1
|
Kuo YS, Chiang PC, Kuo CY, Huang CG, Kuo ML, Chiu YF. Inhibition of influenza A virus proliferation in mice via universal RNA interference. Antiviral Res 2025; 238:106149. [PMID: 40147537 DOI: 10.1016/j.antiviral.2025.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/01/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Influenza A virus (IAV) is a respiratory pathogen that causes seasonal outbreaks and periodic pandemics. As frequent mutations in the IAV viral genome often render vaccines ineffective or inefficient in preventing the latest outbreak, there is a need to explore other preventive strategies to control the disease. This study sought to investigate the use of antiviral short hairpin RNA (shRNA), delivered by a recombinant adeno-associated virus (AAV), for the prevention of IAV infections. Conserved regions with less than 10 % of variation were identified from IAV genome sequences deposited in the National Center for Biotechnology Information (NCBI) database between 2000 and 2023. The shRNA targeting these conserved sequences was transcribed from the human RNA polymerase III U6 promoter in an AAV system. This study demonstrates that AAV delivery of shRNA against IAV genes encoding two of the viral RNA-dependent RNA polymerase subunits, PB1 and PB2, inhibits the replication of IAV H1N1 and H3N2 viruses in Madin-Darby canine kidney (MDCK) cells. Delivery of shPB1 to lung tissue in mice through AAV also provided effective protection against IAV infection. These results offer support for a shRNA-based strategy of influenza prevention.
Collapse
Affiliation(s)
- Yu-Shen Kuo
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Chuan Chiang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Chieh-Ying Kuo
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Infectious Diseases, Department of Medicine, New Taipei Municipal Tucheng Hospital (Built and Operated By Chang Gung Medical Foundation), New Taipei City, Taiwan; Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Li P, Wang C, Wang W, Duan X, Li J. Preliminary evaluation of a 64Cu-labeled DNA aptamer for PET imaging of glioblastoma. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
AbstractTo develop a DNA aptamer-based PET tracer for imaging of glioblastoma. 5 mM of NOTA-AS1411, 60-min, and 37 °C were selected as the optimal condition for 64Cu radiolabeling of AS1411. 64Cu-NOTA-AS1411 remained stable in PBS and 100% mouse serum for at least six hours. From the PET images, 64Cu-NOTA-AS1411 tended to be excreted out through the kidneys and there was high tracer accumulation in the bladder. There was a higher tumor uptake in the AS1411 group than that in the control group. 64Cu-NOTA-AS1411 is a suitable potential PET tracer for imaging murine glioblastoma.
Collapse
|
3
|
Szczesniak I, Baliga-Gil A, Jarmolowicz A, Soszynska-Jozwiak M, Kierzek E. Structural and Functional RNA Motifs of SARS-CoV-2 and Influenza A Virus as a Target of Viral Inhibitors. Int J Mol Sci 2023; 24:ijms24021232. [PMID: 36674746 PMCID: PMC9860923 DOI: 10.3390/ijms24021232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic, whereas the influenza A virus (IAV) causes seasonal epidemics and occasional pandemics. Both viruses lead to widespread infection and death. SARS-CoV-2 and the influenza virus are RNA viruses. The SARS-CoV-2 genome is an approximately 30 kb, positive sense, 5' capped single-stranded RNA molecule. The influenza A virus genome possesses eight single-stranded negative-sense segments. The RNA secondary structure in the untranslated and coding regions is crucial in the viral replication cycle. The secondary structure within the RNA of SARS-CoV-2 and the influenza virus has been intensively studied. Because the whole of the SARS-CoV-2 and influenza virus replication cycles are dependent on RNA with no DNA intermediate, the RNA is a natural and promising target for the development of inhibitors. There are a lot of RNA-targeting strategies for regulating pathogenic RNA, such as small interfering RNA for RNA interference, antisense oligonucleotides, catalytic nucleic acids, and small molecules. In this review, we summarized the knowledge about the inhibition of SARS-CoV-2 and influenza A virus propagation by targeting their RNA secondary structure.
Collapse
|
4
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
5
|
Devi S, Sharma N, Ahmed T, Huma ZI, Kour S, Sahoo B, Singh AK, Macesic N, Lee SJ, Gupta MK. Aptamer-based diagnostic and therapeutic approaches in animals: Current potential and challenges. Saudi J Biol Sci 2021; 28:5081-5093. [PMID: 34466086 PMCID: PMC8381015 DOI: 10.1016/j.sjbs.2021.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Fast and precise diagnosis of infectious and non-infectious animal diseases and their targeted treatments are of utmost importance for their clinical management. The existing biochemical, serological and molecular methods of disease diagnosis need improvement in their specificity, sensitivity and cost and, are generally not amenable for being used as points-of-care (POC) device. Further, with dramatic changes in environment and farm management practices, one should also arm ourselves and prepare for emerging and re-emerging animal diseases such as cancer, prion diseases, COVID-19, influenza etc. Aptamer - oligonucleotide or short peptides that can specifically bind to target molecules - have increasingly become popular in developing biosensors for sensitive detection of analytes, pathogens (bacteria, virus, fungus, prions), drug residues, toxins and, cancerous cells. They have also been proven successful in the cellular delivery of drugs and targeted therapy of infectious diseases and physiological disorders. However, the in vivo application of aptamer-mediated biosensing and therapy in animals has been limited. This paper reviews the existing reports on the application of aptamer-based biosensors and targeted therapy in animals. It also dissects the various modifications to aptamers that were found to be successful in in vivo application of the aptamers in diagnostics and therapeutics. Finally, it also highlights major challenges and future directions in the application of aptamers in the field of veterinary medicine.
Collapse
Affiliation(s)
- Sapna Devi
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Touqeer Ahmed
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Zul I. Huma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Bijayalaxmi Sahoo
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Amit Kumar Singh
- Experimental Animal Facility, National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, U.P., India
| | - Nino Macesic
- Clinic for Reproduction and Theriogenology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Sung Jin Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Mukesh Kumar Gupta
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
6
|
Structure and Activities of the NS1 Influenza Protein and Progress in the Development of Small-Molecule Drugs. Int J Mol Sci 2021; 22:ijms22084242. [PMID: 33921888 PMCID: PMC8074201 DOI: 10.3390/ijms22084242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 11/30/2022] Open
Abstract
The influenza virus causes human disease on a global scale and significant morbidity and mortality. The existing vaccination regime remains vulnerable to antigenic drift, and more seriously, a small number of viral mutations could lead to drug resistance. Therefore, the development of a new additional therapeutic small molecule-based anti-influenza virus is urgently required. The NS1 influenza gene plays a pivotal role in the suppression of host antiviral responses, especially by inhibiting interferon (IFN) production and the activities of antiviral proteins, such as dsRNA-dependent serine/threonine-protein kinase R (PKR) and 2′-5′-oligoadenylate synthetase (OAS)/RNase L. NS1 also modulates important aspects of viral RNA replication, viral protein synthesis, and virus replication cycle. Taken together, small molecules that target NS1 are believed to offer a means of developing new anti-influenza drugs.
