1
|
Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol 2024; 20:101-119. [PMID: 37857763 DOI: 10.1038/s41581-023-00775-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes, including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.
Collapse
Affiliation(s)
- Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
2
|
Qin J, Cao M, Hu X, Tan W, Ma B, Cao Y, Chen Z, Li Q, Hu G. Dual inhibitors of ASK1 and PDK1 kinases: Design, synthesis, molecular docking and mechanism studies of N-benzyl pyridine-2-one containing derivatives as anti-fibrotic agents. Eur J Med Chem 2023; 247:115057. [PMID: 36603508 DOI: 10.1016/j.ejmech.2022.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Utilizing fragment-based hybrid designing strategies, 24 N-benzyl pyridine-2-one containing derivatives were synthesized by successfully incorporating 6-(4H-1,2,4-triazol-3-yl) pyridin-2-amine of scaffold of ASK1 inhibitor (GS-444217). These newly synthesized compounds were screened in cell-free ASK1 and PDK1 kinase and cellular vitality assays. Among all compounds tested, both 21c and 21d displayed single digit potency of 9.13, 1.73 nM in inhibiting ASK1, and exhibited excellent enzyme inhibitory activity against PDK1 (the inhibition rates at 10 μM were 13.63% and 23.80%, respectively). Specifically, both compounds inhibited the TGF-β1 induced fibrotic response and blocked the up-regulated protein expression levels of ASK1-p38/JNK signaling pathways and possessed the potency in reducing PDK1/Akt phosphorylation. The results herein showed the potential lead characteristics of 21c or 21d as dual inhibitors ASK1/PDK1 kinases.
Collapse
Affiliation(s)
- Jia Qin
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Meng Cao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Xinlan Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Wenhua Tan
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Binghao Ma
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Yuanyuan Cao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China.
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
PIM1 attenuates renal ischemia-reperfusion injury by inhibiting ASK1-JNK/P38. Int Immunopharmacol 2023; 114:109563. [PMID: 36513021 DOI: 10.1016/j.intimp.2022.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Renal ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury (AKI), yet therapeutic approaches to alleviate IRI remain limited. PIM1 (provirus integration site for Moloney murine leukemia virus 1) is a constitutive serine threonine kinase that phosphorylates various substrates to regulate cell death and survival. However, the role of PIM1 in renal IRI remains unclear. This study aims to investigate the effect of PIM1 on renal IRI and explore its downstream regulatory mechanism. In this study, we inhibited or overexpressed PIM1 in mice and cultured proximal tubular cells, and then induced renal IRI model in vivo and hypoxia reoxygenation (HR) model in vitro. Renal function, renal structure injuries and cellular death were assessed to reflect the extent of IRI. The expression of PIM1 and the levels of ASK1, MAPK and their phosphorylated forms were detected by immunoblot. RNA sequencing of kidney cortex was performed to analyze downstream pathway of PIM1 in renal IRI. The results showed that PIM1 expression was significantly upregulated in renal IRI mouse model and in renal tubular cell HR model. AZD1208 (a PIM1 inhibitor) aggravated renal IRI, while PIM1 overexpression ameliorated renal IRI. This was involved in the regulation of the ASK1-MAPK pathway. Moreover, results demonstrated that ASK1 was a downstream target of PIM1 by administering Selonsertib (an inhibitor of ASK1 activity), and inhibiting ASK1 alleviated cell death after HR in PIM1 knockdown cells by reducing JNK/P38 activation. In conclusion, this study elucidated the protective effect of PIM1 on renal IRI, and the underlying mechanism may be related to ASK1-JNK/P38 signaling pathway. Taken together, PIM1 may be a potential therapeutic target for renal IRI.
Collapse
|
4
|
Thomas K, Zondler L, Ludwig N, Kardell M, Lüneburg C, Henke K, Mersmann S, Margraf A, Spieker T, Tekath T, Velic A, Holtmeier R, Hermann J, Jankowski V, Meersch M, Vestweber D, Westphal M, Roth J, Schäfers MA, Kellum JA, Lowell CA, Rossaint J, Zarbock A. Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells. JCI Insight 2022; 7:163161. [PMID: 36107633 PMCID: PMC9675453 DOI: 10.1172/jci.insight.163161] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) represents a common complication in critically ill patients that is associated with increased morbidity and mortality. In a murine AKI model induced by ischemia/reperfusion injury (IRI), we show that glutamine significantly decreases kidney damage and improves kidney function. We demonstrate that glutamine causes transcriptomic and proteomic reprogramming in murine renal tubular epithelial cells (TECs), resulting in decreased epithelial apoptosis, decreased neutrophil recruitment, and improved mitochondrial functionality and respiration provoked by an ameliorated oxidative phosphorylation. We identify the proteins glutamine gamma glutamyltransferase 2 (Tgm2) and apoptosis signal-regulating kinase (Ask1) as the major targets of glutamine in apoptotic signaling. Furthermore, the direct modulation of the Tgm2-HSP70 signalosome and reduced Ask1 activation resulted in decreased JNK activation, leading to diminished mitochondrial intrinsic apoptosis in TECs. Glutamine administration attenuated kidney damage in vivo during AKI and TEC viability in vitro under inflammatory or hypoxic conditions.
Collapse
Affiliation(s)
- Katharina Thomas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Lisa Zondler
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Marina Kardell
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Corinna Lüneburg
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Katharina Henke
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sina Mersmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Tilmann Spieker
- Institute for Pathology, St. Franziskus Hospital Münster, Münster, Germany
| | - Tobias Tekath
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Ana Velic
- Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Richard Holtmeier
- Institute of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Juliane Hermann
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Melanie Meersch
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | | - Martin Westphal
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany.,Fresenius Kabi AG, Bad Homburg, Germany
| | - Johannes Roth
- Institute for Immunology, University of Münster, Münster
| | - Michael A. Schäfers
- European Institute for Molecular Imaging, University Hospital Münster, Münster, Germany
| | - John A. Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
5
|
Carlson WD, Keck PC, Bosukonda D, Carlson FR. A Process for the Design and Development of Novel Bone Morphogenetic Protein-7 (BMP-7) Mimetics With an Example: THR-184. Front Pharmacol 2022; 13:864509. [PMID: 35873578 PMCID: PMC9306349 DOI: 10.3389/fphar.2022.864509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Growth Factors have been evaluated as therapeutic targets for the treatment of a broad spectrum of diseases. Because they are proteins with pleiotropic effects, the quest to harness their beneficial effects has presented challenges. Most Growth Factors operate at the extracellular-receptor level and have natural feedback mechanisms that modulate their effects. As proteins, they are difficult and expensive to manufacture. Frequently proteins must be administered parenterally, may invoke an immune response, and may be neutralized by naturally occurring inhibitors. To circumvent these limitations, we have undertaken an effort to develop mimetics for the Bone Morphogenetic Protein (BMP) signaling pathway effects that incorporate the beneficial effects, eliminate the deleterious effects, and thereby create effective drug-like compounds.To this end, we have designed and tested a family of small peptide BMP mimetics. The design used the three-dimensional structure of BMP-7 to identify likely active surface regions. Lead sequences were then optimized based on in vitro assays that examine the selective binding to BMP receptors, demonstrate the phosphorylation of Smad-1,5,8, detect anti-apoptosis and anti-inflammation, and block the epithelial to mesenchymal transition (EMT) in renal tubular epithelial cells. These sequences were further optimized using in vivo assays of the attenuation of acute kidney injury in a rat-model of unilateral clamp ischemic reperfusion. This process uses a Structure Variance Analysis algorithm (SVA) to identify structure/activity relationships. One member of this family, THR-184, is an agonist of BMP signaling and a potent antagonist of TGFβ signaling. This small peptide mimetic inhibits inflammation, apoptosis, fibrosis and reverses epithelial to mesenchymal transition (EMT) by regulating multiple signaling pathways involved in the cellular injury of multiple organs. Its effects have been shown to control Acute Kidney Injury (AKI). THR-184 has progressed through phase I and II clinical trials for the prevention of Cardio-Vascular Surgery (CVS) associated AKI. This work provides a roadmap for the development of other growth factor mimetics and demonstrates how we might harness their therapeutic potential.
