1
|
Ratajczak-Pawłowska AE, Szymczak-Tomczak A, Hryhorowicz S, Zawada A, Skoracka K, Rychter AM, Skrzypczak-Zielińska M, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Relationship of visfatin with obesity and osteoporosis in patients with inflammatory bowel disease: a narrative review. Front Immunol 2025; 16:1533955. [PMID: 40170859 PMCID: PMC11959099 DOI: 10.3389/fimmu.2025.1533955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/21/2025] [Indexed: 04/03/2025] Open
Abstract
Background Inflammatory bowel disease (IBD) is an increasingly prevalent condition in developed countries. Alongside the growing number of patients, there is a rising incidence of disease-related complications, including osteoporosis. While well-established risk factors for low bone mineral density in IBD-such as low body mass or steroid therapy-are widely recognized, other contributing factors warrant further investigation. One such factor is visfatin, a proinflammatory adipokine encoded by the NAMPT gene. Objectives This review aimed to explore the association between visfatin level, bone health, and obesity among patients with inflammatory bowel disease. Key findings Although visfatin is primarily associated with metabolic syndrome, it may also influence bone mineral density by affecting osteoblast and osteoclast differentiation and function. Additionally, some studies have identified a correlation between visfatin levels and bone mineral density. A deeper understanding of visfatin's role in osteoporosis development may contribute to the identification of novel therapeutic strategies. Therefore, lower bone mineral density in inflammatory bowel disease may be associated with obesity and visfatin levels. However, visfatin concentrations depend on many factors, including genetics, immunology, and nutritional factors, which may affect visfatin levels. Implications Current research highlights visfatin as both a potential biomarker and a therapeutic target for osteoporosis treatment. Nevertheless, limited studies have specifically examined the relationship between visfatin and bone mineral density in IBD. Further research is required to clarify this association and to explore how variations in visfatin levels impact bone density in IBD patients.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak-Pawłowska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences Poznan, Poznan, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Ryszard Słomski
- Institute of Medical Sciences, College of Social and Media Culture in Torun, Torun, Poland
- Laboratory of Molecular Genetics, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Siriphorn SV, Thorsuwan S, Thongam J, Ruangklai S, Hussarin P, Rungruang T, Srisuma S. Alterations in Adiponectin Expression in Models of Cigarette Smoke Extract-Induced Mouse Pulmonary Emphysema and Alveolar Epithelial Cell Injury. COPD 2025; 22:2477235. [PMID: 40079477 DOI: 10.1080/15412555.2025.2477235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
PURPOSE Cigarette smoke activates lung inflammation and destruction and the development of COPD. Among various factors influenced by lung inflammation, adiponectin produced by lung epithelial cells is thought to play a significant role in regulating inflammation and maintaining tissue integrity. This study aims to examine adiponectin expression in a mouse model of cigarette smoke extract (CSE)-induced emphysema and explore the effects of adiponectin on cell survival and cytokine gene expression in CSE-induced lung epithelial cell damage. METHODS CSE was prepared by passing cigarette smoke through a glass tube containing solvent. PBS or CSE was intraperitoneally administered to C57BL/6 mice. Inflammatory cells, cytokines, adiponectin expression in lung, bronchoalveolar lavage fluid (BALF) and adipose tissue were assessed. CSE and adiponectin were administered to A549 cells to determine cell viability and cytokine gene expression. RESULTS Intraperitoneal CSE injection significantly increased the mean alveolar linear intercept by 23.11%. CSE significantly increased total cells, macrophages, neutrophils, eosinophils, TNFα, IL-1β levels in BALF. CSE enhanced lung adiponectin protein expression. Treatment of A549 cells with CSE reduced cell survival and adiponectin gene expression. Furthermore, adiponectin treatment enhanced MCP-1 and IL-8 gene expression in A549 cells post-CSE exposure. CONCLUSION Intraperitoneal CSE treatment induced lung inflammation, airspace enlargement, and increased adiponectin expression in mice. CSE-exposed A549 cells showed reduced cell viability, upregulated proinflammatory genes, downregulated adiponectin genes. Adiponectin treatment further intensified these genes expressions, aligning with in vivo findings. Elevated adiponectin expression in alveolar epithelial cells suggests its potential role in the development of COPD by enhancing lung inflammation.
Collapse
Affiliation(s)
- Siriporn Vongsaiyat Siriphorn
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Faculty of Physical Therapy and Sports Medicine, Rangsit University, Pathumtani, Thailand
| | - Supitsara Thorsuwan
- Princess Agrarajakumari College of Nursing, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Julalux Thongam
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sukpattaraporn Ruangklai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Poungpetch Hussarin
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sorachai Srisuma
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Abdulla A, Sadida HQ, Jerobin J, Elfaki I, Mir R, Mirza S, Singh M, Macha MA, Uddin S, Fakhro K, Bhat AA, Akil ASAS. Unraveling molecular interconnections and identifying potential therapeutic targets of significance in obesity-cancer link. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:8-27. [PMID: 40040878 PMCID: PMC11873641 DOI: 10.1016/j.jncc.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 11/11/2024] [Indexed: 03/06/2025] Open
Abstract
Obesity, a global health concern, is associated with severe health issues like type 2 diabetes, heart disease, and respiratory complications. It also increases the risk of various cancers, including melanoma, endometrial, prostate, pancreatic, esophageal adenocarcinoma, colorectal carcinoma, renal adenocarcinoma, and pre-and post-menopausal breast cancer. Obesity-induced cellular changes, such as impaired CD8+ T cell function, dyslipidemia, hypercholesterolemia, insulin resistance, mild hyperglycemia, and fluctuating levels of leptin, resistin, adiponectin, and IL-6, contribute to cancer development by promoting inflammation and creating a tumor-promoting microenvironment rich in adipocytes. Adipocytes release leptin, a pro-inflammatory substance that stimulates cancer cell proliferation, inflammation, and invasion, altering the tumor cell metabolic pathway. Adiponectin, an insulin-sensitizing adipokine, is typically downregulated in obese individuals. It has antiproliferative, proapoptotic, and antiangiogenic properties, making it a potential cancer treatment. This narrative review offers a comprehensive examination of the molecular interconnections between obesity and cancer, drawing on an extensive, though non-systematic, survey of the recent literature. This approach allows us to integrate and synthesize findings from various studies, offering a cohesive perspective on emerging themes and potential therapeutic targets. The review explores the metabolic disturbances, cellular alterations, inflammatory responses, and shifts in the tumor microenvironment that contribute to the obesity-cancer link. Finally, it discusses potential therapeutic strategies aimed at disrupting these connections, offering valuable insights into future research directions and the development of targeted interventions.
Collapse
Affiliation(s)
- Alanoud Abdulla
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q. Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Laboratory of Animal Research Center, Qatar University, Doha, Qatar
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S. Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
4
|
Sapoor S, Nageh M, Shalma NM, Sharaf R, Haroun N, Salama E, Pratama Umar T, Sharma S, Sayad R. Bidirectional relationship between pancreatic cancer and diabetes mellitus: a comprehensive literature review. Ann Med Surg (Lond) 2024; 86:3522-3529. [PMID: 38846873 PMCID: PMC11152885 DOI: 10.1097/ms9.0000000000002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024] Open
Abstract
Pancreatic cancer (PC) is a fatal malignant disease. It is well known that the relationship between PC and type 2 diabetes mellitus (T2DM) is a complicated bidirectional relationship. The most important factors causing increased risks of pancreatic cancer are hyperglycaemia, hyperinsulinemia, pancreatitis, and dyslipidemia. Genetics and the immune system also play an important role in the relationship between diabetes mellitus and pancreatic cancer. The primary contributors to this association involve insulin resistance and inflammatory processes within the tumour microenvironment. The combination of diabetes and obesity can contribute to PC by inducing hyperinsulinemia and influencing leptin and adiponectin levels. Given the heightened incidence of pancreatic cancer in diabetes patients compared to the general population, early screening for pancreatic cancer is recommended. Diabetes negatively impacts the survival of pancreatic cancer patients. Among patients receiving chemotherapy, it reduced their survival. The implementation of a healthy lifestyle, including weight management, serves as an initial preventive measure to mitigate the risk of disease development. The role of anti-diabetic drugs on survival is controversial; however, metformin may have a positive impact, especially in the early stages of cancer, while insulin therapy increases the risk of PC.
Collapse
Affiliation(s)
| | | | | | - Rana Sharaf
- Faculty of Medicine, Alexandria University, Alexandria
| | - Nooran Haroun
- Faculty of Medicine, Alexandria University, Alexandria
| | - Esraa Salama
- Faculty of Medicine, Alexandria University, Alexandria
| | | | | | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Zhao YQ, Ren YF, Li BB, Wei C, Yu B. The mysterious association between adiponectin and endometriosis. Front Pharmacol 2024; 15:1396616. [PMID: 38813109 PMCID: PMC11133721 DOI: 10.3389/fphar.2024.1396616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Adiponectin is a pleiotropic cytokine predominantly derived from adipose tissue. In addition to its role in regulating energy metabolism, adiponectin may also be related to estrogen-dependent diseases, and many studies have confirmed its involvement in mediating diverse biological processes, including apoptosis, autophagy, inflammation, angiogenesis, and fibrosis, all of which are related to the pathogenesis of endometriosis. Although many researchers have reported low levels of adiponectin in patients with endometriosis and suggested that it may serve as a protective factor against the development of the disease. Therefore, the purpose of this review was to provide an up-to-date summary of the roles of adiponectin and its downstream cytokines and signaling pathways in the aforementioned biological processes. Further systematic studies on the molecular and cellular mechanisms of action of adiponectin may provide novel insights into the pathophysiology of endometriosis as well as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Bing-Bing Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, China
| | | | | |
Collapse
|
6
|
Tahergorabi Z, Lotfi H, Rezaei M, Aftabi M, Moodi M. Crosstalk between obesity and cancer: a role for adipokines. Arch Physiol Biochem 2024; 130:155-168. [PMID: 34644215 DOI: 10.1080/13813455.2021.1988110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Adipose tissue is a complex organ that is increasingly being recognised as the largest endocrine organ in the body. Adipocytes among multiple cell types of adipose tissue can secrete a variety of adipokines, which are involved in signalling pathways and these can be changed by obesity and cancer. There are proposed mechanisms to link obesity/adiposity to cancer development including adipocytokine dysregulation. Among these adipokines, leptin acts through multiple pathways including the STAT3, MAPK, and PI3K pathways involved in cell growth. Adiponectin has the opposite action from leptin in tumour growth partly because of increased apoptotic responses of p53 and Bax. Visfatin increases cancer cell proliferation through ERK1/2, PI3K/AKT, and p38 which are stimulated by proinflammatory cytokines. Omentin through the PI3K/Akt-Nos pathway is involved in cancer-tumour development. Apelin might be involved through angiogenesis in tumour progressions. PAI-1 via its anti-fibrinolytic activity on cell adhesion and uPA/uPAR activity influence cancer cell growth.