Collapse
|
7
|
Szabat M, Lorent D, Czapik T, Tomaszewska M, Kierzek E, Kierzek R. RNA Secondary Structure as a First Step for Rational Design of the Oligonucleotides towards Inhibition of Influenza A Virus Replication. Pathogens 2020; 9:pathogens9110925. [PMID: 33171815 PMCID: PMC7694947 DOI: 10.3390/pathogens9110925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Influenza is an important research subject around the world because of its threat to humanity. Influenza A virus (IAV) causes seasonal epidemics and sporadic, but dangerous pandemics. A rapid antigen changes and recombination of the viral RNA genome contribute to the reduced effectiveness of vaccination and anti-influenza drugs. Hence, there is a necessity to develop new antiviral drugs and strategies to limit the influenza spread. IAV is a single-stranded negative sense RNA virus with a genome (viral RNA—vRNA) consisting of eight segments. Segments within influenza virion are assembled into viral ribonucleoprotein (vRNP) complexes that are independent transcription-replication units. Each step in the influenza life cycle is regulated by the RNA and is dependent on its interplay and dynamics. Therefore, viral RNA can be a proper target to design novel therapeutics. Here, we briefly described examples of anti-influenza strategies based on the antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA) and catalytic nucleic acids. In particular we focused on the vRNA structure-function relationship as well as presented the advantages of using secondary structure information in predicting therapeutic targets and the potential future of this field.
Collapse
|
8
|
Rosário-Ferreira N, Preto AJ, Melo R, Moreira IS, Brito RMM. The Central Role of Non-Structural Protein 1 (NS1) in Influenza Biology and Infection. Int J Mol Sci 2020; 21:E1511. [PMID: 32098424 PMCID: PMC7073157 DOI: 10.3390/ijms21041511] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/07/2023] Open
Abstract
Influenza (flu) is a contagious viral disease, which targets the human respiratory tract and spreads throughout the world each year. Every year, influenza infects around 10% of the world population and between 290,000 and 650,000 people die from it according to the World Health Organization (WHO). Influenza viruses belong to the Orthomyxoviridae family and have a negative sense eight-segment single-stranded RNA genome that encodes 11 different proteins. The only control over influenza seasonal epidemic outbreaks around the world are vaccines, annually updated according to viral strains in circulation, but, because of high rates of mutation and recurrent genetic assortment, new viral strains of influenza are constantly emerging, increasing the likelihood of pandemics. Vaccination effectiveness is limited, calling for new preventive and therapeutic approaches and a better understanding of the virus-host interactions. In particular, grasping the role of influenza non-structural protein 1 (NS1) and related known interactions in the host cell is pivotal to better understand the mechanisms of virus infection and replication, and thus propose more effective antiviral approaches. In this review, we assess the structure of NS1, its dynamics, and multiple functions and interactions, to highlight the central role of this protein in viral biology and its potential use as an effective therapeutic target to tackle seasonal and pandemic influenza.
Collapse
Affiliation(s)
- Nícia Rosário-Ferreira
- Coimbra Chemistry Center, Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
| | - António J. Preto
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
| | - Rita Melo
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Irina S. Moreira
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rui M. M. Brito
- Coimbra Chemistry Center, Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
9
|
Efficient Inhibition of Avian and Seasonal Influenza A Viruses by a Virus-Specific Dicer-Substrate Small Interfering RNA Swarm in Human Monocyte-Derived Macrophages and Dendritic Cells. J Virol 2019; 93:JVI.01916-18. [PMID: 30463970 DOI: 10.1128/jvi.01916-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
Influenza A viruses (IAVs) are viral pathogens that cause epidemics and occasional pandemics of significant mortality. The generation of efficacious vaccines and antiviral drugs remains a challenge due to the rapid appearance of new influenza virus types and antigenic variants. Consequently, novel strategies for the prevention and treatment of IAV infections are needed, given the limitations of the presently available antivirals. Here, we used enzymatically produced IAV-specific double-stranded RNA (dsRNA) molecules and Giardia intestinalis Dicer for the generation of a swarm of small interfering RNA (siRNA) molecules. The siRNAs target multiple conserved genomic regions of the IAVs. In mammalian cells, the produced 25- to 27-nucleotide-long siRNA molecules are processed by endogenous Dicer into 21-nucleotide siRNAs and are thus designated Dicer-substrate siRNAs (DsiRNAs). We evaluated the efficacy of the above DsiRNA swarm at preventing IAV infections in human primary monocyte-derived macrophages and dendritic cells. The replication of different IAV strains, including avian influenza H5N1 and H7N9 viruses, was significantly inhibited by pretransfection of the cells with the IAV-specific DsiRNA swarm. Up to 7 orders of magnitude inhibition of viral RNA expression was observed, which led to a dramatic inhibition of IAV protein synthesis and virus production. The IAV-specific DsiRNA swarm inhibited virus replication directly through the RNA interference pathway although a weak induction of innate interferon responses was detected. Our results provide direct evidence for the feasibility of the siRNA strategy and the potency of DsiRNA swarms in the prevention and treatment of influenza, including the highly pathogenic avian influenza viruses.IMPORTANCE In spite of the enormous amount of research, influenza virus is still one of the major challenges for medical virology due to its capacity to generate new variants, which potentially lead to severe epidemics and pandemics. We demonstrated here that a swarm of small interfering RNA (siRNA) molecules, including more than 100 different antiviral RNA molecules targeting the most conserved regions of the influenza A virus genome, could efficiently inhibit the replication of all tested avian and seasonal influenza A variants in human primary monocyte-derived macrophages and dendritic cells. The wide antiviral spectrum makes the virus-specific siRNA swarm a potentially efficient treatment modality against both avian and seasonal influenza viruses.
