1
|
Ponsuksili S, Li S, Siengdee P, Hadlich F, Trakooljul N, Oster M, Reyer H, Wimmers K. DNA methylation in adipocyte differentiation of porcine mesenchymal stem cells and the impact of the donor metabolic type. Genomics 2025; 117:111050. [PMID: 40306557 DOI: 10.1016/j.ygeno.2025.111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/26/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
The impact of metabolic donor mesenchymal stem cells (MSCs) on DNA methylation, a critical epigenetic mechanism, significantly regulates adipogenesis. In this study, we investigated epigenetic changes during differentiation of synovial MSCs (SMSCs) from two pig breeds differing in metabolic performance (German Landrace (DL) and Angeln Saddleback (AS)). Stimulation of SMSCs to differentiate into adipocytes in vitro revealed several differentially methylated loci and regions, particularly on gene promoter regions, at day 7 and 14. AS breeds, known for higher fat deposition, exhibited more hypermethylation compared to DL. Furthermore, we utilized differentially methylated regions associated with the adipogenic process and breed, especially those in promoter regions, for predicting transcription factor motifs. This study provides insights into the DNA methylation landscape during adipogenesis in pigs of different metabolic types, revealing its role in regulating cell fate and donor memory retention in culture.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Shuaichen Li
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Puntita Siengdee
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany; Chulabhorn Graduate Institute, Program in Applied Biological Sciences, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| |
Collapse
|
2
|
Yadav B, Singh D, Mantri S, Rishi V. Genome-wide Methylation Dynamics and Context-dependent Gene Expression Variability in Differentiating Preadipocytes. J Endocr Soc 2024; 8:bvae121. [PMID: 38966711 PMCID: PMC11222978 DOI: 10.1210/jendso/bvae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 07/06/2024] Open
Abstract
Obesity, characterized by the accumulation of excess fat, is a complex condition resulting from the combination of genetic and epigenetic factors. Recent studies have found correspondence between DNA methylation and cell differentiation, suggesting a role of the former in cell fate determination. There is a lack of comprehensive understanding concerning the underpinnings of preadipocyte differentiation, specifically when cells are undergoing terminal differentiation (TD). To gain insight into dynamic genome-wide methylation, 3T3 L1 preadipocyte cells were differentiated by a hormone cocktail. The genomic DNA was isolated from undifferentiated cells and 4 hours, 2 days postdifferentiated cells, and 15 days TD cells. We employed whole-genome bisulfite sequencing (WGBS) to ascertain global genomic DNA methylation alterations at single base resolution as preadipocyte cells differentiate. The genome-wide distribution of DNA methylation showed similar overall patterns in pre-, post-, and terminally differentiated adipocytes, according to WGBS analysis. DNA methylation decreases at 4 hours after differentiation initiation, followed by methylation gain as cells approach TD. Studies revealed novel differentially methylated regions (DMRs) associated with adipogenesis. DMR analysis suggested that though DNA methylation is global, noticeable changes are observed at specific sites known as "hotspots." Hotspots are genomic regions rich in transcription factor (TF) binding sites and exhibit methylation-dependent TF binding. Subsequent analysis indicated hotspots as part of DMRs. The gene expression profile of key adipogenic genes in differentiating adipocytes is context-dependent, as we found a direct and inverse relationship between promoter DNA methylation and gene expression.
Collapse
Affiliation(s)
- Binduma Yadav
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
- Regional Center for Biotechnology, Faridabad, Haryana 160014, India
| | - Dalwinder Singh
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
| | - Shrikant Mantri
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Vikas Rishi
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Liang J, Jia Y, Yu H, Yan H, Shen Q, Xu Y, Li Y, Yang M. 5-Aza-2'-Deoxycytidine Regulates White Adipocyte Browning by Modulating miRNA-133a/Prdm16. Metabolites 2022; 12:1131. [PMID: 36422269 PMCID: PMC9695087 DOI: 10.3390/metabo12111131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2024] Open
Abstract
The conversion of white adipocytes into brown adipocytes improves their thermogenesis and promotes energy consumption. Epigenetic modifications affect related genes and interfere with energy metabolism, and these are the basis of new ideas for obesity treatment. Neonatal mice show high levels of DNA hypermethylation in white adipose tissue early in life and low levels in brown adipose tissue. Thus, we considered that the regulation of DNA methylation may play a role in the conversion of white adipose to brown. We observed growth indicators, lipid droplets of adipocytes, brown fat specific protein, and miRNA-133a after treatment with 5-Aza-2'-deoxycytidine. The expression of Prdm16 and Ucp-1 in adipocytes was detected after inhibiting miRNA-133a. The results showed a decrease in total lipid droplet formation and an increased expression of the brown fat specific proteins Prdm16 and Ucp-1. This study indicated that 5-Aza-2'-deoxycytidine promotes white adipocyte browning following DNA demethylation, possibly via the modulation of miR-133a and Prdm16.
