1
|
Qiao X, Guo S, Meng Z, Gan H, Wu Z, Sun Y, Liu S, Dou G, Gu R. Advances in the study of death receptor 5. Front Pharmacol 2025; 16:1549808. [PMID: 40144653 PMCID: PMC11936945 DOI: 10.3389/fphar.2025.1549808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
DR5, a receptor with the highest affinity for TRAIL under physiological conditions, selectively induces apoptosis in specific target cells such as tumor and aberrant immune cells, while minimally affecting normal cells. The TRAIL-DR5 signaling pathway is a crucial regulatory mechanism when the body responds to various exogenous interference factors, including viruses, chemicals, and radiation. This pathway plays a vital role in maintaining physiological homeostasis and in the pathological development of various diseases. Different modulations of DR5, such as upregulation, activation, and antagonism, hold significant potential for therapeutic applications in tumors, cardiovascular diseases, autoimmune diseases, viral infections, and radiation injuries. This article provides an overview of the current research progress on DR5, including the status and prospects of its clinical applications.
Collapse
Affiliation(s)
- Xuan Qiao
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Guo
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
2
|
Yang L, Gong Y, Liu F, Chen W, Wang X, Long G, Li H, Xiao F, Lu M, Hu Y, Tong X, Zuo J. A novel phthalazinone derivative as a capsid assembly modulator inhibits hepatitis B virus expression. Antiviral Res 2024; 221:105763. [PMID: 38008192 DOI: 10.1016/j.antiviral.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Development of new anti-hepatitis B virus (HBV) drugs that target viral capsid assembly is a very active research field. We identify a novel phthalazinone derivative, compound 5832, as a potent HBV inhibitor. In this study, we intend to elaborate the antiviral effect and mechanism of 5832 against HBV in vitro and in vivo. Compound 5832 treatment induces the formation of genome-free empty capsid by interfering with the core protein assembly domain, which significantly decreases the extracellular and intracellular HBV DNA. In the AAV-HBV transduced mouse model, 5832 suppresses serum HBV DNA after 4-week treatment, and decreases HBsAg and HBeAg levels. 5832 treatment also reduces intrahepatic HBV RNA, DNA and HBcAg levels. During the follow-up period after treatment withdrawal, serum antigen levels demonstrated no increase. We demonstrate 5832 treatment could active apoptotic signaling by elevating the expression of death receptor 5 (DR5), which participated in corresponding HBcAg-positive hepatocyte eradication. Phthalazinone derivative 5832 may serve as a promising anti-HBV drug candidate to improve the treatment options for chronic HBV infection.
Collapse
Affiliation(s)
- Li Yang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200000,China
| | - Ying Gong
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Feifei Liu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Wuhong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Xinran Wang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No.138 Xianlin Road, Nanjing, 210023, China
| | - Guozhang Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Heng Li
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Fuling Xiao
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - MengJi Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Youhong Hu
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Xiankun Tong
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Jianping Zuo
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No.138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
3
|
Wang K, Teng W, Wu N, Gu S, Zhou T, Zhang Y. Preparation and evaluation of Angelica sinensis polysaccharide-modified chitosan sponge for acute liver injury protection. Int J Biol Macromol 2023; 253:127126. [PMID: 37778573 DOI: 10.1016/j.ijbiomac.2023.127126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
In this study, a porous sponge material was formed by physically mixing chitosan (CS) and Angelica sinensis polysaccharide (ASP). After removing the water by freeze-drying, the CS/ASP sponge was obtained. The prepared sponges exhibited excellent swelling properties, thermal stability and biocompatibility as well as improvements over the insufficient mechanical properties of pure chitosan sponges. Notably, the ASP released from the CS/ASP sponge could be effectively absorbed by the liver, which endowed the CS/ASP sponge with effective liver-protective effects against CCl4-induced acute liver injury; these protective effects surpassed those of both blank CS and CS/Dextran sponges. The underlying protective mechanism may involve the activation of the Nrf2-mediated antioxidant signaling pathway and the inhibition of hepatocyte apoptosis. Understanding CS/ASP sponges may provide new insights and inspire new methods for the clinical application of ASP. At the same time, we hope to suggest future directions for the development of polysaccharide preparations.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Wangtianzi Teng
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Nire Wu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - SaiSai Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Tao Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| |
Collapse
|
4
|
Lefeuvre C, Le Guillou-Guillemette H, Ducancelle A. A Pleiotropic Role of the Hepatitis B Virus Core Protein in Hepatocarcinogenesis. Int J Mol Sci 2021; 22:ijms222413651. [PMID: 34948447 PMCID: PMC8707456 DOI: 10.3390/ijms222413651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is one of the most common factors associated with hepatocellular carcinoma (HCC), which is the sixth most prevalent cancer among all cancers worldwide. However, the pathogenesis of HBV-mediated hepatocarcinogenesis is unclear. Evidence currently available suggests that the HBV core protein (HBc) plays a potential role in the development of HCC, such as the HBV X protein. The core protein, which is the structural component of the viral nucleocapsid, contributes to almost every stage of the HBV life cycle and occupies diverse roles in HBV replication and pathogenesis. Recent studies have shown that HBc was able to disrupt various pathways involved in liver carcinogenesis: the signaling pathways implicated in migration and proliferation of hepatoma cells, apoptosis pathways, and cell metabolic pathways inducing the development of HCC; and the immune system, through the expression and production of proinflammatory cytokines. In addition, HBc can modulate normal functions of hepatocytes through disrupting human host gene expression by binding to promoter regions. This HBV protein also promotes HCC metastasis through epigenetic alterations, such as micro-RNA. This review focuses on the molecular pathogenesis of the HBc protein in HBV-induced HCC.