Collapse
|
10
|
Asha K, Kumar P, Sanicas M, Meseko CA, Khanna M, Kumar B. Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections. J Clin Med 2018; 8:jcm8010006. [PMID: 30577479 PMCID: PMC6351902 DOI: 10.3390/jcm8010006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Several viruses cause pulmonary infections due to their shared tropism with cells of the respiratory tract. These respiratory problems due to viral infection become a public health concern due to rapid transmission through air/aerosols or via direct-indirect contact with infected persons. In addition, the cross-species transmission causes alterations to viral genetic makeup thereby increasing the risk of emergence of pathogens with new and more potent infectivity. With the introduction of effective nucleic acid-based technologies, post translational gene silencing (PTGS) is being increasingly used to silence viral gene targets and has shown promising approach towards management of many viral infections. Since several host factors are also utilized by these viruses during various stages of infection, silencing these host factors can also serve as promising therapeutic tool. Several nucleic acid-based technologies such as short interfering RNAs (siRNA), antisense oligonucleotides, aptamers, deoxyribozymes (DNAzymes), and ribozymes have been studied and used against management of respiratory viruses. These therapeutic nucleic acids can be efficiently delivered through the airways. Studies have also shown efficacy of gene therapy in clinical trials against respiratory syncytial virus (RSV) as well as models of respiratory diseases including severe acute respiratory syndrome (SARS), measles and influenza. In this review, we have summarized some of the recent advancements made in the area of nucleic acid based therapeutics and highlighted the emerging roles of nucleic acids in the management of some of the severe respiratory viral infections. We have also focused on the methods of their delivery and associated challenges.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida 201303, India.
| | - Melvin Sanicas
- Sanofi Pasteur, Asia and JPAC Region, Singapore 257856, Singapore.
| | - Clement A Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom 930010, Nigeria.
| | - Madhu Khanna
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| | - Binod Kumar
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
11
|
Tam C, Wong JH, Cheung RCF, Zuo T, Ng TB. Therapeutic potentials of short interfering RNAs. Appl Microbiol Biotechnol 2017; 101:7091-7111. [PMID: 28791440 DOI: 10.1007/s00253-017-8433-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/19/2017] [Indexed: 01/10/2023]
Abstract
Short interfering RNA (siRNA) is one of the members of the family of RNA interference (RNAi). Coupled with the RNA-induced silencing complex (RISC), siRNA is able to trigger the cleavage of target RNAs which serve as a defensive system against pathogens. Meanwhile, siRNA in gene silencing opens a new avenue for the treatment of various diseases. SiRNA can effectively inhibit viral infection and replication and suppress tumorigenesis and various inflammation-associated diseases and cardiovascular diseases by inactivation of viral genes and downregulation of oncogene expression. Recently, endogenous siRNAs (endo-siRNAs) were discovered in the reproductive cells of animals which may be associated with regulation of cell division. Structural modification of siRNA enhances the delivery, specificity and efficacy and bioavailability to the target cells. There are at least five categories of siRNA delivery systems including viral vectors, lipid-based nanoparticles, peptide-based nanoparticles, polymer-based nanoparticles and inorganic small molecules like metal ions, silica and carbon. Sufficient preclinical and clinical studies supported that siRNA may be a potential medicine for targeted therapy of various diseases in the near future.
Collapse
Affiliation(s)
- Chit Tam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Sha Tin, New Territories, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Sha Tin, New Territories, Hong Kong, China
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Sha Tin, New Territories, Hong Kong, China
| | - Tao Zuo
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Sha Tin, New Territories, Hong Kong, China.
| |
Collapse
|
12
|
Huang DTN, Lu CY, Shao PL, Chang LY, Wang JY, Chang YH, Lai MJ, Chi YH, Huang LM. In vivo inhibition of influenza A virus replication by RNA interference targeting the PB2 subunit via intratracheal delivery. PLoS One 2017; 12:e0174523. [PMID: 28380007 PMCID: PMC5381882 DOI: 10.1371/journal.pone.0174523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/10/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Influenza virus infection is a major threat to human health. Small interfering RNA (siRNA) is a promising approach for the prevention and treatment of viral infections. In this study, we constructed a series of DNA vector-based short hairpin RNAs (shRNAs) that target various genes of the influenza A virus using the polymerase III U6-RNA promoter to prevent influenza virus infection in vitro and in a mouse model. RESULTS Three sets of DNA vector-based shRNA, two targeting genes encoding the polymerase acidic protein (PA) and one targeting polymerase basic protein 2 (PB2), efficiently inhibited the replication of influenza virus A/WSN/33(H1N1) in vitro. We also successfully prevented influenza virus A/WSN/33(H1N1) infection in a C57BL/6 mouse model by intratracheal delivery of anti-PB2 shRNA. CONCLUSIONS Our findings suggest that the PB2-targeting shRNA plasmid showed potential for use as an RNAi-based therapeutic for influenza virus infection.
Collapse
Affiliation(s)
- Daniel Tsung-Ning Huang
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (LMH); (DTH)
| | - Chun-Yi Lu
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Lan Shao
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Luan-Yin Chang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Yuan Wang
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Hsuan Chang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mei-Ju Lai
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Min Huang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (LMH); (DTH)
| |
Collapse
|
13
|
Lenartowicz E, Nogales A, Kierzek E, Kierzek R, Martínez-Sobrido L, Turner DH. Antisense Oligonucleotides Targeting Influenza A Segment 8 Genomic RNA Inhibit Viral Replication. Nucleic Acid Ther 2016; 26:277-285. [PMID: 27463680 PMCID: PMC5067832 DOI: 10.1089/nat.2016.0619] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Influenza A virus (IAV) affects 5%–10% of the world's population every year. Through genome changes, many IAV strains develop resistance to currently available anti-influenza therapeutics. Therefore, there is an urgent need to find new targets for therapeutics against this important human respiratory pathogen. In this study, 2′-O-methyl and locked nucleic acid antisense oligonucleotides (ASOs) were designed to target internal regions of influenza A/California/04/2009 (H1N1) genomic viral RNA segment 8 (vRNA8) based on a base-pairing model of vRNA8. Ten of 14 tested ASOs showed inhibition of viral replication in Madin-Darby canine kidney cells. The best five ASOs were 11–15 nucleotides long and showed inhibition ranging from 5- to 25-fold. In a cell viability assay they showed no cytotoxicity. The same five ASOs also showed no inhibition of influenza B/Brisbane/60/2008 (Victoria lineage), indicating that they are sequence specific for IAV. Moreover, combinations of ASOs slightly improved anti-influenza activity. These studies establish the accessibility of IAV vRNA for ASOs in regions other than the panhandle formed between the 5′ and 3′ ends. Thus, these regions can provide targets for the development of novel IAV antiviral approaches.