Collapse
Affiliation(s)
- Jia Liang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Ying Jia
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Huixin Yu
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Haijing Yan
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Qingyu Shen
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Yong Xu
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Yana Li
- Department of Pathophysiology, Binzhou Medical University, Yantai 264003, China
| | - Meizi Yang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
4
|
Zhang Y, Chen F, Zhang F, Huang X. Characterization of DNA methylation as well as mico-RNA expression and screening of epigenetic markers in adipogenesis. J Transl Med 2022; 20:93. [PMID: 35168604 PMCID: PMC8845261 DOI: 10.1186/s12967-022-03295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/02/2022] [Indexed: 11/15/2022] Open
Abstract
This study aimed to use bioinformatics methods to characterize epigenetic changes in terms of micro-RNA(miRNA) expression and DNA methylation during adipogenesis. The mRNA and miRNA expression microarray and DNA methylation dataset were obtained from the GEO database. Differentially expressed genes (DEGs), differentially expressed miRNAs (DEMs) and differentially methylated probes (DMPs) were filtered using the limma package. The R language cluster profile package was used for functional and enrichment analysis. A protein–protein interaction (PPI) network was constructed using STRING and visualized in Cytoscape. The Connection map (CMap) website tool was used to screen potential therapeutic drugs for adipogenesis. When comparing the early and late stages of adipogenesis, 111 low miRNA targeted upregulated genes and 64 high miRNA targeted downregulated genes were obtained, as well as 663 low-methylated high-expressed genes and 237 high-methylated low-expressed genes. In addition, 41 genes (24 upregulated and 17 downregulated) were simultaneously regulated by abnormal miRNA changes and DNA methylation. Ten chemicals were identified as putative therapeutics for adipogenesis. In addition, among the dual-regulated genes identified, CANX, HNRNPA1, MCL1, and PPIF may play key roles in the epigenetic regulation of adipogenesis and may serve as aberrant methylation or miRNA targeting biomarkers.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fancheng Chen
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fangxue Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Peking University, Beijing, China
| | - Xiaowei Huang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Kim S, Thapar I, Brooks BW. Epigenetic changes by per- and polyfluoroalkyl substances (PFAS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116929. [PMID: 33751946 DOI: 10.1016/j.envpol.2021.116929] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 03/03/2021] [Indexed: 05/09/2023]
Abstract
Increasing studies are examining per- and polyfluoroalkyl substances (PFAS) induced toxicity and resulting health outcomes, including epigenetic modifications (e.g., DNA methylation, histone modification, microRNA expression). We critically reviewed current evidence from human epidemiological, in vitro, and animal studies, including mammalian and aquatic model organisms. Epidemiological studies identified the associations between perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) exposure and epigenetic changes in both adult populations and birth cohorts. For in vitro studies, various cell types including neuroblasts, preadipocytes, and hepatocytes have been employed to understand epigenetic effects of PFAS. In studies with animal models, effects of early life exposure to PFAS have been examined using rodent models, and aquatic models (e.g., zebrafish) have been more frequently used in recent years. Several studies highlighted oxidative stress as a key mediator between epigenetic modification and health effects. Collectively, previous research clearly suggest involvement of epigenetic mechanisms in PFAS induced toxicity, though these efforts have primarily focused on specific PFASs (i.e. mainly PFOS and PFOA) or endpoints (i.e. cancer). Additional studies are necessary to define specific linkages among epigenetic mechanisms and related biomarkers or phenotypical changes. In addition, future research is also needed for understudied PFAS and complex mixtures. Studies of epigenetic effects elicited by individual PFAS and mixtures are needed within an adverse outcome pathways framework, which will advance an understanding of PFAS risks to public health and the environment, and support efforts to design less hazardous chemicals.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA.
| | - Isha Thapar
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Honors College, Baylor University, Waco, TX, 76706, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA.
