francoise Pflumio
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL Equipe Labellisée Ligue Contre le Cancer UMR 967, Fontenay-aux-Roses, France INSERM U967, Fontenay-aux-Roses, France Université Paris Diderot Sorbonne Paris Cité UMR 967, Fontenay-aux-Roses, France Université Paris-Sud UMR 967, Fontenay-aux-Roses, France
| |
Collapse
|
25
|
Palma G, Barbieri A, Bimonte S, Palla M, Zappavigna S, Caraglia M, Ascierto PA, Ciliberto G, Arra C. Interleukin 18: friend or foe in cancer. Biochim Biophys Acta Rev Cancer 2013; 1836:296-303. [PMID: 24120852 DOI: 10.1016/j.bbcan.2013.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/24/2013] [Accepted: 09/28/2013] [Indexed: 01/17/2023]
Abstract
In the last few years, the field of tumor immunology has significantly expanded and its boundaries, never particularly clear, have become less distinct. Although the immune system plays an important role in controlling tumor growth, it has also become clear that tumor growth can be promoted by inflammatory immune responses. A good example that exemplifies the ambiguous role of the immune system in cancer progression is represented by interleukin 18 (IL-18) that was first identified as an interferon-γ-inducing factor (IGIF) involved in T helper type-1 (Th1) immune response. The expression and secretion of IL-18 have been observed in various cell types from immune cells to circulating cancer cells. In this review we highlighted the multiple roles played by IL-18 in immune regulation, cancer progression and angiogenesis and the clinical potential that may result from such understanding.
Collapse
Affiliation(s)
- Giuseppe Palma
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale per lo studio e la cura dei tumori "Fondazione Giovanni Pascale" - IRCCS, Italy; Istituto Endocrinologia e Oncologia Sperimentale - Consiglio Nazionale delle Ricerche, Via Pansini, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Valcárcel M, Carrascal T, Crende O, Vidal-Vanaclocha F. IL-18 regulates melanoma VLA-4 integrin activation through a Hierarchized sequence of inflammatory factors. J Invest Dermatol 2013; 134:470-480. [PMID: 23938462 DOI: 10.1038/jid.2013.342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 06/04/2013] [Accepted: 07/07/2013] [Indexed: 12/16/2022]
Abstract
Very late antigen-4 (VLA-4) is frequently overexpressed on melanoma cells contributing to inflammation-dependent metastasis. Melanoma cell adhesion to endothelium via VLA-4-vascular cell adhesion molecule-1 (VCAM-1) interaction was used to study VLA-4 activation during melanoma cell response to inflammation. Cooperation among major inflammatory mediators was analyzed in melanoma cells exposed to single inflammatory factors in the presence of inhibitors for other assayed mediators. A stepwise cascade of hierarchized molecules heterogeneously made and used during melanoma response to IL-18, induced hydrogen peroxide (H2O2), in turn activating VLA-4 and melanoma cell adhesion to endothelium. The cascade involved prostaglandin E2 (PGE2) production from melanoma induced by IL-18-dependent tumor necrosis factor-α (TNFα); next, PGE2-induced IL-1β via vascular endothelial growth factor (VEGF) secretion, which in turn induced VLA-4 activation via cyclooxygenase 2-dependent H2O2. This sequence operated in IL-18R/VLA-4/VEGF-expressing murine (B16) and human (A375 and 883) melanomas, but not in those without this phenotype. Separation of active VLA-4-expressing B16 melanoma cells through immobilized VCAM-1 verified their higher IL-18R/TNFR1/VEGFR2 expression and metastatic growth than inactive VLA-4-expressing cells. However, cooperation among melanoma cell sub-populations with heterogeneous cytokine receptor levels may occur through VLA-4-stimulating factors, leading to intratumoral amplification of metastatic potential. Therefore, expression of the VLA-4-stimulating factor sequence may help to predict melanoma prometastatic risk, and offers therapeutic targets for metastatic melanoma deactivation through VLA-4 activation blockade.
Collapse
Affiliation(s)
| | - Teresa Carrascal
- Department of Cellular Biology and Histology, Basque Country University School of Medicine and Dentistry, Leioa, Bizkaia, Spain
| | - Olatz Crende
- Department of Cellular Biology and Histology, Basque Country University School of Medicine and Dentistry, Leioa, Bizkaia, Spain
| | - Fernando Vidal-Vanaclocha
- CEU-San Pablo University and HM-Hospitals School of Medicine, Institute of Applied Molecular Medicine (IMMA), Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
27
|
Lopetuso LR, Chowdhry S, Pizarro TT. Opposing Functions of Classic and Novel IL-1 Family Members in Gut Health and Disease. Front Immunol 2013; 4:181. [PMID: 23847622 PMCID: PMC3705591 DOI: 10.3389/fimmu.2013.00181] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/24/2013] [Indexed: 12/17/2022] Open
Abstract
In addition to their well-established role(s) in the pathogenesis of gastrointestinal (GI)-related inflammatory disorders, including inflammatory bowel disease (IBD) and inflammation-associated colorectal cancer (CRC), emerging evidence confirms the critical involvement of the interleukin-1 (IL-1) cytokine family and their ligands in the maintenance of normal gut homeostasis. In fact, the paradigm that IBD occurs in two distinct phases is substantiated by the observation that classic IL-1 family members, such as IL-1, the IL-1 receptor antagonist (IL-1Ra), and IL-18, possess dichotomous functions depending on the phase of disease, as well as on their role in initiating vs. sustaining chronic gut inflammation. Another recently characterized IL-1 family member, IL-33, also possesses dual functions in the gut. IL-33 is upregulated in IBD and potently induces Th2 immune responses, while also amplifying Th1-mediated inflammation. Neutralization studies in acute colitis models, however, have yielded controversial results and recent reports suggest a protective role of IL-33 in epithelial regeneration and mucosal wound healing. Finally, although little is currently known regarding the potential contribution of IL-36 family members in GI inflammation/homeostasis, another IL-1 family member, IL-37, is emerging as a potent anti-inflammatory cytokine with the ability to down-regulate colitis. This new body of information has important translational implications for both the prevention and treatment of patients suffering from IBD and inflammation-associated CRC.
