1
|
Mazzolini L, Touriol C. PERK-Olating Through Cancer: A Brew of Cellular Decisions. Biomolecules 2025; 15:248. [PMID: 40001551 PMCID: PMC11852789 DOI: 10.3390/biom15020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The type I protein kinase PERK is an endoplasmic reticulum (ER) transmembrane protein that plays a multifaceted role in cancer development and progression, influencing tumor growth, metastasis, and cellular stress responses. The activation of PERK represents one of the three signaling pathways induced during the unfolded protein response (UPR), which is triggered, in particular, in tumor cells that constitutively experience various intracellular and extracellular stresses that impair protein folding within the ER. PERK activation can lead to both pro-survival and proapoptotic outcomes, depending on the cellular context and the extent of ER stress. It helps the reprogramming of the gene expression in cancer cells, thereby ensuring survival in the face of oncogenic stress, such as replicative stress and DNA damage, and also microenvironmental challenges, including hypoxia, angiogenesis, and metastasis. Consequently, PERK contributes to tumor initiation, transformation, adaptation to the microenvironment, and chemoresistance. However, sustained PERK activation in cells can also impair cell proliferation and promote apoptotic death by various interconnected processes, including mitochondrial dysfunction, translational inhibition, the accumulation of various cellular stresses, and the specific induction of multifunctional proapoptotic factors, such as CHOP. The dual role of PERK in promoting both tumor progression and suppression makes it a complex target for therapeutic interventions. A comprehensive understanding of the intricacies of PERK pathway activation and their impact is essential for the development of effective therapeutic strategies, particularly in diseases like cancer, where the ER stress response is deregulated in most, if not all, of the solid and liquid tumors. This article provides an overview of the knowledge acquired from the study of animal models of cancer and tumor cell lines cultured in vitro on PERK's intracellular functions and their impact on cancer cells and their microenvironment, thus highlighting potential new therapeutic avenues that could target this protein.
Collapse
|
2
|
Sergio I, Varricchio C, Squillante F, Cantale Aeo NM, Campese AF, Felli MP. Notch Inhibitors and BH3 Mimetics in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:12839. [PMID: 39684550 DOI: 10.3390/ijms252312839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with poor response to conventional therapy, derived from hematopoietic progenitors committed to T-cell lineage. Relapsed/Refractory patients account for nearly 20% of childhood and 45% of adult cases. Aberrant Notch signaling plays a critical role in T-ALL pathogenesis and therapy resistance. Notch inhibition is a promising therapeutic target for personalized medicine, and a variety of strategies to prevent Notch activation, including γ-secretase (GS) inhibitors (GSIs) and antibodies neutralizing Notch receptors or ligands, have been developed. Disruption of apoptosis is pivotal in cancer development and progression. Different reports evidenced the interplay between Notch and the anti-apoptotic Bcl-2 family proteins in T-ALL. Although based on early research data, this review discusses recent advances in directly targeting Notch receptors and the use of validated BH3 mimetics for the treatment of T-ALL and their combined action in light of current evidence of their use.
Collapse
Affiliation(s)
- Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudia Varricchio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Squillante
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | | | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
3
|
Silva Barcelos EC, Rompietti C, Adamo FM, Dorillo E, De Falco F, Del Papa B, Baldoni S, Nogarotto M, Esposito A, Capoccia S, Geraci C, Sorcini D, Stella A, Arcaleni R, Tini V, Imbroisi Valle Errera F, Rosati E, Sportoletti P. NOTCH1-mutated chronic lymphocytic leukemia displays high endoplasmic reticulum stress response with druggable potential. Front Oncol 2023; 13:1218989. [PMID: 37817771 PMCID: PMC10561002 DOI: 10.3389/fonc.2023.1218989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Constitutive activation of NOTCH1-wild-type (NT1-WT) signaling is associated with poor outcomes in chronic lymphocytic leukemia (CLL), and NOTCH1 mutation (c.7541_7542delCT), which potentiates NOTCH1 signaling, worsens the prognosis. However, the specific mechanisms of NOTCH1 deregulation are still poorly understood. Accumulative evidence mentioned endoplasmic reticulum (ER) stress/unfolded protein response (UPR) as a key targetable pathway in CLL. In this study, we investigated the impact of NOTCH1 deregulation on CLL cell response to ER stress induction, with the aim of identifying new therapeutic opportunities for CLL. Methods We performed a bioinformatics analysis of NOTCH1-mutated (NT1-M) and NT1-WT CLL to identify differentially expressed genes (DEGs) using the rank product test. Quantitative real-time polymerase chain reaction (qPCR), Western blotting, cytosolic Ca2+, and annexin V/propidium iodide (PI) assay were used to detect curcumin ER stress induction effects. A median-effect equation was used for drug combination tests. The experimental mouse model Eμ-TCL1 was used to evaluate the impact of ER stress exacerbation by curcumin treatment on the progression of leukemic cells and NOTCH1 signaling. Results and discussion Bioinformatics analysis revealed gene enrichment of the components of the ER stress/UPR pathway in NT1-M compared to those in NT1-WT CLL. Ectopic expression of NOTCH1 mutation upregulated the levels of ER stress response markers in the PGA1 CLL cell line. Primary NT1-M CLL was more sensitive to curcumin as documented by a significant perturbation in Ca2+ homeostasis and higher expression of ER stress/UPR markers compared to NT1-WT cells. It was also accompanied by a significantly higher apoptotic response mediated by C/EBP homologous protein (CHOP) expression, caspase 4 cleavage, and downregulation of NOTCH1 signaling in NT1-M CLL cells. Curcumin potentiated the apoptotic effect of venetoclax in NT1-M CLL cells. In Eμ-TCL1 leukemic mice, the administration of curcumin activated ER stress in splenic B cells ex vivo and significantly reduced the percentage of CD19+/CD5+ cells infiltrating the spleen, liver, and bone marrow (BM). These cellular effects were associated with reduced NOTCH1 activity in leukemic cells and resulted in prolonged survival of curcumin-treated mice. Overall, our results indicate that ER stress induction in NT1-M CLL might represent a new therapeutic opportunity for these high-risk CLL patients and improve the therapeutic effect of drugs currently used in CLL.
Collapse
Affiliation(s)
- Estevão Carlos Silva Barcelos
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Brazil
| | - Chiara Rompietti
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Francesco Maria Adamo
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Erica Dorillo
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Beatrice Del Papa
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Stefano Baldoni
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Manuel Nogarotto
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Angela Esposito
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Silvia Capoccia
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Clelia Geraci
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Daniele Sorcini
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Arianna Stella
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Roberta Arcaleni
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Valentina Tini
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | | | - Emanuela Rosati
- Department of Medicine and Surgery, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
5
|
Lizoňová D, Hládek F, Chvíla S, Baláž A, Staňková Š, Štěpánek F. Surface stabilization determines macrophage uptake, cytotoxicity, and bioactivity of curcumin nanocrystals. Int J Pharm 2022; 626:122133. [PMID: 36055446 DOI: 10.1016/j.ijpharm.2022.122133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Pharmaceutical nanocrystals represent a promising new formulation that combines the benefits of bulk crystalline materials and colloidal nanoparticles. To be applied in vivo, nanocrystals must meet several criteria, namely colloidal stability in physiological media, non-toxicity to healthy cells, avoidance of macrophage clearance, and bioactivity in the target tissue. In the present work curcumin, a naturally occurring poorly water-soluble molecule with a broad spectrum of bioactivity has been considered as a candidate substance for preparing pharmaceutical nanocrystals. Curcumin nanocrystals in the size range of 40-90 nm were prepared by wet milling using the following combination of steric and ionic stabilizers: Tween 80, sodium dodecyl sulfate, Poloxamer 188, hydroxypropyl methylcellulose, phospholipids (with and without polyethylene glycol), and their combination. Nanocrystals stabilized by a combination of phospholipids enriched with polyethylene glycol proved to be the most successful in all evaluated criteria; they were colloidally stable in all media, exhibited low macrophage clearance, and proved non-toxic to healthy cells. This curcumin nanoformulation also exhibited outstanding anticancer potential comparable to commercially used cytostatics (IC50=73 µM; 24 h, HT-29 colorectal carcinoma cell line) which represents an improvement of several orders of magnitude when compared to previously studied curcumin formulations. This work shows that the preparation of phospholipid-stabilized nanocrystals allows for the conversion of poorly soluble compounds into a highly effective "solution-like" drug delivery system at pharmaceutically relevant drug concentrations.