Collapse
Affiliation(s)
- William D. Carlson
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Therapeutics By Design, Boston, MA, United States
- Thrasos Therapeutics, Hopkinton, MA, United States
- *Correspondence: William D. Carlson,
| | - Peter C. Keck
- Therapeutics By Design, Boston, MA, United States
- Thrasos Therapeutics, Hopkinton, MA, United States
| | - Dattatreyamurty Bosukonda
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Therapeutics By Design, Boston, MA, United States
- Thrasos Therapeutics, Hopkinton, MA, United States
| | - Frederic Roy Carlson
- Therapeutics By Design, Boston, MA, United States
- Thrasos Therapeutics, Hopkinton, MA, United States
| |
Collapse
|
6
|
Kasuno K, Yodoi J, Iwano M. Urinary Thioredoxin as a Biomarker of Renal Redox Dysregulation and a Companion Diagnostic to Identify Responders to Redox-Modulating Therapeutics. Antioxid Redox Signal 2022; 36:1051-1065. [PMID: 34541903 DOI: 10.1089/ars.2021.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: The development and progression of renal diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), are the result of heterogeneous pathophysiology that reflects a range of environmental factors and, in a lesser extent, genetic mutations. The pathophysiology specific to most kidney diseases is not currently identified; therefore, these diseases are diagnosed based on non-pathological factors. For that reason, pathophysiology-based companion diagnostics for selection of pathophysiology-targeted treatments have not been available, which impedes personalized medicine in kidney disease. Recent Advances: Pathophysiology-targeted therapeutic agents are now being developed for the treatment of redox dysregulation. Redox modulation therapeutics, including bardoxolone methyl, suppresses the onset and progression of AKI and CKD. On the other hand, pathophysiology-targeted diagnostics for renal redox dysregulation are also being developed. Urinary thioredoxin (TXN) is a biomarker that can be used to diagnose tubular redox dysregulation. AKI causes oxidation and urinary excretion of TXN, which depletes TXN from the tubules, resulting in tubular redox dysregulation. Urinary TXN is selectively elevated at the onset of AKI and correlates with the progression of CKD in diabetic nephropathy. Critical Issues: Diagnostic methods should provide information about molecular mechanisms that aid in the selection of appropriate therapies to improve the prognosis of kidney disease. Future Directions: A specific diagnostic method enabling detection of redox dysregulation based on pathological molecular mechanisms is much needed and could provide the first step toward personalized medicine in kidney disease. Urinary TXN is a candidate for a companion diagnostic method to identify responders to redox-modulating therapeutics. Antioxid. Redox Signal. 36, 1051-1065.
Collapse
Affiliation(s)
- Kenji Kasuno
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Junji Yodoi
- Institute for Virus Research, Kyoto University, Kyoto, Japan.,Japan Biostress Research Promotion Alliance (JBPA), Kyoto, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
7
|
The Suppression of Pin1-Alleviated Oxidative Stress through the p38 MAPK Pathway in Ischemia- and Reperfusion-Induced Acute Kidney Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1313847. [PMID: 34373763 PMCID: PMC8349297 DOI: 10.1155/2021/1313847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Background Pin1, as the peptidyl-prolyl isomerase, plays a vital role in cellular processes. However, whether it has a regulatory effect on renal ischemia and reperfusion (I/R) injury still remains unknown. Methods The hypoxia/reoxygenation (H/R) model in human kidney (HK-2) cells and the I/R model in rats were assessed to investigate the role of Pin1 on I/R-induced acute kidney injury. Male Sprague-Dawley rats were used to establish the I/R model for 15, 30, and 45 min ischemia and then 24 h reperfusion, with or without the Pin1 inhibitor, to demonstrate the role of Pin1 in acute kidney injury. HK-2 cells were cultured and experienced the H/R model to identify the molecular mechanisms involved. Results In this study, we found that Pin1 and oxidative stress were obviously increased after renal I/R. Inhibition of Pin1 with juglone decreased renal structural and functional injuries, as well as oxidative stress. Besides, Pin1 inhibition with the inhibitor, juglone, or the small interfering RNA showed significant reduction on oxidative stress markers caused by the H/R process in vitro. Furthermore, the results indicated that the expression of p38 MAPK was increased during H/R in vitro and Pin1 inhibition could reduce the increased expression of p38 MAPK. Conclusion Our results illustrated that Pin1 aggravated renal I/R injury via elevating oxidative stress through activation of the p38 MAPK pathway. These findings indicated that Pin1 might become the potential treatment for renal I/R injury.
Collapse
|
8
|
El-Sadek HM, Al-Shorbagy MY, Awny MM, Abdallah DM, El-Abhar HS. Pentoxifylline treatment alleviates kidney ischemia/reperfusion injury: Novel involvement of galectin-3 and ASK-1/JNK & ERK1/2/NF-κB/HMGB-1 trajectories. J Pharmacol Sci 2021; 146:136-148. [PMID: 34030796 DOI: 10.1016/j.jphs.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the documented renoprotective effect of pentoxifylline (PTX), a non-selective phosphodiesterase-4 inhibitor, the studies appraised only its anti-inflammatory/-oxidant/-apoptotic capacities without assessment of the possible involved trajectories. Here, we evaluated the potential role of galectin-3 and the ASK-1/NF-κB p65 signaling pathway with its upstream/downstream signals in an attempt to unveil part of the cascades involved in the renotherapeutic effect using a renal bilateral ischemia/reperfusion (I/R) model. Rats were randomized into sham-operated, renal I/R (45 min/72 h) and I/R + PTX (100 mg/kg; p.o). Post-treatment with PTX improved renal function and abated serum levels of cystatin C, creatinine, BUN and renal KIM-1 content, effects that were reflected on an improvement of the I/R-induced renal histological changes. On the molecular level, PTX reduced renal contents of galectin-3, ASK-1 with its downstream molecule JNK and ERK1/2, as well as NF-κB p65 and HMGB1. This inhibitory effect extended also to suppress neutrophil infiltration, evidenced by diminishing ICAM-1 and MPO, as well as inflammatory cytokines (TNF-α/IL-18), oxidative stress (MDA/TAC), and caspase-3. The PTX novel renotherapeutic effect involved in part the inhibition of galectin-3 and ASK-1/JNK and ERK1/2/NF-κB/HMGB-1 trajectories to mitigate renal I/R injury and to provide basis for its anti-inflammatory, antioxidant, and anti-apoptotic impacts.
Collapse
Affiliation(s)
- Hagar M El-Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates
| | - Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, 84518, Egypt
| |
Collapse
|
9
|
Hosoda A, Matsumoto Y, Toriyama Y, Tsuji T, Yoshida Y, Masamichi S, Kohno T. Telmisartan Exacerbates Cisplatin-Induced Nephrotoxicity in a Mouse Model. Biol Pharm Bull 2021; 43:1331-1337. [PMID: 32879207 DOI: 10.1248/bpb.b20-00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cisplatin (CDDP; cis-diamine dichloroplatinum)-induced nephrotoxicity is the main reason for dose limitations, which can reduce the efficacy of cancer treatment. Lower blood pressure and administration of renin angiotensin system (RAS) inhibitors have been reported as factors that exacerbate CDDP-induced nephrotoxicity; however, the detailed mechanisms remain unknown and the results of previous studies are conflicting. In this study, we examined the influence of various hypotensive drugs, including RAS inhibitors and calcium channel blockers, on CDDP-induced nephrotoxicity in BALB/c mice. The mice were divided into nine groups: (1) CDDP group (15 mg/kg CDDP), (2) AML group (5 mg/kg amlodipine), (3) ENA group (2.5 mg/kg enalapril), (4) telmisartan (TEL) group (10 mg/kg telmisartan), (5) LOS group (10 mg/kg losartan), (6) CDDP + AML group, (7) CDDP + ENA group, (8) CDDP + TEL group, and (9) CDDP + LOS group. Nephrotoxicity was evaluated by measuring serum creatinine (CRE) and blood urea nitrogen (BUN) levels. In addition, the kidney sections were stained with Masson's trichrome and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) to assess the renal fibrosis area and apoptotic area. Serum CRE and BUN levels were increased in the CDDP + ENA, CDDP + LOS, and CDDP + TEL groups compared to those in the CDDP alone group, and the CDDP + AML group showed an increasing trend. However, there was no correlation between ∆CRE or ∆BUN levels and ∆ systolic blood pressure. The CDDP + TEL group showed a significant increase in the renal fibrosis area. These results suggest that exacerbation of CDDP-induced nephrotoxicity is not correlated with systolic blood pressure but is associated with administration of RAS inhibitors, particularly TEL.
Collapse
Affiliation(s)
- Atsuki Hosoda
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University.,Department of Pharmacy, National Hospital Organization, Osaka Minami Medical Center
| | - Yoshio Matsumoto
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Yuuki Toriyama
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Takumi Tsuji
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Yuya Yoshida
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Shuji Masamichi
- Department of Pharmacy, National Hospital Organization, Osaka Minami Medical Center
| | - Takeyuki Kohno
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
10
|
Chen A, Xu J, Lai H, D'Agati VD, Guan TJ, Badal S, Liles J, He JC, Lee K. Inhibition of apoptosis signal-regulating kinase 1 mitigates the pathogenesis of human immunodeficiency virus-associated nephropathy. Nephrol Dial Transplant 2021; 36:430-441. [PMID: 33097961 DOI: 10.1093/ndt/gfaa198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a common cause of morbidity and mortality in human immunodeficiency virus (HIV)-positive individuals. Among the HIV-related kidney diseases, HIV-associated nephropathy (HIVAN) is a rapidly progressive renal disease characterized by collapsing focal glomerulosclerosis (GS), microcystic tubular dilation, interstitial inflammation and fibrosis. Although the incidence of end-stage renal disease due to HIVAN has dramatically decreased with the widespread use of antiretroviral therapy, the prevalence of CKD continues to increase in HIV-positive individuals. Recent studies have highlighted the role of apoptosis signal-regulating kinase 1 (ASK1) in driving kidney disease progression through the activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase and selective ASK-1 inhibitor GS-444217 was recently shown to reduce kidney injury and disease progression in various experimental models. Therefore we examined the efficacy of ASK1 antagonism by GS-444217 in the attenuation of HIVAN in Tg26 mice. METHODS GS-444217-supplemented rodent chow was administered in Tg26 mice at 4 weeks of age when mild GS and proteinuria were already established. After 6 weeks of treatment, the kidney function assessment and histological analyses were performed and compared between age- and gender-matched control Tg26 and GS-444217-treated Tg26 mice. RESULTS GS-444217 attenuated the development of GS, podocyte loss, tubular injury, interstitial inflammation and renal fibrosis in Tg26 mice. These improvements were accompanied by a marked reduction in albuminuria and improved renal function. Taken together, GS-4442217 attenuated the full spectrum of HIVAN pathology in Tg26 mice. CONCLUSIONS ASK1 signaling cascade is central to the development of HIVAN in Tg26 mice. Our results suggest that the select inhibition of ASK1 could be a potential adjunctive therapy for the treatment of HIVAN.