Collapse
Affiliation(s)
- Caroline Lefeuvre
- Laboratoire de Virologie, Département de Biologie des Agents Infectieux, CHU Angers, F-49000 Angers, France; (H.L.G.-G.); (A.D.)
- HIFIH Laboratory UPRES EA3859, SFR ICAT 4208, Angers University, F-49000 Angers, France
- Correspondence:
| | - Hélène Le Guillou-Guillemette
- Laboratoire de Virologie, Département de Biologie des Agents Infectieux, CHU Angers, F-49000 Angers, France; (H.L.G.-G.); (A.D.)
- HIFIH Laboratory UPRES EA3859, SFR ICAT 4208, Angers University, F-49000 Angers, France
| | - Alexandra Ducancelle
- Laboratoire de Virologie, Département de Biologie des Agents Infectieux, CHU Angers, F-49000 Angers, France; (H.L.G.-G.); (A.D.)
- HIFIH Laboratory UPRES EA3859, SFR ICAT 4208, Angers University, F-49000 Angers, France
| |
Collapse
|
5
|
Li J, Liu FW, Wu DB, Chen EQ, Chen XJ, Chen SC, Liu C, Zhao LS, Tang H, Zhou TY. TRAIL inhibits HBV replication and expression by down-regulating liver-enriched transcription factors. Arab J Gastroenterol 2020; 21:169-173. [PMID: 32732169 DOI: 10.1016/j.ajg.2020.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/17/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND STUDY AIMS To investigate the role of low-concentration TRAIL on HBV replication and expression. MATERIAL AND METHODS MTT assay was performed to determine the minimum concentrations of TRAIL protein in HepG2 cell apoptosis. HepG2 cells were transfected by HBV replication plasmid pHBV4.1. After the treatment with low concentration of TRAIL, the culture supernatant was collected to detect HBsAg and HBeAg by ELISA. Proteins were extracted from the resulted cells, followed by total RNA and HBV DNA intermediate replication. Southern Blot and Northern Blot were carried out to detect HBV RNA and HBV DNA replication intermediates, respectively. RT-PCR and Western Blot were carried out to detect gene and protein expressions for HNF4α, PPARα, and RXRα, respectively. RESULTS 50 ng/ml of TRAIL protein led to significant decline on the secretions of HBsAg and HBeAg. Expression levels of HBV RNA and HBV DNA replication intermediates were significantly decreased too. In addition, gene and protein expressions of HNF4α, PPARα and RXRα also dropped, especially for PPARα whose expressions significantly decreased. CONCLUSION TRAIL could inhibit HBV replication and expression by downregulating the expressions of liver-enriched transcription factors HNF4α, PPARα, and RXRα.
Collapse
Affiliation(s)
- Juan Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041 China; Department of Infectious Diseases, People's Hospital of Pidu District, Chengdu 611700, Sichuan Province, China
| | - Fan-Wei Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041 China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041 China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041 China
| | - Xiang-Jun Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041 China
| | - Shou-Chun Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041 China
| | - Cong Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041 China
| | - Lian-Shan Zhao
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041 China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041 China
| | - Tao-You Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041 China.