Collapse
Affiliation(s)
- Denisa Lizoňová
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Filip Hládek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Stanislav Chvíla
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Adam Baláž
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Štěpánka Staňková
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| |
Collapse
|
6
|
Sivani BM, Azzeh M, Patnaik R, Pantea Stoian A, Rizzo M, Banerjee Y. Reconnoitering the Therapeutic Role of Curcumin in Disease Prevention and Treatment: Lessons Learnt and Future Directions. Metabolites 2022; 12:metabo12070639. [PMID: 35888763 PMCID: PMC9320502 DOI: 10.3390/metabo12070639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Turmeric is a plant with a very long history of medicinal use across different cultures. Curcumin is the active part of turmeric, which has exhibited various beneficial physiological and pharmacological effects. This review aims to critically appraise the corpus of literature associated with the above pharmacological properties of curcumin, with a specific focus on antioxidant, anti-inflammatory, anticancer and antimicrobial properties. We have also reviewed the different extraction strategies currently in practice, highlighting the strengths and drawbacks of each technique. Further, our review also summarizes the clinical trials that have been conducted with curcumin, which will allow the reader to get a quick insight into the disease/patient population of interest with the outcome that was investigated. Lastly, we have also highlighted the research areas that need to be further scrutinized to better grasp curcumin’s beneficial physiological and medicinal properties, which can then be translated to facilitate the design of better bioactive therapeutic leads.
Collapse
Affiliation(s)
- Bala Mohan Sivani
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Mahmoud Azzeh
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Rajashree Patnaik
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90128 Palermo, Italy;
| | - Yajnavalka Banerjee
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
- Correspondence: or ; Tel.: +971-527-873-636
| |
Collapse
|
7
|
Zhang S, Wang K, Zhu X, Cherepanoff S, Conway RM, Madigan MC, Zhu L, Murray M, Zhou F. The unfolded protein response and the biology of uveal melanoma. Biochimie 2022; 197:9-18. [DOI: 10.1016/j.biochi.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
|
8
|
Féral K, Jaud M, Philippe C, Di Bella D, Pyronnet S, Rouault-Pierre K, Mazzolini L, Touriol C. ER Stress and Unfolded Protein Response in Leukemia: Friend, Foe, or Both? Biomolecules 2021; 11:biom11020199. [PMID: 33573353 PMCID: PMC7911881 DOI: 10.3390/biom11020199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive signaling pathway triggered by a stress of the endoplasmic reticulum (ER) lumen compartment, which is initiated by the accumulation of unfolded proteins. This response, mediated by three sensors-Inositol Requiring Enzyme 1 (IRE1), Activating Transcription Factor 6 (ATF6), and Protein Kinase RNA-Like Endoplasmic Reticulum Kinase (PERK)—allows restoring protein homeostasis and maintaining cell survival. UPR represents a major cytoprotective signaling network for cancer cells, which frequently experience disturbed proteostasis owing to their rapid proliferation in an usually unfavorable microenvironment. Increased basal UPR also participates in the resistance of tumor cells against chemotherapy. UPR activation also occurs during hematopoiesis, and growing evidence supports the critical cytoprotective role played by ER stress in the emergence and proliferation of leukemic cells. In case of severe or prolonged stress, pro-survival UPR may however evolve into a cell death program called terminal UPR. Interestingly, a large number of studies have revealed that the induction of proapoptotic UPR can also strongly contribute to the sensitization of leukemic cells to chemotherapy. Here, we review the current knowledge on the consequences of the deregulation of UPR signaling in leukemias and their implications for the treatment of these diseases.
Collapse
Affiliation(s)
- Kelly Féral
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
| | - Manon Jaud
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
| | - Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (K.R.-P.)
| | - Doriana Di Bella
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (K.R.-P.)
| | - Stéphane Pyronnet
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
| | - Kevin Rouault-Pierre
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (K.R.-P.)
| | - Laurent Mazzolini
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- CNRS ERL5294, CRCT, F-31037 Toulouse, France
- Correspondence: (L.M.); (C.T.)
| | - Christian Touriol
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
- Correspondence: (L.M.); (C.T.)
| |
Collapse
|
9
|
Pagliaro L, Marchesini M, Roti G. Targeting oncogenic Notch signaling with SERCA inhibitors. J Hematol Oncol 2021; 14:8. [PMID: 33407740 PMCID: PMC7789735 DOI: 10.1186/s13045-020-01015-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
P-type ATPase inhibitors are among the most successful and widely prescribed therapeutics in modern pharmacology. Clinical transition has been safely achieved for H+/K+ ATPase inhibitors such as omeprazole and Na+/K+-ATPase inhibitors like digoxin. However, this is more challenging for Ca2+-ATPase modulators due to the physiological role of Ca2+ in cardiac dynamics. Over the past two decades, sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) modulators have been studied as potential chemotherapy agents because of their Ca2+-mediated pan-cancer lethal effects. Instead, recent evidence suggests that SERCA inhibition suppresses oncogenic Notch1 signaling emerging as an alternative to γ-secretase modulators that showed limited clinical activity due to severe side effects. In this review, we focus on how SERCA inhibitors alter Notch1 signaling and show that Notch on-target-mediated antileukemia properties of these molecules can be achieved without causing overt Ca2+ cellular overload.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Matteo Marchesini
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| |
Collapse
|
10
|
Mitochondria, Oxidative Stress, cAMP Signalling and Apoptosis: A Crossroads in Lymphocytes of Multiple Sclerosis, a Possible Role of Nutraceutics. Antioxidants (Basel) 2020; 10:antiox10010021. [PMID: 33379309 PMCID: PMC7823468 DOI: 10.3390/antiox10010021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a complex inflammatory and neurodegenerative chronic disease that involves the immune and central nervous systems (CNS). The pathogenesis involves the loss of blood–brain barrier integrity, resulting in the invasion of lymphocytes into the CNS with consequent tissue damage. The MS etiology is probably a combination of immunological, genetic, and environmental factors. It has been proposed that T lymphocytes have a main role in the onset and propagation of MS, leading to the inflammation of white matter and myelin sheath destruction. Cyclic AMP (cAMP), mitochondrial dysfunction, and oxidative stress exert a role in the alteration of T lymphocytes homeostasis and are involved in the apoptosis resistance of immune cells with the consequent development of autoimmune diseases. The defective apoptosis of autoreactive lymphocytes in patients with MS, allows these cells to perpetuate, within the CNS, a continuous cycle of inflammation. In this review, we discuss the involvement in MS of cAMP pathway, mitochondria, reactive oxygen species (ROS), apoptosis, and their interaction in the alteration of T lymphocytes homeostasis. In addition, we discuss a series of nutraceutical compounds that could influence these aspects.
Collapse
|
11
|
Kumar N, Jose J. Current developments in the nanomediated delivery of photoprotective phytochemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38446-38471. [PMID: 32761528 DOI: 10.1007/s11356-020-10100-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Natural products have been used to protect the skin from harmful UV radiation for decades. Due to the ecotoxicological implications of synthetic sunscreen exposure in aquatic ecosystems, there is a greater need to explore alternative sources of UV filters. Recent research has focused on discovering novel UV absorbing photoprotective molecules from nature. In response to the excessive damage caused by UVB rays, plants induce the production of high concentrations of phytoprotective secondary metabolites and anti-oxidative enzymes. Despite promising UV absorbing and photoprotective properties, plant secondary metabolites have been underutilized in topical delivery due to low solubility and high instability. Numerous phytochemicals have been effectively nanosized, incorporated in formulations, and studied for their sustained effects in photoprotection. The present review outlines recent developments in nanosizing and delivering photoprotective crude plant extract and phytochemicals from a phytochemical perspective. We searched for articles using keywords: "UV damage," "skin photoprotection," "photodamage," and "nano delivery" in varied combinations. We identified and reviewed literature from 43 original research articles exploring nanosized phytochemicals and crude plant extracts with photoprotective activity. Nanosized phytochemicals retained higher amounts of bioactive compounds in the skin and acted as depots for their sustained release. Novel approaches in nanosizing considerably improved the photostability, efficacy, and water resistance of plant secondary metabolites. We further discuss the need for broad-spectrum sunscreen products, potential challenges, and future growth in this area.
Collapse
Affiliation(s)
- Nimmy Kumar
- Department of Pharmacognosy, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, 575018, Mangalore, India
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Mangalore, 575018, India.
| |
Collapse
|
12
|
Bechnak L, Khalil C, Kurdi RE, Khnayzer RS, Patra D. Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin. Photochem Photobiol Sci 2020; 19:1088-1098. [PMID: 32638825 DOI: 10.1039/d0pp00032a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin-based novel colloidal nanocapsules were prepared from amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (F108). These colloidal nanocapsules appeared as spherical particles with size ranging between 270 and 310 nm. Curcumin fluorescence spectra exhibited an aggregation-induced 23 nm red-shift of the emission maximum in addition to the enhancement of the fluorescence quantum yield in these nanocapsules. The cytotoxicity of curcumin and colloidal nanocapsules was assessed using human derived immortalized cell lines (A549 and A375 cells) in the presence and absence of light irradiation. The nanocapsules exhibited a >30-fold decrease in IC50, suggesting enhanced anticancer activity associated with curcumin encapsulation. Higher toxicity was also reported in the presence of light irradiation (as shown by the IC50 data), indicating their potential for future application in photodynamic therapy. Finally, A375 cells treated with curcumin and the nanocapsules showed a significant increase in single- and/or double-strand DNA breaks upon exposure to light, indicating promising biological effects.