| |
Collapse
|
6
|
Pant R, Firmal P, Shah VK, Alam A, Chattopadhyay S. Epigenetic Regulation of Adipogenesis in Development of Metabolic Syndrome. Front Cell Dev Biol 2021; 8:619888. [PMID: 33511131 PMCID: PMC7835429 DOI: 10.3389/fcell.2020.619888] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is one of the biggest public health concerns identified by an increase in adipose tissue mass as a result of adipocyte hypertrophy and hyperplasia. Pertaining to the importance of adipose tissue in various biological processes, any alteration in its function results in impaired metabolic health. In this review, we discuss how adipose tissue maintains the metabolic health through secretion of various adipokines and inflammatory mediators and how its dysfunction leads to the development of severe metabolic disorders and influences cancer progression. Impairment in the adipocyte function occurs due to individuals' genetics and/or environmental factor(s) that largely affect the epigenetic profile leading to altered gene expression and onset of obesity in adults. Moreover, several crucial aspects of adipose biology, including the regulation of different transcription factors, are controlled by epigenetic events. Therefore, understanding the intricacies of adipogenesis is crucial for recognizing its relevance in underlying disease conditions and identifying the therapeutic interventions for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Richa Pant
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Priyanka Firmal
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Vibhuti Kumar Shah
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Aftab Alam
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Samit Chattopadhyay
- National Centre for Cell Science, SP Pune University Campus, Pune, India.,Department of Biological Sciences, BITS Pilani, Goa, India
| |
Collapse
|
7
|
Hou Y, Zhang Z, Wang Y, Gao T, Liu X, Tang T, Du Q. 5mC profiling characterized TET2 as an anti-adipogenic demethylase. Gene 2019; 733:144265. [PMID: 31805318 DOI: 10.1016/j.gene.2019.144265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/12/2023]
Abstract
To explore its roles in adipogenesis, the levels of genomic 5mC methylation were examined across the adipocyte differentiation of 3 T3-L1 cells. This led to the identification of an up-regulating 5mC profile during the process. To further explore the regulation, gene expression assay was performed with a set of 5mC metabolic enzymes. Among them, TET2 was found to be the most regulated 5mC demethylase, in addition to a well-investigated 5mC methylase DNMT1. In the process, the expression of Tet2 increased for over 16-fold, suggesting its implications in the differentiation. Therefore, loss-of-function and gain-of-function assays were performed with Tet2. It was found that in relative to the differentiation of wild-type cells, knockdown of Tet2 expression led to greatly enhanced differentiation process, while over-expression of the gene resulted in repressed differentiation. Pathway study found that during the differentiation, TET2 demethylates Adrb3 promoter to up-regulate its expression. This led to enhanced lipolysis and decreased lipid production. To the upstream pathway, vitamin C treatment was found to enhance the activity of TETs, decrease 5mC levels and repress lipid production. Taken together, TET2 was characterized as an anti-adipogenic demethylase in adipocyte differentiation of 3 T3-L1 cells.
Collapse
Affiliation(s)
- Yingzi Hou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenxi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tao Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiyang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tao Tang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Quan Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
8
|
Transgenerational Self-Reconstruction of Disrupted Chromatin Organization After Exposure To An Environmental Stressor in Mice. Sci Rep 2019; 9:13057. [PMID: 31506492 PMCID: PMC6736928 DOI: 10.1038/s41598-019-49440-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Exposure to environmental stressors is known to increase disease susceptibility in unexposed descendants in the absence of detectable genetic mutations. The mechanisms mediating environmentally-induced transgenerational disease susceptibility are poorly understood. We showed that great-great-grandsons of female mice exposed to tributyltin (TBT) throughout pregnancy and lactation were predisposed to obesity due to altered chromatin organization that subsequently biased DNA methylation and gene expression. Here we analyzed DNA methylomes and transcriptomes from tissues of animals ancestrally exposed to TBT spanning generations, sexes, ontogeny, and cell differentiation state. We found that TBT elicited concerted alterations in the expression of “chromatin organization” genes and inferred that TBT-disrupted chromatin organization might be able to self-reconstruct transgenerationally. We also found that the location of “chromatin organization” and “metabolic” genes is biased similarly in mouse and human genomes, suggesting that exposure to environmental stressors in different species could elicit similar phenotypic effects via self-reconstruction of disrupted chromatin organization.