Collapse
Affiliation(s)
- Anqun Chen
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Jin Xu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Han Lai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Nephrology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Tian-Jun Guan
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | | | - John Liles
- Gilead Sciences, Inc., Foster City, CA, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Kidney Center at James J. Peters VA Medical Center, Bronx, NY, USA
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Jerotic D, Suvakov S, Matic M, Alqudah A, Grieve DJ, Pljesa-Ercegovac M, Savic-Radojevic A, Damjanovic T, Dimkovic N, McClements L, Simic T. GSTM1 Modulates Expression of Endothelial Adhesion Molecules in Uremic Milieu. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678924. [PMID: 33574979 PMCID: PMC7860968 DOI: 10.1155/2021/6678924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023]
Abstract
Deletion polymorphism of glutathione S-transferase M1 (GSTM1), a phase II detoxification and antioxidant enzyme, increases susceptibility to end-stage renal disease (ESRD) as well as the development of cardiovascular diseases (CVD) among ESRD patients and leads to their shorter cardiovascular survival. The mechanisms by which GSTM1 downregulation contributes to oxidative stress and inflammation in endothelial cells in uremic conditions have not been investigated so far. Therefore, the aim of the present study was to elucidate the effects of GSTM1 knockdown on oxidative stress and expression of a panel of inflammatory markers in human umbilical vein endothelial cells (HUVECs) exposed to uremic serum. Additionally, we aimed to discern whether GSTM1-null genotype is associated with serum levels of adhesion molecules in ESRD patients. HUVECs treated with uremic serum exhibited impaired redox balance characterized by enhanced lipid peroxidation and decreased antioxidant enzyme activities, independently of the GSTM1 knockdown. In response to uremic injury, HUVECs exhibited alteration in the expression of a series of inflammatory cytokines including retinol-binding protein 4 (RBP4), regulated on activation, normal T cell expressed and secreted (RANTES), C-reactive protein (CRP), angiogenin, dickkopf-1 (Dkk-1), and platelet factor 4 (PF4). GSTM1 knockdown in HUVECs showed upregulation of monocyte chemoattractant protein-1 (MCP-1), a cytokine involved in the regulation of monocyte migration and adhesion. These cells also have shown upregulated intracellular and vascular cell adhesion molecules (ICAM-1 and VCAM-1). In accordance with these findings, the levels of serum ICAM-1 and VCAM-1 (sICAM-1 and sVCAM-1) were increased in ESRD patients lacking GSTM1, in comparison with patients with the GSTM1-active genotype. Based on these results, it may be concluded that incubation of endothelial cells in uremic serum induces redox imbalance accompanied with altered expression of a series of cytokines involved in arteriosclerosis and atherosclerosis. The association of GSTM1 downregulation with the altered expression of adhesion molecules might be at least partly responsible for the increased susceptibility of ESRD patients to CVD.
Collapse
Affiliation(s)
- Djurdja Jerotic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sonja Suvakov
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Marija Matic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127 Zarqa 13133, Jordan
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - David J. Grieve
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Marija Pljesa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Tatjana Damjanovic
- Clinical Department for Renal Diseases, Zvezdara University Medical Center, 11000 Belgrade, Serbia
| | - Nada Dimkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinical Department for Renal Diseases, Zvezdara University Medical Center, 11000 Belgrade, Serbia
| | - Lana McClements
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 2007, NSW, Australia
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Shenshuaikang Enema, a Chinese Herbal Remedy, Inhibited Hypoxia and Reoxygenation-Induced Apoptosis in Renal Tubular Epithelial Cells by Inhibiting Oxidative Damage-Dependent JNK/Caspase-3 Signaling Pathways Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9457101. [PMID: 33281919 PMCID: PMC7685836 DOI: 10.1155/2020/9457101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 11/17/2022]
Abstract
Background Acute kidney injury (AKI) is a common clinically critical illness with serious consequences for the patients. Shenshuaikang enema (SE) is a Chinese herbal compound that is used to treat AKI in clinical practice. However, its mechanism of action remains unclear. Aim The aim of this study was to investigate the therapeutic effect of SE and explore the molecular mechanisms using network pharmacology and in vitro experiments. Materials and Methods The herb-component-target network was constructed based on network pharmacology. The predicted targets and pathways were validated using in vitro experiments. A renal tubular epithelial cell line (HK-2 cells) was exposed to hypoxia and reoxygenation (H/R) using air-tight conditions for five hours and treated with different concentrations of SE (25%, 50%, and 75%) to assess cell viability and apoptosis and determine the optimal experimental dose. Subsequently, H/R-injured HK-2 cells were pretreated with the optimal SE dose and then randomly divided into three groups, the SE, SE-SP600125 (inhibitor of JNK), and SE-NAC (antioxidant) groups. The cell vitality, apoptosis, and death were evaluated using the cell counting kit 8 (CCK8) and carboxyfluorescein succinimidyl ester/propidium iodide (CFSF/PI) staining. The apoptosis-related protein JNK and Caspase-3 were assessed by Western blot. Expression of JNK and Caspase-3 genes was analyzed using real-time quantitative polymerase chain reaction (RT-qPCR). Results 123 active components and 226 targets were identified from four herbs that composed the herb-compound-target network based on transcriptomics and network pharmacology analyses. The KEGG pathway analyses revealed that the mitochondrial apoptosis pathway was involved in the therapeutic AKI effects of SE. Cell vitality of H/R-induced HK-2 cells was obviously increased when treating them with SE, and the apoptosis was significantly inhibited, especially in the SE (50%) group at 4 and 12 h after modeling. Pretreatment with antioxidant NAC obviously prevented cell death compared to the SE (50%) group, while no obvious reduction of apoptosis was observed in the SP600125 group. JNK expression level was significantly increased in the SE (50%) group compared to the SP600125 (P < 0.01) and the NAC group (P < 0.05). Caspase-3 was downregulated in the SE (50%) group compared to the SP600125 (P < 0.01) and NAC group (P < 0.05). Caspase-3 activation in the SP600125 group was higher than that in the NAC group (P < 0.05). Moreover, the oxidative damage-dependent JNK/Caspase-3 pathway was identified in the H/R-injured HK-2 cells by inhibiting the JNK activation and oxidative damage. Conclusions Our findings suggested that the H/R-triggered apoptosis in HK-2 cells was abrogated by SE by upregulating the oxidative damage-dependent JNK to trigger suppression of Caspase-3.