Collapse
Affiliation(s)
- Loris R Lopetuso
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, OH , USA ; Internal Medicine, Gastroenterology Division, Catholic University of Rome , Rome , Italy
| | | | | |
Collapse
|
28
|
Kuppala MB, Syed SB, Bandaru S, Varre S, Akka J, Mundulru HP. Immunotherapeutic approach for better management of cancer--role of IL-18. Asian Pac J Cancer Prev 2013; 13:5353-61. [PMID: 23317183 DOI: 10.7314/apjcp.2012.13.11.5353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Interleukin-18 (IL-18) is an immune-stimulatory cytokine with antitumor activity in preclinical models. It plays pivotal roles in linking inflammatory immune responses and tumor progression and is a useful candidate in gene therapy of lymphoma or lymphoid leukemia. A phase I study of recombinant human IL-18 (rhIL-18) in patients with advanced cancer concluded that rhIL-18 can be safely given in biologically active doses to patients with advanced cancer. Some viruses can induce the secretion of IL-18 for immune evasion. The individual cytokine activity might be potentiated or inhibited by combinations of cytokines. Here we focus on combinational effects of cytokines with IL-18 in cancer progression. IL-18 is an important non-invasive marker suspected of contributing to metastasis. Serum IL-18 may a useful biological marker as independent prognostic factor of survival. In this review we cover roles of IL-18 in immune evasion, metastasis and angiogenesis, applications for chemotherapy and prognostic or diagnostic significance.
Collapse
Affiliation(s)
- Manohar Babu Kuppala
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, India.
| | | | | | | | | | | |
Collapse
|
29
|
Balah A, Mühl H, Pfeilschifter J, Akool ES. Molecular mechanisms of PDGF-AA expression induced by the dsRNA-mimetic poly (I:C) and IL-18. Biochem Biophys Res Commun 2013; 435:691-5. [PMID: 23702484 DOI: 10.1016/j.bbrc.2013.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/10/2013] [Indexed: 01/13/2023]
Abstract
Several animal studies suggest a role of platelet-derived growth factors (PDGFs) particularly A and B in atherosclerosis. Previously, it has been shown that viral infections have the ability to initiate and accelerate atherosclerosis in animal models. Recently, it has been reported that IL-18 has a pro-atherogenic character. Moreover, viral infections have been shown to be associated with induction of IL-18 bioactivity. By using human predendritic KG1 cells, we sought to assess PDGF-AA production under the influence of IL-18 and the byproduct of viral replication, dsRNA-mimetic poly (I:C). Here we demonstrate that poly (I:C) and IL-18 have the ability to induce PDGF-AA expression. In addition, costimulation of KG-1 cells with both IL-18 plus poly (I:C) shows an additive effect on PDGF-AA production. Furthermore, we demonstrate that neither p38 nor SAPK/JNK is required for PDGF-AA production by both PIC and IL-18. However, the expression of PDGF-AA has been found to be associated with increased activation of NF-κB and enhancement of DNA-binding capacity of NF-κB as shown by electrophoretic mobility shift assay (EMSA) and supershift analysis. Collectively, this study demonstrates that the byproduct of viral replication, dsRNA [poly (I:C)], and IL-18 have the ability to induce PDGF-AA in NF-κB-dependent manner. Furthermore, dsRNA act in an additive way with IL-18 to induce PDGF-AA which plays a major role in atherosclerosis. These data might help to understand the pro-atherogenic character of IL-18 and molecular mechanisms of viral infection-induced atherosclerosis.
Collapse
Affiliation(s)
- Amany Balah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | | | | |
Collapse
|
30
|
Chen J, Zhi Y, Chang X, Zhang S, Dai D. Expression of ADAMTS1 and its correlation with angiogenesis in primary gastric cancer and lymph node metastasis. Dig Dis Sci 2013; 58:405-13. [PMID: 23001403 DOI: 10.1007/s10620-012-2379-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 08/20/2012] [Indexed: 12/09/2022]
Abstract
BACKGROUND A disintegrin and metallopeptidase with thrombospondin motif type 1 (ADAMTS1) is a recently discovered metalloproteinase with antiangiogenic activity. The function of ADAMTS1 in gastric cancer remains unknown. Therefore, we were interested in examining ADAMTS1 expression in human gastric cancer, as well as its possible correlation with angiogenesis. METHODS The mRNA and protein expression of ADAMTS1, thrombospondin type I (TSP1), and vascular endothelial growth factor (VEGF) was evaluated by RT-PCR and immunohistochemistry, respectively, in 56 paired tumor and normal tissue samples, and corresponding metastatic lymph nodes (n = 42). Microvessel density (MVD) was also evaluated by immunohistochemistry. RESULTS ADAMTS1 mRNA and protein levels were significantly lower in primary tumors than in corresponding normal tissues, and were significantly higher in metastatic lymph nodes compared to their matched primary tumors. High ADAMTS1 mRNA and protein expression was found to be significantly associated with lymph node metastasis in primary tumors. There was a negative correlation between ADAMTS1 and VEGF mRNA and protein expression in primary gastric tumors and normal tissues. A negative correlation was also found between ADAMTS1 protein expression and MVD in primary gastric tumors. In contrast, no correlation was detected between ADAMTS1 and TSP1 mRNA and protein expression in primary gastric tumors, normal tissues, and metastatic lymph nodes. CONCLUSIONS These findings suggest that ADAMTS1 expression is altered in primary gastric cancer and paired lymph node metastasis. In addition, ADAMTS1 has angioinhibitory effects in primary gastric cancer due to its low expression and negative correlation with VEGF and MVD. However, it appears to lose its anti-angiogenic activity in metastatic lymph nodes in gastric cancer.