Collapse
Affiliation(s)
- Zoya Tahergorabi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Physiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Lotfi
- Khatamolanbia Hospital, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Maryam Rezaei
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Internal Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Aftabi
- Faculty of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mitra Moodi
- Social Determinants of Health Research Center, Department of Health Promotion and Education, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
7
|
Yang J, Bahcecioglu G, Ronan G, Zorlutuna P. Aged breast matrix bound vesicles promote breast cancer invasiveness. Biomaterials 2024; 306:122493. [PMID: 38330741 PMCID: PMC11202350 DOI: 10.1016/j.biomaterials.2024.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Aging is one of the inherent risk factors for breast cancer. Although the influence of age-related cellular alterations on breast cancer development has been extensively explored, little is known about the alterations in the aging breast tissue microenvironment, specifically the extracellular matrix (ECM). Here, for the first time in literature, we have identified tissue resident matrix bound vesicles (MBVs) within the healthy mouse breast ECM, investigated and compared their characteristics in young and aged healthy breast tissues, and studied the effects of these MBVs on normal (KTB21) and cancerous (MDA-MB-231) human mammary epithelial cells with respect to the tissue age that they are extracted from. Using vesicle labeling technology, we were able to visualize cellular uptake of the MBVs directly from the native decellularized tissue sections, showing that these MBVs have regulatory roles in the tissue microenvironment. We mimicked the ECM by embedding the MBVs in collagen gels, and showed that MBVs could be taken up by the cells. The miRNA and cytokine profiling showed that MBVs shifted towards a more tumorigenic and invasive phenotype with age, as evidenced by the more pronounced presence of cancer-associated cytokines, and higher expression levels of oncomiRs miR-10b, miR-30e, and miR-210 in MBVs isolated from aged mice. When treated with MBVs or these upregulated factors, KTB21 and MDA-MB-231 cells showed significantly higher motility and invasion compared to untreated controls. Treatment of cells with a cocktail of miRNAs (miR-10b, miR-30e, and miR-210) or with the agonist of adiponectin (AdipoRon), which both were enriched in the aged MBVs, recapitulated the effect of aged MBVs on cells. This study shows for the first time that the MBVs have a regulatory role in the tissue microenvironment and that the MBV contents change towards cancer-promoting upon aging. Studying the effects of MBVs and their cargos on cellular behavior could lead to a better understanding of the critical roles of MBVs played in breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA.
| | - George Ronan
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
8
|
Kim JW, Kim JH, Lee YJ. The Role of Adipokines in Tumor Progression and Its Association with Obesity. Biomedicines 2024; 12:97. [PMID: 38255203 PMCID: PMC10813163 DOI: 10.3390/biomedicines12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Obesity is a well-established risk factor for various malignancies and emerging evidence suggests that adipokines play a pivotal role in linking excess adiposity to tumorigenesis. Adipokines are bioactive molecules secreted by adipose tissue and their altered expression in obesity contributes to a pro-inflammatory, pro-angiogenic, and growth-promoting microenvironment conducive to tumorigenesis. Leptin, a key adipokine, activates survival and proliferative signaling pathways whereas adiponectin exhibits tumor-suppressive effects by inducing apoptosis and cell cycle arrest. Visfatin has also been documented to promote tumor growth, angiogenesis, migration, and invasion. Moreover, emerging studies suggest that adipokines, such as resistin, apelin, and chemerin, which are overexpressed in obesity, may also possess oncogenic functions. Despite advancements in our understanding of the roles of individual adipokines in cancer, the intricate interplay and crosstalk between adipokines, tumor cells, and the tumor microenvironment remain complex and multifaceted. This review highlights the evolving knowledge of how adipokines contribute to obesity-related tumorigenesis, shedding light on the potential of targeting adipokine signaling pathways as a novel therapeutic approach for obesity-associated cancers. Further research on the specific mechanisms and interactions between adipokines and tumor cells is crucial for a comprehensive understanding of obesity-associated cancer pathogenesis.
Collapse
Affiliation(s)
| | | | - Yoon Jae Lee
- Department of Plastic and Reconstructive Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea; (J.W.K.); (J.H.K.)
| |
Collapse
|
9
|
Pu Q, Gao H. The Role of the Tumor Microenvironment in Triple-Positive Breast Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2023; 15:5493. [PMID: 38001753 PMCID: PMC10670777 DOI: 10.3390/cancers15225493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer (BRCA) is a highly heterogeneous systemic disease. It is ranked first globally in the incidence of new cancer cases and has emerged as the primary cause of cancer-related death among females. Among the distinct subtypes of BRCA, triple-positive breast cancer (TPBC) has been associated with increased metastasis and invasiveness, exhibiting greater resistance to endocrine therapy involving trastuzumab. It is now understood that invasion, metastasis, and treatment resistance associated with BRCA progression are not exclusively due to breast tumor cells but are from the intricate interplay between BRCA and its tumor microenvironment (TME). Accordingly, understanding the pathogenesis and evolution of the TPBC microenvironment demands a comprehensive approach. Moreover, addressing BRCA treatment necessitates a holistic consideration of the TME, bearing significant implications for identifying novel targets for anticancer interventions. This review expounds on the relationship between critical cellular components and factors in the TPBC microenvironment and the inception, advancement, and therapeutic resistance of breast cancer to provide perspectives on the latest research on TPBC.
Collapse
Affiliation(s)
- Qian Pu
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
10
|
Yang J, Bahcecioglu G, Ronan G, Zorlutuna P. Aged Breast Matrix Bound Vesicles Promote Breast Cancer Invasiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535436. [PMID: 37066396 PMCID: PMC10103978 DOI: 10.1101/2023.04.03.535436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Aging is one of the inherent risk factors for breast cancer. Although the influence of age-related cellular alterations on breast cancer development has been extensively explored, little is known about the alterations in the aging breast tissue microenvironment, specifically the extracellular matrix (ECM). Here, for the first time in literature, we have identified tissue resident matrix bound vesicles (MBVs) within the healthy mouse breast ECM, investigated and compared their characteristics in young and aged healthy breast tissues, and studied the effects of these MBVs on normal (KTB21) and cancerous (MDA-MB-231) human mammary epithelial cells with respect to the tissue age that they are extracted from. Using vesicle labeling technology, we were able to visualize cellular uptake of the MBVs directly from the native decellularized tissue sections, showing that these MBVs have regulatory roles in the tissue microenvironment. We mimicked the ECM by embedding the MBVs in collagen gels, and showed that MBVs could be taken up by the cells. The miRNA and cytokine profiling showed that MBVs shifted towards a more tumorigenic and invasive phenotype with age, as evidenced by the more pronounced presence of cancer-associated cytokines, and higher expression levels of oncomiRs miR-10b, miR-30e, and miR-210 in MBVs isolated from aged mice. When treated with MBVs or these upregulated factors, KTB21 and MDA-MB-231 cells showed significantly higher motility and invasion compared to untreated controls. Treatment of cells with a cocktail of miRNAs (miR-10b, miR-30e, and miR-210) or with the agonist of adiponectin (AdipoRon), which both were enriched in the aged MBVs, recapitulated the effect of aged MBVs on cells. This study shows for the first time that the MBVs have a regulatory role in the tissue microenvironment and that the MBV contents change towards cancer-promoting upon aging. Studying the effects of MBVs and their cargos on cellular behavior could lead to a better understanding of the critical roles of MBVs played in breast cancer progression and metastasis.
Collapse
|
11
|
Nehme R, Diab-Assaf M, Decombat C, Delort L, Caldefie-Chezet F. Targeting Adiponectin in Breast Cancer. Biomedicines 2022; 10:2958. [PMID: 36428526 PMCID: PMC9687473 DOI: 10.3390/biomedicines10112958] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Obesity and breast cancer are two major health issues that could be categorized as sincere threats to human health. In the last few decades, the relationship between obesity and cancer has been well established and extensively investigated. There is strong evidence that overweight and obesity increase the risk of postmenopausal breast cancer, and adipokines are the central players in this relationship. Produced and secreted predominantly by white adipose tissue, adiponectin is a bioactive molecule that exhibits numerous protective effects and is considered the guardian angel of adipokine. In the obesity-cancer relationship, more and more evidence shows that adiponectin may prevent and protect individuals from developing breast cancer. Recently, several updates have been published on the implication of adiponectin in regulating tumor development, progression, and metastases. In this review, we provide an updated overview of the metabolic signaling linking adiponectin and breast cancer in all its stages. On the other hand, we critically summarize all the available promising candidates that may reactivate these pathways mainly by targeting adiponectin receptors. These molecules could be synthetic small molecules or plant-based proteins. Interestingly, the advances in genomics have made it possible to create peptide sequences that could specifically replace human adiponectin, activate its receptor, and mimic its function. Thus, the obvious anti-cancer activity of adiponectin on breast cancer should be better exploited, and adiponectin must be regarded as a serious biomarker that should be targeted in order to confront this threatening disease.
Collapse
Affiliation(s)
- Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Menikdiwela KR, Kahathuduwa C, Bolner ML, Rahman RL, Moustaid-Moussa N. Association between Obesity, Race or Ethnicity, and Luminal Subtypes of Breast Cancer. Biomedicines 2022; 10:biomedicines10112931. [PMID: 36428500 PMCID: PMC9687751 DOI: 10.3390/biomedicines10112931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Luminal breast cancers are the most common genomic subtype of breast cancers where Luminal A cancers have a better prognosis than Luminal B. Exposure to sex steroids and inflammatory status due to obesity are key contributors of Luminal tumor development. In this study, 1928 patients with Luminal A breast cancer and 1610 patients with Luminal B breast cancer were compared based on body mass index (BMI), age, race, menopausal status, and expressed receptors (i.e., estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2)). Patients with Luminal B tumors had a significantly higher mean BMI (Δ = 0.69 kgm−2 [0.17, 1.21], p = 0.010) versus Luminal A. Interestingly, the risks of Luminal B tumors were higher among Black/African American patients versus White and Hispanic patients (p < 0.001 and p = 0.001, respectively). When controlled for each other, Black/African American race (p < 0.001) and increased BMI (p = 0.008) were associated with increased risks of Luminal B carcinoma, while postmenopausal status was associated with a decreased risk (p = 0.028). Increased BMI partially mediated the strong association between Black/African American race and the risk of Luminal B carcinoma. Thus, Black/African American race along with obesity seem to be associated with an increased risk of more aggressive Luminal B breast carcinomas.
Collapse
Affiliation(s)
- Kalhara R. Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Chanaka Kahathuduwa
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Department of Psychiatry, School of Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Rakhshanda Layeequr Rahman
- Breast Cancer Center of Excellence, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: (R.L.R.); (N.M.-M.); Tel.: +1-806-743-2370 (R.L.R.); +1-806-834-7946 (N.M.-M.)
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Correspondence: (R.L.R.); (N.M.-M.); Tel.: +1-806-743-2370 (R.L.R.); +1-806-834-7946 (N.M.-M.)
| |
Collapse
|
13
|
Matrone A, Basolo A, Santini F, Elisei R. Understanding the effect of obesity on papillary thyroid cancer: is there a need for tailored diagnostic and therapeutic management? Expert Rev Endocrinol Metab 2022; 17:475-484. [PMID: 36203362 DOI: 10.1080/17446651.2022.2131529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/29/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Several studies have focused on the relationship between obesity and differentiated thyroid carcinoma (DTC), particularly papillary histotype (PTC). However, the association of obesity with both incidence and aggressiveness of PTC is still incompletely understood. AREAS COVERED We reviewed the mechanisms underlying the cross talk between obesity and thyroid carcinomas and described the most recent evidence evaluating the effect of obesity on the development of PTC, as well as the impact of excessive body weight on the clinicopathologic features and outcome of this type of cancer. EXPERT OPINION Available evidence suggests that excessive body weight is linked with a higher risk of getting PTC, while its impact on the aggressiveness of the disease, if present, is still not clear. Therefore, while attention should be paid to discover thyroid cancer in patients with obesity earlier, once diagnosed it should be managed following a conventional workup as in normal weight patients, based on the clinical presentation of the disease and including active surveillance if appropriate, as recommended by referral guidelines.