| |
Collapse
|
6
|
Ozaki M. Cellular and molecular mechanisms of liver regeneration: Proliferation, growth, death and protection of hepatocytes. Semin Cell Dev Biol 2019; 100:62-73. [PMID: 31669133 DOI: 10.1016/j.semcdb.2019.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Liver regeneration is an important and necessary process that the liver depends on for recovery from injury. The regeneration process consists of a complex network of cells and organs, including liver cells (parenchymal and non-parenchymal cells) and extrahepatic organs (thyroid, adrenal glands, pancreas, duodenum, spleen, and autonomic nervous system). The regeneration process of a normal, healthy liver depends mainly on hepatocyte proliferation, growth, and programmed cell death. Cell proliferation and growth are regulated in a cooperative manner by interleukin (IL)-6/janus kinase (Jak)/signal transducers and activators of transcription-3 (STAT3), and phosphoinositide 3-kinase (PI3-K)/phosphoinositide-dependent protein kinase 1 (PDK1)/Akt pathways. The IL-6/Jak/STAT3 pathway regulates hepatocyte proliferation and protects against cell death and oxidative stress. The PI3-K/PDK1/Akt pathway is primarily responsible for the regulation of cell size, sending mitotic signals in addition to pro-survival, antiapoptotic and antioxidative signals. Though programmed cell death may interfere with liver regeneration in a pathological situation, it seems to play an important role during the termination phase, even in a normal, healthy liver regeneration. However, further study is needed to fully elucidate the mechanisms regulating the processes of liver regeneration with regard to cell-to-cell and organ-to-organ networks at the molecular and cellular levels.
Collapse
Affiliation(s)
- Michitaka Ozaki
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, N12, W5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
7
|
Anastasiou OE, Theissen M, Verheyen J, Bleekmann B, Wedemeyer H, Widera M, Ciesek S. Clinical and Virological Aspects of HBV Reactivation: A Focus on Acute Liver Failure. Viruses 2019; 11:v11090863. [PMID: 31527514 PMCID: PMC6784066 DOI: 10.3390/v11090863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) reactivation in immunosuppressed patients can cause considerable morbidity and mortality. The aim of our study was to evaluate factors associated with acute liver failure (ALF) in HBV reactivation. Clinical, laboratory, and virological data of 87 patients with HBV reactivation were analyzed retrospectively. Teno torque virus (TTV) plasma loads were measured as a measure of immune competence. HBV genomes isolated from 47 patients were analyzed by next-generation sequencing. A functional analysis of identified HBsAg mutants was performed. In patients with ALF the diagnosis was significantly later confirmed than in the non-ALF group. Patients diagnosed during immunosuppression had a milder clinical course compared to later diagnosed patients (p = 0.018, OR = 4.17). TTV viral loads did not differ significantly between the two groups. The HBV genomes isolated from ALF patients had higher viral complexity. A mutation in C-region of HBsAg (L216*), was associated with reduced HBsAg production and secretion. Patients diagnosed with HBV reactivation during immunosuppression had a milder clinical course compared to patients diagnosed during immune reconstitution. ALF was associated with higher viral complexity. An HBsAg mutation (L216*) was found to be more frequent in ALF patients and was associated with reduced HBsAg production and secretion.
Collapse
Affiliation(s)
- Olympia E Anastasiou
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Martin Theissen
- Department of Bioinformatics and Computational Biophysics, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Jens Verheyen
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Barbara Bleekmann
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, University Hospital Essen, 45147 Essen, Germany.
- German Center for Infection Research, DZIF, 38124 Braunschweig, Germany.
| | - Marek Widera
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Sandra Ciesek
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
- German Center for Infection Research, DZIF, 38124 Braunschweig, Germany.
- Institute of Medical Virology, University Hospital Frankfurt, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Natesampillai S, Paim AC, Cummins NW, Chandrasekar AP, Bren GD, Lewin SR, Kiem HP, Badley AD. TRAILshort Protects against CD4 T Cell Death during Acute HIV Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:718-724. [PMID: 31189571 PMCID: PMC6785036 DOI: 10.4049/jimmunol.1900271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
CD4 T cells from HIV-1 infected patients die at excessive rates compared to those from uninfected patients, causing immunodeficiency. We previously identified a dominant negative ligand that antagonizes the TRAIL-dependent pathway of cell death, which we called TRAILshort. Because the TRAIL pathway has been implicated in CD4 T cell death occurring during HIV-1 infection, we used short hairpin RNA knockdown, CRISPR deletion, or Abs specific for TRAILshort to determine the effect of inhibiting TRAILshort on the outcome of experimental acute HIV infection in vitro. Strikingly, all three approaches to TRAILshort deletion/inhibition enhanced HIV-induced death of both infected and uninfected human CD4 T cells. Thus, TRAILshort impacts T cell dynamics during HIV infection, and inhibiting TRAILshort causes more HIV-infected and uninfected bystander cells to die. TRAILshort is, therefore, a host-derived, host-adaptive mechanism to limit the effects of TRAIL-induced cell death. Further studies on the effects of TRAILshort in other disease states are warranted.