Collapse
Affiliation(s)
- Linda Bechnak
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Christian Khalil
- Department of Natural Sciences, Lebanese American University, 13-5053, 1102-2801, Chouran, Beirut, Lebanon
| | - Riham El Kurdi
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, Lebanese American University, 13-5053, 1102-2801, Chouran, Beirut, Lebanon
| | - Digambara Patra
- Department of Chemistry, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
13
|
Shakeri A, Zirak MR, Wallace Hayes A, Reiter R, Karimi G. Curcumin and its analogues protect from endoplasmic reticulum stress: Mechanisms and pathways. Pharmacol Res 2019; 146:104335. [DOI: 10.1016/j.phrs.2019.104335] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
|
14
|
The effect of ELOVL6 fatty acid elongase inhibition on the expression of genes associated with the metastasis of breast cancer. Russ Chem Bull 2019. [DOI: 10.1007/s11172-018-2374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Kouhpeikar H, Butler AE, Bamian F, Barreto GE, Majeed M, Sahebkar A. Curcumin as a therapeutic agent in leukemia. J Cell Physiol 2019; 234:12404-12414. [PMID: 30609023 DOI: 10.1002/jcp.28072] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
Leukemia comprises a group of hematological malignancies responsible for 8% of all cancers and is the most common cancer in children. Despite significant improvements in leukemia treatment, the efficacy of conventional chemotherapeutic agents is low and the disease carries a poor prognosis with frequent relapses and high mortality. Curcumin is a yellow polyphenol compound with diverse pharmacological actions including anticancer, antioxidant, antidiabetic, anti-inflammatory, immunomodulatory, hepatoprotective, lipid-regulating, antidepressant, and antiarthritic. Many cellular and experimental studies have reported the benefits of curcumin in treating leukemia. Curcumin's anticancer effects are exerted via various mechanisms. Here, we review the effects of curcumin on various types of leukemia whilst considering its mechanisms of action.
Collapse
Affiliation(s)
- Hamideh Kouhpeikar
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Faeze Bamian
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Li LJ, Chai Y, Guo XJ, Chu SL, Zhang LS. Effects of endoplasmic reticulum stress on autophagy and apoptosis of human leukemia cells via inhibition of the PI3K/AKT/mTOR signaling pathway. Mol Med Rep 2018; 17:7886-7892. [PMID: 29620275 DOI: 10.3892/mmr.2018.8840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 12/18/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to explore the regulatory effects of endoplasmic reticulum stress (ERS) on the phosphoinositide 3‑kinase (PI3K)/AKT serine/threonine kinase 1 (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, and its subsequent effects on autophagy and apoptosis of human leukemia cells. Human leukemia cells were cultured and treated with various concentrations of tunicamycin for 0, 24, 48, 72 and 90 h. Subsequently, human leukemia cells were assigned into the ER activation group, which was treated with 100 ng/ml tunicamycin, the ER activation + TO901317 (PI3K inhibitor) group, and the control group. An MTT assay was conducted to detect cell proliferation. In addition, a monodansylcadaverine (MDC) assay was used to detect the formation of autophagosomes and Annexin V‑fluorescein isothiocyanate/propidium iodide double staining was used to examine cell apoptosis. Western blotting was performed to detect the expression levels of 78‑kDa glucose‑regulated protein (GRP78), phosphorylated (p)‑protein kinase R‑like endoplasmic reticulum kinase (PERK), p‑α subunit of eukaryotic initiation factor 2 (eIF2α), microtubule‑associated protein 1A/1B‑light chain 3 (LC3), caspase‑3, CCAAT‑enhancer‑binding protein homologous protein (CHOP), PI3K, AKT and mTOR. Treatment with 100 ng/ml tunicamycin for 72 h was considered the optimal condition for further experiments. Compared with in cells prior to treatment, human leukemia cells treated with tunicamycin exhibited increased expression of p‑PERK, p‑eIF2α and GRP78 after 72 h (P<0.05). In addition, the expression levels of mTOR, AKT and PI3K were decreased in the ER activation group compared with in the control and ER activation + TO901317 groups (P<0.05). Compared with in the control group, cell proliferation was inhibited and MDC fluorescence intensity was increased in the ER activation group (P<0.05). Furthermore, compared with in the control and ER activation + TO901317 groups, western blotting indicated that the expression levels of LC3‑II were increased in the ER activation group (P<0.05). The apoptotic rate was also higher in the ER activation group compared with in the control group (P<0.05), and caspase‑3 and CHOP expression was elevated in the ER activation group (P<0.05). These findings indicated that ERS may induce autophagy and apoptosis of human leukemia cells via inhibiting the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Li-Juan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Ye Chai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiao-Jia Guo
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Song-Lin Chu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Lian-Sheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
17
|
Lozano-Cruz T, Gómez R, de la Mata FJ, Ortega P. New bow-tie cationic carbosilane dendritic system with a curcumin core as an anti-breast cancer agent. NEW J CHEM 2018. [DOI: 10.1039/c8nj01713a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A water soluble “bow-tie” cationic carbosilane dendrimer with curcumin in the core displays antioxidant and antitumoral activities against breast cancer cells.
Collapse
Affiliation(s)
- Tania Lozano-Cruz
- Departamento de Química Orgánica y Química Inorgánica. Instituto de Investigación Química “Andrés M. del Río” (IQAR)
- Universidad de Alcalá
- Campus Universitario
- E-28871 Alcalá de Henares
- Spain
| | - Rafael Gómez
- Departamento de Química Orgánica y Química Inorgánica. Instituto de Investigación Química “Andrés M. del Río” (IQAR)
- Universidad de Alcalá
- Campus Universitario
- E-28871 Alcalá de Henares
- Spain
| | - F. Javier de la Mata
- Departamento de Química Orgánica y Química Inorgánica. Instituto de Investigación Química “Andrés M. del Río” (IQAR)
- Universidad de Alcalá
- Campus Universitario
- E-28871 Alcalá de Henares
- Spain
| | - Paula Ortega
- Departamento de Química Orgánica y Química Inorgánica. Instituto de Investigación Química “Andrés M. del Río” (IQAR)
- Universidad de Alcalá
- Campus Universitario
- E-28871 Alcalá de Henares
- Spain
| |
Collapse
|
18
|
Panda AK, Chakraborty D, Sarkar I, Khan T, Sa G. New insights into therapeutic activity and anticancer properties of curcumin. J Exp Pharmacol 2017; 9:31-45. [PMID: 28435333 PMCID: PMC5386596 DOI: 10.2147/jep.s70568] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Natural compounds obtained from plants are capable of garnering considerable attention from the scientific community, primarily due to their ability to check and prevent the onset and progress of cancer. These natural compounds are primarily used due to their nontoxic nature and the fewer side effects they cause compared to chemotherapeutic drugs. Furthermore, such natural products perform even better when given as an adjuvant along with traditional chemotherapeutic drugs, thereby enhancing the potential of chemotherapeutics and simultaneously reducing their undesired side effects. Curcumin, a naturally occurring polyphenol compound found in the plant Curcuma longa, is used as an Indian spice. It regulates not only the various pathways of the immune system, cell cycle checkpoints, apoptosis, and antioxidant response but also numerous intracellular targets, including pathways and protein molecules controlling tumor progression. Many recent studies conducted by major research groups around the globe suggest the use of curcumin as a chemopreventive adjuvant molecule to maximize and minimize the desired effects and side effects of chemotherapeutic drugs. However, low bioavailability of a curcumin molecule is the primary challenge encountered in adjuvant therapy. This review explores different therapeutic interactions of curcumin along with its targeted pathways and molecules that are involved in the regulation of onset and progression of different types of cancers, cancer treatment, and the strategies to overcome bioavailability issues and new targets of curcumin in the ever-growing field of cancer.
Collapse
Affiliation(s)
- Abir Kumar Panda
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | | | - Irene Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Tila Khan
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
19
|
Synthesis and in vitro anticancer activity of new 2-thioxo-oxazolidin-4-one derivatives. Pharmacol Rep 2017; 69:633-641. [PMID: 28511054 DOI: 10.1016/j.pharep.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Oxazolidinones derivatives exhibit different biological properties, including anticancer activity. This work aimed to investigate the anticancer potential of five novel 2-Thioxo-oxazolidin-4-one derivatives. METHODS Cytotoxicity assays were performed in human peripheral blood mononuclear cells (PBMCs) from healthy individuals and seven tumor cell lines. Apoptosis detection and cell cycle were evaluated by flow cytometry and the expression of genes involved in cell death processes by Real-Time PCR. RESULTS All oxazolinedione derivatives were not cytotoxic in PBMCs. NB-5 showed the best results in cancer cells, inhibiting the growth of all tumor cell lines tested. NB-4 exhibited the highest cytotoxicity in Jurkat cells (IC50=15.19μM) and NB-3 showed better anticancer effects in HL-60 (17.84μM). Only NB-4 significantly induced apoptosis in acute leukemia cells (p=0.001). All compounds caused a significant increase in expression of pro-apoptotic gene BID (p<0.05) and BECN1 (p<0.05). NB-3 significantly modulated the expression of RIPK3 (p=0.02) and DDIT3 (p=0.014), while NB-2 induced an increase of CDKN1A (p=0.03) and NB-4 induced PPARγ gene (p=0.0006). CONCLUSION NB-5 showed antitumor effects in solid and hematopoietic cancer cells, while other derivatives produced higher activity against hematopoietic cells. In acute leukemia cells, oxazolidinone derivatives modulated the expression of genes involved in apoptosis, ER stress, necroptosis and inflammation.