Collapse
|
9
|
Yi F, Zhang P, Wang Y, Xu Y, Zhang Z, Ma W, Xu B, Xia Q, Du Q. Long non-coding RNA slincRAD functions in methylation regulation during the early stage of mouse adipogenesis. RNA Biol 2019; 16:1401-1413. [PMID: 31199203 DOI: 10.1080/15476286.2019.1631643] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Adipocyte differentiation is a coordinated cellular process, which involves a series of dynamic molecular events. Up-regulation of long noncoding RNA slincRAD expression was found to occur in the early differentiation stages of 3T3-L1 cell, prior to the regulation of major transcription factors. By interacting with DNMT1 in S phase, slincRAD guides this essentially epigenetic factor to mediate promoter methylation of a batch of cell cycle-related genes, including cyclin-dependent kinase inhibitor p21. The regulation promotes the growth-arrested cells to re-enter into cell cycle under hormone induction and thereby advances the process of differentiation to clonal expansion stage. The abolishment of the interaction between slincRAD and DNMT1 by slincRAD knockdown results in a defective epigenetic regulation and finally compromised adipogenesis. Collectively, our study characterizes the epigenetic regulation of lncRNA involved in the early stage of adipogenesis.
Collapse
Affiliation(s)
- Fan Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Pei Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Yao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Yin Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Zhengxi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Weizhi Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Bo Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Quan Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing , China
| |
Collapse
|
10
|
Sun W, von Meyenn F, Peleg‐Raibstein D, Wolfrum C. Environmental and Nutritional Effects Regulating Adipose Tissue Function and Metabolism Across Generations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900275. [PMID: 31179229 PMCID: PMC6548959 DOI: 10.1002/advs.201900275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/21/2019] [Indexed: 05/12/2023]
Abstract
The unabated rise in obesity prevalence during the last 40 years has spurred substantial interest in understanding the reasons for this epidemic. Studies in mice and humans have demonstrated that obesity is a highly heritable disease; however genetic variations within specific populations have so far not been able to explain this phenomenon to its full extent. Recent work has demonstrated that environmental cues can be sensed by an organism to elicit lasting changes, which in turn can affect systemic energy metabolism by different epigenetic mechanisms such as changes in small noncoding RNA expression, DNA methylation patterns, as well as histone modifications. These changes can directly modulate cellular function in response to environmental cues, however research during the last decade has demonstrated that some of these modifications might be transmitted to subsequent generations, thus modulating energy metabolism of the progeny in an inter- as well as transgenerational manner. In this context, adipose tissue has become a focus of research due to its plasticity, which allows the formation of energy storing (white) as well as energy wasting (brown/brite/beige) cells within the same depot. In this Review, the effects of environmental induced obesity with a particular focus on adipose tissue are discussed.
Collapse
Affiliation(s)
- Wenfei Sun
- Department of Health Science and TechnologiesETH ZürichSchorenstrasse 16SchwerzenbachCH‐8603Switzerland
| | - Ferdinand von Meyenn
- Department of Health Science and TechnologiesETH ZürichSchorenstrasse 16SchwerzenbachCH‐8603Switzerland
| | - Daria Peleg‐Raibstein
- Department of Health Science and TechnologiesETH ZürichSchorenstrasse 16SchwerzenbachCH‐8603Switzerland
| | - Christian Wolfrum
- Department of Health Science and TechnologiesETH ZürichSchorenstrasse 16SchwerzenbachCH‐8603Switzerland
| |
Collapse
|
11
|
Abstract
The two types of thermogenic fat cells, beige and brown adipocytes, play a significant role in regulating energy homeostasis. Their development and thermogenesis are tightly regulated by dynamic epigenetic mechanisms, which could potentially be targeted to treat metabolic disorders such as obesity. However, we are just beginning to catalog and understand these dynamic changes. In this review, we will discuss the current understanding of the role of DNA (de)methylation events in beige and brown adipose biology in order to highlight the holes in our knowledge and to point the way forward for future studies.
Collapse
Affiliation(s)
- Han Xiao
- a Department of Nutritional Sciences and Toxicology, UC Berkeley , Berkeley , CA , USA
| | - Sona Kang
- a Department of Nutritional Sciences and Toxicology, UC Berkeley , Berkeley , CA , USA
| |
Collapse
|
12
|
Fu X, Li C, Liu Q, McMillin KW. GROWTH AND DEVELOPMENT SYMPOSIUM: STEM AND PROGENITOR CELLS IN ANIMAL GROWTH: The regulation of beef quality by resident progenitor cells1. J Anim Sci 2019; 97:2658-2673. [PMID: 30982893 PMCID: PMC6541817 DOI: 10.1093/jas/skz111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
The intramuscular adipose tissue deposition in the skeletal muscle of beef cattle is a highly desired trait essential for high-quality beef. In contrast, the excessive accumulation of crosslinked collagen in intramuscular connective tissue contributes to beef toughness. Recent studies revealed that adipose tissue and connective tissue share an embryonic origin in mice and may be derived from a common immediate bipotent precursor in mice and humans. Having the same linkages in the development of adipose tissue and connective tissue in beef, the lineage commitment and differentiation of progenitor cells giving rise to these tissues may directly affect beef quality. It has been shown that these processes are regulated by some key transcription regulators and are subjective to epigenetic modifications such as DNA methylation, histone modifications, and microRNAs. Continued exploration of relevant regulatory pathways is very important for the identification of mechanisms influencing meat quality and the development of proper management strategies for beef quality improvement.