Collapse
Affiliation(s)
- Jing Chen
- Department of Gastrointestinal Surgery, Fourth Affiliated Hospital, China Medical University, Chongshan East Road 4, Shenyang, 110032, Liaoning, China.
| | | | | | | | | |
Collapse
|
31
|
Jung MK, Houh YK, Ha S, Yang Y, Kim D, Kim TS, Yoon SR, Bang SI, Cho BJ, Lee WJ, Park H, Cho D. Recombinant Erdr1 suppresses the migration and invasion ability of human gastric cancer cells, SNU-216, through the JNK pathway. Immunol Lett 2013; 150:145-51. [PMID: 23370368 DOI: 10.1016/j.imlet.2013.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 01/11/2023]
Abstract
Erythroid differentiation regulator 1 (Erdr1) suppressed cell motility in vitro and has anti-metastatic effect in vivo on melanoma. The current study investigated the effect of recombinant Erdr1 on the migration and invasion ability of SNU-216 cell, a gastric cancer cell line. The expression of Erdr1 is inversely correlated with IL-18 expression, which has a pro-cancer effect in gastric cancer. Treatment with rErdr1 markedly suppressed the ability of SNU-216 cells to migrate and invade, indicating that recombinant Erdr1 inhibited the motility of gastric cancer cells. E-cadherin expression levels were measured to determine the factor involved in the rErdr1-suppressed motility. E-cadherin is a representative of the cadherin family, known as cell motility enhancement adhesion molecule. Our results revealed that E-cadherin levels were increased by rErdr1 treatment, suggesting the involvement of E-cadherin in rErdr1-reduced cell migration. The cells were treated with specific MAPK inhibitors such as SP600125, SB203580 or PD98059 to identify the signaling mechanism involved with rErdr1 suppressed cell migration. The results indicated that the rErdr1 inhibited migration was primarily reversed by SP600125, a JNK inhibitor. In addition, the level of JNK phosphorylation was markedly increased by recombinant Erdr1. Taken together, these findings suggest that rErdr1 suppressed the ability of gastric cancer cells to metastasis by up regulating E-cadherin through a JNK pathway activation. Furthermore, it can be suggested that the inhibitory effect of recombinant Erdr1 on SNU-216 cell's metastatic potential was through cell motility suppression.
Collapse
Affiliation(s)
- Min Kyung Jung
- Department of Life Science, Sookmyung Women's University, Chungpa-Dong 2-ka, Yongsan-ku, Seoul 140-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Many secreted polypeptide regulators of angiogenesis are devoid of signal peptides. These proteins are released through nonclassical pathways independent of endoplasmic reticulum and Golgi. In most cases, the nonclassical protein export is induced by stress. It usually serves to stimulate repair or inflammation in damaged tissues. We review the secreted signal peptide-less regulators of angiogenesis and discuss the mechanisms and biological significance of their unconventional export.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|
33
|
Liu P, Wang X, Hu CH, Hu TH. Bioinformatics analysis with graph-based clustering to detect gastric cancer-related pathways. GENETICS AND MOLECULAR RESEARCH 2012; 11:3497-504. [PMID: 23079843 DOI: 10.4238/2012.september.26.5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite a dramatic reduction in incidence and mortality rates, gastric cancer still remains one of the most common malignant tumors worldwide, especially in China. We sought to identify a set of discriminating genes that could be used for characterization and prediction of response to gastric cancer. Using bioinformatics analysis, two gastric cancer datasets, GSE19826 and GSE2685, were merged to find novel target genes and domains to explain pathogenesis; we selected differentially expressed genes in these two datasets and analyzed their correlation in order to construct a network. This network was examined to find graph clusters and related significant pathways. We found that ALDH2 and CCNB1 were associated with gastric cancer. We also mined for the underlying molecular mechanisms involving these differently expressed genes. We found that ECM-receptor interaction, focal adhesion, and cell cycle were among the significantly associated pathways. We were able to detect genes and pathways that were not considered in previous research on gastric cancer, indicating that this approach could be an improvement on the investigative mechanisms for finding genetic associations with disease.