Collapse
|
20
|
Genetic ablation or pharmacologic inhibition of autophagy mitigated NSAID-associated gastric damages. J Mol Med (Berl) 2016; 95:405-416. [PMID: 27913816 DOI: 10.1007/s00109-016-1491-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/19/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023]
Abstract
Non-steroidal anti-inflammatory drug (NSAID)-associated endoplasmic reticulum (ER) stress (a cyclooxygenase-2-independent mechanism) and consequent autophagic cell death are responsible for NSAID-associated gastric damage. Therefore, alleviating cytotoxicity executed via ER stress and autophagy can be a strategy to prevent NSAID-associated gastric damage. Here, we explored whether genetic or pharmacologic inhibition of autophagy can mitigate NSAID-associated gastric damage in in vitro and in vivo models. To examine the effects of genetic inhibition of NSAID-associated autophagy, we administered indomethacin to RGM1 gastric mucosal cells transfected with shPERK, siLC3B, or shATG5 and microtubule-associated protein light chain 3B knock-out (LC3B-/-) mice. 3-Methyladenine (3-MA) or chloroquine (CQ) was used for pharmacologic inhibition of autophagy in both models. Indomethacin administration increased the expression of ER stress proteins including GRP78, ATF6, and CHOP. Indomethacin provoked the appearance of autophagic vesicles with the increased expression of ATG5 and LC3B-II. Genetic ablation of various ER stress genes significantly attenuated indomethacin-induced autophagy and apoptosis (p < 0.01), whereas knock-down of either ATG5 or LC3B significantly reduced indomethacin-induced cytotoxicity (p < 0.01). Testing each of the genes implicated in ER stress and autophagy showed that indomethacin leads to gastric cell apoptosis through autophagy induction consequent to ER stress. Pharmacological inhibition of autophagy with either 3-MA or CQ in rats or genetic ablation of LC3B in mice all had a significant rescuing effect against indomethacin-associated gastric damage (p < 0.01) and a decrease in molecular markers of autophagic and apoptotic gastric cells. In conclusion, preemptive autophagy inhibition can be a potential strategy to mitigate NSAID-associated gastric damage. KEY MESSAGES NSAID administration triggered ER stress and subsequent autophagy. Inhibition of autophagy resulted in attenuated NSAID-associated cytotoxicity. Autophagy inhibitors represent a novel strategy to prevent NSAID-associated gastric damage.
Collapse
|
21
|
Theppawong A, De Vreese R, Vannecke L, Grootaert C, Van Camp J, D'hooghe M. Synthesis and biological assessment of novel N-(hydroxy/methoxy)alkyl β-enaminone curcuminoids. Bioorg Med Chem Lett 2016; 26:5650-5656. [PMID: 27843113 DOI: 10.1016/j.bmcl.2016.10.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 10/20/2022]
Abstract
Curcumin, a natural compound extracted from the rhizomes of Curcuma Longa, is known to display pronounced anticancer activity but lacks good pharmacokinetic properties. In that respect, augmenting the water solubility by structural modification of the curcumin scaffold may result in improved bioavailability and pharmacokinetics. A possible scaffold modification, especially important for this study, concerns the imination of the labile β-diketone moiety in curcumin. Previous work revealed that novel N-alkyl β-enaminones showed a similar water solubility as compared to curcumin, accompanied by a stronger anti-proliferative activity. To extend this β-enaminone compound library, new analogues were prepared in this work using more polar amines (hydroxyalkylamines and methoxyalkylamines instead of alkylamines) with the main purpose to improve the water solubility without compromising the biological activity of the resulting curcuminoids. Compared to their respective parent compounds, i.e. curcumin and bisdemethoxycurcumin, the bisdemethoxycurcumin N-(hydroxy/methoxy)alkyl enaminone analogues showed better water solubility, antioxidant and anti-proliferative activities. In addition, the curcumin enaminones displayed activities comparable to or better than curcumin, and the water solubility was improved significantly. The constructed new analogues may thus be of interest for further exploration concerning their impact on oxidative stress related diseases such as cancer.
Collapse
Affiliation(s)
- Atiruj Theppawong
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Rob De Vreese
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Lore Vannecke
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Charlotte Grootaert
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - John Van Camp
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
22
|
Ye H, Wei X, Wang Z, Zhang S, Ren J, Yao S, Shi L, Yang L, Qiu P, Wu J, Liang G. A novel double carbonyl analog of curcumin induces the apoptosis of human lung cancer H460 cells via the activation of the endoplasmic reticulum stress signaling pathway. Oncol Rep 2016; 36:1640-8. [DOI: 10.3892/or.2016.4911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/29/2016] [Indexed: 11/05/2022] Open
|
23
|
Hackler L, Ózsvári B, Gyuris M, Sipos P, Fábián G, Molnár E, Marton A, Faragó N, Mihály J, Nagy LI, Szénási T, Diron A, Párducz Á, Kanizsai I, Puskás LG. The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo. PLoS One 2016; 11:e0149832. [PMID: 26943907 PMCID: PMC4778904 DOI: 10.1371/journal.pone.0149832] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
C-150 a Mannich-type curcumin derivative, exhibited pronounced cytotoxic effects against eight glioma cell lines at micromolar concentrations. Inhibition of cell proliferation by C-150 was mediated by affecting multiple targets as confirmed at transcription and protein level. C-150 effectively reduced the transcription activation of NFkB, inhibited PKC-alpha which are constitutively over-expressed in glioblastoma. The effects of C-150 on the Akt/ Notch signaling were also demonstrated in a Drosophila tumorigenesis model. C-150 reduced the number of tumors in Drosophila with similar efficacy to mitoxantrone. In an in vivo orthotopic glioma model, C-150 significantly increased the median survival of treated nude rats compared to control animals. The multi-target action of C-150, and its preliminary in vivo efficacy would render this curcumin analogue as a potent clinical candidate against glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Péter Sipos
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | | | | | - Annamária Marton
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Nóra Faragó
- AVIDIN Ltd., Szeged, Hungary
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Tibor Szénási
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Árpád Párducz
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - László G. Puskás
- AVIDIN Ltd., Szeged, Hungary
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
24
|
Ferguson BS, Nam H, Morrison RF. Curcumin Inhibits 3T3-L1 Preadipocyte Proliferation by Mechanisms Involving Post-transcriptional p27 Regulation. Biochem Biophys Rep 2016; 5:16-21. [PMID: 26688832 PMCID: PMC4680981 DOI: 10.1016/j.bbrep.2015.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous reports from our lab have shown that Skp2 is necessary for p27 degradation and cell cycle progression during adipocyte differentiation. Data presented here demonstrate that the anti-inflammatory, anti-obesity phytochemical curcumin blocked Skp2 protein accumulation during early adipocyte hyperplasia. In addition, curcumin dose-dependently induced p27 protein accumulation and G1 arrest of synchronously replicating 3T3-L1 preadipocytes. Of note, p27 protein accumulation occurred in the presence of decreased p27 mRNA suggesting a role for post-transcriptional regulation. In support of this hypothesis, curcumin markedly increased p27 protein half-life as well as attenuated ubiquitin proteasome activity suggesting that inhibition of targeted p27 proteolysis occurred through curcumin-mediated attenuation of Skp2 and 26S proteasome activity. While we observed no cytotoxic effects for curcumin at doses less than 20 µM, it is important to note an increase in apoptotic signaling at concentrations greater than 30 µM. Finally, data presented here demonstrate that the anti-proliferative effect of curcumin was critical for the suppression of adipocyte differentiation and the development of the mature adipocyte. Collectively, our data demonstrate that curcumin-mediated post-transcriptional accumulation of p27 accounts in part for the anti-proliferative effect observed in 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Bradley S Ferguson
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Heesun Nam
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Ron F Morrison
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| |
Collapse
|
25
|
Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line. Biomaterials 2016; 84:25-41. [PMID: 26803409 DOI: 10.1016/j.biomaterials.2016.01.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/21/2015] [Accepted: 01/01/2016] [Indexed: 11/23/2022]
Abstract
Curcumin (Cur) has been demonstrated to have wide pharmacological window including anti-oxidant and anti-inflammatory properties. However, phototoxicity under sunlight exposure and poor biological availability limits its applicability. We have synthesized biodegradable and non-toxic polymer-poly (lactic-co-glycolic) acid (PLGA) encapsulated formulation of curcumin (PLGA-Cur-NPs) of 150 nm size range. Photochemically free curcumin generates ROS, lipid peroxidation and induces significant UVA and UVB mediated impaired mitochondrial functions leading to apoptosis/necrosis and cell injury in two different origin cell lines viz., mouse fibroblasts-NIH-3T3 and human keratinocytes-HaCaT as compared to PLGA-Cur-NPs. Molecular docking studies suggested that intact curcumin from nanoparticles, bind with BAX in BIM SAHB site and attenuate it to undergo apoptosis while upregulating anti-apoptotic genes like BCL2. Real time studies and western blot analysis with specific phosphorylation inhibitor of ERK1 and AKT1/2/3 confirm the involvement of ERK/AKT signaling molecules to trigger the survival cascade in case of PLGA-Cur-NPs. Our finding demonstrates that low level sustained release of curcumin from PLGA-Cur-NPs could be a promising way to protect the adverse biological interactions of photo-degradation products of curcumin upon the exposure of UVA and UVB. Hence, the applicability of PLGA-Cur-NPs could be suggested as prolonged radical scavenging ingredient in curcumin containing products.