Collapse
Affiliation(s)
| | - Ana C Paim
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905
| | - Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905
| | | | - Gary D Bren
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria 3004, Australia
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905;
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
9
|
Preclinical studies of a death receptor 5 fusion protein that ameliorates acute liver failure. J Mol Med (Berl) 2019; 97:1247-1261. [PMID: 31230087 DOI: 10.1007/s00109-019-01813-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
Abstract
Acute liver failure (ALF) is a life-threatening disease with a high mortality rate. There is an urgent need to develop new drugs with high efficacy and low toxicity. In this study, we produced a pharmaceutical-grade soluble death receptor 5 (sDR5)-Fc fusion protein for treating ALF and evaluated the pharmacology, safety, pharmacokinetics, efficacy, and mechanisms of sDR5-Fc in mice, rats, and cynomolgus monkeys. sDR5-Fc bound with high affinity to both human and monkey tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) effectively blocked TRAIL-induced apoptosis in vitro and significantly ameliorated ALF induced by concanavalin A (Con A) in mice. Mechanistically, sDR5-Fc inhibited hepatocyte death and reduced inflammation in vivo. Furthermore, sDR5-Fc attenuated the production of inflammatory cytokines by splenocytes activated with Con A or an anti-CD3 antibody in vitro. Consistent with these results, splenocytes from TRAIL-/- mice produced much lower levels of inflammatory cytokines than those from TRAIL+/+ mice. In cynomolgus monkeys, sDR5-Fc was safe and well tolerated when intravenously administered as a single dose of up to 1200 mg/kg or multiple doses of 100 mg/kg. After treatment with a single dose, linear pharmacokinetics with a mean half-life of > 1.9 days were observed. After 12 weekly doses, sDR5-Fc exposure increased in an approximately dose-proportional manner, and the mean accumulation ratio ranged from 1.82- to 2.11-fold. These results support further clinical development of our sDR5-Fc protein as the first TRAIL-targeting drug for ALF treatment. KEY MESSAGES: sDR5-Fc binds with high affinity to TRAIL to effectively block TRAIL-induced apoptosis. sDR5-Fc ameliorates Con A-induced acute liver failure in mice by inhibiting hepatocyte death and inflammation. sDR5-Fc or TRAIL knockout attenuates the production of inflammatory cytokines by activated splenocytes in vitro. sDR5-Fc is safe and well tolerated in acute or long-term toxicity study.
Collapse
|
10
|
Cao L, Quan XB, Zeng WJ, Yang XO, Wang MJ. Mechanism of Hepatocyte Apoptosis. J Cell Death 2016; 9:19-29. [PMID: 28058033 PMCID: PMC5201115 DOI: 10.4137/jcd.s39824] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/14/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte apoptosis plays important roles in both the removal of external microorganisms and the occurrence and development of liver diseases. Different conditions, such as virus infection, fatty liver disease, hepatic ischemia reperfusion, and drug-induced liver injury, are accompanied by hepatocyte apoptosis. This review summarizes recent research on the mechanism of hepatocyte apoptosis involving the classical extrinsic and intrinsic apoptotic pathways, endoplasmic reticulum stress, and oxidative stress-induced apoptosis. We emphasized the major causes of apoptosis according to the characteristics of different liver diseases. Several concerns regarding future research and clinical application are also raised.
Collapse
Affiliation(s)
- Lei Cao
- Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xi-Bing Quan
- Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen-Jiao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiao-Ou Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| | - Ming-Jie Wang
- Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Ali A, Abdel-Hafiz H, Suhail M, Al-Mars A, Zakaria MK, Fatima K, Ahmad S, Azhar E, Chaudhary A, Qadri I. Hepatitis B virus, HBx mutants and their role in hepatocellular carcinoma. World J Gastroenterol 2014; 20:10238-10248. [PMID: 25132741 PMCID: PMC4130832 DOI: 10.3748/wjg.v20.i30.10238] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/30/2014] [Accepted: 05/25/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of death induced by cancer in the modern world and majority of the cases are related to chronic hepatitis B virus (HBV) infection. HBV-encoded X protein (HBx) is known to play a pivotal role in the pathogenesis of viral induced HCC. HBx is a multifunctional protein of 17 kDa which modulates several cellular processes by direct or indirect interaction with a repertoire of host factors resulting in HCC. HBX might interfere with several cellular processes such as oxidative stress, DNA repair, signal transduction, transcription, protein degradation, cell cycle progression and apoptosis. A number of reports have indicated that HBx is one of the most common viral ORFs that is often integrated into the host genome and its sequence variants play a crucial role in HCC. By mutational or deletion analysis it was shown that carboxy terminal of HBx has a likely role in protein-protein interactions, transcriptional transactivation, DNA repair, cell, signaling and pathogenesis of HCC. The accumulated evidence thus far suggests that it is difficult to understand the mechanistic nature of HBx associated HCC, and HBx mediated transcriptional transactivation and signaling pathways may be a major determinant. This article addresses the role of HBx in the development of HCC with particular emphasis on HBx mutants and their putative targets.