Collapse
Affiliation(s)
- P Liu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | |
Collapse
|
34
|
Genes of the interleukin-18 pathway are associated with susceptibility to Barrett's esophagus and esophageal adenocarcinoma. Am J Gastroenterol 2012; 107:1331-41. [PMID: 22664470 DOI: 10.1038/ajg.2012.134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To investigate the association of genetic polymorphisms of the interleukin-18 (IL-18) pathway to Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Most cases of EAC arise in a background of reflux-induced BE. Genetic influences in this pathway are poorly understood. IL-18 is a multifunctional cytokine implicated in anti-tumor immunity. A number of polymorphisms of the IL-18 and IL-18 receptor-accessory protein (IL-18RAP) genes have been reported to alter gene expression and have recently been linked to inflammatory processes and various tumors, but have not heretofore been studied in BE and EAC. METHODS Two IL-18 promoter polymorphisms -137 G/C and -607 C/A, (rs187238 and rs1946518) and one IL-18RAP polymorphism (rs917997, C/T) were analyzed. Each single-nucleotide polymorphism (SNP) was genotyped in the following groups: EAC, BE, reflux esophagitis (RE), and controls and analyzed for association with disease status. RESULTS The IL-18RAP rs917997C allele is strongly associated with a protective effect in BE (P = 0.0002) and EAC (P = 6 × 10(-7)), which approaches genome-wide levels of significance for allele association without incurring significant multiple testing. The CC genotype at IL-18RAP locus rs917997 was associated with a protective effect against esophageal disease (P = 6 × 10(-4), odds ratio (OR) = 0.59, and 95% confidence interval (CI) 0.43-0.80 for BE; and P = 2 × 10(-6), OR = 0.46, and 95% CI 0.34-0.64 for EAC). The genotype frequencies of IL-18-607 C/A were weakly associated with BE (P = 0.02), and this trend was also seen between controls and EAC (P = 0.07). The CC genotype was associated with an increased risk of BE (OR = 1.45, 95% CI 1.07-1.98) and approached significance for EAC (OR = 1.34, 95% CI 0.98-1.82). Allele and genotype frequencies at these loci were not significantly different between the RE group and controls. Although no significant association was observed between the disease groups at the -137 G/C locus, the -137G/-607C haplotype was associated with increased risk of BE (P = 0.006) with haplotype frequencies of 55% in controls and 65% in BE. CONCLUSIONS These data show a strong association of the IL-18RAP SNP rs917997 locus with BE and EAC and suggestive association of the Barrett's population with the IL-18-607 C/A promoter polymorphism. As both of these SNPs have been demonstrated as expression quantitative trait loci affecting expression of the respective genes, this strongly implicates IL-18 signaling in susceptibility to BE and EAC.
Collapse
|
35
|
Kohn KW, Zeeberg BR, Reinhold WC, Sunshine M, Luna A, Pommier Y. Gene expression profiles of the NCI-60 human tumor cell lines define molecular interaction networks governing cell migration processes. PLoS One 2012; 7:e35716. [PMID: 22570691 PMCID: PMC3343048 DOI: 10.1371/journal.pone.0035716] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/20/2012] [Indexed: 12/14/2022] Open
Abstract
Although there is extensive information on gene expression and molecular interactions in various cell types, integrating those data in a functionally coherent manner remains challenging. This study explores the premise that genes whose expression at the mRNA level is correlated over diverse cell lines are likely to function together in a network of molecular interactions. We previously derived expression-correlated gene clusters from the database of the NCI-60 human tumor cell lines and associated each cluster with function categories of the Gene Ontology (GO) database. From a cluster rich in genes associated with GO categories related to cell migration, we extracted 15 genes that were highly cross-correlated; prominent among them were RRAS, AXL, ADAM9, FN14, and integrin-beta1. We then used those 15 genes as bait to identify other correlated genes in the NCI-60 database. A survey of current literature disclosed, not only that many of the expression-correlated genes engaged in molecular interactions related to migration, invasion, and metastasis, but that highly cross-correlated subsets of those genes engaged in specific cell migration processes. We assembled this information in molecular interaction maps (MIMs) that depict networks governing 3 cell migration processes: degradation of extracellular matrix, production of transient focal complexes at the leading edge of the cell, and retraction of the rear part of the cell. Also depicted are interactions controlling the release and effects of calcium ions, which may regulate migration in a spaciotemporal manner in the cell. The MIMs and associated text comprise a detailed and integrated summary of what is currently known or surmised about the role of the expression cross-correlated genes in molecular networks governing those processes.
Collapse
Affiliation(s)
- Kurt W Kohn
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Yeh WL, Lu DY, Liou HC, Fu WM. A forward loop between glioma and microglia: glioma-derived extracellular matrix-activated microglia secrete IL-18 to enhance the migration of glioma cells. J Cell Physiol 2012; 227:558-68. [PMID: 21442623 DOI: 10.1002/jcp.22746] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mediators and cellular effectors of inflammation are important constituents of the local environment of tumors. In some occasions, oncogenic changes induce an inflammatory microenvironment that promotes the progression of tumors. In gliomas, the presence of microglia may represent tumor-related inflammation and microglia activation, and subsequent inflammatory responses may influence tumor growth and metastasis. Here, we found that C6 glioma--but not primary astrocyte-derived extracellular matrix (ECM) could activate microglia, including primary microglia and BV-2 cell line, and activated microglia-secreted interleukin (IL)-18, a potent inflammatory cytokine of the IL-1 family, to promote C6 migration. In addition, by coating purified ECM components, it was found that secretion of IL-18 by activated microglia was enhanced when microglia encountered with fibronectin and vitronectin. Furthermore, IL-18-induced C6 migration and microfilament disassembly were antagonized by iNOS inhibitor, guanylate cyclase inhibitor, and protein kinase G inhibitor. Taken together, these results indicate that IL-18 secreted by microglia, which was activated by C6 glioma-derived ECM, enhanced migration of C6 glioma through NO/cGMP pathway.