Collapse
|
13
|
Yang JH, Li Y, Azad R, Azadzoi K. Regulation of Cellular Stress Signaling in Bladder Ischemia. Res Rep Urol 2020; 12:391-402. [PMID: 32984087 PMCID: PMC7505713 DOI: 10.2147/rru.s271618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction The etiology of lower urinary tract symptoms in patients with non-obstructed non-neurogenic bladder remains largely unknown. Clinical studies divulged a significant correlation between reduced bladder blood flow and low bladder compliance. Animal models of bladder ischemia displayed structural modifications, characterized by loss of smooth muscle cells and accumulation of connective tissue in the bladder wall. The underlying mechanisms contributing to structural damage in bladder ischemia remain largely elusive. We previously reported that structural modifications in bladder ischemia correlate with upregulated stress proteins and cell survival signaling, suggesting the potential role of cellular stress in ischemic damage. However, stress response molecules and downstream pathways eliciting bladder damage in ischemia remain largely undetermined. Methods Using a rat model of bladder ischemia along with a cell culture hypoxia model, we investigated stress signaling molecules in the ischemic bladder tissues and hypoxic bladder smooth muscle cells. Results Our data suggest simultaneous upregulation of two major cellular stress-sensing molecules, namely apoptosis signal-regulating kinase 1 (ASK1) and caspase-3, implying degenerative insult via stress signaling pathway in bladder ischemia. Consistent with bladder ischemia, incubation of cultured human bladder smooth muscle cells at low oxygen tension increased both ASK1 and caspase-3 expression, insinuating hypoxia as an essential factor in ASK1 and caspase-3 upregulation. Gene deletion of ASK1 by ASK1 siRNA in cultured smooth muscle cells prevented caspase-3 upregulation by hypoxia, suggesting caspase-3 regulation by ASK1 under the ischemic/hypoxic conditions. Upregulation of ASK1 and caspase-3 in rat bladder ischemia and human bladder smooth muscle cell hypoxia was associated with subcellular structural modifications consistent with the initial stages of apoptotic insult. Conclusion Our data suggest that stress sensing by ASK1 and caspase-3 may contribute to subcellular structural damage and low bladder compliance. The ASK1/caspase-3 pathway may provide therapeutic targets against cellular stress and degenerative responses in bladder ischemia.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Department of Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Yedan Li
- Department of Urology, VA Boston Healthcare System, Boston, MA, USA
| | - Roya Azad
- Department of Urology, VA Boston Healthcare System, Boston, MA, USA
| | - Kazem Azadzoi
- Department of Urology and Department of Pathology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
14
|
Hartman RE, Rao PSS, Churchwell MD, Lewis SJ. Novel therapeutic agents for the treatment of diabetic kidney disease. Expert Opin Investig Drugs 2020; 29:1277-1293. [PMID: 32799584 DOI: 10.1080/13543784.2020.1811231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) involves multifaceted pathophysiology which increases the risk of cardiorenal events and mortality. Conventional therapy is limited to renin-angiotensin aldosterone system inhibition and management of hyperglycemia and hypertension. Recent clinical trials have demonstrated promising nephroprotective effects of antihyperglycemic agents thus modifying guideline treatment recommendations for type 2 diabetic patients with chronic kidney disease. AREAS OF COVERED Relevant studies and clinical trials were searched via PubMed and clinicaltrials.gov through August 2020. Authors offer an update on clinical evidence regarding nephroprotective effects and side effects of sodium-glucose-cotransporter-2 (SGLT2) inhibitors, glucagon-like-peptide-1 (GLP1) agonists and dipeptidylpeptidase-4 (DPP4) inhibitors. They discuss the potential benefits of novel therapy targeting DKD pathogenic processes including inflammation, oxidative stress, fibrosis, and vasoconstriction shown in early phases of clinical trials and offer an opinion on key challenges and directions for future progress. EXPERT OPINION SGLT2 inhibitors are the most promising agents for DKD and improving cardiorenal outcomes. Mineralocorticoid-receptor antagonists and janus kinase inhibitors are also promising investigational therapies that target oxidative stress, nitric oxide synthesis, and inflammation. Novel therapeutic targets and the identification of clinically useful biomarkers may provide future therapies that detect early stages of DKD enabling a slower kidney function decline.
Collapse
Affiliation(s)
| | - P S S Rao
- Department of Pharmaceutical Science, University of Findlay , Findlay, OH, USA
| | | | - Susan J Lewis
- Department of Pharmacy Practice, University of Findlay , Findlay, OH, USA
| |
Collapse
|
15
|
Sang Y, Tsuji K, Inoue-Torii A, Fukushima K, Kitamura S, Wada J. Semaphorin3A-Inhibitor Ameliorates Doxorubicin-Induced Podocyte Injury. Int J Mol Sci 2020; 21:ijms21114099. [PMID: 32521824 PMCID: PMC7312798 DOI: 10.3390/ijms21114099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Podocyte injury is an independent risk factor for the progression of renal diseases. Semaphorin3A (SEMA3A), expressed in podocytes and tubular cells in the mammalian adult kidneys, has been reported to regulate diverse biological functions and be associated with renal diseases. Here, we investigated pathological roles of SEMA3A signaling on podocyte injury using a doxorubicin (Dox)-induced mouse model and examined the therapeutic effect of SEMA3A-inhibitor (SEMA3A-I). We demonstrated that Dox caused massive albuminuria and podocyte apoptosis as well as an increase of SEMA3A expression in podocytes, all of which were ameliorated with SEMA3A-I treatment. In addition, c-Jun N-terminal kinase (JNK), known as a downstream of SEMA3A signaling, was activated in Dox-injected mouse podocytes while SEMA3A-I treatment partially blocked the activation. In vitro, SEMA3A-I protected against Dox-induced podocyte apoptosis and recombinant SEMA3A caused podocyte apoptosis with activation of JNK signaling. JNK inhibitor, SP600125, attenuated SEMA3A-induced podocyte apoptosis, indicating that the JNK pathway would be involved in SEMA3A-induced podocyte apoptosis. Furthermore, the analysis of human data revealed a positive correlation between levels of urinary SEMA3A and protein, suggesting that SEMA3A is associated with podocyte injury. In conclusion, SEMA3A has essential roles in podocyte injury and it would be the therapeutic target for protecting from podocyte injury.
Collapse
Affiliation(s)
| | | | | | | | - Shinji Kitamura
- Correspondence: ; Tel.: +81-86-235-7235; Fax: +81-86-222-5214
| | | |
Collapse
|
16
|
Brys R, Gibson K, Poljak T, Van Der Plas S, Amantini D. Discovery and development of ASK1 inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:101-179. [PMID: 32362327 DOI: 10.1016/bs.pmch.2020.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant activation of mitogen-activated protein kinases (MAPKs) like c-Jun N-terminal kinase (JNK) and p38 is an event involved in the pathophysiology of numerous human diseases. The apoptosis signal-regulating kinase 1 (ASK1) is an upstream target that gets activated only under pathological conditions and as such is a promising target for therapeutic intervention. In the first part of this review the molecular mechanisms leading to ASK1 activation and regulation will be described as well as the evidences supporting a pathogenic role for ASK1 in human disease. In the second part, an update on drug discovery efforts towards the discovery and development of ASK1-targeting therapies will be provided.
Collapse
Affiliation(s)
| | - Karl Gibson
- Sandexis Medicinal Chemistry Ltd, Innovation House Discovery ParkSandwich, Kent, United Kingdom
| | | | | | | |
Collapse
|
17
|
Savira F, Wang BH, Edgley AJ, Jucker BM, Willette RN, Krum H, Kelly DJ, Kompa AR. Inhibition of apoptosis signal-regulating kinase 1 ameliorates left ventricular dysfunction by reducing hypertrophy and fibrosis in a rat model of cardiorenal syndrome. Int J Cardiol 2020; 310:128-136. [PMID: 32305147 DOI: 10.1016/j.ijcard.2020.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 04/03/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cardiorenal syndrome (CRS) is a major health burden worldwide in need of novel therapies, as current treatments remain suboptimal. The present study assessed the therapeutic potential of apoptosis signal-regulating kinase 1 (ASK1) inhibition in a rat model of CRS. METHODS Adult male Sprague-Dawley rats underwent surgery for myocardial infarction (MI) (week 0) followed by 5/6 subtotal nephrectomy (STNx) at week 4 to induce to induce a combined model of heart and kidney dysfunction. At week 6, MI + STNx animals were randomized to receive either 0.5% carboxymethyl cellulose (Vehicle, n = 15, Sham = 10) or G226 (15 mg/kg daily, n = 11). Cardiac and renal function was assessed by echocardiography and glomerular filtration rate (GFR) respectively, prior to treatment at week 6 and endpoint (week 14). Haemodynamic measurements were determined at endpoint prior to tissue analysis. RESULTS G226 treatment attenuated the absolute change in left ventricular (LV) fractional shortening and posterior wall thickness compared to Vehicle. G226 also attenuated the reduction in preload recruitable stroke work. Increased myocyte cross sectional area, cardiac interstitial fibrosis, immunoreactivity of cardiac collagen-I and III and cardiac TIMP-2 activation, were significantly reduced following G226 treatment. Although we did not observe improvement in GFR, G226 significantly reduced renal interstitial fibrosis, diminished renal collagen-I and -IV, kidney injury molecule-1 immunoreactivity as well as macrophage infiltration and SMAD2 phosphorylation. CONCLUSION Inhibition of ASK1 ameliorated LV dysfunction and diminished cardiac hypertrophy and cardiorenal fibrosis in a rat model of CRS. This suggests that ASK1 is a critical pathway with therapeutic potential in the CRS setting.
Collapse
Affiliation(s)
- Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Amanda J Edgley
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia
| | - Beat M Jucker
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - Robert N Willette
- Heart Failure Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | - Henry Krum
- Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Darren J Kelly
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia
| | - Andrew R Kompa
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia.
| |
Collapse
|
18
|
Nozaki Y, Ri J, Sakai K, Niki K, Funauchi M, Matsumura I. Protective Effects of Recombinant Human Soluble Thrombomodulin on Lipopolysaccharide-Induced Acute Kidney Injury. Int J Mol Sci 2020; 21:ijms21072519. [PMID: 32260474 PMCID: PMC7177880 DOI: 10.3390/ijms21072519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/20/2023] Open
Abstract
Thrombomodulin (TM) is a single transmembrane, multidomain glycoprotein receptor for thrombin, and is best known for its role as a cofactor in a clinically important natural anticoagulant pathway. In addition to its anticoagulant function, TM has well-defined anti-inflammatory properties. Soluble TM levels increase significantly in the plasma of septic patients; however, the possible involvement of recombinant human soluble TM (rTM) transduction in the pathogenesis of lipopolysaccharide (LPS)-induced nephrotoxicity, including acute kidney injury (AKI), has remained unclear. Mice were injected intraperitoneally with 15 mg/kg LPS. rTM (3 mg/kg) or saline was administered to the animals before the 3 and 24 h LPS-injection. At 24 and 48 h, blood urea nitrogen, the inflammatory cytokines in sera and kidney, and histological findings were assessed. Cell activation and apoptosis signal was assessed by Western blot analysis. In this study using a mouse model of LPS-induced AKI, we found that rTM attenuated renal damage by reducing both cytokine and cell activation and apoptosis signals with the accumulation of CD4+ T-cells, CD11c+ cells, and F4/80+ cells via phospho c-Jun activations and Bax expression. These findings suggest that the mechanism underlying these effects of TM may be mediated by a reduction in inflammatory cytokine production in response to LPS. These molecules might thereby provide a new therapeutic strategy in the context of AKI with sepsis.