Collapse
|
12
|
Serum soluble death receptor 5 concentration in patients with chronic hepatitis B is associated with liver damage and viral antigen level. Clin Biochem 2012; 45:845-7. [PMID: 22537456 DOI: 10.1016/j.clinbiochem.2012.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 04/06/2012] [Accepted: 04/08/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To measure the levels of serum soluble death receptor 5 (sDR5) in patients with hepatitis B. DESIGN AND METHODS sDR5 concentration in 60 HBV infected patients and 30 healthy volunteers were measured by ELISA. RESULTS sDR5 concentration in the HBV infected patients was decreased and correlated with serum ALT, Tbil level, albumin/globulin ratio and HBV antigen level. CONCLUSIONS Decreased serum sDR5 is associated with high level of liver damage and inhibited HBV antigen expression.
Collapse
|
13
|
Fujiyoshi M, Ozaki M. Molecular mechanisms of liver regeneration and protection for treatment of liver dysfunction and diseases. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2011; 18:13-22. [PMID: 20607568 DOI: 10.1007/s00534-010-0304-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver regeneration is a necessary process that most liver damage depends on for recovery. Regeneration is achieved by a complex interactive network consisting of liver cells (hepatocytes, Kupffer cells, sinusoidal endothelial cells, hepatic stellate cells, and stem cells) and extrahepatic organs (thyroid gland, adrenal gland, pancreas, duodenum, and autonomous nervous system). The restoration of liver volume depends on hepatocyte proliferation, which includes initiation, proliferation, and termination phases. Hepatocytes are "primed" mainly by Kupffer cells via cytokines (IL-6 and TNF-alpha) and then "proliferation" and "cell growth" of hepatocytes are induced by the stimulations of cytokines and growth factors (HGF and TGF-alpha). Liver regeneration is achieved by cell proliferation and cell growth, where the IL-6/STAT3 and PI3-K/PDK1/Akt pathways play pivotal roles, respectively. IL-6/STAT3 pathway regulates hepatocyte proliferation via cyclin D1/p21 and protects against cell death by upregulating FLIP, Bcl-2, Bcl-xL, Ref1, and MnSOD. PI3-K/PDK1/Akt is known to be responsible for regulation of cell size via its downstream molecules such as mTOR in addition to being known for its survival, anti-apoptotic and anti-oxidative properties. Although the molecular mechanisms of liver regeneration have been actively studied, the mechanisms of liver regeneration must be elucidated and leveraged for the sufficient treatment of liver diseases.
Collapse
Affiliation(s)
- Masato Fujiyoshi
- Department of General Surgery, Hokkaido University School of Medicine, N-15, W-7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | | |
Collapse
|
14
|
Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol 2011; 26 Suppl 1:144-52. [PMID: 21199526 DOI: 10.1111/j.1440-1746.2010.06546.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently available evidence supports a role for the hepatitis B virus (HBV) x gene and protein in the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). HBx gene is often included, and remains functionally active, in the HBV DNA that is frequently integrated into cellular DNA during hepatocellular carcinogenesis. HBx protein promotes cell cycle progression, inactivates negative growth regulators, and binds to and inhibits the expression of p53 tumour suppressor gene and other tumour suppressor genes and senescence-related factors. However, the molecular mechanisms responsible for HBx protein-induced HCC remain uncertain. Only some of the more fully documented or more recently recognised mechanisms are reviewed. During recent years evidence has accumulated that HBx protein modulates transcription of methyl transferases, causing regional hypermethylation of DNA that results in silencing of tumour suppressor genes, or global hypomethylation that results in chromosomal instability, thereby playing a role in hepatocarcinogenesis. HBx protein has both anti-apoptotic and pro-apoptotic actions, apparently contradictory effects that have yet to be explained. Particularly important among the anti-apoptotic properties is inhibition of p53. Recent experimental observations suggest that HBx protein may increase the expression of TERT and telomerase activity, prolonging the life-span of hepatocytes and contributing to malignant transformation. The protein also interferes with nucleotide excision repair through both p53-dependent and p53- independent mechanisms. Carboxy-terminal truncated HBx protein loses its inhibitory effects on cell proliferation and pro-apoptotic properties, and it may enhance the protein's ability to transform oncogenes. Dysregulation of IGF-II enhances proliferation and anti-apoptotic effects of oncogenes, resulting in uncontrolled cell growth.