Collapse
Affiliation(s)
- Xing Fu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Chaoyang Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Qianglin Liu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Kenneth W McMillin
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| |
Collapse
|
13
|
Abstract
The twin epidemics of obesity and type 2 diabetes (T2D) are a serious health, social, and economic issue. The dysregulation of adipose tissue biology is central to the development of these two metabolic disorders, as adipose tissue plays a pivotal role in regulating whole-body metabolism and energy homeostasis (1). Accumulating evidence indicates that multiple aspects of adipose biology are regulated, in part, by epigenetic mechanisms. The precise and comprehensive understanding of the epigenetic control of adipose tissue biology is crucial to identifying novel therapeutic interventions that target epigenetic issues. Here, we review the recent findings on DNA methylation events and machinery in regulating the developmental processes and metabolic function of adipocytes. We highlight the following points: 1) DNA methylation is a key epigenetic regulator of adipose development and gene regulation, 2) emerging evidence suggests that DNA methylation is involved in the transgenerational passage of obesity and other metabolic disorders, 3) DNA methylation is involved in regulating the altered transcriptional landscape of dysfunctional adipose tissue, 4) genome-wide studies reveal specific DNA methylation events that associate with obesity and T2D, and 5) the enzymatic effectors of DNA methylation have physiological functions in adipose development and metabolic function.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Sona Kang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
14
|
Flores EM, Woeller CF, Falsetta ML, Susiarjo M, Phipps RP. Thy1 (CD90) expression is regulated by DNA methylation during adipogenesis. FASEB J 2019; 33:3353-3363. [PMID: 30376360 PMCID: PMC6404567 DOI: 10.1096/fj.201801481r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
The obesity epidemic is developing into the most costly health problem facing the world. Obesity, characterized by excessive adipogenesis and enlarged adipocytes, promotes morbidities, such as diabetes, cardiovascular disease, and cancer. Regulation of adipogenesis is critical to our understanding of how fat cell formation causes obesity and associated health problems. Thy1 (also called CD90), a widely used stem cell marker, blocks adipogenesis and reduces lipid accumulation. Thy1-knockout mice are prone to diet-induced obesity. Although the importance of Thy1 in adipogenesis and obesity is now evident, how its expression is regulated is not. We hypothesized that DNA methylation has a role in promoting adipogenesis and affects Thy1 expression. Using the methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC), we investigated whether DNA methylation alters Thy1 expression during adipogenesis in both mouse 3T3-L1 preadipocytes and mouse mesenchymal stem cells. Thy1 protein and mRNA levels were decreased dramatically during adipogenesis. However, 5-aza-dC treatment prevented that phenomenon. Methylation-sensitive pyrosequencing analysis showed that CpG sites at the Thy1 locus have increased methylation during adipogenesis, as well as increased methylation in adipose tissue from diet-induced obese mice. These new findings highlight the potential role of Thy1 and DNA methylation in adipogenesis and obesity.-Flores, E. M., Woeller, C. F., Falsetta, M. L., Susiarjo, M., Phipps, R. P. Thy1 (CD90) expression is regulated by DNA methylation during adipogenesis.
Collapse
Affiliation(s)
- E’Lissa M. Flores
- Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Collynn F. Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Megan L. Falsetta
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Richard P. Phipps
- Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
15
|
Abstract
Adipogenesis is a complex process whereby the multipotent adipose-derived stem cell is converted to a preadipocyte before terminal differentiation into the mature adipocyte. Preadipocytes are present throughout adult life, exhibit adipose fat depot specificity, and differentiate and proliferate from distinct progenitor cells. The mechanisms that promote preadipocyte commitment and maturation involve numerous protein factor regulators, epigenetic factors, and miRNAs. Detailed characterization of this process is currently an area of intense research and understanding the roles of preadipocytes in tissue plasticity may provide insight into novel approaches for tissue engineering, regenerative medicine and treating a host of obesity-related conditions. In the current study, we analyzed the current literature and present a review of the characteristics of transitioning adipocytes and detail how local microenvironments influence their progression towards terminal differentiation and maturation. Specifically, we detail the characterization of preadipocyte via surface markers, examine the signaling cascades and regulation behind adipogenesis and cell maturation, and survey their role in tissue plasticity and health and disease.