Collapse
Affiliation(s)
| | - Aitor Nogales
- 2 Department of Microbiology and Immunology, University of Rochester , Rochester, New York
| | - Elzbieta Kierzek
- 3 Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan, Poland
| | - Ryszard Kierzek
- 3 Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan, Poland
| | - Luis Martínez-Sobrido
- 2 Department of Microbiology and Immunology, University of Rochester , Rochester, New York
| | - Douglas H Turner
- 1 Department of Chemistry, University of Rochester , Rochester, New York
| |
Collapse
|
14
|
Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance. PLoS Comput Biol 2016; 12:e1004663. [PMID: 26771381 PMCID: PMC4714944 DOI: 10.1371/journal.pcbi.1004663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 11/17/2015] [Indexed: 12/27/2022] Open
Abstract
The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic mutations and segment reassortment events challenge the development of effective therapeutics. The capacity to drug most RNAs motivates the investigation on viral RNA targets. 123,060 segment sequences from 35,938 strains of the most prevalent subtypes also infecting humans-H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183 conserved RNA target sequences (≥15-mer) in the internal segments. 100% theoretical coverage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences from the same segment ("Duals") or from two segments ("Doubles"); 1,662 Duals and 28,463 Doubles identified. By combining specific Duals and/or Doubles to form a target graph wherein an edge connecting two vertices (target sequences) represents a Dual or Double, it is possible to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To evaluate the hedging potential, we define the hedge-factor as the minimum number of resistant target sequences that will render the graph to become resistant i.e. eliminate all the edges therein; a target sequence or a graph is considered resistant when it cannot achieve 100% heterosubtypic coverage. In an n-vertices graph (n ≥ 3), the hedge-factor is maximal (= n- 1) when it is a complete graph i.e. every distinct pair in a graph is either a Dual or Double. Computational analyses uncover an extensive number of complete graphs of different sizes. Monte Carlo simulations show that the mutation counts and time elapsed for a target graph to become resistant increase with the hedge-factor. Incidentally, target sequences which were reported to reduce virus titre in experiments are included in our target graphs. The identity of target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral resistance are useful toolkits to construct target graphs for different therapeutic objectives.
Collapse
|
15
|
Fajardo T, Sung PY, Roy P. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity. PLoS Pathog 2015; 11:e1005321. [PMID: 26646790 PMCID: PMC4672896 DOI: 10.1371/journal.ppat.1005321] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/11/2015] [Indexed: 11/18/2022] Open
Abstract
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3’untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3’ UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3’UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3’UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3’ UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity. Bluetongue virus (BTV) is an economically important pathogen of ruminants that belongs to a group of viruses whose genome consists of multiple segments of double-stranded RNA. In order for the virus to synthesize viable and infectious progeny, a precise set of the 10 newly replicated BTV segments must be selected for packaging into each new virus particle. How the virus is able to select its own genomic strands from the vast array of cellular RNAs is not clearly understood. One possibility is that that BTV segments harbours an interaction signal that allows them to be sorted and packaged as a set. Correct identification of these signals has basic and applied implications for a possible target of antiviral therapeutics through inhibition of genome sorting and packaging process. Here we showed that a series of short oligonucleotides (ORNs) complementary to multiple sites on the BTV RNA prevented the growth of viable virus in infected cells. ORNs positive for inhibition in virus growth also prevented the genomic RNA to be packaged in an in vitro packaging assay. Moreover, when these same targeted sequences were deleted or mutated in viral genome, viable virus recovery was abolished. Exchanging the terminal sequences between segments failed to recover virus confirming that such changes are deleterious to virus viability. These studies have identified specific regions and sequences key to genome packaging in dsRNA viruses and viability. The specific genome packaging sequences targeted by inhibitory activities of ORNs are bona fide drug target which, as a mechanism common amongst all serotypes, may represent an Achilles’ heel for the development of virus therapeutics.
Collapse
Affiliation(s)
- Teodoro Fajardo
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Po-Yu Sung
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
A Conserved Secondary Structural Element in the Coding Region of the Influenza A Virus Nucleoprotein (NP) mRNA Is Important for the Regulation of Viral Proliferation. PLoS One 2015; 10:e0141132. [PMID: 26488402 PMCID: PMC4619443 DOI: 10.1371/journal.pone.0141132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/05/2015] [Indexed: 11/22/2022] Open
Abstract
Influenza A virus is a threat to humans due to seasonal epidemics and infrequent, but dangerous, pandemics that lead to widespread infection and death. Eight segments of RNA constitute the genome of this virus and they encode greater than eight proteins via alternative splicing of coding (+)RNAs generated from the genomic (-)RNA template strand. RNA is essential in its life cycle. A bioinformatics analysis of segment 5, which encodes nucleoprotein, revealed a conserved structural motif in the (+)RNA. The secondary structure proposed by energy minimization and comparative analysis agrees with structure predicted based on experimental data using a 121 nucleotide in vitro RNA construct comprising an influenza A virus consensus sequence and also an entire segment 5 (+)RNA (strain A/VietNam/1203/2004 (H5N1)). The conserved motif consists of three hairpins with one being especially thermodynamically stable. The biological importance of this conserved secondary structure is supported in experiments using antisense oligonucleotides in cell line, which found that disruption of this motif led to inhibition of viral fitness. These results suggest that this conserved motif in the segment 5 (+)RNA might be a candidate for oligonucleotide-based antiviral therapy.
Collapse
|
17
|
Abstract
Global outbreaks of diseases caused by zoonotic viruses have steadily increased in recent years. Emerging zoonotic viruses are generally phylogenetically diverse, are unpredictable and are known to cause diseases with high case fatality rates in humans and are hard to protect against due to lack of approved antiviral drugs. The aim of this review is to discuss how advances in genomics, rational drug design and innate immune signaling can contribute to the design of nucleic acid-based drugs to combat these emerging threats. Specifically, the antiviral activity of siRNAs, antisense oligonucleotides is mediated by sequence-specific gene silencing, and broad-spectrum innate and antiviral immune responses can be elicited by toll-like receptor agonists. This review will summarize their current state of development, safety and efficacy, and provide perspectives on future development.
Collapse
|
18
|
Abstract
Pulmonary infections by viruses may result in serious diseases of public health importance. The problems of the infections are exacerbated by rapid transmission of the pathogenic agents, which occur through inhalation and direct contact with contaminated surfaces. Moreover, cross-species transmission resulting from changes to viral genetic makeup poses a risk for emergence of pathogens with new characteristics, which in some cases may be responsible for causing different diseases. With the advent of efficient sequencing and nucleic acid-based virus-disabling technologies, gene therapy is well placed to advance new treatments to counter respiratory infections. Most studies aimed at using nucleic acids to treat respiratory viral infections have used RNA interference (RNAi) to silence viral gene targets. A few studies have used silencing of host factors required by the viruses as a means of inhibiting viral replication and preventing emergence of escape mutants. By administering antivirals to the airways, studies performed in vivo have taken advantage of the anatomy of the respiratory system to deliver therapeutic nucleic acids. Reported data have shown proof of principle of efficacy of gene therapy in models of respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus, influenza virus A, and measles virus, among others. RNAi-based gene therapy has been advanced to clinical trial for treatment of RSV infection. Although the primary endpoint was not met in an intent-to-treat analysis, the investigation has provided useful information for the advancement of gene therapy for current and emergent respiratory infections.