Collapse
Affiliation(s)
- Antonio Matrone
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa - via Paradisa 2, Pisa, Italy
| | - Alessio Basolo
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa - via Paradisa 2, Pisa, Italy
| | - Ferruccio Santini
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa - via Paradisa 2, Pisa, Italy
| | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa - via Paradisa 2, Pisa, Italy
| |
Collapse
|
14
|
Perkins MS, Louw-du Toit R, Jackson H, Simons M, Africander D. Upregulation of an estrogen receptor-regulated gene by first generation progestins requires both the progesterone receptor and estrogen receptor alpha. Front Endocrinol (Lausanne) 2022; 13:959396. [PMID: 36187129 PMCID: PMC9519895 DOI: 10.3389/fendo.2022.959396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Progestins, synthetic compounds designed to mimic the activity of natural progesterone (P4), are used globally in menopausal hormone therapy. Although the older progestins medroxyprogesterone acetate (MPA) and norethisterone (NET) have been implicated in increased breast cancer risk, little is known regarding newer progestins, and no significant risk has been associated with P4. Considering that breast cancer is the leading cause of mortality in women, establishing which progestins increase breast cancer incidence and elucidating the underlying mechanisms is a global priority. We showed for the first time that the newer-generation progestin drospirenone (DRSP) is the least potent progestin in terms of proliferation of the estrogen-responsive MCF-7 BUS breast cancer cell line, while NET and P4 have similar potencies to estradiol (E2), the known driver of breast cancer cell proliferation. Notably, MPA, the progestin most frequently associated with increased breast cancer risk, was significantly more potent than E2. While all the progestogens enhanced the anchorage-independent growth of the MCF-7 BUS cell line, MPA promoted a greater number of colonies than P4, NET or DRSP. None of the progestogens inhibited E2-induced proliferation and anchorage-independent growth. We also showed that under non-estrogenic conditions, MPA and NET, unlike P4 and DRSP, increased the expression of the estrogen receptor (ER) target gene, cathepsin D, via a mechanism requiring the co-recruitment of ERα and the progesterone receptor (PR) to the promoter region. In contrast, all progestogens promoted the association of the PR and ERα on the promoter of the PR target gene, MYC, thereby increasing its expression under non-estrogenic and estrogenic conditions. These results suggest that progestins differentially regulate the way the PR and ER converge to modulate the expression of PR and ER-regulated genes. Our novel findings indicating similarities and differences between P4 and the progestins, emphasize the importance of comparatively investigating effects of individual progestins rather than grouping them as a class. Further studies are required to underpin the clinical relevance of PR/ERα crosstalk in response to different progestins in both normal and malignant breast tissue, to either confirm or refute their suitability in combination therapy for ER-positive breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
15
|
Wu Y, Li X, Li Q, Cheng C, Zheng L. Adipose tissue-to-breast cancer crosstalk: Comprehensive insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188800. [PMID: 36103907 DOI: 10.1016/j.bbcan.2022.188800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The review focuses on mechanistic evidence for the link between obesity and breast cancer. According to the IARC study, there is sufficient evidence that obesity is closely related to a variety of cancers. Among them, breast cancer is particularly disturbed by adipose tissue due to the unique histological structure of the breast. The review introduces the relationship between obesity and breast cancer from two aspects, including factors that promote tumorigenesis or metastasis. We summarize alterations in adipokines and metabolic pathways that contribute to breast cancer development. Breast cancer metastasis is closely related to obesity-induced pro-inflammatory microenvironment, adipose stem cells, and miRNAs. Based on the mechanism by which obesity causes breast cancer, we list possible therapeutic directions, including reducing the risk of breast cancer and inhibiting the progression of breast cancer. We also discussed the risk of autologous breast remodeling and fat transplantation. Finally, the causes of the obesity paradox and the function of enhancing immunity are discussed. Evaluating the balance between obesity-induced inflammation and enhanced immunity warrants further study.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Chienshan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China.
| |
Collapse
|
16
|
Wang X, Gharahkhani P, Levine DM, Fitzgerald RC, Gockel I, Corley DA, Risch HA, Bernstein L, Chow WH, Onstad L, Shaheen NJ, Lagergren J, Hardie LJ, Wu AH, Pharoah PDP, Liu G, Anderson LA, Iyer PG, Gammon MD, Caldas C, Ye W, Barr H, Moayyedi P, Harrison R, Watson RGP, Attwood S, Chegwidden L, Love SB, MacDonald D, deCaestecker J, Prenen H, Ott K, Moebus S, Venerito M, Lang H, Mayershofer R, Knapp M, Veits L, Gerges C, Weismüller J, Reeh M, Nöthen MM, Izbicki JR, Manner H, Neuhaus H, Rösch T, Böhmer AC, Hölscher AH, Anders M, Pech O, Schumacher B, Schmidt C, Schmidt T, Noder T, Lorenz D, Vieth M, May A, Hess T, Kreuser N, Becker J, Ell C, Tomlinson I, Palles C, Jankowski JA, Whiteman DC, MacGregor S, Schumacher J, Vaughan TL, Buas MF, Dai JY. eQTL Set-Based Association Analysis Identifies Novel Susceptibility Loci for Barrett Esophagus and Esophageal Adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2022; 31:1735-1745. [PMID: 35709760 PMCID: PMC9444939 DOI: 10.1158/1055-9965.epi-22-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Over 20 susceptibility single-nucleotide polymorphisms (SNP) have been identified for esophageal adenocarcinoma (EAC) and its precursor, Barrett esophagus (BE), explaining a small portion of heritability. METHODS Using genetic data from 4,323 BE and 4,116 EAC patients aggregated by international consortia including the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON), we conducted a comprehensive transcriptome-wide association study (TWAS) for BE/EAC, leveraging Genotype Tissue Expression (GTEx) gene-expression data from six tissue types of plausible relevance to EAC etiology: mucosa and muscularis from the esophagus, gastroesophageal (GE) junction, stomach, whole blood, and visceral adipose. Two analytical approaches were taken: standard TWAS using the predicted gene expression from local expression quantitative trait loci (eQTL), and set-based SKAT association using selected eQTLs that predict the gene expression. RESULTS Although the standard approach did not identify significant signals, the eQTL set-based approach identified eight novel associations, three of which were validated in independent external data (eQTL SNP sets for EXOC3, ZNF641, and HSP90AA1). CONCLUSIONS This study identified novel genetic susceptibility loci for EAC and BE using an eQTL set-based genetic association approach. IMPACT This study expanded the pool of genetic susceptibility loci for EAC and BE, suggesting the potential of the eQTL set-based genetic association approach as an alternative method for TWAS analysis.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David M. Levine
- Department of Biostatistics, University of Washington, School of Public Health, Seattle, Washington, USA
| | - Rebecca C. Fitzgerald
- Medical Research Council (MRC) Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Douglas A. Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- San Francisco Medical Center, Kaiser Permanente Northern California, San Francisco, California, USA
| | - Harvey A. Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Wong-Ho Chow
- Department of Epidemiology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Lynn Onstad
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nicholas J. Shaheen
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jesper Lagergren
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- School of Cancer and Pharmaceutical Sciences, King’s College London
| | | | - Anna H. Wu
- Department of Population and Public Health Sciences, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Paul D. P. Pharoah
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Geoffrey Liu
- Pharmacogenomic Epidemiology, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Lesley A. Anderson
- Department of Epidemiology and Public Health, Queen's University of Belfast, Royal Group of Hospitals, Northern Ireland
| | - Prasad G. Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marilie D. Gammon
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Carlos Caldas
- Cancer Research UK, Cambridge Institute, Cambridge, UK
| | - Weimin Ye
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Hugh Barr
- Department of Upper GI Surgery, Gloucestershire Royal Hospital, Gloucester, UK
| | - Paul Moayyedi
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rebecca Harrison
- Department of Pathology, Leicester Royal Infirmary, Leicester, UK
| | - RG Peter Watson
- Department of Medicine, Institute of Clinical Science, Royal Victoria Hospital, Belfast, UK
| | - Stephen Attwood
- Department of General Surgery, North Tyneside General Hospital, North Shields, UK
| | - Laura Chegwidden
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Sharon B. Love
- Centre for Statistics in Medicine and Oxford Clinical Trials Research Unit, Oxford, UK
| | - David MacDonald
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - John deCaestecker
- Digestive Diseases Centre, University Hospitals of Leicester, Leicester, UK
| | - Hans Prenen
- Oncology Department, University Hospital Antwerp, Edegem, Belgium
| | - Katja Ott
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- Department of General, Visceral and Thorax Surgery, RoMed Klinikum Rosenheim, Rosenheim, Germany
| | - Susanne Moebus
- Institute for Urban Public Health, University Hospitals, University of Duisburg-Essen, Essen, Germany
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | | | - Michael Knapp
- Institute for Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
| | - Lothar Veits
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Christian Gerges
- Department of Internal Medicine, Evangelisches Krankenhaus, Düsseldorf, Germany
| | | | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, Asklepios Harzklinik Goslar, Goslar, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jakob R. Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic. University Medical Center Hamburg-Eppendorf. Hamburg. Germany
| | - Hendrik Manner
- Department of Internal Medicine II, Frankfurt Hoechst Hospital, Frankfurt, Germany
| | - Horst Neuhaus
- Department of Internal Medicine, Evangelisches Krankenhaus, Düsseldorf, Germany
| | - Thomas Rösch
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Anne C. Böhmer
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Arnulf H. Hölscher
- Clinic for General, Visceral and Trauma Surgery, Contilia Center for Esophageal Diseases. Elisabeth Hospital Essen, Germany
| | - Mario Anders
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Gastroenterology and Interdisciplinary Endoscopy, Vivantes Wenckebach-Klinikum, Berlin, Germany
| | - Oliver Pech
- Department of Gastroenterology and Interventional Endoscopy, St. John of God Hospital, Regensburg, Germany
| | - Brigitte Schumacher
- Department of Internal Medicine, Evangelisches Krankenhaus, Düsseldorf, Germany
- Department of Internal Medicine and Gastroenterology, Elisabeth Hospital, Essen, Germany
| | - Claudia Schmidt
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Tania Noder
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Dietmar Lorenz
- Department of General and Visceral Surgery, Sana Klinikum, Offenbach, Germany
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Andrea May
- Department of Gastroenterology, Oncology and Pneumology, Asklepios Paulinen Klinik, Wiesbaden, Germany
| | - Timo Hess
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Nicole Kreuser
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Jessica Becker
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Ell
- Department of Medicine II, Sana Klinikum, Offenbach, Germany
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, UK
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - David C. Whiteman
- Cancer Control, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Thomas L. Vaughan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, School of Public Health, Seattle, Washington, USA
| | - Matthew F. Buas
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
| | - James Y. Dai
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, School of Public Health, Seattle, Washington, USA
| |
Collapse
|
17
|
Duraiyarasan S, Adefuye M, Manjunatha N, Ganduri V, Rajasekaran K. Colon Cancer and Obesity: A Narrative Review. Cureus 2022; 14:e27589. [PMID: 36059323 PMCID: PMC9433794 DOI: 10.7759/cureus.27589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 11/05/2022] Open
Abstract
Obesity has played a crucial role in the pathogenesis of various cancers, including colorectal cancer (CRC). Obesity has shown to increase the blood levels of insulin, insulin-like growth factor-1 (IGF-1), leptin, resistin, inflammatory cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) which in turn acts via various signaling pathways to induce colonic cell proliferation and in turn CRC development. It has been shown that estrogen can prevent and cause CRC based on which receptor it acts. Obese patients have relatively low levels of ghrelin and adiponectin that inhibit cell proliferation which further adds to their risk of developing CRC. Obesity can alter the microbial flora of the gut in such a way as to favor carcinogenesis. Weight loss and good physical activity have been related to a reduced incidence of CRC; obese individuals should be screened for CRC and counseled about the importance of weight reduction, diet, and exercise. The best way of screening is using BMI and waist circumference (WC) to calculate the CRC risk in obese people. This study has reviewed the association between obesity and its pathophysiological association with CRC development.