Collapse
|
16
|
Crujeiras AB, Pissios P, Moreno-Navarrete JM, Diaz-Lagares A, Sandoval J, Gomez A, Ricart W, Esteller M, Casanueva FF, Fernandez-Real JM. An Epigenetic Signature in Adipose Tissue Is Linked to Nicotinamide N-Methyltransferase Gene Expression. Mol Nutr Food Res 2018; 62:e1700933. [PMID: 29688621 DOI: 10.1002/mnfr.201700933] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Indexed: 01/24/2023]
Abstract
SCOPE The enzyme nicotinamide N-methyltransferase (NNMT) is a major methyltransferase in adipose tissue. We hypothesized an epigenetic signature in association with NNMT gene expression in adipose tissue. METHODS AND RESULTS The global human methylome was analyzed in visceral adipose tissue (VAT) from morbidly obese patients using the Infinium Human Methylation 450 BeadChip array (discovery cohort: n = 11). The findings were confirmed in two additional independent cohorts (cohort 1: n = 60; BMI 20-60 kg m-2 and cohort 2: n = 40; BMI > 40 kg m-2 ) and validated after weight loss (using microarray data). Among the genes associated with the largest methylation fold change were genes related to metabolic processes, proliferation, inflammation, and extracellular matrix remodeling, such as COL23A1, PLEC1, FBXO21, STEAP3, RGS12, IGDCC3, FOXK2, and ORAI2. In fact, the results showed 577 differentially methylated CpG sites (DMCpGs) associated with the NNMT expression levels, with low methylation levels paralleling high NNMT expression. The expression of FBXO21 and FOXK2 was specifically modified after weight loss concomitantly with a decrease in NNMT expression and inflammation-related genes. Interestingly, the adipose tissue NNMT gene expression correlated with markers of adipose tissue inflammation. CONCLUSIONS The expression of NNMT in VAT is associated with a specific methylome signature involving genes linked to adipose tissue metabolic pathophysiology.
Collapse
Affiliation(s)
- Ana B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela 15706, Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Pavlos Pissios
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Jose M Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, 77190 Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Angel Diaz-Lagares
- Translational Medical Oncology (Oncomet), Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS) and CIBERonc, Santiago de Compostela, 15706, Spain
| | - Juan Sandoval
- Laboratory of Personalized Medicine, Epigenomics Unit, Medical Research Institute La Fe, Valencia, 46026, Spain
| | - Antonio Gomez
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, 08908, Spain
| | - Wilfredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, 77190 Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia 08908, Spain, Institucio Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - Felipe F Casanueva
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela 15706, Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Jose M Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, 77190 Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| |
Collapse
|
17
|
Modulation of Adipocyte Differentiation and Proadipogenic Gene Expression by Sulforaphane, Genistein, and Docosahexaenoic Acid as a First Step to Counteract Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1617202. [PMID: 29576843 PMCID: PMC5821952 DOI: 10.1155/2018/1617202] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022]
Abstract
Obesity is characterized by excess body fat accumulation due to an increase in the size and number of differentiated mature adipocytes. Adipocyte differentiation is regulated by genetic and environmental factors, and its inhibition could represent a strategy for obesity prevention and treatment. The current study was designed with two aims: (i) to evaluate the changes in the expression of adipogenic markers (C/EBPα, PPARγ variant 1 and variant 2, and GLUT4) in 3T3-L1 murine preadipocytes at four stages of the differentiation process and (ii) to compare the effectiveness of sulforaphane, genistein, and docosahexaenoic acid in reducing lipid accumulation and modulating C/EBPα, PPARγ1, PPARγ2, and GLUT4 mRNA expression in mature adipocytes. All bioactive compounds were shown to suppress adipocyte differentiation, although with different effectiveness. These results set the stage for further studies considering natural food constituents as important agents in preventing or treating obesity.