Collapse
Affiliation(s)
- Wei-Lan Yeh
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
37
|
Lin XD, Chen SQ, Qi YL, Zhu JW, Tang Y, Lin JY. Polymorphism of THBS1 rs1478604 A>G in 5-untranslated region is associated with lymph node metastasis of gastric cancer in a Southeast Chinese population. DNA Cell Biol 2011; 31:511-9. [PMID: 22011138 DOI: 10.1089/dna.2011.1344] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Thrombospondin-1 plays an important role in cancer development and progression. This study investigated if a correlation exists between single-nucleotide polymorphisms (SNPs) in the Thrombospondin-1 gene (THBS1) and gastric cancer. We conducted a case-control study on a randomly recruited population of 283 patients and 283 healthy individuals from the city of Fuzhou in Southeast China. Individuals were genotyped for four SNPs (rs1478604 A>G, rs2228261 C>T, rs2292305 T>C, and rs3743125 C>T) in THBS1 using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. THBS1 genotypic distributions between the case and control groups were tested for correlations with cancer development. Comparisons between the case and control groups showed no significant differences in the genotypic distributions of rs1478604 A>G, rs2228261 C>T, and rs3743125 C>T. However, we found a statistically significant association between homozygous CC of THBS1 rs2292305 T>C and development of highly differentiated carcinoma (HDC). The rs1478604 A>G variant was found to be associated with invasion and lymph node metastasis in gastric cancer. After logistic regression and stratification analysis, rs1478604 A>G was more strongly associated with lymph node metastasis in HDC gastric cancer. The power to detect an effect for rs1478604 A>G in HDC was 90%. These findings indicate that the THBS1 rs1478604 A>G variant is linked with differential risks for gastric cancer nodal metastasis. These results support further investigation of THBS1 as a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Xian-Dong Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fujian Medical University, Fuzhou, China
| | | | | | | | | | | |
Collapse
|
38
|
El Btaouri H, Morjani H, Greffe Y, Charpentier E, Martiny L. Role of JNK/ATF-2 pathway in inhibition of thrombospondin-1 (TSP-1) expression and apoptosis mediated by doxorubicin and camptothecin in FTC-133 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:695-703. [PMID: 21333695 DOI: 10.1016/j.bbamcr.2011.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 02/03/2011] [Accepted: 02/07/2011] [Indexed: 11/25/2022]
Abstract
Our previous studies have shown that camptothecin and doxorubicin triggered ceramide accumulation via de novo synthesis pathway. De novo ceramide generation was responsible for the drug-induced apoptosis through a caspase-3-dependent pathway and a decrease of thrombospondin-1 expression in human thyroid carcinoma FTC-133 cells. Here, we demonstrate that Jun N-terminal kinases play a critical role in camptothecin- and doxorubicin-induced down-regulation of thrombospondin-1 expression: i) de novo ceramide synthesis pathway activates Jun N-terminal kinase 1/2 resulting in activating transcription factor 2 phosphorylation; ii) cell treatment by SP600125, a Jun N-terminal kinase specific inhibitor, strongly reduced activating transcription factor 2 phosphorylation and completely abolished camptothecin and doxorubicin effects; and iii) activating transcription factor 2 expression silencing greatly attenuated camptothecin- and doxorubicin-induced down-regulation of thrombospondin-1 expression and apoptosis. The set of our data established that camptothecin- and doxorubicin-induced activation of Jun N-terminal kinase/activating transcription factor 2 pathway via de novo ceramide synthesis down-regulates thrombospondin-1 expression and apoptosis in human thyroid carcinoma FTC-133 cells. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Hassan El Btaouri
- Laboratoire SiRMa (Signalisation Cellulaire et Récepteurs Matriciels), UMR-CNRS 6237, UFR Sciences, Reims, France.
| | | | | | | | | |
Collapse
|
39
|
Xing SS, Bi XP, Tan HW, Zhang Y, Xing QC, Zhang W. Overexpression of interleukin-18 aggravates cardiac fibrosis and diastolic dysfunction in fructose-fed rats. Mol Med 2010; 16:465-70. [PMID: 20644901 DOI: 10.2119/molmed.2010.00028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 07/09/2010] [Indexed: 11/06/2022] Open
Abstract
Inflammation plays an important role in the pathophysiology of the metabolic syndrome (MS). We determined whether the overexpression of interleukin (IL)-18 could aggravate left ventricular (LV) remodeling and diastolic dysfunction in fructose-fed rats (FFRs). To create an animal model for MS, male Wistar rats received 10% fructose in water for 8 months. We used an adenovirus encoding rat IL-18 to overexpress IL-18 in FFRs by intravenous administration. IL-18 overexpression led to increases in collagen volume fraction and collagen deposition. LV systolic function was unaltered. But the LV end-diastolic pressure and the time constant of isovolumic relaxation (tau) were increased. Peak negative value of time derivative of LV pressure (-dp/dt) was decreased. Isovolumic relaxation time and myocardial index, as assessed by echocardiography, were increased. Overexpression of IL-18 leads to aggravated LV remodeling and dysfunction in FFRs. Attenuation of the inflammatory process may provide a novel therapeutic strategy in treating metabolic cardiomyopathy.