Collapse
|
26
|
Curcumin and its analogue induce apoptosis in leukemia cells and have additive effects with bortezomib in cellular and xenograft models. BIOMED RESEARCH INTERNATIONAL 2015; 2015:968981. [PMID: 26075279 PMCID: PMC4449904 DOI: 10.1155/2015/968981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022]
Abstract
Combination therapy of bortezomib with other chemotherapeutics is an emerging treatment strategy. Since both curcumin and bortezomib inhibit NF-κB, we tested the effects of their combination on leukemia cells. To improve potency, a novel Mannich-type curcumin derivative, C-150, was synthesized. Curcumin and its analogue showed potent antiproliferative and apoptotic effects on the human leukemia cell line, HL60, with different potency but similar additive properties with bortezomib. Additive antiproliferative effects were correlated well with LPS-induced NF-κB inhibition results. Gene expression data on cell cycle and apoptosis related genes, obtained by high-throughput QPCR, showed that curcumin and its analogue act through similar signaling pathways. In correlation with in vitro results similar additive effect could be obsereved in SCID mice inoculated systemically with HL60 cells. C-150 in a liposomal formulation given intravenously in combination with bortezomib was more efficient than either of the drugs alone. As our novel curcumin analogue exerted anticancer effects in leukemic cells at submicromolar concentration in vitro and at 3 mg/kg dose in vivo, which was potentiated by bortezomib, it holds a great promise as a future therapeutic agent in the treatment of leukemia alone or in combination.
Collapse
|
27
|
Kim B, Kim HS, Jung EJ, Lee JY, K. Tsang B, Lim JM, Song YS. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells. Mol Carcinog 2015; 55:918-28. [DOI: 10.1002/mc.22332] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/26/2015] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Boyun Kim
- WCU Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology; Seoul National University College of Medicine; Seoul Korea
- Cancer Research Institute; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Eun-Ji Jung
- Cancer Research Institute; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Jung Yun Lee
- Department of Obstetrics and Gynecology; Seoul National University College of Medicine; Seoul Korea
| | - Benjamin K. Tsang
- WCU Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Republic of Korea
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine; Interdisciplinary School of Health Sciences; University of Ottawa, and Chronic Disease Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada
| | - Jeong Mook Lim
- WCU Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Republic of Korea
| | - Yong Sang Song
- WCU Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Republic of Korea
- Department of Obstetrics and Gynecology; Seoul National University College of Medicine; Seoul Korea
- Cancer Research Institute; Seoul National University College of Medicine; Seoul Republic of Korea
| |
Collapse
|
28
|
Aggarwal BB, Deb L, Prasad S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 2014; 20:185-205. [PMID: 25547723 PMCID: PMC6272158 DOI: 10.3390/molecules20010185] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/16/2014] [Indexed: 01/29/2023] Open
Abstract
Curcumin (diferuloylmethane), a golden pigment from turmeric, has been linked with antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antidiabetic properties. Most of the these activities have been assigned to methoxy, hydroxyl, α,β-unsaturated carbonyl moiety or to diketone groups present in curcumin. One of the major metabolites of curcumin is tetrahydrocurcumin (THC), which lacks α,β-unsaturated carbonyl moiety and is white in color. Whether THC is superior to curcumin on a molecular level is unclear and thus is the focus of this review. Various studies suggest that curcumin is a more potent antioxidant than THC; curcumin (but not THC) can bind and inhibit numerous targets including DNA (cytosine-5)-methyltransferase-1, heme oxygenase-1, Nrf2, β-catenin, cyclooxygenase-2, NF-kappaB, inducible nitric oxide synthase, nitric oxide, amyloid plaques, reactive oxygen species, vascular endothelial growth factor, cyclin D1, glutathione, P300/CBP, 5-lipoxygenase, cytosolic phospholipase A2, prostaglandin E2, inhibitor of NF-kappaB kinase-1, -2, P38MAPK, p-Tau, tumor necrosis factor-α, forkhead box O3a, CRAC; curcumin can inhibit tumor cell growth and suppress cellular entry of viruses such as influenza A virus and hepatitis C virus much more effectively than THC; curcumin affects membrane mobility; and curcumin is also more effective than THC in suppressing phorbol-ester-induced tumor promotion. Other studies, however, suggest that THC is superior to curcumin for induction of GSH peroxidase, glutathione-S-transferase, NADPH: quinone reductase, and quenching of free radicals. Most studies have indicated that THC exhibits higher antioxidant activity, but curcumin exhibits both pro-oxidant and antioxidant properties.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77054, TX, USA.
| | - Lokesh Deb
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77054, TX, USA.
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77054, TX, USA.
| |
Collapse
|
29
|
Picone P, Nuzzo D, Caruana L, Messina E, Scafidi V, Di Carlo M. Curcumin induces apoptosis in human neuroblastoma cells via inhibition of AKT and Foxo3a nuclear translocation. Free Radic Res 2014; 48:1397-408. [DOI: 10.3109/10715762.2014.960410] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Tan KL, Ali A, Du Y, Fu H, Jin HX, Chin TM, Khan M, Go ML. Synthesis and evaluation of bisbenzylidenedioxotetrahydrothiopranones as activators of endoplasmic reticulum (ER) stress signaling pathways and apoptotic cell death in acute promyelocytic leukemic cells. J Med Chem 2014; 57:5904-18. [PMID: 24960549 PMCID: PMC4216202 DOI: 10.1021/jm401352a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin is known to trigger ER-stress induced cell death of acute promyelocytic leukemic (APL) cells by intercepting the degradation of nuclear co-repressor (N-CoR) protein which has a key role in the pathogenesis of APL. Replacing the heptadienedione moiety of curcumin with a monocarbonyl cross-conjugated dienone embedded in a tetrahydrothiopyranone dioxide ring resulted in thiopyranone dioxides that were more resilient to hydrolysis and had greater growth inhibitory activities than curcumin on APL cells. Several members intercepted the degradation of misfolded N-CoR and triggered the signaling cascade in the unfolded protein response (UPR) which led to apoptotic cell death. Microarray analysis showed that genes involved in protein processing pathways that were germane to the activation of the UPR were preferentially up-regulated in treated APL cells, supporting the notion that the UPR was a consequential mechanistic pathway affected by thiopyranone dioxides. The Michael acceptor reactivity of the scaffold may have a role in exacerbating ER stress in APL cells.
Collapse
Affiliation(s)
- Kheng-Lin Tan
- Department of Pharmacy, National University of Singapore , 18 Science Drive 4, 117543, Republic of Singapore
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Naturally occurring plant polyphenols as potential therapies for inherited neuromuscular diseases. Future Med Chem 2014; 5:2091-101. [PMID: 24215348 DOI: 10.4155/fmc.13.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There are several lines of laboratory-based evidence emerging to suggest that purified polyphenol compounds such as resveratrol, found naturally in red grapes, epigallocatechin galate from green tea and curcumin from turmeric, might be useful for the treatment of various inherited neuromuscular diseases, including spinal muscular atrophy, Duchenne muscular dystrophy and Charcot-Marie-Tooth disease. Here, we critically examine the scientific evidence related to the known molecular effects that these polyphenols have on different models of inherited neuromuscular disease, with particular attention to problems with the validity of in vitro evidence. We also present proteomic evidence that polyphenols have in vitro effects on cells related to metal ion chelation in cell-culture media. Although their precise mechanisms of action remain somewhat elusive, polyphenols could be an attractive approach to therapy for inherited neuromuscular disease, especially since they may be safer to use on young children, compared with some of the other drug candidates.
Collapse
|
32
|
Jiang Z, Chen W, Yan X, Bi L, Guo S, Zhan Z. Paeoniflorin protects cells from GalN/TNF-α-induced apoptosis via ER stress and mitochondria-dependent pathways in human L02 hepatocytes. Acta Biochim Biophys Sin (Shanghai) 2014; 46:357-67. [PMID: 24777494 DOI: 10.1093/abbs/gmu010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Paeoniflorin (PF) is one of the main effective components extracted from the root of Paeonia lactiflora, which has been used clinically to treat hepatitis in traditional Chinese medicine, but the details of the underlying mechanism remain unknown. The present study was designed to investigate the mechanism of protective effect of PF on d-galactosamine (GalN) and tumor necrosis factor-α (TNF-α)-induced cell apoptosis using human L02 hepatocytes. Our results confirmed that PF could attenuate GalN/TNF-α-induced apoptotic cell death in a dose-dependent manner. The disruption of mitochondrial membrane potential and the disturbance of intracellular Ca(2+) concentration were also recovered by PF. Western blot analysis revealed that GalN/TNF-α induced the activation of a number of signature endoplasmic reticulum (ER) stress and mitochondrial markers, while PF pre-treatment had a marked dose-dependent suppression on them. Additionally, the anti-apoptotic effect of PF was further evidenced by the inhibition of caspase-3/9 activities in L02 cells. These findings suggest that PF can effectively inhibit hepatocyte apoptosis and the underlying mechanism is related to the regulating mediators in ER stress and mitochondria-dependent pathways.