Collapse
|
18
|
Ma Y, Yang J, Wan Y, Peng Y, Ding S, Li Y, Xu B, Chen X, Xia W, Ke Y, Xu S. Low-level perfluorooctanoic acid enhances 3 T3-L1 preadipocyte differentiation via altering peroxisome proliferator activated receptor gamma expression and its promoter DNA methylation. J Appl Toxicol 2017; 38:398-407. [PMID: 29094436 DOI: 10.1002/jat.3549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/30/2017] [Accepted: 09/15/2017] [Indexed: 01/09/2023]
Abstract
Recent studies suggest that perfluorooctanoic acid (PFOA) can play a role in the development of obesity; however, the associated mechanisms are poorly understood. We investigated how PFOA exposure affected the differentiation of 3 T3-L1 preadipocytes and the associated transcriptional and epigenetic mechanisms. Cells treated with different doses of PFOA (ranging from 0.01 to 100 μg ml-1 ) were assessed for proliferation, differentiation and triglyceride accumulation. The gene expression levels of peroxisome proliferator activated receptor gamma (PPARγ) and its target genes were measured. DNA methylation levels of PPARγ promoter and global DNA methylation levels were also tested. We found a concentration-dependent enhancement of adipocyte proliferation and differentiation following PFOA exposure. PFOA also induced a significant concentration-dependent increase in the accumulation of lipid and triglyceride. Increased gene expression was also observed for PPARγ, CCAAT/enhancer binding proteins α, fatty acid binding protein 2 and lipoprotein lipase in differentiated cells after PFOA exposure. The ability of PFOA to induce adipogenesis was blocked by GW9662, a known PPARγ antagonist. In addition, significant demethylation of the cytosine-phosphate-guanine sites in the PPARγ promoter was observed after exposure to PFOA. In addition, PFOA exposure resulted in decreased global DNA methylation and increased expression levels of DNA methyltransferases genes. We found that treatment with low levels of PFOA can induce adipogenic differentiation in preadipocytes, and the underlying mechanisms probably involve the activation of PPARγ transcription and demethylation of PPARγ promoter.
Collapse
Affiliation(s)
- Yue Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Molecular Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jie Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanjian Wan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,CDC of Yangtze River Administration and Navigational Affairs, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Yang Peng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuai Ding
- The Second Clinical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xi Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuebin Ke
- Key Laboratory of Molecular Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
19
|
Llobet L, Bayona-Bafaluy MP, Pacheu-Grau D, Torres-Pérez E, Arbones-Mainar JM, Navarro MÁ, Gómez-Díaz C, Montoya J, López-Gallardo E, Ruiz-Pesini E. Pharmacologic concentrations of linezolid modify oxidative phosphorylation function and adipocyte secretome. Redox Biol 2017; 13:244-254. [PMID: 28600981 PMCID: PMC5466587 DOI: 10.1016/j.redox.2017.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022] Open
Abstract
The oxidative phosphorylation system is important for adipocyte differentiation. Therefore, xenobiotics inhibitors of the oxidative phosphorylation system could affect adipocyte differentiation and adipokine secretion. As adipokines impact the overall health status, these xenobiotics may have wide effects on human health. Some of these xenobiotics are widely used therapeutic drugs, such as ribosomal antibiotics. Because of its similarity to the bacterial one, mitochondrial translation system is an off-target for these compounds. To study the influence of the ribosomal antibiotic linezolid on adipokine production, we analyzed its effects on adipocyte secretome. Linezolid, at therapeutic concentrations, modifies the levels of apolipoprotein E and several adipokines and proteins related with the extracellular matrix. This antibiotic also alters the global methylation status of human adipose tissue-derived stem cells and, therefore, its effects are not limited to the exposure period. Besides their consequences on other tissues, xenobiotics acting on the adipocyte oxidative phosphorylation system alter apolipoprotein E and adipokine production, secondarily contributing to their systemic effects. Linezolid decreases oxidative phosphorylation system capacity. Linezolid reduces adipocyte differentiation from human adipose-derived stem cells. Linezolid modifies APOE, adipokine and extracellular matrix proteins levels. Linezolid changes DNA methylation of human adipose tissue-derived stem cells. Xenobiotics, acting on adipocyte oxidative phosphorylation, affect human health.
Collapse
Affiliation(s)
- Laura Llobet
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | - David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center, Humboldtalle 23, 37073 Göttingen, Germany.
| | - Elena Torres-Pérez
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Unidad de Investigación Traslacional, Instituto Aragones de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain.
| | - José M Arbones-Mainar
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Unidad de Investigación Traslacional, Instituto Aragones de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain.
| | - M Ángeles Navarro
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain.