Collapse
Affiliation(s)
- Shan-Shan Xing
- Department of Cardiology, QiLu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
40
|
Oncolytic adenovirus expressing interleukin-18 induces significant antitumor effects against melanoma in mice through inhibition of angiogenesis. Cancer Gene Ther 2010; 17:28-36. [PMID: 19498459 DOI: 10.1038/cgt.2009.38] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has been shown that interleukin 18 (IL-18) exerts antitumor activity. In this study, we investigated whether oncolytic adenovirus-mediated gene transfer of IL-18 could induce strong antitumor activity. A tumor-selective replicating adenovirus expressing IL-18 (ZD55-IL-18) was constructed by insertion of an IL-18 expression cassette into the ZD55 vector, which is based on deletion of the adenoviral E1B 55-kDa gene. It has been shown that ZD55-IL-18 exerted a strong cytopathic effect and significant apoptosis in tumor cells. ZD55-IL-18 significantly decreased vascular endothelial growth factor and CD34 expression in the melanoma cells. Treatment of established tumors with ZD55-IL-18 showed much stronger antitumor activity than that induced by ZD55-EGFP (enhanced green fluorescent protein) or Ad-IL-18. These data indicated that oncolytic adenovirus expressing IL-18 could exert potential antitumor activity through inhibition of angiogenesis and offer a novel approach to melanoma therapy.
Collapse
|
41
|
Thrombospondin-1 as a Paradigm for the Development of Antiangiogenic Agents Endowed with Multiple Mechanisms of Action. Pharmaceuticals (Basel) 2010; 3:1241-1278. [PMID: 27713299 PMCID: PMC4034032 DOI: 10.3390/ph3041241] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled neovascularization occurs in several angiogenesis-dependent diseases, including cancer. Neovascularization is tightly controlled by the balance between angiogenic growth factors and antiangiogenic agents. The various natural angiogenesis inhibitors identified so far affect neovascularization by different mechanisms of action. Thrombospondin-1 (TSP-1) is a matricellular modular glycoprotein that acts as a powerful endogenous inhibitor of angiogenesis. It acts both indirectly, by sequestering angiogenic growth factors and effectors in the extracellular environment, and directly, by inducing an antiangiogenic program in endothelial cells following engagement of specific receptors including CD36, CD47, integrins and proteoglycans (all involved in angiogenesis ). In view of its central, multifaceted role in angiogenesis, TSP-1 has served as a source of antiangiogenic tools, including TSP-1 fragments, synthetic peptides and peptidomimetics, gene therapy strategies, and agents that up-regulate TSP-1 expression. This review discusses TSP-1-based inhibitors of angiogenesis, their mechanisms of action and therapeutic potential, drawing our experience with angiogenic growth factor-interacting TSP-1 peptides, and the possibility of exploiting them to design novel antiangiogenic agents.
Collapse
|
42
|
Albini A, Indraccolo S, Noonan DM, Pfeffer U. Functional genomics of endothelial cells treated with anti-angiogenic or angiopreventive drugs. Clin Exp Metastasis 2010; 27:419-39. [PMID: 20383568 DOI: 10.1007/s10585-010-9312-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/16/2010] [Indexed: 01/28/2023]
Abstract
Angiogenesis is a highly regulated physiological process that has been studied in considerable detail given its importance in several chronic pathologies. Many endogenous factors and hormones intervene in the regulation of angiogensis and classical as well as targeted drugs have been developed for its control. Angiogenesis inhibition has come off the bench and entered into clinical application for cancer therapy, particularly for metastatic disease. While the clinical benefit is currently in terms of months, preclinical data suggest that novel drugs and drug combinations could lead to substantial improvement. The many targets of endogenous angiogenesis inhibitors reflect the complexity of the process; in contrast, current clinical therapies mainly target the vascular endothelial growth factor system. Cancer chemopreventive compounds can retard tumor insurgence and delay or prevent metastasis and many of these molecules hinder angiogenesis, a mechanism that we termed angioprevention. Angiopreventive drugs appear to prevalently act through the inhibition of the pro-inflammatory and anti-apoptotic player NFkappaB, thus contrasting inflammation dependent angiogenesis. Relatively little is known concerning the effects of these angiogenesis inhibitors on gene expression of endothelial cells, the main target of many of these molecules. Here we provide an exhaustive list of anti-angiogenic molecules, and summarize their effects, where known, on the transcriptome and functional genomics of endothelial cells. The regulation of specific genes can be crucial to preventive or therapeutic intervention. Further, novel targets might help to circumvent resistance to anti-angiogenic therapy. The studies we review are relevant not only to cancer but also to other chronic degenerative diseases involving endothelial cells, such as cardiovascular disorders, diabetes, rheumatoid arthritis and retinopaties, as well as vessel aging.