Collapse
Affiliation(s)
- Michael C Kew
- Department of Medicine, University of Cape Town, Groote Schuur Hospital, South Africa.
| |
Collapse
|
15
|
Saha A, Kaul R, Murakami M, Robertson ES. Tumor viruses and cancer biology: Modulating signaling pathways for therapeutic intervention. Cancer Biol Ther 2010; 10:961-78. [PMID: 21084867 DOI: 10.4161/cbt.10.10.13923] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tumor viruses have provided relatively simple genetic systems, which can be manipulated for understanding the molecular mechanisms of the cellular transformation process. A growing body of information in the tumor virology field provides several prospects for rationally targeted therapies. However, further research is needed to better understand the multiple mechanisms utilized by these viruses in cancer progression in order to develop therapeutic strategies. Initially viruses were believed to be associated with cancers as causative agents only in animals. It was almost half a century before the first human tumor virus, Epstein-Barr virus (EBV), was identified in 1964. Subsequently, several human tumor viruses have been identified including Kaposi sarcoma associated herpesvirus (KSHV), human Papillomaviruses (HPV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human T lymphotropic virus (HTLV-1) and recently identified Merkel cell Polyomavirus (MCPyV). Tumor viruses are sub-categorized as either DNA viruses, which include EBV, KSHV, HPV, HBV, and MCPyV, or RNA viruses such as HCV and HTLV-1. Tumor-viruses induce oncogenesis through manipulating an array of different cellular pathways. These viruses initiate a series of cellular events, which lead to immortalization and proliferation of the infected cells by disrupting the mitotic checkpoint upon infection of the host cell. This is often accomplished by functional inhibition or proteasomal degradation of many tumor suppressor proteins by virally encoded gene products. The virally infected cells can either be eliminated via cell-mediated apoptosis or persist in a state of chronic infection. Importantly, the chronic persistence of infection by tumor viruses can lead to oncogenesis. This review discusses the major human tumor associated viruses and their ability to modulate numerous cell signaling pathways, which can be targeted for potential therapeutic approaches.
Collapse
Affiliation(s)
- Abhik Saha
- Department of Microbiology and Tumor Virology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
16
|
Kim KH. [Pro-apoptotic function of hepatitis B virus X protein]. THE KOREAN JOURNAL OF HEPATOLOGY 2010; 16:112-22. [PMID: 20606495 DOI: 10.3350/kjhep.2010.16.2.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infection of hepatitis B virus (HBV) is a main cause of liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). Among the HBV-encoded proteins, the HBV X protein (HBx) has been suspected to be strongly involved in HBV-associated liver pathogenesis. HBx, a virally encoded multifunctional regulator, has been shown to induce apoptosis, anti-apoptosis, proliferation, and transformation of cells depending on the cell lines, model systems used, assay protocols, and research groups. Among the several activities of HBx, the pro-apoptotic function of HBx will be discussed in this review. Given that the disruption of apoptosis pathway by HBx contributes to the liver pathogenesis, a better understanding of the molecular interference in the cellular pro-apoptotic networks by HBx will provide useful clues for the intervention in HBV-mediated liver diseases.
Collapse
Affiliation(s)
- Kyun-Hwan Kim
- Department of Pharmacology, School of Medicine and Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University, Seoul, Korea.
| |
Collapse
|
17
|
Blocking TRAIL-DR5 signaling with soluble DR5 reduces delayed neuronal damage after transient global cerebral ischemia. Neurobiol Dis 2010; 39:138-47. [PMID: 20359534 DOI: 10.1016/j.nbd.2010.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 03/18/2010] [Accepted: 03/23/2010] [Indexed: 01/24/2023] Open
Abstract
Mechanisms underlying delayed selective neuronal death after global cerebral ischemia remain to be clarified. Here, we report a critical role for tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in the pathogenesis of cerebral ischemia. C57BL/6j mice were subjected to transient global brain ischemia. RT-PCR and immunohistochemistry showed that the expression of TRAIL and DR5 was upregulated following transient ischemia-reperfusion. Dual immunofluorescence analysis indicated that TRAIL expression was significantly more pronounced in astrocytes and activated microglia/macrophages, whereas DR5 expression was more pronounced in neurons, which had a good correlation with the distribution of apoptotic cells. Treatment with soluble DR5 reduced ischemic cell death after transient global ischemia through blocking the interaction of endogenous TRAIL with DR5. These results indicate that TRAIL plays a deleterious role in the pathogenesis of delayed neuronal damage after global cerebral ischemia and inhibition of TRAIL function in the brain may represent a novel neuroprotective strategy to treat ischemic stroke.