Collapse
|
19
|
Svancarova P, Svetlikova D, Betakova T. Synergic and antagonistic effect of small hairpin RNAs targeting the NS gene of the influenza A virus in cells and mice. Virus Res 2014; 195:100-11. [PMID: 25192613 DOI: 10.1016/j.virusres.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/24/2014] [Accepted: 08/11/2014] [Indexed: 02/06/2023]
Abstract
In the present study, we demonstrate the effect of individual and mixtures of shRNAs targeting the NS gene to treat an established infection of influenza A virus (IAV). We prepared 10 shRNAs targeting the NS gene of the IAV, and these shRNAs were tested individually or in mixtures 16h after infection. Our results revealed: (i) shRNA targeting the NS1 transcript decreased the virus titre up to 21% (P<0.01), (ii) shRNA targeting NEP transcript did not influence the replication of IAV in the infected cells; (iii) a mixture of shRNAs targeting the NS1 transcript was less effective than the individual shRNAs and decreased the virus titre up to 42% in vitro; (iv) a mixture of individually inactive shRNAs targeting the NEP transcript significantly inhibited the replication of IAV in vitro; (v) the activities of the individual shRNAs in vivo predominantly corresponded to their activities in vitro; (vi) a synergistic effect of the shRNAs was observed in vivo; and (vii) a shRNA targeting the region common to both the NS1 and NEP transcripts, shNS593, exhibited the strongest inhibition and reduced the virus titre up to 16.4% in vitro, prolonged the survival of the mice by three days and abolished the protective effect of other shRNAs in vivo. shRNAs inhibited influenza virus infection in a gene-specific manner. NS1 mRNA was significantly reduced in lungs treated with shRNAs and the levels of RIG-1, IFN-α, IFN-β and IFN-γ mRNAs shRNAs were not altered.
Collapse
Affiliation(s)
- Petra Svancarova
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic
| | - Darina Svetlikova
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic
| | - Tatiana Betakova
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic; Centre for Molecular Medicine, Vlarska 3-7, 831 01 Bratislava, Slovak Republic.
| |
Collapse
|
20
|
Marc D. Influenza virus non-structural protein NS1: interferon antagonism and beyond. J Gen Virol 2014; 95:2594-2611. [PMID: 25182164 DOI: 10.1099/vir.0.069542-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Most viruses express one or several proteins that counter the antiviral defences of the host cell. This is the task of non-structural protein NS1 in influenza viruses. Absent in the viral particle, but highly expressed in the infected cell, NS1 dramatically inhibits cellular gene expression and prevents the activation of key players in the IFN system. In addition, NS1 selectively enhances the translation of viral mRNAs and may regulate the synthesis of viral RNAs. Our knowledge of the virus and of NS1 has increased dramatically during the last 15 years. The atomic structure of NS1 has been determined, many cellular partners have been identified and its multiple activities have been studied in depth. This review presents our current knowledge, and attempts to establish relationships between the RNA sequence, the structure of the protein, its ligands, its activities and the pathogenicity of the virus. A better understanding of NS1 could help in elaborating novel antiviral strategies, based on either live vaccines with altered NS1 or on small-compound inhibitors of NS1.
Collapse
Affiliation(s)
- Daniel Marc
- Université François Rabelais, UMR1282 Infectiologie et Santé Publique, 37000 Tours, France.,Pathologie et Immunologie Aviaire, INRA, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| |
Collapse
|
21
|
Immunomodulatory Activity and Protective Effects of Polysaccharide from Eupatorium adenophorum Leaf Extract on Highly Pathogenic H5N1 Influenza Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:194976. [PMID: 24159339 PMCID: PMC3789439 DOI: 10.1155/2013/194976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022]
Abstract
The development of novel broad-spectrum, antiviral agents against H5N1 infection is urgently needed. In this study, we evaluated the immunomodulatory activities and protective effect of Eupatorium adenophorum polysaccharide (EAP) against the highly pathogenic H5N1 subtype influenza virus. EAP treatment significantly increased the production of IL-6, TNF-α, and IFN-γ both in vivo and in vitro as measured by qPCR and ELISA. In a mouse infection model, intranasal administration of EAP at a dose of 25 mg/kg body weight prior to H5N1 viral challenge efficiently inhibited viral replication, decreased lung lesions, and increased survival rate. We further evaluated the innate immune recognition of EAP, as this process is regulated primarily Dectin-1 and mannose receptor (MR). These results indicate that EAP may have immunomodulatory properties and a potential prophylactic effect against H5N1 influenza infection. Our investigation suggests an alternative strategy for the development of novel antiinfluenza agents and benefits of E. adenophorum products.
Collapse
|
22
|
Chronic heat stress inhibits immune responses to H5N1 vaccination through regulating CD4⁺ CD25⁺ Foxp3⁺ Tregs. BIOMED RESEARCH INTERNATIONAL 2013; 2013:160859. [PMID: 24151582 PMCID: PMC3787559 DOI: 10.1155/2013/160859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/04/2013] [Indexed: 12/24/2022]
Abstract
Chronic heat stress (CHS) is known to have negative impacts on the immune responses in animals and increases their susceptibility to infections including the highly pathogenic avian influenza virus H5N1. However, the role of regulatory T cells (Tregs) in CHS immunosuppression remains largely undefined. In this study, we demonstrated a novel mechanism by which CHS suppressed both Th1 and Th2 immune responses and dramatically decreased the protective efficacy of the formalin-inactivated H5N1 vaccine against H5N1 influenza virus infection. This suppression was found to be associated with the induced generation of CD4+CD25+FoxP3+ Tregs and the increased secretions of IL-10 and TGF-β in CD4+ T cells. Adoptive transfer of the induced Tregs also suppressed the protective efficacy of formalin-inactivated H5N1 virus immunization. Collectively, this study identifies a novel mechanism of CHS immunosuppression mediated by regulating CD4+CD25+Foxp3+ Tregs.
Collapse
|
23
|
Engel DA. The influenza virus NS1 protein as a therapeutic target. Antiviral Res 2013; 99:409-16. [PMID: 23796981 DOI: 10.1016/j.antiviral.2013.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists.