Collapse
|
19
|
ASK1 inhibition: a therapeutic strategy with multi-system benefits. J Mol Med (Berl) 2020; 98:335-348. [PMID: 32060587 PMCID: PMC7080683 DOI: 10.1007/s00109-020-01878-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
p38 mitogen-activated protein kinases (P38α and β) and c-Jun N-terminal kinases (JNK1, 2, and 3) are key mediators of the cellular stress response. However, prolonged P38 and JNK signalling is associated with damaging inflammatory responses, reactive oxygen species-induced cell death, and fibrosis in multiple tissues, such as the kidney, liver, central nervous system, and cardiopulmonary systems. These responses are associated with many human diseases, including arthritis, dementia, and multiple organ dysfunctions. Attempts to prevent P38- and JNK-mediated disease using small molecule inhibitors of P38 or JNK have generally been unsuccessful. However, apoptosis signal-regulating kinase 1 (ASK1), an upstream regulator of P38 and JNK, has emerged as an alternative drug target for limiting P38- and JNK-mediated disease. Within this review, we compile the evidence that ASK1 mediates damaging cellular responses via prolonged P38 or JNK activation. We discuss the potential benefits of ASK1 inhibition as a therapeutic and summarise the studies that have tested the effects of ASK1 inhibition in cell and animal disease models, in addition to human clinical trials for a variety of disorders.
Collapse
|
20
|
Tesch GH, Ma FY, Nikolic‐Paterson DJ. Targeting apoptosis signal‐regulating kinase 1 in acute and chronic kidney disease. Anat Rec (Hoboken) 2020; 303:2553-2560. [DOI: 10.1002/ar.24373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Greg H. Tesch
- Department of NephrologyMonash University Victoria Australia
- Department of MedicineMonash Medical Centre Clayton Victoria Australia
| | - Frank Y. Ma
- Department of NephrologyMonash University Victoria Australia
- Department of MedicineMonash Medical Centre Clayton Victoria Australia
| | - David J. Nikolic‐Paterson
- Department of NephrologyMonash University Victoria Australia
- Department of MedicineMonash Medical Centre Clayton Victoria Australia
| |
Collapse
|
21
|
Baig MH, Baker A, Ashraf GM, Dong JJ. ASK1 and its role in cardiovascular and other disorders: available treatments and future prospects. Expert Rev Proteomics 2019; 16:857-870. [DOI: 10.1080/14789450.2019.1676735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Abu Baker
- Nanobiotechnology and nanomedicine lab, Department of Biosciences, Integral University, Lucknow, India
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
22
|
Cuarental L, Sucunza-Sáenz D, Valiño-Rivas L, Fernandez-Fernandez B, Sanz AB, Ortiz A, Vaquero JJ, Sanchez-Niño MD. MAP3K kinases and kidney injury. Nefrologia 2019; 39:568-580. [PMID: 31196660 DOI: 10.1016/j.nefro.2019.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAP kinases) are functionally connected kinases that regulate key cellular process involved in kidney disease such as all survival, death, differentiation and proliferation. The typical MAP kinase module is composed by a cascade of three kinases: a MAP kinase kinase kinase (MAP3K) that phosphorylates and activates a MAP kinase kinase (MAP2K) which phosphorylates a MAP kinase (MAPK). While the role of MAPKs such as ERK, p38 and JNK has been well characterized in experimental kidney injury, much less is known about the apical kinases in the cascade, the MAP3Ks. There are 24 characterized MAP3K (MAP3K1 to MAP3K21 plus RAF1, BRAF and ARAF). We now review current knowledge on the involvement of MAP3K in non-malignant kidney disease and the therapeutic tools available. There is in vivo interventional evidence clearly supporting a role for MAP3K5 (ASK1) and MAP3K14 (NIK) in the pathogenesis of experimental kidney disease. Indeed, the ASK1 inhibitor Selonsertib has undergone clinical trials for diabetic kidney disease. Additionally, although MAP3K7 (MEKK7, TAK1) is required for kidney development, acutely targeting MAP3K7 protected from acute and chronic kidney injury; and targeting MAP3K8 (TPL2/Cot) protected from acute kidney injury. By contrast MAP3K15 (ASK3) may protect from hypertension and BRAF inhibitors in clinical use may induced acute kidney injury and nephrotic syndrome. Given their role as upstream regulators of intracellular signaling, MAP3K are potential therapeutic targets in kidney injury, as demonstrated for some of them. However, the role of most MAP3K in kidney disease remains unexplored.
Collapse
Affiliation(s)
| | - David Sucunza-Sáenz
- REDINREN, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, (IRYCIS), Madrid, Spain
| | | | | | - Ana Belen Sanz
- IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain; REDINREN, Spain
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain; REDINREN, Spain
| | - Juan José Vaquero
- REDINREN, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, (IRYCIS), Madrid, Spain
| | | |
Collapse
|
23
|
Pathological role of apoptosis signal-regulating kinase 1 in human diseases and its potential as a therapeutic target for cognitive disorders. J Mol Med (Berl) 2019; 97:153-161. [DOI: 10.1007/s00109-018-01739-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
|
24
|
Liles JT, Corkey BK, Notte GT, Budas GR, Lansdon EB, Hinojosa-Kirschenbaum F, Badal SS, Lee M, Schultz BE, Wise S, Pendem S, Graupe M, Castonguay L, Koch KA, Wong MH, Papalia GA, French DM, Sullivan T, Huntzicker EG, Ma FY, Nikolic-Paterson DJ, Altuhaifi T, Yang H, Fogo AB, Breckenridge DG. ASK1 contributes to fibrosis and dysfunction in models of kidney disease. J Clin Invest 2018; 128:4485-4500. [PMID: 30024858 DOI: 10.1172/jci99768] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is an underlying component of acute and chronic kidney disease. Apoptosis signal-regulating kinase 1 (ASK1) is a widely expressed redox-sensitive serine threonine kinase that activates p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase kinases, and induces apoptotic, inflammatory, and fibrotic signaling in settings of oxidative stress. We describe the discovery and characterization of a potent and selective small-molecule inhibitor of ASK1, GS-444217, and demonstrate the therapeutic potential of ASK1 inhibition to reduce kidney injury and fibrosis. Activation of the ASK1 pathway in glomerular and tubular compartments was confirmed in renal biopsies from patients with diabetic kidney disease (DKD) and was decreased by GS-444217 in several rodent models of kidney injury and fibrosis that collectively represented the hallmarks of DKD pathology. Treatment with GS-444217 reduced progressive inflammation and fibrosis in the kidney and halted glomerular filtration rate decline. Combination of GS-444217 with enalapril, an angiotensin-converting enzyme inhibitor, led to a greater reduction in proteinuria and regression of glomerulosclerosis. These results identify ASK1 as an important target for renal disease and support the clinical development of an ASK1 inhibitor for the treatment of DKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael Lee
- Gilead Sciences, Foster City, California, USA
| | | | - Sarah Wise
- Gilead Sciences, Foster City, California, USA
| | | | | | | | - Keith A Koch
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | | | | | | | | | | | - Frank Y Ma
- Department of Nephrology and Monash University Centres for Inflammatory Diseases, Monash Medical Centre, Clayton, Victoria, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology and Monash University Centres for Inflammatory Diseases, Monash Medical Centre, Clayton, Victoria, Australia
| | - Tareq Altuhaifi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
25
|
Wang H, Liu N, Li R, Tian J, Hu W, Zhang J. Nephropreventing effect of hypoxia-inducible factor 1α in a rat model of ischaemic/reperfusion acute kidney injury. Clin Exp Pharmacol Physiol 2018; 45:1076-1082. [PMID: 29667230 DOI: 10.1111/1440-1681.12947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 11/28/2022]
Abstract
Acute kidney injury (AKI) occurs in 5% of hospitalized patients and in 50% of sepsis patients with acute renal dysfunction. However, there have been no safe and effective therapeutic strategies. The hypoxia condition is closely related to renal injury and function under AKI. As hypoxia-inducible factor 1α (HIF-1α) is critical for the cellular response to hypoxia, we investigated the protective effect of HIF-1α in a rat AKI model. We found that HIF-1α injection improved the survival of rat with AKI, and the level of creatinine and blood urea nitrogen (BUN) was also increased. Our data showed that HIF-1α treatment significantly alleviated ischaemic/reperfusion injury to kidney tubules and nephrocytes. We also found the downstream factors, such as EPOR, VEGF, and PHD3, were also upregulated by HIF-1α. Finally, it was observed that HIF-1α treatment also increased the percentage of adult resident progenitor cells (ARPC) in vitro and in vivo. In conclusion, HIF-1α plays a protective role in the ischaemic AKI model through stimulating the proliferation of ARPC, and our study provided a potential therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Huiling Wang
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Nanmei Liu
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Rui Li
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Jun Tian
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Weifeng Hu
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Jinyuan Zhang
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| |
Collapse
|
26
|
Rational approach to highly potent and selective apoptosis signal-regulating kinase 1 (ASK1) inhibitors. Eur J Med Chem 2017; 145:606-621. [PMID: 29348070 DOI: 10.1016/j.ejmech.2017.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/21/2022]
Abstract
Many diseases are believed to be driven by pathological levels of reactive oxygen species (ROS) and oxidative stress has long been recognized as a driver for inflammatory disorders. Apoptosis signal-regulating kinase 1 (ASK1) has been reported to be activated by intracellular ROS and its inhibition leads to a down regulation of p38-and JNK-dependent signaling. Consequently, ASK1 inhibitors may have the potential to treat clinically important inflammatory pathologies including renal, pulmonary and liver diseases. Analysis of the ASK1 ATP-binding site suggested that Gln756, an amino acid that rarely occurs at the GK+2 position, offered opportunities for achieving kinase selectivity for ASK1 which was applied to the design of a parallel medicinal chemistry library that afforded inhibitors of ASK1 with nanomolar potency and excellent kinome selectivity. A focused optimization strategy utilizing structure-based design resulted in the identification of ASK1 inhibitors with low nanomolar potency in a cellular assay, high selectivity when tested against kinase and broad pharmacology screening panels, and attractive physicochemical properties. The compounds we describe are attractive tool compounds to inform the therapeutic potential of ASK1 inhibition.