Collapse
|
18
|
Naaman SC, Shen S, Zeytinoglu M, Iyengar NM. Obesity and Breast Cancer Risk: The Oncogenic Implications of Metabolic Dysregulation. J Clin Endocrinol Metab 2022; 107:2154-2166. [PMID: 35453151 PMCID: PMC9282365 DOI: 10.1210/clinem/dgac241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/18/2022]
Abstract
CONTEXT Breast cancer is increasing in prevalence in parallel with rising rates of obesity worldwide. Obesity is recognized as a leading modifiable risk factor for the development of breast cancer; however, this association varies considerably by clinicopathologic features, and the underlying mechanisms are complex. EVIDENCE ACQUISITION Pubmed literature search using combinations of "obesity," "breast cancer risk," "diet," "exercise," "weight gain," "weight loss," "adipose tissue inflammation," "crown-like structure," "immune markers," "metformin," "gliflozins," "SGLT-2i," "GLP1-RA," and related terms. EVIDENCE SYNTHESIS Elevated body mass index and weight gain are associated with increased risk of postmenopausal, hormone receptor-positive breast cancer. Emerging evidence suggests that adverse measures of body composition in individuals of any weight can also confer increased breast cancer risk. Mechanistically, various factors including altered adipokine balance, dysfunctional adipose tissue, dysregulated insulin signaling, and chronic inflammation contribute to tumorigenesis. Weight loss and more specifically fat mass loss through lifestyle and pharmacologic interventions improve serum metabolic and inflammatory markers, sex hormone levels, and measures of breast density, suggesting a link to decreased breast cancer risk. CONCLUSION Incorporating markers of metabolic health and body composition measures with body mass index can capture breast cancer risk more comprehensively. Further studies of interventions targeting body fat levels are needed to curb the growing prevalence of obesity-related cancer.
Collapse
Affiliation(s)
| | - Sherry Shen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Neil M Iyengar
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
19
|
Benot-Dominguez R, Cimini A, Barone D, Giordano A, Pentimalli F. The Emerging Role of Cyclin-Dependent Kinase Inhibitors in Treating Diet-Induced Obesity: New Opportunities for Breast and Ovarian Cancers? Cancers (Basel) 2022; 14:2709. [PMID: 35681689 PMCID: PMC9179653 DOI: 10.3390/cancers14112709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overweight and obesity constitute the most impactful lifestyle-dependent risk factors for cancer and have been tightly linked to a higher number of tumor-related deaths nowadays. The excessive accumulation of energy can lead to an imbalance in the level of essential cellular biomolecules that may result in inflammation and cell-cycle dysregulation. Nutritional strategies and phytochemicals are gaining interest in the management of obesity-related cancers, with several ongoing and completed clinical studies that support their effectiveness. At the same time, cyclin-dependent kinases (CDKs) are becoming an important target in breast and ovarian cancer treatment, with various FDA-approved CDK4/6 inhibitors that have recently received more attention for their potential role in diet-induced obesity (DIO). Here we provide an overview of the most recent studies involving nutraceuticals and other dietary strategies affecting cell-cycle pathways, which might impact the management of breast and ovarian cancers, as well as the repurposing of already commercialized chemotherapeutic options to treat DIO.
Collapse
Affiliation(s)
- Reyes Benot-Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
20
|
Słabuszewska-Jóźwiak A, Lukaszuk A, Janicka-Kośnik M, Wdowiak A, Jakiel G. Role of Leptin and Adiponectin in Endometrial Cancer. Int J Mol Sci 2022; 23:5307. [PMID: 35628118 PMCID: PMC9141615 DOI: 10.3390/ijms23105307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Endometrial cancer is the most common malignancy of the female genital tract. Obesity is a strong risk factor for endometrial cancer. Adipose tissue is an active endocrine organ that synthesizes biologically active cytokine peptides, called adipokines. Adiponectin and leptin are the main cytokines of adipose tissue, which may influence the development of metabolic diseases and carcinogenesis. In this scenario, we describe the role of leptin and adiponectin in the development of endometrial cancer. A better understanding of the signalling pathway of these cytokines in endometrial cancerogenesis will provide an opportunity for effective target therapy and may be usable in fertility-sparing treatment. In the future, clinical trials focusing on adipokines, molecular biology, and genetics of the tumour will be needed.
Collapse
Affiliation(s)
- Aneta Słabuszewska-Jóźwiak
- First Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Żelazna 90 Street, 01-004 Warsaw, Poland;
| | - Aron Lukaszuk
- Saint Sophia Hospital, Żelazna 90 Street, 01-004 Warsaw, Poland; (A.L.); (M.J.-K.)
- Invicta Research and Development Center, Polna 64 Street, 81-710 Sopot, Poland
| | - Marta Janicka-Kośnik
- Saint Sophia Hospital, Żelazna 90 Street, 01-004 Warsaw, Poland; (A.L.); (M.J.-K.)
| | - Artur Wdowiak
- Chair of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, 4-6 Staszica St., 20-081 Lublin, Poland;
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Żelazna 90 Street, 01-004 Warsaw, Poland;
| |
Collapse
|
21
|
Assumpção JAF, Pasquarelli-do-Nascimento G, Duarte MSV, Bonamino MH, Magalhães KG. The ambiguous role of obesity in oncology by promoting cancer but boosting antitumor immunotherapy. J Biomed Sci 2022; 29:12. [PMID: 35164764 PMCID: PMC8842976 DOI: 10.1186/s12929-022-00796-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is nowadays considered a pandemic which prevalence's has been steadily increasingly in western countries. It is a dynamic, complex, and multifactorial disease which propitiates the development of several metabolic and cardiovascular diseases, as well as cancer. Excessive adipose tissue has been causally related to cancer progression and is a preventable risk factor for overall and cancer-specific survival, associated with poor prognosis in cancer patients. The onset of obesity features a state of chronic low-grade inflammation and secretion of a diversity of adipocyte-derived molecules (adipokines, cytokines, hormones), responsible for altering the metabolic, inflammatory, and immune landscape. The crosstalk between adipocytes and tumor cells fuels the tumor microenvironment with pro-inflammatory factors, promoting tissue injury, mutagenesis, invasion, and metastasis. Although classically established as a risk factor for cancer and treatment toxicity, recent evidence suggests mild obesity is related to better outcomes, with obese cancer patients showing better responses to treatment when compared to lean cancer patients. This phenomenon is termed obesity paradox and has been reported in different types and stages of cancer. The mechanisms underlying this paradoxical relationship between obesity and cancer are still not fully described but point to systemic alterations in metabolic fitness and modulation of the tumor microenvironment by obesity-associated molecules. Obesity impacts the response to cancer treatments, such as chemotherapy and immunotherapy, and has been reported as having a positive association with immune checkpoint therapy. In this review, we discuss obesity's association to inflammation and cancer, also highlighting potential physiological and biological mechanisms underlying this association, hoping to clarify the existence and impact of obesity paradox in cancer development and treatment.
Collapse
Affiliation(s)
| | | | - Mariana Saldanha Viegas Duarte
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martín Hernan Bonamino
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice - Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
22
|
Llanos AA, Aremu JB, Cheng TYD, Chen W, Chekmareva MA, Cespedes Feliciano EM, Qin B, Lin Y, Omene C, Khoury T, Hong CC, Yao S, Ambrosone CB, Bandera EV, Demissie K. Greater Body Fatness Is Associated With Higher Protein Expression of LEPR in Breast Tumor Tissues: A Cross-Sectional Analysis in the Women's Circle of Health Study. Front Endocrinol (Lausanne) 2022; 13:879164. [PMID: 35846306 PMCID: PMC9277012 DOI: 10.3389/fendo.2022.879164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The mechanisms underlying the association of overall and central body fatness with poorer breast cancer outcomes remain unclear; altered gene and/or protein expression of the adipokines and their receptors in breast tumors might play a role. METHODS In a sample of Black and White women with primary invasive breast cancer, we investigated associations of body mass index (BMI), waist circumference, hip circumference, waist-to-hip ratio (WHR), fat mass index (FMI), and percent body fat with protein expression (log-transformed, n = 722) and gene expression (log2-transformed, n = 148) of leptin (LEP), leptin receptor (LEPR), adiponectin (ADIPOQ), and adiponectin receptors 1 and 2 (ADIPOR1, ADIPOR2). Multivariable linear models, adjusting for race, menopausal status, and estrogen receptor status, were used to assess these associations, with Bonferroni correction for multiple comparisons. RESULTS In multivariable models, we found that increasing BMI (β = 0.0529, 95% CI: 0.0151, 0.0906) and FMI (β = 0.0832, 95% CI: 0.0268, 0.1397) were associated with higher LEP gene expression, corresponding to 34.5% and 38.3% increases in LEP gene expression for a standard deviation (SD) increase in BMI and FMI, respectively. Increasing BMI (β = 0.0028, 95% CI: 0.0011, 0.0045), waist circumference (β = 0.0013, 95% CI: 0.0005, 0.0022), hip circumference (β = 0.0015, 95% CI: 0.0007, 0.0024), and FMI (β = 0.0041, 95% CI: 0.0015, 0.0067) were associated with higher LEPR protein expression. These associations equate to 16.8%, 17.6%, 17.7%, 17.2% increases in LEPR protein expression for a 1-SD increase in BMI, waist circumference, hip circumference, and FMI, respectively. Further, these associations were stronger among White and postmenopausal women and ER+ cases; formal tests of interaction yielded evidence of effect modification by race. No associations of body fatness with LEP protein expression, LEPR gene expression, or protein or gene expression of ADIPOQ, ADIPOR1, and ADIPOR2 were found. CONCLUSIONS These findings support an association of increased body fatness - beyond overall body size measured using BMI - with higher LEP gene expression and higher LEPR protein expression in breast tumor tissues. Clarifying the impact of adiposity-related adipokine and adipokine receptor expression in breast tumors on long-term breast cancer outcomes is a critical next step.
Collapse
Affiliation(s)
- Adana A.M. Llanos
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Adana A.M. Llanos,
| | - John B. Aremu
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Ting-Yuan David Cheng
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Wenjin Chen
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Marina A. Chekmareva
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | | | - Bo Qin
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Yong Lin
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Coral Omene
- Department of Medicine, Rutgers Robert Wood Johnson Medical School and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Thaer Khoury
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Elisa V. Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Kitaw Demissie
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University School of Public Health, Brooklyn, NY, United States
| |
Collapse
|
23
|
Holm JB, Rosendahl AH, Borgquist S. Local Biomarkers Involved in the Interplay between Obesity and Breast Cancer. Cancers (Basel) 2021; 13:cancers13246286. [PMID: 34944905 PMCID: PMC8699696 DOI: 10.3390/cancers13246286] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Breast cancer is the second most common cancer in women worldwide. The risk of developing breast cancer depends on various mechanisms, such as age, heredity, reproductive factors, physical inactivity, and obesity. Obesity increases the risk of breast cancer and worsens outcomes for breast cancer patients. The rate of obesity is increasing worldwide, stressing the need for awareness of the association between obesity and breast cancer. In this review, we outline the biomarkers—including cellular and soluble factors—in the breast, associated with obesity, that affect the risk of breast cancer and breast cancer prognosis. Through these biomarkers, we aim to better identify patients with obesity with a higher risk of breast cancer and an inferior prognosis. Abstract Obesity is associated with an increased risk of breast cancer, which is the most common cancer in women worldwide (excluding non-melanoma skin cancer). Furthermore, breast cancer patients with obesity have an impaired prognosis. Adipose tissue is abundant in the breast. Therefore, breast cancer develops in an adipose-rich environment. During obesity, changes in the local environment in the breast occur which are associated with breast cancer. A shift towards a pro-inflammatory state is seen, resulting in altered levels of cytokines and immune cells. Levels of adipokines, such as leptin, adiponectin, and resistin, are changed. Aromatase activity rises, resulting in higher levels of potent estrogen in the breast. Lastly, remodeling of the extracellular matrix takes place. In this review, we address the current knowledge on the changes in the breast adipose tissue in obesity associated with breast cancer initiation and progression. We aim to identify obesity-associated biomarkers in the breast involved in the interplay between obesity and breast cancer. Hereby, we can improve identification of women with obesity with an increased risk of breast cancer and an impaired prognosis. Studies investigating mammary adipocytes and breast adipose tissue in women with obesity versus women without obesity are, however, sparse and further research is needed.