Collapse
Affiliation(s)
- Daniel A Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
24
|
Tan Y, Sun LQ, Kamal MA, Wang X, Seale JP, Qu X. Suppression of retinol-binding protein 4 with RNA oligonucleotide prevents high-fat diet-induced metabolic syndrome and non-alcoholic fatty liver disease in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1045-53. [PMID: 21983273 DOI: 10.1016/j.bbalip.2011.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 09/20/2011] [Accepted: 09/23/2011] [Indexed: 12/28/2022]
Abstract
Conflicting data have been reported regarding the role of retinol-binding protein (RBP4) in insulin resistance, obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). In this study, we used pharmacological methods to investigate the role of RBP4. RNA oligonucleotide against RBP4 (anti-RBP4 oligo) was transfected into 3T3-L1 adipocytes. RT-PCR analysis showed that RBP4 mRNA expression decreased by 55% (p<0.01) compared with control cells. Validated RNA oligo was used in an in vivo study with high fat diet (HFD) fed - mice. 14 weeks of HFD feeding increased RBP4 expression (associated with elevated serum levels measured with immunoblotting and ELISA) by 56% in adipose tissue (p<0.05) and 68% in the liver (p<0.01). Adipose RBP4 levels were significantly reduced after 4 weeks treatment with anti-RBP4 oligo (25mg/kg, p<0.01) and rosiglitazone (RSG, 10mg/kg, p<0.05) compared with scrambled RNA oligo (25mg/kg) treated mice. Only anti-RBP4 oligo significantly inhibited RBP4 protein (p<0.01) and mRNA expression (p<0.01) in the liver and reduced serum RBP4 levels. Anti-RBP4 oligo and RSG showed comparable effects on impaired glucose tolerance, hyperinsulinaemia and hyperglycaemia. Anti-RBP4 oligo significantly enhanced adipose-GLUT4 expression (p<0.01) but did not increase muscle-GLUT4. Both RSG and anti-RBP4 oligo significantly reduced hepatic phosphoenolpyruvate carboxykinase expression (both p<0.05). Histological analysis revealed that anti-RBP4 oligo ameliorated hepatic steatosis and reduced lipid droplets associated with normalized liver function. Histological and pharmacological results of this study indicate that RBP4 is not only an adipocytokine, but also a hepatic cytokine leading to metabolic syndrome, NAFLD and type 2 diabetes.
Collapse
Affiliation(s)
- Yi Tan
- Department of Medical & Molecular BioSciences, University of Technology Sydney, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Zhang T, Wang TC, Zhao PS, Liang M, Gao YW, Yang ST, Qin C, Wang CY, Xia XZ. Antisense oligonucleotides targeting the RNA binding region of the NP gene inhibit replication of highly pathogenic avian influenza virus H5N1. Int Immunopharmacol 2011; 11:2057-61. [PMID: 21933722 DOI: 10.1016/j.intimp.2011.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 01/21/2023]
Abstract
The H5N1 avian influenza virus (AIV) causes widespread infections in bird and human respiratory tracts, and vaccines and drug therapy are limited in their effectiveness. Recent studies of AIV structures have been published and provide new targets for designing antiviral drugs such as antisense oligonucleotides (AS ODNs), which effectively inhibit gene replication. In this study, we designed and synthesized three AS ODNs (NP267, NP628, NP749) that were specific for the RNA binding region of nucleoprotein (NP) based on AIV structure. Results showed that all three AS ODNs could inhibit viral replication in MDCK cells. The NP628 showed the best antiviral effect of all through viral titers, quantitative RT-PCR and indirect immunofluorescence (IFA) assays. In addition, the liposome mediated NP628 could partially protect the mice from a lethal H5N1 influenza virus challenge. Moreover, the NP628 group had a lower viral titer and lung index in the infected mice when compared with the viral control. Our results showed that AS ODN targeting of the AIV NP gene could potently inhibit AIV H5N1 reproduction, thus, formulating a candidate for an emergent therapeutic drug for the pathogenic H5N1 influenza virus infection.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jin Y, Zhang G, Hu Y, Ding M, Li Y, Cao S, Xue J, Sun LQ, Wang M. Inhibition of highly pathogenic avian H5N1 influenza virus propagation by RNA oligonucleotides targeting the PB2 gene in combination with celecoxib. J Gene Med 2011; 13:243-9. [PMID: 21449039 DOI: 10.1002/jgm.1558] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Highly pathogenic avian influenza virus H5N1 can cause acute respiratory infections with an uncontrolled virus-induced cytokine storm in both poultry and humans. In view of the high mortality of H5N1 influenza virus infection, the development of novel broad-spectrum prophylactic and therapeutic agents against infection is urgently needed. In the present study, we attempted to explore whether the combinational use of a viral gene-targeted agent and immunomodulator is feasible as a new strategy against the H5N1 infection. METHODS Four antisense RNA oligonucleotides targeting the polymerase basic protein 2 (PB2) gene of H5N1-HPIV were designed and screened for their ability to inhibit H5N1 influenza viral propagation. RESULTS In Madin-Darby canine kidney cells, the RNA oligonucleotides efficiently inhibited viral replication, as measured by hemagglutinin production, plaque formation and viral RNA expression assays. In a mouse infection model, a combinational treatment in mice with the PB2 oligonucleotides and celecoxib significantly reduced the viral load, regulated cytokine profiles, and improved lung lesions and animal survival compared to the single use of either PB2 oligonucleotides or the immunomodulatory agent, celecoxib. CONCLUSIONS The results obtained in the present study suggest the potential use of PB2-targeted oligonucleotides in conjunction with immunomodulators for the control of H5N1 influenza infection.
Collapse
Affiliation(s)
- Yi Jin
- College of Veterinary Medicine, China Agriculture University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhirnov OP, Klenk HD, Wright PF. Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral Res 2011; 92:27-36. [PMID: 21802447 DOI: 10.1016/j.antiviral.2011.07.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/24/2011] [Accepted: 07/18/2011] [Indexed: 02/06/2023]
Abstract
Efforts to develop new antiviral chemotherapeutic approaches are focusing on compounds that target either influenza virus replication itself or host factor(s) that are critical to influenza replication. Host protease mediated influenza hemagglutinin (HA) cleavage is critical for activation of virus infectivity and as such is a chemotherapeutic target. Influenza pathogenesis involves a "vicious cycle" in which host proteases activate progeny virus which in turn amplifies replication and stimulates further protease activities which may be detrimental to the infected host. Aprotinin, a 58 amino acid polypeptide purified from bovine lung that is one of a family of host-targeted antivirals that inhibit serine proteases responsible for influenza virus activation. This drug and similar agents, such as leupeptin and camostat, suppress virus HA cleavage and limit reproduction of human and avian influenza viruses with a single arginine in the HA cleavage site. Site-directed structural modifications of aprotinin are possible to increase its intracellular targeting of cleavage of highly virulent H5 and H7 hemagglutinins possessing multi-arginine/lysine cleavage site. An additional mechanism of action for serine protease inhibitors is to target a number of host mediators of inflammation and down regulate their levels in virus-infected hosts. Aprotinin is a generic drug approved for intravenous use in humans to treat pancreatitis and limit post-operative bleeding. As an antiinfluenzal compound, aprotinin might be delivered by two routes: (i) a small-particle aerosol has been approved in Russia for local respiratory application in mild-to-moderate influenza and (ii) a proposed intravenous administration for severe influenza to provide both an antiviral effect and a decrease in systemic pathology and inflammation.