Collapse
|
18
|
Levrero M, Belloni L. HBV Signaling. SIGNALING PATHWAYS IN LIVER DISEASES 2010:465-481. [DOI: 10.1007/978-3-642-00150-5_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Shepard BD, Badley AD. The Biology of TRAIL and the Role of TRAIL-Based Therapeutics in Infectious Diseases. ACTA ACUST UNITED AC 2009; 8:87-101. [PMID: 21857885 DOI: 10.2174/187152109787846060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TNF-related apoptosis inducing ligand (TRAIL) is a key mediator of the innate immune response to infection. While TRAIL-mediated apoptosis plays an essential role in the clearance of virus-infected cells, its physiologic role also includes immunosurveilance for cancer cells. Therapeutics that induce TRAIL-mediated apoptosis in cancer cells remain a focus of ongoing investigation in clinical trials, and much has been learned from these studies regarding the efficacy and toxicity of these interventions. These data, combined with data from numerous preclinical studies that detail the important and multifaceted role of TRAIL during infection with human immunodeficiency virus and other viruses, suggest that therapeutic exploitation of TRAIL signaling offers a novel and efficacious strategy for the management of infectious diseases.
Collapse
Affiliation(s)
- Brett D Shepard
- Mayo Clinic College of Medicine, Division of Infectious Diseases, Rochester, MN, 55905, USA
| | | |
Collapse
|
20
|
Babu CK, Suwansrinon K, Bren GD, Badley AD, Rizza SA. HIV induces TRAIL sensitivity in hepatocytes. PLoS One 2009; 4:e4623. [PMID: 19247452 PMCID: PMC2644790 DOI: 10.1371/journal.pone.0004623] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 01/23/2009] [Indexed: 02/07/2023] Open
Abstract
Background HIV infected patients have an increased susceptibility to liver disease due to Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), alcoholic, and non-alcoholic steatohepatitis. Clinically, this results in limited options for antiretroviral therapy and accelerated rates of liver disease, causing liver disease to be the second leading cause of death for HIV infected patients. The mechanisms causing this propensity for liver dysfunction during HIV remains unknown. Methodology/Principal Findings We demonstrate that HIV and/or the HIV glycoprotein gp120 ligation of CXCR4 on hepatocytes selectively up-regulates TRAIL R2 expression and confers an acquired sensitivity to TRAIL mediated apoptosis which is mediated by JNK II, but not p38 nor G-proteins. Conclusions/Significance These findings suggest that HIV infection renders hepatocytes more susceptible to liver injury during disease states associated with enhanced TRAIL production such as HBV, HCV, or steatohepatitis.
Collapse
Affiliation(s)
- Challagundla K. Babu
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kanitta Suwansrinon
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gary D. Bren
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stacey A. Rizza
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
Apoptosis is associated with virus-induced human diseases of the central nervous system, heart and liver, and causes substantial morbidity and mortality. Although virus-induced apoptosis is well characterized in individual cells in cell culture, virus-induced apoptosis in vivo and the role of apoptosis in virus-induced disease is not well established. This review focuses on animal models of virus-induced diseases of the central nervous system, heart and liver that provide insights into the role of apoptosis in pathogenesis, the pathways involved and the potential therapeutic implications.
Collapse
Affiliation(s)
- Penny Clarke
- Department of Neurology, University of Colorado, Denver Health Sciences Programs, Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
22
|
Hepatitis B virus core protein inhibits TRAIL-induced apoptosis of hepatocytes by blocking DR5 expression. Cell Death Differ 2008; 16:219-29. [PMID: 18927587 DOI: 10.1038/cdd.2008.144] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis B virus (HBV) causes chronic hepatitis in hundreds of millions of people worldwide, which can eventually lead to hepatocellular carcinoma (HCC). The molecular mechanisms underlying HBV persistence are not well understood. TRAIL, the TNF-related apoptosis-inducing ligand, has recently been implicated in hepatocyte death during HBV infection. We report here that the HBV core protein (HBc) is a potent inhibitor of TRAIL-induced apoptosis. Overexpressing HBc significantly decreased TRAIL-induced apoptosis of human hepatoma cells, whereas knocking-down HBc expression in hepatoma cells transfected with HBV genome enhanced it. When present in the same cell, HBc blocked the pro-apoptotic effect of the HBV X protein (HBx). The resistance of HBc-expressing cells to TRAIL-induced apoptosis was associated with a significant reduction in death receptor 5 (DR5) expression. Upon transfection, HBc significantly repressed the promoter activity of the human DR5 gene. Importantly, HBc gene transfer inhibited hepatocyte death in a mouse model of HBV-induced hepatitis; and in patients with chronic hepatitis, DR5 expression in the liver was significantly reduced. These results indicate that HBc may prevent hepatocytes from TRAIL-induced apoptosis by blocking DR5 expression, which in turn contributes to the development of chronic hepatitis and HCC. They also call into question the potential side effects of HBc-based vaccines.