Collapse
Affiliation(s)
- Adriana Albini
- MultiMedica Castellanza (VA) and Oncology Research, IRCCS MultiMedica, 20138 Milan, Italy.
| | | | | | | |
Collapse
|
43
|
Sáenz-López P, Carretero R, Vazquez F, Martin J, Sánchez E, Tallada M, Garrido F, Cózar JM, Ruiz-Cabello F. Impact of interleukin-18 polymorphisms-607 and -137 on clinical characteristics of renal cell carcinoma patients. Hum Immunol 2010; 71:309-13. [DOI: 10.1016/j.humimm.2009.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/13/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
|
44
|
Park S, Yoon SY, Kim KE, Lee HR, Hur DY, Song H, Kim D, Bang SI, Cho DH. Interleukin-18 induces transferrin expression in breast cancer cell line MCF-7. Cancer Lett 2009; 286:189-95. [DOI: 10.1016/j.canlet.2009.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 05/21/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
|
45
|
Balah A, Akool ES, Bachmann M, Pfeilschifter J, Mühl H. The dsRNA-mimetic poly (I:C) and IL-18 synergize for IFNgamma and TNFalpha expression. Biochem Biophys Res Commun 2009; 389:628-33. [PMID: 19761760 DOI: 10.1016/j.bbrc.2009.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 09/10/2009] [Indexed: 11/28/2022]
Abstract
Interleukin (IL)-18 bioactivity and dsRNA sensing by receptors of innate immunity are key components of anti-viral host defense. Despite extensive data on signal transduction activated by both pathways knowledge on cross-communication is incomplete. By using human PBMC and predendritic KG1 cells, as prototypic IL-18-responsive cellular models, we sought to assess cytokine production under the influence of IL-18 and the dsRNA-mimetic poly (I:C). Here, we report on potent synergy between both mediators concerning pro-inflammatory IFNgamma and TNFalpha production. KG1 data revealed that synergistic induction likely relied on TLR3 and was associated with prolonged/increased activation of NF-kappaB, as detected by IkappaB analysis and luciferase reporter assays, respectively. Moreover, extended activation of JNK was mediated by IL-18/poly (I:C). Although vital for innate immunity, overwhelming induction of inflammatory cytokines during viral infections poses the threat of serious collateral tissue damage. The stunning synergism inherent to IL-18/dsRNA-induced TNFalpha/IFNgamma detected herein may contribute to this pathological phenomenon.
Collapse
Affiliation(s)
- Amany Balah
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
46
|
Park S, Kim TS, Kim C, Kim S, Bang SI, Park H, Cho DH. Transferrin induces interleukin-18 expression in chronic myeloid leukemia cell line, K-562. Leuk Res 2008; 33:315-20. [PMID: 18835036 DOI: 10.1016/j.leukres.2008.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/01/2008] [Accepted: 08/02/2008] [Indexed: 10/21/2022]
Abstract
Transferrin is an iron carrier protein involved in iron uptake and the regulation of cell growth. Although highly proliferative cells express transferrin and its receptor, little is known about the role of transferrin in the cellular response to cytokine production. The non-iron-bound form of transferrin (apo-transferrin) was administered to human chronic myeloid leukemia cell line, K-562 cells to assess whether it could induce interleukin-18 (IL-18). Apo-transferrin enhanced IL-18 mRNA and protein and, moreover, IL-18 secretion was increased by treatment with apo-transferrin. In conclusion, apo-transferrin regulates IL-18 expression and we suggest that it is involved in cytokine production.
Collapse
Affiliation(s)
- Sunyoung Park
- Department of Life Science, Sookmyung Women's University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Growth compensatory role of sulindac sulfide-induced thrombospondin-1 linked with ERK1/2 and RhoA GTPase signaling pathways. Life Sci 2007; 82:591-9. [PMID: 18261746 DOI: 10.1016/j.lfs.2007.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/27/2007] [Accepted: 11/30/2007] [Indexed: 02/04/2023]
Abstract
Previously, we reported that non-steroidal anti-inflammatory drugs (NSAIDs) suppress cellular invasion which was mediated by thrombospondin-1 (TSP-1). As the extending study of the previous observation, we investigated the effect of NSAID-induced TSP-1 on the cellular growth and its related signaling transduction of the TSP-1 production. Among diverse NSAIDs, sulindac sulfide was most potent of inducing the human TSP-1 protein expression. Functionally, induced TSP-1 expression was associated with the growth-compensatory action of NSAID. TSP-1 expression was also elevated by mitogenic signals of ERK1/2 and RhoA GTPase pathway which had also growth-promotive capability after sulindac sulfide treatment. These findings suggest the possible mechanism through which tumor cells can survive the chemopreventive action of NSAIDs or the normal epithelium can reconstitute after NSAID-mediated ulceration in a compensatory way.
Collapse
|
48
|
Shimada K, Nakamura M, Ishida E, Higuchi T, Tanaka M, Ota I, Konishi N. c-Jun NH2 terminal kinase activation and decreased expression of mitogen-activated protein kinase phosphatase-1 play important roles in invasion and angiogenesis of urothelial carcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1003-12. [PMID: 17690186 PMCID: PMC1959476 DOI: 10.2353/ajpath.2007.070010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We here examined whether c-Jun NH(2) terminal kinase (JNK) might be involved in the progression of urothelial carcinomas. In vitro and in vivo invasion assays using Matrigel and chick embryo chorioallantoic membrane approaches showed constitutive activation of JNK to significantly increase two processes, invasion and angiogenesis, in the human urothelial carcinoma cell line kU-7, this being suppressed by a JNK inhibitor, SP600125, or cell-permeable peptides. In addition, we found that mitogen-activated protein kinase phosphatase (MKP)-1 functions as an endogenous inhibitor of JNK-mediated signals in urothelial carcinoma cells: chorioallantoic membrane assays showed UMUC14 cells with low MKP-1 expression to be more invasive and have pronounced angiogenesis compared to UMUC6 cells with high MKP-1. Furthermore, knockdown of the MKP-1 gene by siRNA transfection enhanced JNK activation in UMUC6 cells to the UMUC14 level. Immunohistochemically, JNK was found to be highly phosphorylated in high-grade and invasive carcinomas (>/=pT2) as well as carcinoma in situ but not in low-grade and noninvasive phenotypes (pTa, pT1). In contrast, MKP-1 was much more expressed in low-grade/noninvasive cancers than with the high-grade/invasive phenotype, reversely correlating with phosphorylated JNK. Taken together, JNK activation and decreased expression of MKP-1 may play important roles in progression of urothelial carcinoma.