Collapse
Affiliation(s)
- O P Zhirnov
- D.I. Ivanovsky Institute of Virology, Moscow 123098, Russia.
| | | | | |
Collapse
|
28
|
Chronic heat stress weakened the innate immunity and increased the virulence of highly pathogenic avian influenza virus H5N1 in mice. J Biomed Biotechnol 2011; 2011:367846. [PMID: 21687549 PMCID: PMC3114565 DOI: 10.1155/2011/367846] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 03/14/2011] [Accepted: 04/01/2011] [Indexed: 01/30/2023] Open
Abstract
Chronic heat stress (CHS) can negatively affect immune response in animals. In this study we assessed the effects of CHS on host innate immunity and avian influenza virus H5N1 infection in mice. Mice were divided into two groups: CHS and thermally neutral (TN). The CHS treatment group exhibited reduced local immunity in the respiratory tract, including the number of pulmonary alveolar macrophages and lesions in the nasal mucosa, trachea, and lungs. Meanwhile, CHS retarded dendritic cells (DCs) maturation and reduced the mRNA levels of IL-6 and IFN-β significantly (P < .05). After the CHS treatment, mice were infected with H5N1 virus. The mortality rate and viral load in the lungs of CHS group were higher than those of TN group. The results suggest that the CHS treatment could suppress local immunity in the respiratory tract and innate host immunity in mice significantly and moderately increased the virulence in H5N1-infected mice.
Collapse
|
29
|
Zhang T, Zhao PS, Zhang W, Liang M, Gao YW, Yang ST, Wang TC, Qin C, Wang CY, Xia XZ. Antisense oligonucleotide inhibits avian influenza virus H5N1 replication by single chain antibody delivery system. Vaccine 2011; 29:1558-64. [PMID: 21215341 DOI: 10.1016/j.vaccine.2010.12.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 12/13/2010] [Accepted: 12/21/2010] [Indexed: 11/24/2022]
Abstract
H5N1 avian influenza virus (AIV) causes widespread infections in poultry and wild birds, and has the potential to emerge as a pandemic threat to human. Antisense oligonucleotides (AS ODNs) are highly effective at inhibiting gene replication. Antibody-mediated delivery is a novel approach to target specific cells and tissues. In this study, we designed and synthesized three AS ODNs (PA4, PA492 and PA1203) specific for conserved region of AIV PA protein, and all the three AS ODNs could inhibit viral replication. The PA492 ODN showed the best antiviral effect by viral titers and quantitative RT-PCR in MDCK cells. The fusion protein scFv-tP was constructed as a single chain variable fragment (scFv) against AIV hemaglutinin antigen with a truncated protamine (tP). The results showed that scFv-tP fusion improved the antiviral effectiveness of PA492 in MDCK cells as measured by viral titers, quantitative RT-PCR and indirect immunofluorescence (IFA) assays. In addition, scFv-tP-delivered PA492 was also found to partially protect mice from lethal H5N1 influenza virus challenge. Using scFv-tP delivery, fluorescein isothiocyanate labeled-PA492 was found to be significantly localized in the lungs, compared to liposome-delivered PA492. Moreover, the fusion protein mediated PA492 had a lower lung index and viral titers in the infected mice as compared with the liposome method. These results provided a potential method for using anti-HA fusion protein for the targeted delivery of AS ODNs against AIV H5N1.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yan Q. Systems biology of influenza: understanding multidimensional interactions for personalized prevention and treatment. Methods Mol Biol 2010; 662:285-302. [PMID: 20824477 DOI: 10.1007/978-1-60761-800-3_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Influenza virus infection is a public health threat worldwide. It is urgent to develop effective methods and tools for the prevention and treatment of influenza. Influenza vaccines have significant immune response variability across the population. Most of the current circulating strains of influenza A virus are resistant to anti-influenza drugs. It is necessary to understand how genetic variants affect immune responses, especially responses to the HA and NA transmembrane glycoproteins. The elucidation of the underlying mechanisms can help identify patient subgroups for effective prevention and treatment. New personalized vaccines, adjuvants, and drugs may result from the understanding of interactions of host genetic, environmental, and other factors. The systems biology approach is to simulate and model large networks of the interacting components, which can be excellent targets for antiviral therapies. The elucidation of host-influenza interactions may provide an integrative view of virus infection and host responses. Understanding the host-influenza-drug interactions may contribute to optimal drug combination therapies. Insight of the host-influenza-vaccine interactions, especially the immunogenetics of vaccine response, may lead to the development of better vaccines. Systemic studies of host-virus-vaccine-drug-environment interactions will enable predictive models for therapeutic responses and the development of individualized therapeutic strategies. A database containing such information on personalized and systems medicine for influenza is available at http://flu.pharmtao.com.
Collapse
|
31
|
Zhang W, Wang CY, Yang ST, Qin C, Hu JL, Xia XZ. Inhibition of highly pathogenic avian influenza virus H5N1 replication by the small interfering RNA targeting polymerase A gene. Biochem Biophys Res Commun 2009; 390:421-6. [DOI: 10.1016/j.bbrc.2009.09.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 09/10/2009] [Indexed: 11/26/2022]
|
32
|
Label-free electrochemical detection of Avian Influenza Virus genotype utilizing multi-walled carbon nanotubes–cobalt phthalocyanine–PAMAM nanocomposite modified glassy carbon electrode. Electrochem commun 2009. [DOI: 10.1016/j.elecom.2009.05.055] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Oligonucleotides derived from the packaging signal at the 5' end of the viral PB2 segment specifically inhibit influenza virus in vitro. Arch Virol 2009; 154:821-32. [PMID: 19370391 DOI: 10.1007/s00705-009-0380-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
The development of new antiviral molecules to fight the possible emergence of influenza viruses with pandemic potential is needed. In this study, phosphorothioate oligonucleotides (S-ONs) derived from the packaging signals in the 3' and 5' ends of the viral PB2 RNA were associated with liposomes and tested against influenza virus in vitro. A 15-mer S-ON derived from the 5' end of the viral PB2 RNA, complementary to the 3' end of its coding region (nucleotides 2279-2293) and designated 5-15b, proved markedly inhibitory. The antiviral activity of 5-15b was dose- and time-dependent but was independent of the cell substrate and multiplicity of infection used. Importantly, inhibition of influenza A and B viruses required S-ONs reproducing the respective packaging signals. Furthermore, 5-15b and its antisense derivative S-ON activity did not affect intracellular accumulation of viral RNA. Confocal microscopy showed that 5-15b is clearly nucleophilic. These findings indicate that the packaging signal at the 5' end of the PB2 RNA is an interesting target for the design of new anti-influenza-virus compounds.