Collapse
Affiliation(s)
- Zequn Jiang
- Department of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Curcumin (diferuloylmethane) is the biphenolic active compound of turmeric. Curcumin has been used for hundreds of years to treat various ailments. Curcumin has been reported to exert numerous pharmacological effects by modulating multiple molecular targets including those involved in the pathogenesis of cancer. Cancer has been characterized as the dysregulation of cell signaling pathways through gradual alteration of regulatory proteins and through gene mutation. Curcumin is a highly pleiotropic molecule that modulates several intracellular signaling pathways in cancer. The pleiotropic activities of curcumin have been attributed to its novel molecular structure. Based on its β-diketone moiety, curcumin exists in keto-enol tautomers, and this tautomerism favors interaction and binding with a wide range of enzymes. Several studies have shown modulation of numerous signaling enzymes by curcumin including, LOX, COX-2, XO, proteasomes, Ca(2+)-ATPase of sarcoplasmic reticulum, MMPs, HAT, HDAC, DNMT1, DNA polymerase λ, ribonucleases, GloI, protein kinases (PKA, PKB, PKC, v-Src, GSK-3β, ErbB2), protein reductases (TrxR1, AR), GSH, ICDHs, peroxidases (Prx1, Prx2, Prx6) by treatment with curcumin. Various biophysical analyses have been reported, which shows the underlying molecular interaction of curcumin with multiple targets in terms of binding affinities. The current chapter describes how curcumin binds and modulates multiple enzymes involved cancer. Published clinical trial studies with curcumin in cancer management will also be discussed.
Collapse
Affiliation(s)
- Adeeb Shehzad
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Raheem Shahzad
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young Sup Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
34
|
Li G, Petiwala SM, Pierce DR, Nonn L, Johnson JJ. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract. PLoS One 2013; 8:e81572. [PMID: 24367485 PMCID: PMC3867317 DOI: 10.1371/journal.pone.0081572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/14/2013] [Indexed: 01/27/2023] Open
Abstract
The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.
Collapse
Affiliation(s)
- Gongbo Li
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sakina M. Petiwala
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dana R. Pierce
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Larisa Nonn
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- University of Illinois Cancer Center, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jeremy J. Johnson
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- University of Illinois Cancer Center, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Buss S, Dobra J, Goerg K, Hoffmann S, Kippenberger S, Kaufmann R, Hofmann M, Bernd A. Visible light is a better co-inducer of apoptosis for curcumin-treated human melanoma cells than UVA. PLoS One 2013; 8:e79748. [PMID: 24255713 PMCID: PMC3821844 DOI: 10.1371/journal.pone.0079748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/02/2013] [Indexed: 01/26/2023] Open
Abstract
Curcumin attracts worldwide scientific interest due to its anti-proliferative and apoptosis inducing effects on different tumor cells at concentrations ranging from 10 to 150 µM (3.7-55 µg/ml). Unfortunately, because of a low oral bioavailability, only low and pharmacologically ineffective serum levels are achievable. In this study, an alternative treatment concept consisting of low concentration curcumin (0.2-5 µg/ml) and irradiation with UVA or visible light (VL) has been tested. The experimental results show clearly that this treatment decreases the proliferation and the viability of human melanoma cells while the cell membrane integrity remains intact. We identified the onset of apoptosis characterized by typical markers such as active caspases 8, 9 and 3 as well as DNA fragmentation accompanied by the loss of cell adhesion. The mitochondrial apoptosis signaling pathway is predominant due to an early activation of caspase-9. The present data indicate a higher efficacy of a combination of curcumin and VL than curcumin and UVA. Reduced effects as a result of light absorption by heavily pigmented skin are unlikely if VL is used. These results indicate that a combination of curcumin and light irradiation may be a useful additional therapy in the treatment of malignant disease.
Collapse
Affiliation(s)
- Stephan Buss
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Jadranka Dobra
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Kerstin Goerg
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Stephanie Hoffmann
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Stefan Kippenberger
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Matthias Hofmann
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| | - August Bernd
- Department of Dermatology, Venereology, and Allergology, University Hospital, J.W. Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|
36
|
Qu W, Xiao J, Zhang H, Chen Q, Wang Z, Shi H, Gong L, Chen J, Liu Y, Cao R, Lv J. B19, a novel monocarbonyl analogue of curcumin, induces human ovarian cancer cell apoptosis via activation of endoplasmic reticulum stress and the autophagy signaling pathway. Int J Biol Sci 2013; 9:766-77. [PMID: 23983610 PMCID: PMC3753441 DOI: 10.7150/ijbs.5711] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 08/02/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The unfolded protein response, autophagy and endoplasmic reticulum (ER) stress-induced apoptosis regulate tumor cell fate and have become novel signaling targets for the development of cancer therapeutic drugs. Curcumin has been used to treat several different cancers, including ovarian cancer, in clinical trials and research; however, the role of ER stress and autophagy in the therapeutic effects of curcumin and new curcumin analogues remains unclear. METHODS Cell viability was determined using the MTT assay. Apoptosis was detected using flow cytometry with PI/Annexin V-FITC staining. The expression levels of ER stress- and autophagy-related proteins were analyzed by western blotting. The activation of autophagy was detected using immunofluorescence staining. RESULTS We demonstrated that B19 induced HO8910 cell apoptosis in a dose-responsive manner. We also determined and that this effect was associated with corresponding increases in a series of key components in the UPR and ER stress-mediated apoptosis pathways, followed by caspase 3 cleavage and activation. We also observed that B19 treatment induced autophagy in HO8910 cells. The inhibition of autophagy using 3-methyladenine (3-MA) increased levels of intracellular misfolded proteins, which enhanced ovarian cancer apoptosis. CONCLUSIONS Our data indicate that ER stress and autophagy may play a role in the apoptosis that is induced by the curcumin analogue B19 in an epithelial ovarian cancer cell line and that autophagy inhibition can increase curcumin analogue-induced apoptosis by inducing severe ER stress.
Collapse
Affiliation(s)
- Wanglei Qu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pan Y, Xiao J, Liang G, Wang M, Wang D, Wang S, Yang H. A new curcumin analogue exhibits enhanced antitumor activity in nasopharyngeal carcinoma. Oncol Rep 2013; 30:239-245. [PMID: 23673810 DOI: 10.3892/or.2013.2457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/18/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the antitumor effects of the curcumin analogue GL63 on radioresistant nasopharyngeal carcinoma (NPC) CNE2R cells and parental CNE2 cells. The cell viability and proliferation of NPC cells were detected by MTT assay and colony formation assay. The suppressive effect on tumor growth was examined using in vivo subcutaneously inoculated NPC tumor models using nude mice. The cell cycle distribution was detected using flow cytometry. Apoptosis was examined by Hoechst 33342 and Annexin V/PI staining assay. The protein expression of endoplasmic reticulum (ER) stress pathway markers, XBP-1, ATF-4 and CHOP, were examined by western blotting. A growth inhibitory effect was observed following treatment with GL63 in a dose-dependent manner and was more potent when compared to curcumin. GL63 at 5 µM induced significant G2/M arrest and apoptosis in NPC. The tumor-suppressive activity of GL63 in NPC xenograft models was more potent when compared to curcumin. Furthermore, GL63 induced an ER stress response, upregulation of CHOP, XBP-1 and ATF-4 expression, while the same concentration of curcumin had no effect on ER stress. These results suggest that GL63 has more potent antitumor activity than curcumin, which is associated with activation of ER stress, induction of G2/M arrest and apoptosis in NPC cells.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | | | | | | | | | | | | |
Collapse
|
38
|
Antoine F, Girard D. Mechanisms involved in curcumin-induced human neutrophil apoptosis: Evidence that curcumin activates the endoplasmic reticulum stress-induced cell apoptosis pathway. SAGE Open Med 2013; 1:2050312113488104. [PMID: 26770672 PMCID: PMC4687759 DOI: 10.1177/2050312113488104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Curcumin was previously reported to accelerate neutrophil apoptosis, but the
mechanism is unclear. Herein, we confirmed that curcumin induces human
neutrophil apoptosis as assessed by cytology and by increase in the cell surface
expression of annexin-V and CD16 shedding. Curcumin activated caspase-3 and the
cleavage of the two cytoskeletal proteins lamin B1 and vimentin. In
addition, curcumin activated protein kinase RNA-like endoplasmic reticulum
kinase and eukaryotic initiation factor 2 alpha and reduced de novo protein
synthesis and the protein expression of the two chaperone proteins, HSP70 and
HSP90. We conclude that curcumin acts as an endoplasmic reticulum stressor in
human neutrophils. The ability of curcumin to activate the endoplasmic reticulum
stress-induced cell apoptotic pathway is part of its mode of action in primary
cells like mature neutrophils.