Collapse
Affiliation(s)
- Jonas Busk Holm
- Department of Oncology, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
- Correspondence: (J.B.H.); (S.B.)
| | - Ann H. Rosendahl
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Barngatan 4, 221 85 Lund, Sweden;
| | - Signe Borgquist
- Department of Oncology, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Barngatan 4, 221 85 Lund, Sweden;
- Correspondence: (J.B.H.); (S.B.)
| |
Collapse
|
24
|
Zuo Q, Band S, Kesavadas M, Madak Erdogan Z. Obesity and Postmenopausal Hormone Receptor-positive Breast Cancer: Epidemiology and Mechanisms. Endocrinology 2021; 162:6370080. [PMID: 34519778 DOI: 10.1210/endocr/bqab195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Obesity is a potential risk for several cancers, including postmenopausal, hormone dependent breast cancers. In this review, we summarize recent studies on the impact of obesity on postmenopausal women's health and discuss several mechanisms that were proposed to increase the risk of breast carcinogenesis.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Shoham Band
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Mrinali Kesavadas
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois, College of Medicine, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
25
|
Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, Asmawi MZ, Huang X. The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathol Oncol Res 2021; 27:1609828. [PMID: 34588926 PMCID: PMC8473628 DOI: 10.3389/pore.2021.1609828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
Collapse
Affiliation(s)
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Elshaimaa Arafa
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
26
|
Zheng Y, Karnoub AE. Endocrine regulation of cancer stem cell compartments in breast tumors. Mol Cell Endocrinol 2021; 535:111374. [PMID: 34242715 DOI: 10.1016/j.mce.2021.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
Cancer cells within breast tumors exist within a hierarchy in which only a small and rare subset of cells is able to regenerate growths with the heterogeneity of the original tumor. These highly malignant cancer cells, which behave like stem cells for new cancers and are called "cancer stem cells" or CSCs, have also been shown to possess increased resistance to therapeutics, and represent the root cause underlying therapy failures, persistence of residual disease, and relapse. As >90% of cancer deaths are due to refractory tumors, identification of critical molecular drivers of the CSC-state would reveal vulnerabilities that can be leveraged in designing therapeutics that eradicate advanced disease and improve patient survival outcomes. An expanding and complex body of work has now described the exquisite susceptibility of CSC pools to the regulatory influences of local and systemic hormones. Indeed, breast CSCs express a plethora of hormonal receptors, which funnel hormonal influences over every aspect of breast neoplasia - be it tumor onset, growth, survival, invasion, metastasis, or therapy resistance - via directly impacting CSC behavior. This article is intended to shed light on this active area of investigation by attempting to provide a systematic and comprehensive overview of the available evidence directly linking hormones to breast CSC biology.
Collapse
Affiliation(s)
- Yurong Zheng
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard Stem Cell Institute, Cambridge, MA, 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
27
|
Raji Lahiji M, Zarrati M, Najafi S, Yazdani B, Cheshmazar E, Razmpoosh E, Janani L, Raji Lahiji M, Shidfar F. Effects of synbiotic supplementation on serum adiponectin and inflammation status of overweight and obese breast cancer survivors: a randomized, triple-blind, placebo-controlled trial. Support Care Cancer 2021; 29:4147-4157. [PMID: 33404812 DOI: 10.1007/s00520-020-05926-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Adipokines and inflammatory factors can affect breast cancer (BC) prognosis and recurrence among breast cancer survivors (BCSs). This study was to evaluate the effects of synbiotic supplementation along with a low-calorie diet on some recurrence-related factors such as adiponectin, tumor necrosis factor-alpha (TNF-α), and high-sensitivity C-reactive protein (hs-CRP) among obese and overweight BCSs. METHODS We performed a randomized, triple-blind, placebo-controlled clinical trial among 76 overweight or obese postmenopausal women with a history of hormone-receptor-positive BC. Participants were randomly divided into 2 groups to intake either 109 CFU/day synbiotic supplement or placebo (n = 38 each group) for 8 weeks. All participants were given a low-calorie diet program. The primary outcome was serum concentration of adiponectin which was measured at baseline and after 8 weeks. RESULTS Compared with the placebo, synbiotic intake significantly increased adiponectin (+ 13.58 (10.08, 18.17) vs. - 0.42 (- 2.90, 1.98) μg/ml; P < 0.001). In addition, synbiotic supplementation resulted in significant reduction in TNF-α levels (- 17.09 (- 32.05, - 13.60) vs. 0.20 (- 3.97, 2.00) ng/L; P < 0.001) and hs-CRP levels (- 1.14 (- 1.90, - 0.88 vs. - 0.06 (- 0.38, 0.15) mg/L; P < 0.001) compared with the placebo. CONCLUSIONS In conclusion, 8-week synbiotic consumption by overweight and obese postmenopausal BCSs had beneficial effects on adiponectin, TNF-α, and hs-CRP. TRIAL REGISTRATION IRCT, IRCT20091114002709N49. Registered 18 May 2018, http://www.irct.ir : IRCT20091114002709N49.
Collapse
Affiliation(s)
- Mahsa Raji Lahiji
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Zarrati
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Najafi
- Breast Disease Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Bahareh Yazdani
- Department of Microbiology, School of Biology Sciences, Islamic Azad University, Tehran, Iran
| | - Elhameh Cheshmazar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Razmpoosh
- Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Abstract
This Review focuses on the mechanistic evidence for a link between obesity, dysregulated cellular metabolism and breast cancer. Strong evidence now links obesity with the development of 13 different types of cancer, including oestrogen receptor-positive breast cancer in postmenopausal women. A number of local and systemic changes are hypothesized to support this relationship, including increased circulating levels of insulin and glucose as well as adipose tissue-derived oestrogens, adipokines and inflammatory mediators. Metabolic pathways of energy production and utilization are dysregulated in tumour cells and this dysregulation is a newly accepted hallmark of cancer. Dysregulated metabolism is also hypothesized to be a feature of non-neoplastic cells in the tumour microenvironment. Obesity-associated factors regulate metabolic pathways in both breast cancer cells and cells in the breast microenvironment, which provides a molecular link between obesity and breast cancer. Consequently, interventions that target these pathways might provide a benefit in postmenopausal women and individuals with obesity, a population at high risk of breast cancer.
Collapse
Affiliation(s)
- Kristy A Brown
- Sandra and Edward Meyer Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
29
|
Seitz AJ, Asaad M, Hanson SE, Butler CE, Largo RD. Autologous Fat Grafting for Oncologic Patients: A Literature Review. Aesthet Surg J 2021; 41:S61-S68. [PMID: 34002764 DOI: 10.1093/asj/sjab126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autologous fat grafting (AFG) serves as an effective method to address volume defects, contour irregularities, and asymmetry in both aesthetic and reconstructive procedures. In recent years, there has been growing concern about the potential of cancer recurrence and interference with cancer surveillance in oncologic patients receiving AFG. The adipose tissue contains adipose-derived stem cells (ASCs), a specific type of mesenchymal stem cells, that facilitate secretion of numerous growth factors which in turn stimulate tissue regeneration and angiogenesis. As such, it has been theorized that ASCs may also have the potential to stimulate cancer cell proliferation and growth when used in oncologic patients. Multiple research studies have demonstrated the ability of ACSs to facilitate tumor proliferation in animal models. However, clinical research in oncologic patients has yielded contradictory findings. Although the literature pertaining to oncologic safety in head and neck, as well as sarcoma, cancer patients remains limited, studies demonstrate no increased risk of tumor recurrence in these patient populations receiving AFG. Similarly, both the efficacy and safety of AFG have been well established in breast cancer patients through numerous clinical studies. More recently, preclinical research in animal models has shown that AFG has the potential to facilitate tissue regeneration and improve joint contracture following irradiation. Ultimately, further research is needed to elucidate the safety of AFG in a variety of oncologic patients, as well as explore its use in tissue regeneration, particularly in the setting of radiotherapy. Level of Evidence: 4.
Collapse
Affiliation(s)
- Allison J Seitz
- Department of Plastic & Reconstructive Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Malke Asaad
- Department of Plastic & Reconstructive Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Summer E Hanson
- Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Charles E Butler
- Department of Plastic & Reconstructive Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rene D Largo
- Department of Plastic & Reconstructive Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
30
|
Geetha RG, Krishnankutty Nair Chandrika S, Saraswathy GG, Nair Sivakumari A, Sakuntala M. ROS Dependent Antifungal and Anticancer Modulations of Piper colubrinum Osmotin. Molecules 2021; 26:molecules26082239. [PMID: 33924432 PMCID: PMC8070354 DOI: 10.3390/molecules26082239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
Osmotin, a plant defense protein, has functional similarity to adiponectin, an insulin sensitizingsensitising hormone secreted by adipocytes. We speculated that Piper colubrinum Osmotin (PcOSM) could have functional roles in obesity-related cancers, especially breast cancer. Immunofluorescence assays, flow cytometry, cell cycle analysis and a senescence assay were employed to delineate the activity in MDAMB231 breast cancer cell line. PcOSM pre-treated P. nigrum leaves showed significant reduction in disease symptoms correlated with high ROS production. In silico analysis predicted that PcOSM has higher binding efficiency with adiponectin receptor compared to adiponectin. PcOSM was effectively taken up by MDAMB231 cancer cells which resulted in marked increase in intracellular ROS levels leading to senescence and cell cycle arrest in G2/M stage. This study provides evidence on the ROS mediated direct inhibitory activity of the plant derived osmotin protein on the phytopathogen Phytophthora capsici, and the additional functional roles of this plant defense protein on cancer cells through inducing ROS associated senescence. The strong leads produced from this study could be pursued further to obtain more insights into the therapeutic potential of osmotin in human cancers.
Collapse
Affiliation(s)
- Rajeswari Gopal Geetha
- Plant Disease Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Jagathy, Thycaud P.O., Thiruvananthapuram 695014, Kerala, India; (R.G.G.); (G.G.S.)
| | | | - Gayathri G. Saraswathy
- Plant Disease Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Jagathy, Thycaud P.O., Thiruvananthapuram 695014, Kerala, India; (R.G.G.); (G.G.S.)
| | - Asha Nair Sivakumari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, Kerala, India;
| | - Manjula Sakuntala
- Plant Disease Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Jagathy, Thycaud P.O., Thiruvananthapuram 695014, Kerala, India; (R.G.G.); (G.G.S.)