Collapse
|
27
|
Hattori K, Ishikawa H, Sakauchi C, Takayanagi S, Naguro I, Ichijo H. Cold stress-induced ferroptosis involves the ASK1-p38 pathway. EMBO Rep 2017; 18:2067-2078. [PMID: 28887319 DOI: 10.15252/embr.201744228] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
A wide variety of cell death mechanisms, such as ferroptosis, have been proposed in mammalian cells, and the classification of cell death attracts global attention because each type of cell death has the potential to play causative roles in specific diseases. However, the precise molecular mechanisms leading to cell death are poorly understood, particularly in ferroptosis. Here, we show that continuous severe cold stress induces ferroptosis and the ASK1-p38 MAPK pathway in multiple cell lines. The activation of the ASK1-p38 pathway is mediated by critical determinants of ferroptosis: MEK activity, iron ions, and lipid peroxide. The chemical compound erastin, a potent ferroptosis inducer, also activates the ASK1-p38 axis downstream of lipid peroxide accumulation and leads to ASK1-dependent cell death in a cell type-specific manner. These lines of evidence provide mechanistic insight into ferroptosis, a type of regulated necrosis.
Collapse
Affiliation(s)
- Kazuki Hattori
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishikawa
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Sakauchi
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Saki Takayanagi
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Isao Naguro
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Ichijo
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Wang C, Hao Z, Zhou J, Zhang L, Sun Y, Liang C. Rutaecarpine alleviates renal ischemia reperfusion injury in rats by suppressing the JNK/p38 MAPK signaling pathway and interfering with the oxidative stress response. Mol Med Rep 2017; 16:922-928. [PMID: 28560443 DOI: 10.3892/mmr.2017.6631] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/23/2017] [Indexed: 11/06/2022] Open
Abstract
In the present study, the protective effect and the potential underlying mechanism of rutaecarpine (Ru) on renal ischemia reperfusion injury (IRI) in rats were investigated. A renal ischemia reperfusion mouse model was established. Ru at 30, 60 mg/kg administered intraperitoneally prior to reperfusion led to attenuated renal injury. The results demonstrated that Ru treatment significantly reduced the content of serum creatinine, urea nitrogen and neutrophil gelatinase‑associated lipocalin in rats with renal IRI. In addition, Ru treatment improved the degree of renal proximal tubular necrosis, decreased the content of inflammatory cytokines in reperfused renal tissue and increased serum superoxide dismutase levels to protect the kidney. The associated underlying mechanism may involve the inhibition of p38 kinase phosphorylation and c‑Jun N‑terminal kinase, anti‑lipid peroxidation, elimination of free radicals, and a reduction in the degree of apoptotic damage and oxidative stress injury induced by renal IRI. Therefore, Ru may be a suitable compound for the prevention and treatment of renal IRI.
Collapse
Affiliation(s)
- Chunhua Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yexiang Sun
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
29
|
Tesch GH, Ma FY, Nikolic-Paterson DJ. ASK1: a new therapeutic target for kidney disease. Am J Physiol Renal Physiol 2016; 311:F373-81. [DOI: 10.1152/ajprenal.00208.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/19/2016] [Indexed: 01/12/2023] Open
Abstract
Stress-induced activation of p38 MAPK and JNK signaling is a feature of both acute and chronic kidney disease and is associated with disease progression. Inhibitors of p38 MAPK or JNK activation provide protection against inflammation and fibrosis in animal models of kidney disease; however, clinical trials of p38 MAPK and JNK inhibitors in other diseases (rheumatoid arthritis and pulmonary fibrosis) have been disappointing. Apoptosis signal-regulating kinase 1 (ASK1) acts as an upstream regulator for the activation of p38 MAPK and JNK in kidney disease. Mice lacking the Ask1 gene are healthy with normal homeostatic functions and are protected from acute kidney injury induced by ischemia-reperfusion and from renal interstitial fibrosis induced by ureteric obstruction. Recent studies have shown that a selective ASK1 inhibitor substantially reduced renal p38 MAPK activation and halted the progression of nephropathy in diabetic mice, and this has led to a current clinical trial of an ASK1 inhibitor in patients with stage 3 or 4 diabetic kidney disease. This review explores the rationale for targeting ASK1 in kidney disease and the therapeutic potential of ASK1 inhibitors based on current experimental evidence.
Collapse
Affiliation(s)
- Greg H. Tesch
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia;, Monash Medical Centre, Clayton, Victoria, Australia; and
- Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Frank Y. Ma
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia;, Monash Medical Centre, Clayton, Victoria, Australia; and
- Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - David J. Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia;, Monash Medical Centre, Clayton, Victoria, Australia; and
- Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
30
|
Luo CJ, Luo F, Zhang L, Xu Y, Cai GY, Fu B, Feng Z, Sun XF, Chen XM. Knockout of interleukin-17A protects against sepsis-associated acute kidney injury. Ann Intensive Care 2016; 6:56. [PMID: 27334720 PMCID: PMC4917508 DOI: 10.1186/s13613-016-0157-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/05/2016] [Indexed: 12/14/2022] Open
Abstract
Background Sepsis-associated acute kidney injury (SA-AKI) is an independent risk factor for death in patients with sepsis, but treatment for it is limited. To improve the diagnosis and treatment of SA-AKI, we must first understand its pathogenesis. Recently, interleukin (IL)-17A has been shown to be associated with the pathogenesis of acute kidney injury and sepsis, but its role in SA-AKI remains unclear. Methods SA-AKI was induced in male C57BL/6 and IL-17A−/− mice using cecal ligation and puncture (CLP) operations for 24 h. Results At 7 days, only seven mice survived in the wild-type septic group, but nine survived in the IL-17A−/− septic group, corresponding to survival rates of 25 % and 45 %, respectively. At 24 h after CLP operations, both wild-type and IL-17A−/− septic mice developed kidney injury. The IL-17A−/− septic mice exhibited decreased serum creatinine and blood urea nitrogen levels and an improved acute tubular necrosis score. The IL-17A−/− septic mice exhibited decreased IL-6, interferon-γ, tumor necrosis factor-α, CXCL1, CXCL2, and CXCL5 expression in kidney tissue, but increased IL-10 expression. In addition, renal neutrophil infiltration was attenuated significantly in the IL-17A−/− septic group. Moreover, IL-17A−/− septic mice showed significantly decreased apoptosis of tubular epithelial cells, including decreased TUNEL-positive tubular cell number and cleaved caspase-3 level, compared with the wild-type CLP group. Their Bax/Bcl-2 expression ratio was also increased. Conclusions Our study demonstrates that IL-17A knockout could protect against SA-AKI. We show that IL-17A plays a pathogenic role in SA-AKI by increasing the levels of proinflammatory cytokines and chemokines, and by inducing neutrophil infiltration and apoptosis of tubular epithelial cells. Accordingly, IL-17A may be a novel target in SA-AKI. Electronic supplementary material The online version of this article (doi:10.1186/s13613-016-0157-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong-Juan Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Shandong, 266003, People's Republic of China.,State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Feng Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Shandong, 266003, People's Republic of China.,Department of Cardiology, Liaocheng People's Hospital, Shandong, 252000, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China.