Collapse
|
23
|
Cao LL, Li YP. Relationship between tumor necrosis factor related apoptosis induced ligand and hepatocyte apoptosis. Shijie Huaren Xiaohua Zazhi 2008; 16:2626-2630. [DOI: 10.11569/wcjd.v16.i23.2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (Apo2L/TRAIL) is a member of the tumor necrosis factor gene superfamily that induces apoptosis through engagement of death receptors (DRs). Recent studies have clarified that TRAIL/DR pathway was involved in severe liver diseases. In this review, we focus on the apoptosis signaling pathways stimulated by Apo2L/TRAIL and summarise its relationship with apoptosis of hepatocytes.
Collapse
|
24
|
Liang X, Qu Z, Zhang Z, Du J, Liu Y, Cui M, Liu H, Gao L, Han L, Liu S, Cao L, Zhao P, Sun W. Blockade of preS2 down-regulates the apoptosis of HepG2.2.15 cells induced by TRAIL. Biochem Biophys Res Commun 2008; 369:456-63. [PMID: 18284918 DOI: 10.1016/j.bbrc.2008.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 02/09/2008] [Indexed: 10/22/2022]
|
25
|
Liang X, Du J, Liu Y, Cui M, Ma C, Han L, Qu Z, Zhang Z, Sun Z, Zhang L, Chen YH, Sun W. The hepatitis B virus protein MHBs(t) sensitizes hepatoma cells to TRAIL-induced apoptosis through ERK2. Apoptosis 2007; 12:1827-36. [PMID: 17701086 DOI: 10.1007/s10495-007-0114-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The TNF-related apoptosis-inducing ligand (TRAIL) has recently been implicated in the death of hepatocytes under infectious but not normal conditions. Infectious agents, such as hepatitis B virus (HBV), may play important roles in regulating the sensitivity of hepatocytes to TRAIL. Our previous studies showed that HBx, a protein encoded by the HBV genome, enhanced TRAIL-induced apoptosis through upregulating Bax. We report here that another HBV protein called MHBs(t) (C-terminally truncated middle hepatitis B surface protein) is also a potent regulator of TRAIL-induced apoptosis. Overexpressing MHBs(t) in hepatoma cells enhanced TRAIL-induced apoptosis. Mechanistic studies reveal that MHBs(t) had no effect on Bax or TRAIL receptor expression or procaspase-8 activation, but selectively enhanced the activation of ERK2 (extracellular signal-regulated kinase 2) and the degradation of procaspases-3 and 9. ERK2 activation is required for the MHBs(t) effect because ERK2 inhibition by its inhibitor PD98059 significantly reversed TRAIL-induced apoptosis of MHBs(t)-transfected cells. These results establish that unlike HBx, MHBs(t) enhances TRAIL-induced hepatocyte apoptosis through a novel mechanism that involves ERK2. Therefore, manipulating the ERK2 signaling pathway may provide new therapeutic opportunities to contain hepatic cell death during HBV infection.
Collapse
Affiliation(s)
- Xiaohong Liang
- Institute of Immunology, School of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Koschny R, Walczak H, Ganten TM. The promise of TRAIL—potential and risks of a novel anticancer therapy. J Mol Med (Berl) 2007; 85:923-35. [PMID: 17437073 DOI: 10.1007/s00109-007-0194-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/07/2007] [Accepted: 03/14/2007] [Indexed: 12/30/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising new anticancer biotherapeutic. As shown by many preclinical studies, TRAIL efficiently induces apoptosis in numerous tumor cell lines but not in the majority of normal cells. However, an increasing number of publications report on a predominance of TRAIL resistance in primary human tumor cells, which require sensitization for TRAIL-induced apoptosis. Sensitization of cancer cells by treatment with chemotherapeutic drugs and irradiation has been shown to restore TRAIL sensitivity in many TRAIL-resistant tumor cells. Accordingly TRAIL treatment has been successfully used in different in vivo models for the treatment of tumors also in combination with chemotherapeutics without significant toxicity. However, some reports demonstrated toxicity of TRAIL alone or in combination with chemotherapeutic drugs in normal cells. This review summarizes data concerning the apoptosis-inducing pathways and efficacy of TRAIL, alone or in combination with chemotherapeutic drugs, in primary cancer cells compared to the unwanted effects of TRAIL treatment on normal tissue. We discuss the different in vitro tumor cell models and the potential of different recombinant forms of TRAIL or agonistic antibodies to TRAIL death receptors. Most preclinical studies show a high efficiency of a combinatorial TRAIL-based therapy in animal models and in primary human ex vivo tumor cells with a low toxicity in normal cells. Accordingly clinical phase I/II studies have begun and will be developed further with caution.
Collapse
Affiliation(s)
- Ronald Koschny
- Division of Apoptosis Regulation, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|