- Correspondence:
| |
Collapse
|
31
|
Zhou Y, Yang Y, Zhou T, Li B, Wang Z. Adiponectin and Thyroid Cancer: Insight into the Association between Adiponectin and Obesity. Aging Dis 2021; 12:597-613. [PMID: 33815885 PMCID: PMC7990371 DOI: 10.14336/ad.2020.0919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022] Open
Abstract
In recent decades, the incidence and diagnosis of thyroid cancer have risen dramatically, and thyroid cancer has now become the most common endocrine cancer in the world. The onset of thyroid cancer is insidious, and its progression is slow and difficult to detect. Therefore, early prevention and treatment have important strategic significance. Moreover, an in-depth exploration of the pathogenesis of thyroid cancer is key to early prevention and treatment. Substantial evidence supports obesity as an independent risk factor for thyroid cancer. Adipose tissue dysfunction in the obese state is accompanied by dysregulation of a variety of adipocytokines. Adiponectin (APN) is one of the most pivotal adipocytokines, and its connection with obesity and obesity-related disease has gradually become a hot topic in research. Recently, the association between APN and thyroid cancer has received increasing attention. The purpose of this review is to systematically review previous studies, give prominence to APN, focus on the relationship between APN, obesity and thyroid cancer, and uncover the underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- 1Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, China.,2Department of Endocrinology and Metabolism, Sixth Affiliated Hospital of Kunming Medical University, The People's Hospital of Yuxi City, Yuxi, China
| | - Ying Yang
- 1Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Taicheng Zhou
- 1Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bai Li
- 3School of Medicine, Yunnan University, Kunming, China
| | - Zhanjian Wang
- 4Department of Endocrinology and Metabolism, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
32
|
Bhardwaj P, Brown KA. Obese Adipose Tissue as a Driver of Breast Cancer Growth and Development: Update and Emerging Evidence. Front Oncol 2021; 11:638918. [PMID: 33859943 PMCID: PMC8042134 DOI: 10.3389/fonc.2021.638918] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is an established risk factor for breast cancer growth and progression. A number of advances have been made in recent years revealing new insights into this link. Early events in breast cancer development involve the neoplastic transformation of breast epithelial cells to cancer cells. In obesity, breast adipose tissue undergoes significant hormonal and inflammatory changes that create a mitogenic microenvironment. Many factors that are produced in obesity have also been shown to promote tumorigenesis. Given that breast epithelial cells are surrounded by adipose tissue, the crosstalk between the adipose compartment and breast epithelial cells is hypothesized to be a significant player in the initiation and progression of breast cancer in individuals with excess adiposity. The present review examines this crosstalk with a focus on obese breast adipose-derived estrogen, inflammatory mediators and adipokines, and how they are mechanistically linked to breast cancer risk and growth through stimulation of oxidative stress, DNA damage, and pro-oncogenic transcriptional programs. Pharmacological and lifestyle strategies targeting these factors and their downstream effects are evaluated for feasibility and efficacy in decreasing the risk of obesity-induced breast epithelial cell transformation and consequently, breast cancer development.
Collapse
Affiliation(s)
- Priya Bhardwaj
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
33
|
Perego S, Sansoni V, Ziemann E, Lombardi G. Another Weapon against Cancer and Metastasis: Physical-Activity-Dependent Effects on Adiposity and Adipokines. Int J Mol Sci 2021; 22:ijms22042005. [PMID: 33670492 PMCID: PMC7922129 DOI: 10.3390/ijms22042005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
Physically active behavior has been associated with a reduced risk of developing certain types of cancer and improved psychological conditions for patients by reducing anxiety and depression, in turn improving the quality of life of cancer patients. On the other hand, the correlations between inactivity, sedentary behavior, and overweight and obesity with the risk of development and progression of various cancers are well studied, mainly in middle-aged and elderly subjects. In this article, we have revised the evidence on the effects of physical activity on the expression and release of the adipose-tissue-derived mediators of low-grade chronic inflammation, i.e., adipokines, as well as the adipokine-mediated impacts of physical activity on tumor development, growth, and metastasis. Importantly, exercise training may be effective in mitigating the side effects related to anti-cancer treatment, thereby underlining the importance of encouraging cancer patients to engage in moderate-intensity activities. However, the strong need to customize and adapt exercises to a patient’s abilities is apparent. Besides the preventive effects of physically active behavior against the adipokine-stimulated cancer risk, it remains poorly understood how physical activity, through its actions as an adipokine, can actually influence the onset and development of metastases.
Collapse
Affiliation(s)
- Silvia Perego
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
- Correspondence: ; Tel.: +39-0266214068
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland; or
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland; or
| |
Collapse
|
34
|
Soni S, Torvund M, Mandal CC. Molecular insights into the interplay between adiposity, breast cancer and bone metastasis. Clin Exp Metastasis 2021; 38:119-138. [PMID: 33591548 DOI: 10.1007/s10585-021-10076-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/03/2021] [Indexed: 01/20/2023]
Abstract
Cancer is a complex disease, with various pre-existing health ailments enhancing its pathology. In cancer, the extracellular environment contains various intrinsic physiological factors whose levels are altered with aging and pre-existing conditions. In obesity, the tumor microenvironment and metastases are enriched with factors that are both derived locally, and from other physiological compartments. Similarly, in obesity, the cancer cell environment both at the site of origin and at the secondary site i.e., metastatic niche, contains significantly more phenotypically-altered adipocytes than that of un-obese cancer patients. Indeed, obesity has been linked with cancer progression, metastasis, and therapy resistance. Adipocytes not only interact with tumor cells, but also with adjacent stromal cells at primary and metastatic sites. This review emphasizes the importance of bidirectional interactions between adipocytes and breast tumor cells in breast cancer progression and its bone metastases. This paper not only chronicles the role of various adipocyte-derived factors in tumor growth, but also describes the significance of adipocyte-derived bone metastatic factors in the development of bone metastasis of breast cancer. It provides a molecular view of the interplay between the adipocytes and tumor cells involved in breast cancer bone metastasis. However, more research is needed to determine if targeting cancer-associated adipocytes holds promise as a potential therapeutic approach for breast cancer bone metastasis treatment. Interplay between adipocytes and breast cancer cells at primary cancer site and metastatic bone microenvironment. AMSC Adipose-derived mesenchymal stem cell, CAA Cancer associated adipocytes, CAF Cancer associated fibroblast, BMSC Bone marrow derived mesenchymal stem cell, BMA Bone marrow adipocyte.
Collapse
Affiliation(s)
- Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Meaghan Torvund
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
35
|
Zhang J, Wu H, Wang R. Metabolic syndrome and esophageal cancer risk: a systematic review and meta‑analysis. Diabetol Metab Syndr 2021; 13:8. [PMID: 33468224 PMCID: PMC7816502 DOI: 10.1186/s13098-021-00627-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Many clinical studies evaluating the relationship between metabolic syndrome and esophageal cancer yielded uncertain results. The purpose of this study is to systematically assess the relationship between metabolic syndrome and esophageal cancer. METHODS We searched clinical studies on metabolic syndrome and esophageal cancer risk in PubMed, Embase, and the Cochrane Library. Meta-analysis was conducted by RevMan 5.3 softwares. RESULTS A total of four cohort studies and two case-control studies met eligibility criteria and were included in the meta-analysis. Meta-analysis using a fixed-effect model indicated that MetS was related with a higher risk of EC (OR: 1.16, 95% CI 1.08-1.25). Subgroup analyses grouped by pathological types showed that MetS was related with a higher risk of EAC (OR: 1.19, 95% CI 1.10-1.28). Subgroup analyses grouped by metabolic conditions showed hyperglycemia (OR: 1.12, 95% CI 1.03-1.21),hypertension (OR: 1.23, 95% CI 1.04-1.46), obesity (OR: 1.40, 95% CI 1.22-1.60, P < 0.05) were related with a higher risk of EAC. CONCLUSIONS Overall, our meta-analysis provides high quality evidence that metabolic syndrome was related with a higher risk of EAC. Among the individual components of the metabolic syndrome, hyperglycemia, hypertension and obesity may be the key factors.
Collapse
Affiliation(s)
- Jinjia Zhang
- Department of General Practice, Second Hospital of Hebei Medical University, Heping Western Road No. 215, Shijiazhuang, 050000 Hebei China
| | - Huadong Wu
- Department of Gastrointestinal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Rongying Wang
- Department of General Practice, Second Hospital of Hebei Medical University, Heping Western Road No. 215, Shijiazhuang, 050000 Hebei China
| |
Collapse
|
36
|
Pant R, Firmal P, Shah VK, Alam A, Chattopadhyay S. Epigenetic Regulation of Adipogenesis in Development of Metabolic Syndrome. Front Cell Dev Biol 2021; 8:619888. [PMID: 33511131 PMCID: PMC7835429 DOI: 10.3389/fcell.2020.619888] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is one of the biggest public health concerns identified by an increase in adipose tissue mass as a result of adipocyte hypertrophy and hyperplasia. Pertaining to the importance of adipose tissue in various biological processes, any alteration in its function results in impaired metabolic health. In this review, we discuss how adipose tissue maintains the metabolic health through secretion of various adipokines and inflammatory mediators and how its dysfunction leads to the development of severe metabolic disorders and influences cancer progression. Impairment in the adipocyte function occurs due to individuals' genetics and/or environmental factor(s) that largely affect the epigenetic profile leading to altered gene expression and onset of obesity in adults. Moreover, several crucial aspects of adipose biology, including the regulation of different transcription factors, are controlled by epigenetic events. Therefore, understanding the intricacies of adipogenesis is crucial for recognizing its relevance in underlying disease conditions and identifying the therapeutic interventions for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Richa Pant
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Priyanka Firmal
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Vibhuti Kumar Shah
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Aftab Alam
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Samit Chattopadhyay
- National Centre for Cell Science, SP Pune University Campus, Pune, India.,Department of Biological Sciences, BITS Pilani, Goa, India
| |
Collapse
|
37
|
Llanos AAM, Yao S, Singh A, Aremu JB, Khiabanian H, Lin Y, Omene C, Omilian AR, Khoury T, Hong CC, Ganesan S, Foran DJ, Higgins MJ, Ambrosone CB, Bandera EV, Demissie K. Gene expression of adipokines and adipokine receptors in the tumor microenvironment: associations of lower expression with more aggressive breast tumor features. Breast Cancer Res Treat 2020; 185:785-798. [PMID: 33067778 DOI: 10.1007/s10549-020-05972-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Limited epidemiologic data are available on the expression of adipokines leptin (LEP) and adiponectin (ADIPOQ) and adipokine receptors (LEPR, ADIPOR1, ADIPOR2) in the breast tumor microenvironment (TME). The associations of gene expression of these biomarkers with tumor clinicopathology are not well understood. METHODS NanoString multiplexed assays were used to assess the gene expression levels of LEP, LEPR, ADIPOQ, ADIPOR1, and ADIPOR2 within tumor tissues among 162 Black and 55 White women with newly diagnosed breast cancer. Multivariate mixed effects models were used to estimate associations of gene expression with breast tumor clinicopathology (overall and separately among Blacks). RESULTS Black race was associated with lower gene expression of LEPR (P = 0.002) and ADIPOR1 (P = 0.01). Lower LEP, LEPR, and ADIPOQ gene expression were associated with higher tumor grade (P = 0.0007, P < 0.0001, and P < 0.0001, respectively) and larger tumor size (P < 0.0001, P = 0.0005, and P < 0.0001, respectively). Lower ADIPOQ expression was associated with ER- status (P = 0.0005), and HER2-enriched (HER2-E; P = 0.0003) and triple-negative (TN; P = 0.002) subtypes. Lower ADIPOR2 expression was associated with Ki67+ status (P = 0.0002), ER- status (P < 0.0001), PR- status (P < 0.0001), and TN subtype (P = 0.0002). Associations of lower adipokine and adipokine receptor gene expression with ER-, HER2-E, and TN subtypes were confirmed using data from The Cancer Genome Atlas (P-values < 0.005). CONCLUSION These findings suggest that lower expression of ADIPOQ, ADIPOR2, LEP, and LEPR in the breast TME might be indicators of more aggressive breast cancer phenotypes. Validation of these findings are warranted to elucidate the role of the adipokines and adipokine receptors in long-term breast cancer prognosis.