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Shandong, 266003, People's Republic of China
| | - Guang-Yan Cai
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Bo Fu
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Zhe Feng
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Xue-Feng Sun
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Xiang-Mei Chen
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
31
|
Tesch GH, Ma FY, Han Y, Liles JT, Breckenridge DG, Nikolic-Paterson DJ. ASK1 Inhibitor Halts Progression of Diabetic Nephropathy in Nos3-Deficient Mice. Diabetes 2015; 64:3903-13. [PMID: 26180085 DOI: 10.2337/db15-0384] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/06/2015] [Indexed: 01/04/2023]
Abstract
p38 mitogen-activated protein kinase (MAPK) signaling promotes diabetic kidney injury. Apoptosis signal-regulating kinase (ASK)1 is one of the upstream kinases in the p38 MAPK-signaling pathway, which is activated by inflammation and oxidative stress, suggesting a possible role for ASK1 in diabetic nephropathy. In this study, we examined whether a selective ASK1 inhibitor can prevent the induction and progression of diabetic nephropathy in mice. Diabetes was induced in hypertensive endothelial nitric oxide synthase (Nos3)-deficient mice by five low-dose streptozotocin (STZ) injections. Groups of diabetic Nos3(-/-) mice received ASK1 inhibitor (GS-444217 delivered in chow) as an early intervention (2-8 weeks after STZ) or late intervention (weeks 8-15 after STZ). Control diabetic and nondiabetic Nos3(-/-) mice received normal chow. Treatment with GS-444217 abrogated p38 MAPK activation in diabetic kidneys but had no effect upon hypertension in Nos3(-/-) mice. Early intervention with GS-444217 significantly inhibited diabetic glomerulosclerosis and reduced renal dysfunction but had no effect on the development of albuminuria. Late intervention with GS-444217 improved renal function and halted the progression of glomerulosclerosis, renal inflammation, and tubular injury despite having no effect on established albuminuria. In conclusion, this study identifies ASK1 as a new therapeutic target in diabetic nephropathy to reduce renal inflammation and fibrosis independent of blood pressure control.
Collapse
Affiliation(s)
- Greg H Tesch
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia Monash University Department of Medicine, Clayton, Victoria, Australia
| | - Frank Y Ma
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia Monash University Department of Medicine, Clayton, Victoria, Australia
| | - Yingjie Han
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia Monash University Department of Medicine, Clayton, Victoria, Australia
| | | | | | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia Monash University Department of Medicine, Clayton, Victoria, Australia
| |
Collapse
|
32
|
Ma FY, Tesch GH, Nikolic-Paterson DJ. ASK1/p38 signaling in renal tubular epithelial cells promotes renal fibrosis in the mouse obstructed kidney. Am J Physiol Renal Physiol 2014; 307:F1263-73. [DOI: 10.1152/ajprenal.00211.2014] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stress-activated kinases p38 MAPK and JNK promote renal fibrosis; however, how the pathways by which these kinases are activated in kidney disease remain poorly defined. Apoptosis signal-regulating kinase 1 (ASK1/MAPKKK5) is a member of the MAPKKK family that can induce activation of p38 and JNK. The present study examined whether ASK1 induces p38/JNK activation and renal fibrosis in unilateral ureteric obstruction (UUO) using wild-type (WT) and Ask1-deficient ( Ask1−/−) mice. Basal p38 and JNK activation in WT kidneys was increased three- to fivefold in day 7 UUO mice in association with renal fibrosis. In contrast, there was no increase in p38 activation in Ask1−/− UUO mice, whereas JNK activation was only partially increased. The progressive increase in kidney collagen (hydroxyproline) content seen on days 7 and 12 of UUO in WT mice was significantly reduced in Ask1−/− UUO mice in association with reduced α-smooth muscle actin-positive myofibroblast accumulation. However, cultured WT and Ask1−/− renal fibroblasts showed equivalent proliferation and matrix production, indicating that ASK1 acts indirectly on fibroblasts. Tubular epithelial cells are the main site of p38 activation in the obstructed kidney. Angiotensin II and H2O2, but not IL-1 or lipopolysaccharide, induced p38 activation and upregulation of transforming growth factor-β1, platelet-derived growth factor-B, and monocyte chemoattractant protein-1 production was suppressed in Ask1−/− tubular epithelial cells. In addition, macrophage accumulation was significantly inhibited in Ask1−/− UUO mice. In conclusion, ASK1 is an important upstream activator of p38 and JNK signaling in the obstructed kidney, and ASK1 is a potential therapeutic target in renal fibrosis.
Collapse
Affiliation(s)
- Frank Y. Ma
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Greg H. Tesch
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - David J. Nikolic-Paterson
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Terada Y, Inoue K, Matsumoto T, Ishihara M, Hamada K, Shimamura Y, Ogata K, Inoue K, Taniguchi Y, Horino T, Karashima T, Tamura K, Fukuhara H, Fujimoto S, Tsuda M, Shuin T. 5-Aminolevulinic acid protects against cisplatin-induced nephrotoxicity without compromising the anticancer efficiency of cisplatin in rats in vitro and in vivo. PLoS One 2013; 8:e80850. [PMID: 24324635 PMCID: PMC3855642 DOI: 10.1371/journal.pone.0080850] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/13/2013] [Indexed: 12/03/2022] Open
Abstract
Background/Aims Nephrotoxicity is a frequent and major limitation in cisplatin (CDDP)-based chemotherapy. 5-Aminolevulinic acid (ALA) is widely distributed in animal cells, and it is a precursor of tetrapyrole compounds such as heme that is fundamentally important in aerobic energy metabolism. The aim of this study is to evaluate the protective role of ALA in CDDP-induced acute kidney injury (AKI). Method We used CDDP-induced AKI rat model and cultured renal tubular cells (NRK-52E). We divided four groups of rats: control, CDDP only, CDDP + ALA(post);(ALA 10 mg/kg + Fe in drinking water) after CDDP, CDDP + ALA(pre & post). Result CDDP increased Cr up to 6.5 mg/dl, BUN up to 230 mg/dl, and ALA significantly reduced these changes. ALA ameliorates CDDP-induced morphological renal damages, and reduced tubular apoptosis evaluated by TUNEL staining and cleaved caspase 3. Protein and mRNA levels of ATP5α, complex(COX) IV, UCP2, PGC-1α in renal tissue were significantly decreased by CDDP, and ALA ameliorates reduction of these enzymes. In contrast, Heme Oxigenase (HO)-1 level is induced by CDDP treatment, and ALA treatment further up-regulates HO-1 levels. In NRK-52E cells, the CDDP-induced reduction of protein and mRNA levels of mitochondrial enzymes was significantly recovered by ALA + Fe. CDDP-induced apoptosis were ameliorated by ALA + Fe treatment. Furthermore, we evaluated the size of transplantated bladder carcinoma to the rat skin, and ALA did not change the anti cancer effects of CDDP. Conclusion These data suggested that the protective role of ALA in cisplatin-induced AKI is via protection of mitochondrial viability and prevents tubular apoptosis. Also there are no significant effects of ALA on anticancer efficiency of CDDP in rats. Thus, ALA has the potential to prevent CDDP nephrotoxicity without compromising its anticancer efficacy.