Collapse
|
34
|
Krulko I, Ustyanenko D, Polischuk V. Role of siRNAs and miRNAs in the processes of RNA-mediated gene silencing during viral infections. CYTOL GENET+ 2009; 43:63-72. [PMID: 32214541 PMCID: PMC7089099 DOI: 10.3103/s0095452709010113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/1995] [Indexed: 11/30/2022]
Abstract
Phenomenon of RNA-induced gene silencing is a highly conservative mechanism among eukaryotic organisms. Several classes of small RNAs (siRNAs and miRNAs) 21-25 nt in length, which play a significant role in the processes of development of an organism, occurred important components of antiviral defence in animals and plants. This review shortly describes the main stages of gene silencing mechanism, features of antiviral RNA silencing in plants, invertebrates, mammals, ways of suppression of RNA-interference by viruses, as well as possible approaches of utilization of abovementioned phenomenon for struggling against viral infections.
Collapse
Affiliation(s)
- I. Krulko
- Taras Shevchenko Kyiv National University, ul. Volodymyrska 64, Kyiv, 01033 Ukraine
| | - D. Ustyanenko
- Taras Shevchenko Kyiv National University, ul. Volodymyrska 64, Kyiv, 01033 Ukraine
| | - V. Polischuk
- Taras Shevchenko Kyiv National University, ul. Volodymyrska 64, Kyiv, 01033 Ukraine
| |
Collapse
|
35
|
Abstract
The current paradigm for managing infectious diseases has targeted unique processes or enzymes within pathogens. A serious disadvantage of this pathogen-directed drug targeting strategy has been the development of microbial drug resistance and consequent resurgence of once-contained infectious diseases. A new drug discovery paradigm has therefore emerged focusing on identifying and targeting host factors essential for pathogen entry, survival, and replication. Innovative strategies combining genome-wide computational biology, genomics, proteomics, and traditional forward and reverse genetics have identified host-pathogen interactions and host functions critical for the establishment of infection. Chemogenomics and chemical genetics have allowed rapid identification of new and existing licensed drugs with antimicrobial activity. Although most host-directed drug targeting studies have focused on viral infections, they have provided a proof of concept for similar approaches to bacterial and parasite infections. Future therapies may combine conventional targeting of microbial virulence factors, together with host-directed drug therapy and augmentation of protective host factors, to efficiently eliminate the invading pathogen.
Collapse
Affiliation(s)
- Anita Schwegmann
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town and The International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.
| | | |
Collapse
|
36
|
Beigel J, Bray M. Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res 2008; 78:91-102. [PMID: 18328578 PMCID: PMC2346583 DOI: 10.1016/j.antiviral.2008.01.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 12/26/2007] [Accepted: 01/08/2008] [Indexed: 11/26/2022]
Abstract
The currently circulating H3N2 and H1N1 subtypes of influenza A virus cause a transient, febrile upper respiratory illness in most adults and children ("seasonal influenza"), but infants, the elderly, immunodeficient and chronically ill persons may develop life-threatening primary viral pneumonia or complications such as bacterial pneumonia. By contrast, avian influenza viruses such as the H5N1 virus that recently emerged in Southeast Asia can cause severe disease when transferred from domestic poultry to previously healthy people ("avian influenza"). Most H5N1 patients present with fever, cough and shortness of breath that progress rapidly to adult respiratory distress syndrome. In seasonal influenza, viral replication remains confined to the respiratory tract, but limited studies indicate that H5N1 infections are characterized by systemic viral dissemination, high cytokine levels and multiorgan failure. Gastrointestinal infection and encephalitis also occur. The licensed anti-influenza drugs (the M2 ion channel blockers, amantadine and rimantadine, and the neuraminidase inhibitors, oseltamivir and zanamivir) are beneficial for uncomplicated seasonal influenza, but appropriate dosing regimens for severe seasonal or H5N1 viral infections have not been defined. Treatment options may be limited by the rapid emergence of drug-resistant viruses. Ribavirin has also been used to a limited extent to treat influenza. This article reviews licensed drugs and treatments under development, including high-dose oseltamivir; parenterally administered neuraminidase inhibitors, peramivir and zanamivir; dimeric forms of zanamivir; the RNA polymerase inhibitor T-705; a ribavirin prodrug, viramidine; polyvalent and monoclonal antibodies; and combination therapies.
Collapse
Affiliation(s)
- John Beigel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
37
|
Oligonucleotide antiviral therapeutics: antisense and RNA interference for highly pathogenic RNA viruses. Antiviral Res 2008; 78:26-36. [PMID: 18258313 PMCID: PMC7114189 DOI: 10.1016/j.antiviral.2007.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/05/2007] [Accepted: 12/06/2007] [Indexed: 11/21/2022]
Abstract
RNA viruses are a significant source of morbidity and mortality in humans every year. Additionally, the potential use of these viruses in acts of bioterrorism poses a threat to national security. Given the paucity of vaccines or postexposure therapeutics for many highly pathogenic RNA viruses, novel treatments are badly needed. Sequence-based drug design, under development for almost 20 years, is proving effective in animal models and has moved into clinical trials. Important advances in the field include the characterization of RNA interference in mammalian cells and chemical modifications that can dramatically increase the in vivo stability of therapeutic oligonucleotides. Antisense strategies utilize single-stranded DNA oligonucleotides that inhibit protein production by mediating the catalytic degradation of target mRNA, or by binding to sites on mRNA essential for translation. Double-stranded RNA oligonucleotides, known as short-interfering RNAs (siRNAs), also mediate the catalytic degradation of complementary mRNAs. As RNA virus infection is predicated on the delivery, replication, and translation of viral RNA, these pathogens present an obvious target for the rapidly advancing field of sequence-specific therapeutics. Antisense oligonucleotides or siRNAs can be designed to target the viral RNA genome or viral transcripts. This article reviews current knowledge on therapeutic applications of antisense and RNA interference for highly pathogenic RNA viral infections.
Collapse
|