Collapse
Affiliation(s)
- Adana A M Llanos
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Physics and Astronomy, School of Graduate Studies, Rutgers University, New Brunswick, NJ, USA
| | - John B Aremu
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yong Lin
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Coral Omene
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Angela R Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - David J Foran
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Michael J Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kitaw Demissie
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University School of Public Health, Brooklyn, NY, USA
| |
Collapse
|
38
|
The Role of Adipokines and Bone Marrow Adipocytes in Breast Cancer Bone Metastasis. Int J Mol Sci 2020; 21:ijms21144967. [PMID: 32674405 PMCID: PMC7404398 DOI: 10.3390/ijms21144967] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
The morbidity and mortality of breast cancer is mostly due to a distant metastasis, especially to the bone. Many factors may be responsible for bone metastasis in breast cancer, but interactions between tumor cells and other surrounding types of cells, and cytokines secreted by both, are expected to play the most important role. Bone marrow adipocyte (BMA) is one of the cell types comprising the bone, and adipokine is one of the cytokines secreted by both breast cancer cells and BMAs. These BMAs and adipokines are known to be responsible for cancer progression, and this review is focused on how BMAs and adipokines work in the process of breast cancer bone metastasis. Their potential as suppressive targets for bone metastasis is also explored in this review.
Collapse
|
39
|
Andò S, Naimo GD, Gelsomino L, Catalano S, Mauro L. Novel insights into adiponectin action in breast cancer: Evidence of its mechanistic effects mediated by ERα expression. Obes Rev 2020; 21:e13004. [PMID: 32067339 DOI: 10.1111/obr.13004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
Abstract
This review describes the multifaceted effects of adiponectin on breast cancer cell signalling, tumour metabolism, and microenvironment. It is largely documented that low adiponectin levels are associated with an increased risk of breast cancer. However, it needs to be still clarified what are the extents of the decrease of local/intra-tumoural adiponectin concentrations, which promote breast tumour malignancy. Most of the anti-proliferative and pro-apoptotic effects induced by adiponectin have been obtained in breast cancer cells not expressing estrogen receptor alpha (ERα). Here, we will highlight recent findings demonstrating the mechanistic effects through which adiponectin is able to fuel genomic and non-genomic estrogen signalling, inhibiting LKB1/AMPK/mTOR/S6K pathway and switching energy balance. Therefore, it emerges that the reduced adiponectin levels in patients with obesity work to sustain tumour growth and progression in ERα-positive breast cancer cells. All this may contribute to remove the misleading paradigm that adiponectin univocally inhibits breast cancer cell growth and progression independently on ERα status. The latter concept, here clearly provided by pre-clinical studies, may have translational relevance adopting adiponectin as a potential therapeutic tool. Indeed, the interfering role of ERα on adiponectin action addresses how a separate assessment of adiponectin treatment needs to be considered in novel therapeutic strategies for ERα-positive and ERα-negative breast cancer.
Collapse
Affiliation(s)
- Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
40
|
Tesi M, Millanta F, Poli A, Mazzetti G, Pasquini A, Panzani D, Rota A, Vannozzi I. Role of body condition score and adiponectin expression in the progression of canine mammary carcinomas. Vet Med Sci 2020; 6:265-271. [PMID: 32202386 PMCID: PMC7397913 DOI: 10.1002/vms3.238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/03/2019] [Accepted: 12/29/2019] [Indexed: 12/03/2022] Open
Abstract
Obesity has been identified as a risk factor for developing breast cancer in post‐menopausal period in humans and has been suspected to be associated with a worse prognosis also in the bitch. The aims of this study were to investigate the association between body condition score (BCS) and the prognosis of canine mammary carcinomas (CMCs) and the relationships between adiponectin expression and tumour behaviour. Seventy‐three bitches with tubular, tubulopapillary, solid or complex carcinomas were included in the present study. For each dog, evaluation of BCS was conducted using a nine‐point BCS system and the study population was divided into normal weight (4–5/9 points; n = 42), overweight (6–7/9 points; n = 19) and obese (8–9/9 points; n = 12). Type of diet (commercial, homemade or mixed) was recorded. After surgical excision, histological type, tumour size and nodal status were assessed and adiponectin expression was determined and quantified by immunohistochemistry and morphometric analysis. CMC histotype was not correlated with BCS, while a positive correlation between BCS and histological grade (p < .01) was observed. Overweight and obese bitches combined showed a shorter cancer‐specific survival than normal weighted bitches (p < .01). Bitches fed with a homemade diet had a higher BCS than dogs fed with a commercial one, although no relationship was observed between diet and cancer‐specific survival. Thirty‐six CMCs scored positive for adiponectin expression (49%), but no correlation was found between the hormone expression and either CMC characteristics or prognosis. In conclusion, a higher BCS seems to be related with a higher prevalence of more aggressive CMCs and negatively affects the survival time in bitches with these mammary tumours.
Collapse
Affiliation(s)
- Matteo Tesi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Alessandro Poli
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Gaia Mazzetti
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Anna Pasquini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Duccio Panzani
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Alessandra Rota
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Iacopo Vannozzi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Zhang F, Liu S. Mechanistic insights of adipocyte metabolism in regulating breast cancer progression. Pharmacol Res 2020; 155:104741. [PMID: 32151679 DOI: 10.1016/j.phrs.2020.104741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Adipocyte account for the largest component in breast tissue. Dysfunctional adipocyte metabolism, such as metaflammation in metabolically abnormal obese patients, will cause hyperplasia and hypertrophy of its constituent adipocytes. Inflamed adipose tissue is one of the biggest risk factors causing breast cancer. Factors linking adipocyte metabolism to breast cancer include dysfunctional secretion of proinflammatory mediators, proangiogenic factors and estrogens. The accumulation of tumor supporting cells and systemic effects, such as insulin resistance, dyslipidemia and oxidative stress, which are caused by abnormal adipocyte metabolism, further contribute to a more aggressive tumor microenvironment and stimulate breast cancer stem cell to influence the development and progression of breast cancer. Here, in this review, we focus on the adipocyte metabolism in regulating breast cancer progression, and discuss the potential targets which can be used for breast cancer therapy.
Collapse
Affiliation(s)
- Fuchuang Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Key Laboratory of Medical Epigenetics and Metabolism, Innovation Center for Cell Signaling Network, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Key Laboratory of Medical Epigenetics and Metabolism, Innovation Center for Cell Signaling Network, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Cho JH, Shin CM, Han KD, Yoon H, Park YS, Kim N, Lee DH. Abdominal obesity increases risk for esophageal cancer: a nationwide population-based cohort study of South Korea. J Gastroenterol 2020; 55:307-316. [PMID: 31792601 DOI: 10.1007/s00535-019-01648-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/18/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND The relationship between overall obesity, as measured by body mass index (BMI) and risk of esophageal squamous cell carcinoma (ESCC) has been reported to show a negative correlation. However, the relationship of ESCC, which accounts for around 90% of esophageal cancers in South Korea, with abdominal obesity, as measured by waist circumference (WC), may be different. Thus, we investigated the association between abdominal obesity and esophageal cancer in a nationwide population-based cohort. METHODS A retrospective cohort study of 22,809,722 individuals who had undergone regular health check-ups provided by the National Health Insurance Corporation between 2009 and 2012 (median follow-up period, 6.4 years) in South Korea was conducted. Abdominal obesity was defined as a WC > 90 cm for men and > 85 cm for women. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) using χ2 test and Cox proportional hazards model adjusted for confounding factors. The primary outcome was newly developed esophageal cancer. RESULTS After adjusting for BMI, abdominal obesity increased the risk of esophageal cancer (HR 1.29, 95% CI 1.23-1.36). WC increased the risk for esophageal cancer in a dose-dependent manner (p values for trend < 0.0001). Among overweight (BMI 23-24.9 kg/m2) and obese I (BMI 25-29.9 kg/m2) individuals, abdominal obesity was a risk factor for esophageal cancer (HR 1.22, 95% CI 1.11-1.34; HR 1.28, 95% CI 1.18-1.39, respectively). CONCLUSION Increasing abdominal obesity may be associated with an increased risk for esophageal cancer. Further studies are warranted to confirm the relationship.
Collapse
Affiliation(s)
- Jae Ho Cho
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Cheol Min Shin
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Kyung-Do Han
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Hyuk Yoon
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Young Soo Park
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Nayoung Kim
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Dong Ho Lee
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
43
|
Cao R, Tang W, Chen S. Association between BTLA polymorphisms and susceptibility to esophageal squamous cell carcinoma in the Chinese population. J Clin Lab Anal 2020; 34:e23221. [PMID: 32060969 PMCID: PMC7307356 DOI: 10.1002/jcla.23221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/09/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Growing evidence suggested that B‐ and T‐lymphocyte attenuator (BTLA) polymorphisms raised the susceptibility to a wide range of cancers. This study aimed to evaluate whether BTLA variants were related to the risk of esophageal squamous cell carcinoma (ESCC). Methods A total of 721 ESCC patients and 1208 matched non‐cancer controls were included in this research, and four tagging BTLA polymorphisms (rs2171513 G > A, rs3112270 A > G, rs1982809 G > A, and rs16859629 T > C) were selected and genotyped using SNPscan™ Assays. Results In the present study, no significant relationship between BTLA polymorphisms and ESCC was observed. However, stratified analyses suggested that the variant of BTLA rs3112270 A > G reduced the risk of ESCC in the male subgroup (AG vs AA: adjusted OR = 0.78, 95% CI = 0.61‐0.99, P = .042), BMI < 24 kg/m2 subgroup (AG vs AA: adjusted OR = 0.72, 95% CI = 0.55‐0.93, P = .012; AG/GG vs AA: adjusted OR = 0.77, 95% CI = 0.60‐0.98, P = .032), and ever drinking subgroup (AG vs AA: adjusted OR = 0.61, 95% CI = 0.38‐0.97, P = .037). But when stratified by BMI ≥ 24 kg/m2, the rs3112270 A > G polymorphism increased the susceptibility to ESCC (GG vs AA: adjusted OR = 1.91, 95% CI = 1.02‐3.59, P = .045). Besides, we demonstrated that BTLA rs2171513 G > A polymorphism was protective of ESCC in the ever drinking subgroup (GA/AA vs GG: adjusted OR = 0.62, 95% CI = 0.39‐0.97, P = .037). Conclusion Taken together, our initial investigation postulated that the rs3112270 A > G and rs2171513 G > A variants in the BTLA gene are candidates for the risk of ESCC, which might be helpful for the early diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Rui Cao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Shuchen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
44
|
Llanos AAM, Lin Y, Chen W, Yao S, Norin J, Chekmareva MA, Omene C, Cong L, Omilian AR, Khoury T, Hong CC, Ganesan S, Foran DJ, Higgins M, Ambrosone CB, Bandera EV, Demissie K. Immunohistochemical analysis of adipokine and adipokine receptor expression in the breast tumor microenvironment: associations of lower leptin receptor expression with estrogen receptor-negative status and triple-negative subtype. Breast Cancer Res 2020; 22:18. [PMID: 32046756 PMCID: PMC7014630 DOI: 10.1186/s13058-020-1256-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The molecular mechanisms underlying the association between increased adiposity and aggressive breast cancer phenotypes remain unclear, but likely involve the adipokines, leptin (LEP) and adiponectin (ADIPOQ), and their receptors (LEPR, ADIPOR1, ADIPOR2). METHODS We used immunohistochemistry (IHC) to assess LEP, LEPR, ADIPOQ, ADIPOR1, and ADIPOR2 expression in breast tumor tissue microarrays among a sample of 720 women recently diagnosed with breast cancer (540 of whom self-identified as Black). We scored IHC expression quantitatively, using digital pathology analysis. We abstracted data on tumor grade, tumor size, tumor stage, lymph node status, Ki67, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) from pathology records, and used ER, PR, and HER2 expression data to classify breast cancer subtype. We used multivariable mixed effects models to estimate associations of IHC expression with tumor clinicopathology, in the overall sample and separately among Blacks. RESULTS Larger proportions of Black than White women were overweight or obese and had more aggressive tumor features. Older age, Black race, postmenopausal status, and higher body mass index were associated with higher LEPR IHC expression. In multivariable models, lower LEPR IHC expression was associated with ER-negative status and triple-negative subtype (P < 0.0001) in the overall sample and among Black women only. LEP, ADIPOQ, ADIPOR1, and ADIPOR2 IHC expression were not significantly associated with breast tumor clinicopathology. CONCLUSIONS Lower LEPR IHC expression within the breast tumor microenvironment might contribute mechanistically to inter-individual variation in aggressive breast cancer clinicopathology, particularly ER-negative status and triple-negative subtype.