Collapse
Affiliation(s)
- Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
- * E-mail:
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Tatsuki Matsumoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Masayuki Ishihara
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Kazu Hamada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Yoshiko Shimamura
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Koji Ogata
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Kosuke Inoue
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Yoshinori Taniguchi
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Taro Horino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Kenji Tamura
- Department of Urology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Masayuki Tsuda
- Institute for Laboratory Animal Research, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Taro Shuin
- Department of Urology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| |
Collapse
|
34
|
Lee SY, Lee YS, Choi HM, Ko YS, Lee HY, Jo SK, Cho WY, Kim HK. Distinct pathophysiologic mechanisms of septic acute kidney injury: role of immune suppression and renal tubular cell apoptosis in murine model of septic acute kidney injury. Crit Care Med 2013; 40:2997-3006. [PMID: 22878677 DOI: 10.1097/ccm.0b013e31825b912d] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Sepsis is the most common cause of acute kidney injury in critically ill patients; however, the mechanisms leading to acute kidney injury in sepsis remain elusive. Although sepsis has been considered an excessive systemic inflammatory response, clinical trials that inhibit inflammation have been shown to have no effect. The purpose of this study was to examine the pathophysiology of septic acute kidney injury focusing on immune responses and renal tubular cell apoptosis by providing an on-site quantitative comparison between septic- and ischemia/reperfusion-induced acute kidney injury. DESIGN Twenty-four hours after cecal ligation and puncture or ischemia/reperfusion injury, biochemical, histologic, and cytokine changes were compared in C57BL/6 mice. Apoptosis was assessed, and the effect of caspase 3 inhibition on renal function was also examined. The percentage of regulatory T cells and the effect of depletion were determined and compared with ischemia/reperfusion-induced acute kidney injury. The effect of interleukin-10 blocking was also compared. MEASUREMENTS AND MAIN RESULTS Despite comparable renal dysfunction, acute tubular necrosis or inflammation was minimal in septic kidneys. However, tubular cell apoptosis was prominent, and caspase 3 activity was positively correlated with renal dysfunction. A decrease in apoptosis by caspase 3 inhibitor resulted in attenuation of renal dysfunction. In assessment of systemic immunity, septic acute kidney injury was associated with an increase in interleukin-10, and also showed massive immune cell apoptosis with increased regulatory T cells. In contrast to ischemia/reperfusion injury in which depletion of regulatory T cells aggravated renal injury, depletion of regulatory T cells before cecal ligation and puncture resulted in renoprotection. In addition, blocking interleukin-10 rescued septic mice from the development of acute kidney injury, whereas it had no effect in ischemia/reperfusion injury. CONCLUSIONS Pathogenesis of septic acute kidney injury is thought to be different from that of ischemia/reperfusion-induced acute kidney injury. Our data showed a link between apoptosis, immune suppression, and the development of acute kidney injury during sepsis and suggest that strategies targeting apoptosis or enhancing immunity might be a potential therapeutic strategy for septic acute kidney injury.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Internal Medicine, Division of Nephrology, Eulji General Hospital, Eulji University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Canacankatan N, Sucu N, Aytacoglu B, Gul OE, Gorur A, Korkmaz B, Sahan-Firat S, Antmen ES, Tamer L, Ayaz L, Vezir O, Kanik A, Tunctan B. Affirmative effects of iloprost on apoptosis during ischemia-reperfusion injury in kidney as a distant organ. Ren Fail 2011; 34:111-8. [PMID: 22126436 DOI: 10.3109/0886022x.2011.633446] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Apoptosis and its regulatory mechanisms take part in renal ischemia-reperfusion (I/R) injury which can result in acute renal failure and the inhibition of the caspase is considered as a new therapeutic strategy. In this context, we investigated the antiapoptotic and cytoprotective effects of iloprost, a prostacyclin analog, in kidney as a distant organ. METHODS Wistar albino rats were randomized into five groups (n = 12 in each) as sham, ischemia, I/R, iloprost (10 μg kg(-1)), and I/R + iloprost (10 μg kg(-1)). A 4 h reperfusion procedure was carried out after 4 h of ischemia. Caspase-8 was evaluated for death receptor-induced pathways, whereas caspase-9 was evaluated for mitochondria-dependent pathways and caspase-3 was investigated for overall apoptosis. Superoxide dismutase (SOD) enzyme activity and nitrite content as an indicator of nitric oxide (NO) production were also analyzed in kidney tissues. RESULTS Caspases-3, -8, and -9 were all significantly elevated in both ischemia and I/R groups compared to the sham group; however, treatment with iloprost reduced caspases-3, -8, and -9. SOD enzyme activity was attenuated by iloprost when compared to ischemic rats. The different effects of NO were found which change according to the present situation in ischemia, I/R, and treatment with iloprost. CONCLUSIONS These findings suggested that iloprost prevents apoptosis in both receptor-induced and mitochondria-dependent pathways in renal I/R injury and it may be considered as a cytoprotective agent for apoptosis. Understanding the efficiency of iloprost on the pathways for cell death may lead to an opportunity in the therapeutic approach for renal I/R injury.
Collapse
Affiliation(s)
- Necmiye Canacankatan
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ying WZ, Wang PX, Sanders PW. Pivotal role of apoptosis signal-regulating kinase 1 in monoclonal free light chain-mediated apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:41-7. [PMID: 22079929 DOI: 10.1016/j.ajpath.2011.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/29/2011] [Accepted: 09/06/2011] [Indexed: 02/03/2023]
Abstract
Renal failure, a major complication associated with multiple myeloma, is usually related to deposition of monoclonal immunoglobulin free light chains (FLCs) and directly contributes to morbidity and mortality in this disease. The present study focused on the cytotoxic effects of monoclonal FLCs. Human proximal tubular epithelial cells (HK-2) were examined after incubation with two human monoclonal FLCs (termed κ2 and λ3). Incubation of HK-2 cells for 24 and 48 hours with either FLCs at 1 mg/mL promoted activation of caspase-9 and caspase-3 and increased the rate of apoptosis. Because prior studies demonstrated that FLCs generated intracellular oxidative stress, our studies focused on the redox-sensitive mitogen-activated protein kinase kinase kinase known as apoptosis signal-regulating kinase 1 (ASK1). A time-dependent increase in phosphorylation of ASK1 at T845, indicating activation of this enzyme, was observed. Small interfering RNA designed to reduce ASK1 expression in HK-2 cells successfully decreased ASK1, which was confirmed by Western blot analysis. Incubation of ASK1-depleted HK-2 cells with the two FLCs prevented the increase in apoptosis while pretreating HK-2 cell with nontargeting small interfering RNA did not prevent FLCs-mediated apoptosis. The combined data demonstrate that monoclonal FLCs activated the intrinsic apoptotic pathway in renal epithelial cells by activation of ASK1.
Collapse
Affiliation(s)
- Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | |
Collapse
|
37
|
Harding SJ, Browne GJ, Miller BW, Prigent SA, Dickens M. Activation of ASK1, downstream MAPKK and MAPK isoforms during cardiac ischaemia. Biochim Biophys Acta Mol Basis Dis 2010; 1802:733-40. [PMID: 20550965 PMCID: PMC2954285 DOI: 10.1016/j.bbadis.2010.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 11/28/2022]
Abstract
p38 MAPK is activated potently during cardiac ischaemia, although the precise mechanism by which it is activated is unclear. We used the isolated perfused rat heart to investigate the signalling pathways activated upstream of p38 during global cardiac ischaemia. Ischaemia strongly activated p38α but not the JNK pathway. The MAPKKs, MKK3, MKK4 and MKK6 have previously been identified as potential upstream activators of p38; however, in the ischaemic perfused heart, we saw activation of MKK3 and MKK6 but not MKK4. MKK3 and MKK6 showed different temporal patterns of activity, indicating distinct modes of activation and physiological function. Consistent with a lack of JNK activation, we saw no activation of MKK4 or MKK7 at any time point during ischaemia. A lack of MKK4 activation indicates, at least in the ischaemic heart, that MKK4 is not a physiologically relevant activator of p38. The MAPKKK, ASK1, was strongly activated late during ischaemia, with a similar time course to that of MKK6 and in ischaemic neonatal cardiac myocytes ASK1 expression preferentially activated MKK6 rather than MKK3. These observations suggest that during ischaemia ASK1 is coupled to p38 activation primarily via MKK6. Potent activation of ASK1 during ischaemia without JNK activation shows that during cardiac ischaemia, ASK1 preferentially activates the p38 pathway. These results demonstrate a specificity of responses seldom seen in previous studies and illustrate the benefits of using direct assays in intact tissues responding to physiologically relevant stimuli to unravel the complexities of MAPK signalling.
Collapse
Affiliation(s)
- Stephen J Harding
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
38
|
Chen HH, Chen TW, Lin H. Prostacyclin-induced peroxisome proliferator-activated receptor-alpha translocation attenuates NF-kappaB and TNF-alpha activation after renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2009; 297:F1109-18. [PMID: 19640904 DOI: 10.1152/ajprenal.00057.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostacyclin and peroxisome proliferator-activated receptors (PPAR) protect against ischemia-reperfusion (I/R) injury by the induction of an anti-inflammatory pathway. In this study, we examined the prostacyclin-enhanced protective effect of PPARalpha in I/R-induced kidney injury. PPAR-alpha reduced the NF-kappaB-induced overexpression of TNF-alpha and apoptosis in cultured kidney cells. In a murine model, pretreating wild-type (WT) mice with a PPAR-alpha activator, docosahexaenoic acid (DHA), significantly reduced I/R-induced renal dysfunction (lowered serum creatinine and urea nitrogen levels), apoptotic responses (decreased apoptotic cell number and caspase-3, -8 activation), and NF-kappaB activation. By comparison, I/R-induced injury was exacerbated in PPAR-alpha knockout mice. This indicated that PPAR-alpha attenuated renal I/R injury via NF-kappaB-induced TNF-alpha overexpression. Overexpression of prostacyclin using an adenovirus could also induce PPAR-alpha translocation from the cytosol into the nucleus to inhibit caspase-3 activation. This prostacyclin/PPAR-alpha pathway attenuated TNF-alpha promoter activity by binding to NF-kappaB. Using a cAMP inhibitor (CAY10441) and a prostacyclin receptor antibody, we also found that there was another prostacyclin/IP receptor/cAMP pathway that could inhibit TNF-alpha production. Taken together, our results demonstrate for the first time that prostacyclin induces the translocation of PPAR-alpha from the cytosol into the nucleus and attenuates NF-kappaB-induced TNF-alpha activation following renal I/R injury. Treatments that can augment prostacyclin, PPAR-alpha, or the associated signaling pathways may ameliorate conditions associated with renal I/R injury.
Collapse
Affiliation(s)
- Hsi-Hsien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipai Medical University, Taiwan
| | | | | |
Collapse
|
39
|
Glutamine attenuates tubular cell apoptosis in acute kidney injury via inhibition of the c-Jun N-terminal kinase phosphorylation of 14-3-3*. Crit Care Med 2009; 37:2033-44. [DOI: 10.1097/ccm.0b013e3181a005ba] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|