Collapse
Affiliation(s)
- Keiji Shimada
- Department of Pathology, Nara Medical University School of Medicine, Shijo-cho, Kashihara city, Nara, 634-8521, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhou Y, Toh ML, Zrioual S, Miossec P. IL-17A versus IL-17F induced intracellular signal transduction pathways and modulation by IL-17RA and IL-17RC RNA interference in AGS gastric adenocarcinoma cells. Cytokine 2007; 38:157-64. [PMID: 17644350 DOI: 10.1016/j.cyto.2007.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/24/2007] [Accepted: 06/04/2007] [Indexed: 01/22/2023]
Abstract
Inflammatory processes are implicated in gastric cancer development. In contrast, the role of inflammation and proinflammatory cytokines in established cancer remains to be clarified. We investigated the contribution of IL-17A versus IL-17F-mediated intracellular signalling pathways in human gastric adenocarcinoma AGS cells. IL-8 secretion was evaluated by ELISA, mitogen-activated protein kinase (MAPK)(4) by Western blotting, and activator protein 1(AP-1) and nuclear factor kappa B (NFkappaB) by TransAM transcription factor assay or qRT-PCR. IL-17RA and IL-17RC inhibition were achieved by small interfering RNA (siRNA). IL-17A significantly induced activation of all three MAPK (ERK, p38 and JNK) and downstream transcription factors AP-1 and p65 NFkappaB. IL-17F was less potent but induced a significant activation of p65 NFkappaB. Consistently, IL-17A was more potent to induce IL-8 secretion than IL-17F. Inhibition of either IL-17RA or IL-17RC expression via siRNA led to near complete abrogation of IL-17A-mediated c-Jun and p65 activation. These data suggest that in gastric cancer, absence of either IL-17RA or IL-17RC can inhibit IL-17 responsiveness. Conversely, downstream of IL-17R binding, IL-17A and IL-17F induce key signal transduction pathways implicated in inflammation and carcinogenesis. IL-17A, and possibly IL-17F, may contribute to amplification and persistence of inflammatory processes implicated in inflammation-associated cancer.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- DNA Primers/genetics
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Genes, fos/drug effects
- Genes, jun/drug effects
- Humans
- Interleukin-17/metabolism
- Interleukin-17/pharmacology
- Interleukin-8/biosynthesis
- MAP Kinase Signaling System/drug effects
- NF-kappa B/metabolism
- RNA Interference
- RNA, Small Interfering/genetics
- Receptors, Interleukin/antagonists & inhibitors
- Receptors, Interleukin/genetics
- Receptors, Interleukin-17/antagonists & inhibitors
- Receptors, Interleukin-17/genetics
- Recombinant Proteins/pharmacology
- Signal Transduction/drug effects
- Stomach Neoplasms/genetics
- Stomach Neoplasms/immunology
- Stomach Neoplasms/metabolism
- Transcription Factor AP-1/metabolism
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Immunology & Rheumatology, Mixed Unit Hospices Civils de Lyon-BioMérieux, E. Herriot Hospital, 69437 Lyon Cedex 03, France
| | | | | | | |
Collapse
|
50
|
Qiao H, Sonoda KH, Ikeda Y, Yoshimura T, Hijioka K, Jo YJ, Sassa Y, Tsutsumi-Miyahara C, Hata Y, Akira S, Ishibashi T. Interleukin-18 regulates pathological intraocular neovascularization. J Leukoc Biol 2007; 81:1012-21. [PMID: 17234681 DOI: 10.1189/jlb.0506342] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, the proinflammatory cytokine IL-18 has been shown to have a role in angiogenesis. This study aimed to elucidate its role in abnormal neovascularization (NV) in an oxygen-induced retinopathy (OIR) mouse model of the retinopathy seen in human premature newborns. IL-18 was constitutively expressed in the retina in C57BL/6 mice, but expression transiently dropped on Day 17 after birth in mice exposed to 75% oxygen for 5 days between Days 7 and 12. Coincident with the IL-18 reduction in oxygen-treated mice, vascular endothelial growth factor was expressed in the retina, and OIR developed. By Day 24, NV in the retina had regressed to normal levels. By contrast, IL-18 knockout mice, exposed to elevated oxygen concentrations, developed more severe OIR on Day 17, and it is important that this persisted until Day 24. This suggested that IL-18 negatively regulated retinal NV. To investigate this further, we administrated recombinant IL-18 to C57BL/6 mice during the development of OIR but found no significant inhibition of retinopathy. However, when IL-18-binding protein was administered during the OIR recovery phase to neutralize endogenous IL-18, OIR was still apparent on Day 24. We therefore concluded that IL-18 regulates pathogenic retinal NV by promoting its regression rather than inhibiting its development. This suggests some useful, new approaches to treating retinopathy in humans.
Collapse
Affiliation(s)
- Hong Qiao
- Ophthalmology, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|