Collapse
Affiliation(s)
- Adana A M Llanos
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| | - Yong Lin
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Wenjin Chen
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jorden Norin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Cell Biology and Neuroscience, Rutgers School of Arts and Sciences, New Brunswick, NJ, USA
| | - Marina A Chekmareva
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Coral Omene
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Lei Cong
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Angela R Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Thaer Khoury
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Pharmacology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - David J Foran
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Michael Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kitaw Demissie
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University School of Public Health, Brooklyn, NY, USA
| |
Collapse
|
45
|
Maroni P. Leptin, Adiponectin, and Sam68 in Bone Metastasis from Breast Cancer. Int J Mol Sci 2020; 21:ijms21031051. [PMID: 32033341 PMCID: PMC7037668 DOI: 10.3390/ijms21031051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
The most serious aspect of neoplastic disease is the spread of cancer cells to secondary sites. Skeletal metastases can escape detection long after treatment of the primary tumour and follow-up. Bone tissue is a breeding ground for many types of cancer cells, especially those derived from the breast, prostate, and lung. Despite advances in diagnosis and therapeutic strategies, bone metastases still have a profound impact on quality of life and survival and are often responsible for the fatal outcome of the disease. Bone and the bone marrow environment contain a wide variety of cells. No longer considered a passive filler, bone marrow adipocytes have emerged as critical contributors to cancer progression. Released by adipocytes, adipokines are soluble factors with hormone-like functions and are currently believed to affect tumour development. Src-associated in mitosis of 68 kDa (Sam68), originally discovered as a protein physically associated with and phosphorylated by c-Src during mitosis, is now recognised as an important RNA-binding protein linked to tumour onset and progression of disease. Sam68 also regulates splicing events and recent evidence reports that dysregulation of these events is a key step in neoplastic transformation and tumour progression. The present review reports recent findings on adipokines and Sam68 and their role in breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Paola Maroni
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy
| |
Collapse
|
46
|
Martínez-Rodríguez OP, Thompson-Bonilla MDR, Jaramillo-Flores ME. Association between obesity and breast cancer: Molecular bases and the effect of flavonoids in signaling pathways. Crit Rev Food Sci Nutr 2020; 60:3770-3792. [PMID: 31899947 DOI: 10.1080/10408398.2019.1708262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is an abnormal or excessive accumulation of fat that leads to different health problems, such as cancer, where the adipocytes promote the proliferation, migration, and invasion of cancer cells, especially in the breast, where the epithelial cells are immersed in a fatty environment, and the interactions between these two types of cells involve, not only adipokines but also local pro-inflammatory mechanisms and hypoxic processes generating anti-apoptotic signals, which are a common result in leptin signaling. The expression of the Vascular Endothelial Growth Factor (VEGF) and cyclin D1, results in the decrease in phosphorylation of AMPK, increasing the activity of the aromatase enzyme; alternatively, the adiponectin activates AMPK to reduce inflammation. Nevertheless, alterations of the JAK/STAT pathways contribute to mammary carcinogenesis, while the PI3K/AKT/mTOR pathway controls most of the cancer's characteristics such as the cell cycle, survival, differentiation, proliferation, motility, metabolism, and genetic stability. Therefore, the purpose of the present review is, through the accumulated scientific evidence, to find the concordance between the signaling pathways involved among obesity and breast cancer, which can be modulated by using flavonoids.
Collapse
Affiliation(s)
- Oswaldo Pablo Martínez-Rodríguez
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - María Del Rocío Thompson-Bonilla
- Laboratorio de Medicina Genómica, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado ISSSTE, Ciudad de México, México
| | - María Eugenia Jaramillo-Flores
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| |
Collapse
|
47
|
Naimo GD, Gelsomino L, Catalano S, Mauro L, Andò S. Interfering Role of ERα on Adiponectin Action in Breast Cancer. Front Endocrinol (Lausanne) 2020; 11:66. [PMID: 32132979 PMCID: PMC7041409 DOI: 10.3389/fendo.2020.00066] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is characterized by an excess of adipose tissue, due to adipocyte hypertrophy and hyperplasia. Adipose tissue is an endocrine organ producing many bioactive molecules, called adipokines. During obesity, dysfunctional adipocytes alter adipokine secretion, contributing to pathophysiology of obesity-associated diseases, including metabolic syndrome, type 2-diabetes, cardiovascular diseases and many types of malignancies. Circulating adiponectin levels are inversely correlated with BMI, thus adiponectin concentrations are lower in obese than normal-weight subjects. Many clinical investigations highlight that low adiponectin levels represent a serious risk factor in breast carcinogenesis, and are associated with the development of more aggressive phenotype. A large-scale meta-analysis suggests that BMI was positively associated with breast cancer mortality in women with ERα-positive disease, regardless menopausal status. This suggests the importance of estrogen signaling contribution in breast tumorigenesis of obese patients. It has been largely demonstrated that adiponectin exerts a protective role in ERα-negative cells, promoting anti-proliferative and pro-apoptotic effects, while controversial data have been reported in ERα-positive cells. Indeed, emerging data provide evidences that adiponectin in obese patients behave as growth factor in ERα-positive breast cancer cells. This addresses how ERα signaling interference may enhance the potential inhibitory threshold of adiponectin in ERα-positive cells. Thus, we may reasonably speculate that the relatively low adiponectin concentrations could be still not adequate to elicit, in ERα-positive breast cancer cells, the same inhibitory effects observed in ERα-negative cells. In the present review we will focus on the molecular mechanisms through which adiponectin affects breast cancer cell behavior in relationship to ERα expression.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
- *Correspondence: Loredana Mauro
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
- Health Center, University of Calabria, Arcavacata, Italy
- Sebastiano Andò
| |
Collapse
|
48
|
Jiramongkol Y, Lam EWF. Multifaceted Oncogenic Role of Adipocytes in the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:125-142. [PMID: 32130697 DOI: 10.1007/978-3-030-34025-4_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity has for decades been recognised as one of the major health concerns. Recently accumulated evidence has established that obesity or being overweight is strongly linked to an increased risk of cancer. However, it is still not completely clear how adipose tissue (fat), along with other stromal connective tissues and cells, contribute to tumour initiation and progression. In the tumour microenvironment, the adipose tissue cells, in particular the adipocytes, secrete a number of adipokines, including growth factors, hormones, collagens, fatty acids, and other metabolites as well as extracellular vesicles to shape and condition the tumour and its microenvironment. In fact, the adipocytes, through releasing these factors and materials, can directly and indirectly facilitate cancer cell proliferation, apoptosis, metabolism, angiogenesis, metastasis and even chemotherapy resistance. In this chapter, the multidimensional role played by adipocytes, a major and functional component of the adipose tissue, in promoting cancer development and progression within the tumour microenvironment will be discussed.
Collapse
Affiliation(s)
- Yannasittha Jiramongkol
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
49
|
Effects of two types of energy restriction on methylation levels of adiponectin receptor 1 and leptin receptor overlapping transcript in a mouse mammary tumour virus-transforming growth factor- α breast cancer mouse model. Br J Nutr 2019; 125:1-9. [PMID: 31685042 DOI: 10.1017/s0007114519002757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The role of adiponectin and leptin signalling pathways has been suggested to play important roles in the protective effects of energy restriction (ER) on mammary tumour (MT) development. To study the effects of ER on the methylation levels in adiponectin receptor 1 (AdipoR1) and leptin receptor overlapping transcript (Leprot) genes using the pyrosequencing method in mammary fat pad tissue, mouse mammary tumour virus-transforming growth factor-α (MMTV-TGF-α) female mice were randomly assigned to ad libitum (AL), chronic ER (CER, 15 % ER) or intermittent ER (3 weeks AL and 1 week 60 % ER in cyclic periods) groups at 10 weeks of age until 82 weeks of age. The methylation levels of AdipoR1 in the CER group were higher than those in the AL group at week 49/50 (P < 0·05), while the levels of methylation for AdipoR1 and Leprot genes were similar among the other groups. Also, the methylation levels at CpG2 and CpG3 regions of the promoter region of the AdipoR1 gene in the CER group were three times higher (P < 0·05), while CpG1 island of Leprot methylation was significantly lower compared with the other groups (P < 0·05). Adiponectin and leptin gene expression levels were consistent with the methylation levels. We also observed a change with ageing in methylation levels of these genes. These results indicate that different types of ER modify methylation levels of AdipoR1 and Leprot in different ways and CER had a more significant effect on methylation levels of both genes. Epigenetic regulation of these genes may play important roles in the preventive effects of ER against MT development and ageing processes.
Collapse
|
50
|
Tumminia A, Vinciguerra F, Parisi M, Graziano M, Sciacca L, Baratta R, Frittitta L. Adipose Tissue, Obesity and Adiponectin: Role in Endocrine Cancer Risk. Int J Mol Sci 2019; 20:ijms20122863. [PMID: 31212761 PMCID: PMC6628240 DOI: 10.3390/ijms20122863] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/19/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022] Open
Abstract
Adipose tissue has been recognized as a complex organ with endocrine and metabolic roles. The excess of fat mass, as occurs during overweight and obesity states, alters the regulation of adipose tissue, contributing to the development of obesity-related disorders. In this regard, many epidemiological studies shown an association between obesity and numerous types of malignancies, comprising those linked to the endocrine system (e.g., breast, endometrial, ovarian, thyroid and prostate cancers). Multiple factors may contribute to this phenomenon, such as hyperinsulinemia, dyslipidemia, oxidative stress, inflammation, abnormal adipokines secretion and metabolism. Among adipokines, growing interest has been placed in recent years on adiponectin (APN) and on its role in carcinogenesis. APN is secreted by adipose tissue and exerts both anti-inflammatory and anti-proliferative actions. It has been demonstrated that APN is drastically decreased in obese individuals and that it can play a crucial role in tumor growth. Although literature data on the impact of APN on carcinogenesis are sometimes conflicting, the most accredited hypothesis is that it has a protective action, preventing cancer development and progression. The aim of the present review is to summarize the currently available evidence on the involvement of APN and its signaling in the etiology of cancer, focusing on endocrine malignancies.
Collapse
Affiliation(s)
- Andrea Tumminia
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| | - Federica Vinciguerra
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| | - Miriam Parisi
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| | - Marco Graziano
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| | - Roberto Baratta
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| | - Lucia Frittitta
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| |
Collapse
|