Collapse
Affiliation(s)
- Francis Antoine
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| |
Collapse
|
39
|
Bernd A. Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2013; 13:183-189. [PMID: 24578676 PMCID: PMC3928504 DOI: 10.1007/s11101-013-9296-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/17/2013] [Indexed: 06/03/2023]
Abstract
Curcumin, a dietary pigment from the plant Curcuma longa, inhibits cell proliferation and induces apoptosis in different cell lines. The therapeutic benefit is hampered by a very low absorption after trans-dermal or oral application. Therefore, great efforts were undertaken to enhance the effectiveness of curcumin. Recently, it was demonstrated that curcumin offers the described effects also at low concentrations (0.2-1 μg/ml) when applied in combination with UVA or visible light. The efficacy of this combination was shown in human epidermal keratinocytes and in a panel of other cell species in vitro as well as in a xenograft tumor model with A431 tumor cells injected subcutaneously in the flanks of NMRI nude mice in vivo. The treatment of keratinocytes with curcumin and light resulted in the inhibition of cell growth, and in the induction of apoptosis, whereas no toxic cell membrane damage was detectable. The treatment of tumor bearing nude mice with curcumin and visible light resulted in reduced tumor volumes, reduced proliferation rates, and the induction of apoptosis in the tumors. On the molecular level inhibition of extracellular regulated kinases 1/2 and epidermal growth factor receptor was observed which may aid to inhibition of proliferation and induction of apoptosis. This review covers the experiences of the new combination treatment of human tumors.
Collapse
Affiliation(s)
- August Bernd
- Clinic for Dermatology, Venereology and Allergology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
40
|
Zheng M, Zhang Q, Joe Y, Lee BH, Ryu DG, Kwon KB, Ryter SW, Chung HT. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction. Int Immunopharmacol 2013; 15:517-23. [PMID: 23415873 DOI: 10.1016/j.intimp.2013.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/09/2013] [Accepted: 02/01/2013] [Indexed: 12/31/2022]
Abstract
Curcumin, a natural polyphenolic antioxidant compound, exerts well-known anti-inflammatory and immunomodulatory effects, the latter which can influence the activation of immune cells including T cells. Furthermore, curcumin can inhibit the expression of pro-inflammatory cytokines and chemokines, through suppression of the NF-κB signaling pathway. The beneficial effects of curcumin in diseases such as arthritis, allergy, asthma, atherosclerosis, diabetes and cancer may be due to its immunomodulatory properties. We studied the potential of curcumin to modulate CD4+ T cells-mediated autoimmune disease, by examining the effects of this compound on human CD4+ lymphocyte activation. Stimulation of human T cells with PHA or CD3/CD28 induced IL-2 mRNA expression and activated the endoplasmic reticulum (ER) stress response. The treatment of T cells with curcumin induced the unfolded protein response (UPR) signaling pathway, initiated by the phosphorylation of PERK and IRE1. Furthermore, curcumin increased the expression of the ER stress associated transcriptional factors XBP-1, cleaved p50ATF6α and C/EBP homologous protein (CHOP) in human CD4+ and Jurkat T cells. In PHA-activated T cells, curcumin further enhanced PHA-induced CHOP expression and reduced the expression of the anti-apoptotic protein Bcl-2. Finally, curcumin treatment induced apoptotic cell death in activated T cells via eliciting an excessive ER stress response, which was reversed by the ER-stress inhibitor 4-phenylbutyric acid or transfection with CHOP-specific siRNA. These results suggest that curcumin can impact both ER stress and mitochondria functional pathways, and thereby could be used as a promising therapy in the context of Th1-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Min Zheng
- Department of Medical Science, University of Ulsan, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Prommaban A, Kodchakorn K, Kongtawelert P, Banjerdpongchai R. Houttuynia cordata Thunb fraction induces human leukemic Molt-4 cell apoptosis through the endoplasmic reticulum stress pathway. Asian Pac J Cancer Prev 2013; 13:1977-81. [PMID: 22901157 DOI: 10.7314/apjcp.2012.13.5.1977] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Houttuynia cordata Thunb (HCT) is a native herb found in Southeast Asia which features various pharmacological activities against allergy, inflammation, viral and bacterial infection, and cancer. The aims of this study were to determine the cytotoxic effect of 6 fractions obtained from silica gel column chromatography of alcoholic HCT extract on human leukemic Molt-4 cells and demonstrate mechanisms of cell death. Six HCT fractions were cytotoxic to human lymphoblastic leukemic Molt-4 cells in a dose-dependent manner by MTT assay, fraction 4 exerting the greatest effects. Treatment with IC50 of HCT fraction 4 significantly induced Molt-4 apoptosis detected by annexinV-FITC/propidium iodide for externalization of phosphatidylserine to the outer layer of cell membrane. The mitochondrial transmembrane potential was reduced in HCT fraction 4-treated Molt-4 cells. Moreover, decreased expression of Bcl-xl and increased levels of Smac/Diablo, Bax and GRP78 proteins were noted on immunoblotting. In conclusion, HCT fraction 4 induces Molt-4 apoptosis cell through an endoplasmic reticulum stress pathway.
Collapse
Affiliation(s)
- Adchara Prommaban
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | |
Collapse
|
42
|
Suh DH, Kim MK, Kim HS, Chung HH, Song YS. Unfolded protein response to autophagy as a promising druggable target for anticancer therapy. Ann N Y Acad Sci 2013; 1271:20-32. [PMID: 23050960 PMCID: PMC3499662 DOI: 10.1111/j.1749-6632.2012.06739.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The endoplasmic reticulum (ER) is responsible for protein processing. In rapidly proliferating tumor cells, the ER tends to be overloaded with unfolded and misfolded proteins due to high metabolic demand. With the limited protein-folding capacity of the ER, tumor cells often suffer from more ER stress than do normal cells. Thus, cellular stress responses to cope with ER stress, such as the unfolded protein response (UPR) and autophagy, might be more activated in cancer cells than in normal cells. The complex signaling pathways from the UPR to autophagy provide promising druggable targets; a number of UPR/autophagy-targeted anticancer agents are currently in development in preclinical and clinical studies. In this short review we will discuss the potential anticancer efficacy of modulators of cellular stress responses, especially UPR and autophagy, on the basis of their signaling pathways. In addition, the current developmental status of the UPR/autophagy-targeted agents will be discussed.
Collapse
Affiliation(s)
- Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
43
|
Zingg JM, Hasan ST, Meydani M. Molecular mechanisms of hypolipidemic effects of curcumin. Biofactors 2013; 39:101-21. [PMID: 23339042 DOI: 10.1002/biof.1072] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/19/2012] [Indexed: 12/14/2022]
Abstract
Recent evidence suggests potential benefits from phytochemicals and micronutrients in reducing the elevated oxidative and lipid-mediated stress associated with inflammation, obesity, and atherosclerosis. These compounds may either directly scavenge reactive oxygen or nitrogen species or they may modulate the activity of signal transduction enzymes leading to changes in the expression of antioxidant genes. Alternatively, they may reduce plasma lipid levels by modulating lipid metabolic genes in tissues and thus reduce indirectly lipid-mediated oxidative and endoplasmic reticulum stress through their hypolipidemic effect. Here we review the proposed molecular mechanisms by which curcumin, a polyphenol present in the rhizomes of turmeric (Curcuma longa) spice, influences oxidative and lipid-mediated stress in the vascular system. At the molecular level, mounting experimental evidence suggests that curcumin may act chemically as scavenger of free radicals and/or influences signal transduction (e.g., Akt, AMPK) and modulates the activity of specific transcription factors (e.g., FOXO1/3a, NRF2, SREBP1/2, CREB, CREBH, PPARγ, and LXRα) that regulate the expression of genes involved in free radicals scavenging (e.g., catalase, MnSOD, and heme oxygenase-1) and lipid homeostasis (e.g., aP2/FABP4, CD36, HMG-CoA reductase, and carnitine palmitoyltransferase-I (CPT-1)). At the cellular level, curcumin may induce a mild oxidative and lipid-metabolic stress leading to an adaptive cellular stress response by hormetic stimulation of these cellular antioxidant defense systems and lipid metabolic enzymes. The resulting lower oxidative and lipid-mediated stress may not only explain the beneficial effects of curcumin on inflammation, cardiovascular, and neurodegenerative disease, but may also contribute to the increase in maximum life-span observed in animal models.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Vascular Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | |
Collapse
|
44
|
Furanodiene induces endoplasmic reticulum stress and presents antiproliferative activities in lung cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:426521. [PMID: 22927878 PMCID: PMC3425331 DOI: 10.1155/2012/426521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/21/2012] [Accepted: 06/29/2012] [Indexed: 11/18/2022]
Abstract
Furanodiene (FUR) is a natural terpenoid isolated from Curcumae Rhizoma, a well-known Chinese medicinal herb that presents antiproliferation activities in several cancer cell lines. In this study, we demonstrated that FUR concentration dependently inhibits the cell proliferation of A549, NIH-H1299, and 95-D lung cancer cells. β-elemene, another terpenoid isolated from Curcumae Rhizoma, exhibited weaker antiproliferative effects in A549 and NIH-H1299 cells and activities similar to FUR in 95-D cells. FUR significantly inhibited colony formation in A549 and 95-D cells and upregulated both the mRNA and protein expression levels of binding immunoglobulin protein (BIP) and C/EBP homologous protein (CHOP), indicating that endoplasmic reticulum (ER) stress is induced. FUR treatment led to the accumulation of CHOP in the nucleus, which further confirms induction of ER stress. Furthermore, combined treatment of FUR with paclitaxel showed significant synergetic activities in NIH-H1299 and 95-D cells, suggesting its potential roles in combination therapy. These findings provide a basis for the further study of the anticancer effects in vivo and the internal mechanisms of FUR.
Collapse
|
45
|
Guo C, Rosoha E, Lowry MB, Borregaard N, Gombart AF. Curcumin induces human cathelicidin antimicrobial peptide gene expression through a vitamin D receptor-independent pathway. J Nutr Biochem 2012; 24:754-9. [PMID: 22841393 DOI: 10.1016/j.jnutbio.2012.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/09/2012] [Accepted: 04/03/2012] [Indexed: 01/08/2023]
Abstract
The vitamin D receptor (VDR) mediates the pleiotropic biologic effects of 1α,25 dihydroxy-vitamin D3. Recent in vitro studies suggested that curcumin and polyunsaturated fatty acids (PUFAs) also bind to VDR with low affinity. As potential ligands for the VDR, we hypothesized that curcumin and PUFAs would induce expression of known VDR target genes in cells. In this study, we tested whether these compounds regulated two important VDR target genes - human cathelicidin antimicrobial peptide (CAMP) and 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1) - in human monocytic cell line U937, colon cancer cell line HT-29 and keratinocyte cell line HaCaT. We demonstrated that PUFAs failed to induce CAMP or CYP24A1 mRNA expression in all three cell lines, but curcumin up-regulated CAMP mRNA and protein levels in U937 cells. Curcumin treatment induced CAMP promoter activity from a luciferase reporter construct lacking the VDR binding site and did not increase binding of the VDR to the CAMP promoter as determined by chromatin immunoprecipitation assays. These findings indicate that induction of CAMP by curcumin occurs through a vitamin D receptor-independent manner. We conclude that PUFAs and curcumin do not function as ligands for the VDR.
Collapse
Affiliation(s)
- Chunxiao Guo
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
46
|
Chen MB, Wu XY, Tao GQ, Liu CY, Chen J, Wang LQ, Lu PH. Perifosine sensitizes curcumin-induced anti-colorectal cancer effects by targeting multiple signaling pathways bothin vivoandin vitro. Int J Cancer 2012; 131:2487-98. [DOI: 10.1002/ijc.27548] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/02/2012] [Indexed: 01/05/2023]
|
47
|
Zingg JM, Hasan ST, Cowan D, Ricciarelli R, Azzi A, Meydani M. Regulatory effects of curcumin on lipid accumulation in monocytes/macrophages. J Cell Biochem 2012; 113:833-40. [PMID: 22021079 DOI: 10.1002/jcb.23411] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent evidence suggests potential benefits from phytochemicals and micronutrients in protecting against atherosclerosis and inflammation, but the molecular mechanisms of these actions are still unclear. Here, we investigated whether the dietary polyphenol curcumin can modulate the accumulation of lipids in monocytes/macrophages. Curcumin increased the expression of two lipid transport genes, the fatty acids transporter CD36/FAT and the fatty acids binding protein 4 (FABP4/aP2; P < 0.05), leading to increased lipid levels in THP-1 and RAW264.7 monocytes and macrophages (P < 0.05). To investigate the molecular mechanisms involved, we assessed the activity of Forkhead box O3a (FOXO3a), a transcription factor centrally involved in regulating several stress resistance and lipid transport genes. Curcumin increased FOXO3a-mediated gene expression by twofold (P < 0.05), possibly as a result of influencing FOXO3a phosphorylation and nuclear translocation. The curcumin derivative, tetrahydrocurcumin (THC), with similar chemical antioxidant activity as curcumin, did not show any measurable effects. In contrast to the in vitro results, curcumin showed a trend for reduction of lipid levels in peritoneal macrophages in LDL receptor knockout mice fed a high fat diet for 4 months, suggesting additional regulatory mechanisms in vivo. Thus, the up-regulation of FOXO3a activity by curcumin could be a mechanism to protect against oxidant- and lipid-induced damage in the inflammatory cells of the vascular system.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Vascular Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 0111, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Xiong A, Yu W, Tiwary R, Sanders BG, Kline K. Distinct roles of different forms of vitamin E in DHA-induced apoptosis in triple-negative breast cancer cells. Mol Nutr Food Res 2012; 56:923-34. [DOI: 10.1002/mnfr.201200027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ailian Xiong
- Department of Nutritional Sciences/A2703, University of Texas at Austin; Austin; TX; USA
| | - Weiping Yu
- School of Biological Sciences/C0900; University of Texas at Austin; Austin; TX; USA
| | - Richa Tiwary
- School of Biological Sciences/C0900; University of Texas at Austin; Austin; TX; USA
| | - Bob G. Sanders
- School of Biological Sciences/C0900; University of Texas at Austin; Austin; TX; USA
| | - Kimberly Kline
- Department of Nutritional Sciences/A2703, University of Texas at Austin; Austin; TX; USA
| |
Collapse
|
49
|
Joe Y, Zheng M, Kim HJ, Kim S, Uddin MJ, Park C, Ryu DG, Kang SS, Ryoo S, Ryter SW, Chang KC, Chung HT. Salvianolic acid B exerts vasoprotective effects through the modulation of heme oxygenase-1 and arginase activities. J Pharmacol Exp Ther 2012; 341:850-8. [PMID: 22442118 DOI: 10.1124/jpet.111.190736] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Salvia miltiorrhiza (Danshen), a traditional Chinese herbal medicine, is commonly used for the prevention and treatment of cardiovascular disorders including atherosclerosis. However, the mechanisms responsible for the vasoprotective effects of Danshen remain largely unknown. Salvianolic acid B (Sal B) represents one of the most bioactive compounds that can be extracted from the water-soluble fraction of Danshen. We investigated the effects of Danshen and Sal B on the inflammatory response in murine macrophages. Danshen and Sal B both induced the expression of heme oxygenase-1 (HO-1) and inhibited nitric oxide (NO) production and inducible NO synthase (iNOS) expression in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Inhibition of HO activity using Sn-protoporphyrin-IX (SnPP) abolished the inhibitory effect of Sal B on NO production and iNOS expression. Sal B increased macrophage arginase activity in a dose-dependent manner and diminished LPS-inducible tumor necrosis factor-α production. These effects were also reversed by SnPP. These data suggest that HO-1 expression plays an intermediary role in the anti-inflammatory effects of Sal B. In contrast to the observations in macrophages, Sal B dose-dependently inhibited arginase activity in murine liver, kidney, and vascular tissue. Furthermore, Sal B increased NO production in isolated mouse aortas through the inhibition of arginase activity and reduction of reactive oxygen species production. We conclude that Sal B improves vascular function by inhibiting inflammatory responses and promoting endothelium-dependent vasodilation. Taken together, we suggest that Sal B may represent a potent candidate therapeutic for the treatment of cardiovascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kizhakkayil J, Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S. Glutathione regulates caspase-dependent ceramide production and curcumin-induced apoptosis in human leukemic cells. Free Radic Biol Med 2012; 52:1854-64. [PMID: 22387197 DOI: 10.1016/j.freeradbiomed.2012.02.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
Depletion of intracellular glutathione (GSH) is the prime hallmark of the progression of apoptosis. Previously, we reported that curcumin induces reactive oxygen species (ROS)-mediated depletion of GSH, which leads to caspase-dependent and independent apoptosis in mouse fibroblast cells (F. Thayyullathil et al., Free Radic. Biol. Med.45, 1403-1412, 2008). In this study, we investigated the antileukemic potential of curcumin in vitro, and we further examined the molecular mechanisms of curcumin-induced apoptosis in human leukemic cells. Curcumin suppresses the growth of human leukemic cells via ROS-independent GSH depletion, which leads to caspase activation, inhibition of sphingomyelin synthase (SMS) activity, and induction of ceramide (Cer) generation. Pretreatment of leukemic cells with carbobenzoxy-Val-Ala-Asp fluoromethylketone, a universal inhibitor of caspases, abrogates the SMS inhibition and Cer generation, and in turn prevents curcumin-induced cell death. Curcumin treatment of leukemic cells also downregulates the expression of the inhibitor of apoptosis proteins (IAPs), phospho-Akt, c-Myc, and cyclin D1. Extracellular supplementation with GSH attenuates curcumin-induced depletion of GSH, caspase-dependent inhibition of SMS, Cer generation, and downregulation of IAPs, whereas, L-D-buthionine sulfoximine, a widely used inhibitor of GSH synthesis, potentiates GSH depletion, Cer generation, and apoptosis induced by curcumin. Taken together, our findings provide evidence suggesting for the first time that GSH regulates caspase-dependent inhibition of SMS activity, Cer generation, and apoptosis induced by curcumin in human leukemic cells.
Collapse
Affiliation(s)
- Jaleel Kizhakkayil
- Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|