| | - Covadonga Gómez-Díaz
- Servicio de Otorrinolaringología, Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Fundación ARAID, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
20
|
TET-mediated hydroxymethylcytosine at the Pparγ locus is required for initiation of adipogenic differentiation. Int J Obes (Lond) 2017; 41:652-659. [PMID: 28100914 DOI: 10.1038/ijo.2017.8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/13/2016] [Accepted: 12/17/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND/OBJECTIVES Adipose tissue is one of the main organs regulating energy homeostasis via energy storage as well as endocrine function. The adipocyte cell number is largely determined by adipogenesis. While the molecular mechanism of adipogenesis has been extensively studied, its role in dynamic DNA methylation plasticity remains unclear. Recently, it has been shown that Tet methylcytosine dioxygenase (TET) is catalytically capable of oxidizing DNA 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) toward a complete removal of the methylated cytosine. We investigate whether expression of the Tet genes and production of hydroxymethylcytosine are required for preadipocyte differentiation. SUBJECTS/METHODS Murine 3T3-L1 preadipocytes were used to evaluate the role of Tet1 and Tet2 genes during adipogenesis. Changes in adipogenic ability and in epigenetic status were analyzed, with and without interfering Tet1 and Tet2 expression using small interfering RNA (siRNA). The adipogenesis was evaluated by Oil-Red-O staining and induced expression of adipogenic genes using quantitative polymerase chain reaction (qPCR). Levels of 5-hmC and 5-mC were measured by MassARRAY, immunoprecipitation and GC mass spectrometry at specific loci as well as globally. RESULTS Both Tet1 and Tet2 genes were upregulated in a time-dependent manner, accompanied by increased expression of hallmark adipogenic genes such as Pparγ and Fabp4 (P<0.05). The TET upregulation led to reduced DNA methylation and elevated hydroxymethylcytosine, both globally and specifically at the Pparγ locus (P<0.05 and P<0.01, respectively). Knockdown of Tet1 and Tet2 blocked adipogenesis (P<0.01) by repression of Pparγ expression (P<0.05). In particular, Tet2 knockdown repressed conversion of 5-mC to 5-hmC at the Pparγ locus (P<0.01). Moreover, vitamin C treatment enhanced adipogenesis (P<0.05), while fumarate treatment inhibited it (P<0.01) by modulating TET activities. CONCLUSIONS TET proteins, particularly TET2, were required for adipogenesis by modulating DNA methylation at the Pparγ locus, subsequently by inducing Pparγ gene expression.
Collapse
|
21
|
Sambeat A, Gulyaeva O, Dempersmier J, Sul HS. Epigenetic Regulation of the Thermogenic Adipose Program. Trends Endocrinol Metab 2017; 28:19-31. [PMID: 27692461 PMCID: PMC5183481 DOI: 10.1016/j.tem.2016.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022]
Abstract
In contrast to white adipose tissue (WAT), which stores energy in the form of triglycerides, brown adipose tissue (BAT) dissipates energy by producing heat to maintain body temperature by burning glucose and fatty acids in a process called adaptive thermogenesis. The presence of an inducible thermogenic adipose tissue, and its beneficial effects for maintaining body weight and glucose and lipid homeostasis, has raised intense interest in understanding the regulation of thermogenesis. Elucidating the regulatory mechanisms underlying the thermogenic adipose program may provide excellent targets for therapeutics against obesity and diabetes. Here we review recent research on the role of epigenetics in the thermogenic gene program, focusing on DNA methylation and histone modifications.
Collapse
Affiliation(s)
- Audrey Sambeat
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Olga Gulyaeva
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jon Dempersmier
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Program, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Guo W, Chen J, Yang Y, Zhu J, Wu J. Epigenetic programming of Dnmt3a mediated by AP2α is required for granting preadipocyte the ability to differentiate. Cell Death Dis 2016; 7:e2496. [PMID: 27906176 PMCID: PMC5261006 DOI: 10.1038/cddis.2016.378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
Adipogenesis has an important role in regulating energy homeostasis in mammals. 3T3-L1 preadipocytes have been widely used as an in vitro model for analyzing the molecular mechanism of adipogenesis. Previous reports indicated that the stage of contact inhibition (CI), through which the proliferating cells exit from the cell cycle, was required for granting preadipocyte the ability to differentiate. While this kind of the granting mechanism remains elusive. In the present study, we showed that DNA (cytosine-5) methyltransferase 3a (Dnmt3a) was upregulated at both the mRNA and protein level during the CI stage, and resulted in increasing promoter methylation of adipogenic genes. We further identified that the expression of Activator protein 2α (AP2α), a member of the transcription factor activator protein 2 (AP2) family, was highly correlated with the expression of Dnmt3a during the CI stage. In addition, we showed that AP2α transcriptionally upregulated Dnmt3a by directly binding to its proximal promoter region. Importantly, treatment of 3T3-L1 preadipocytes with AP2α-specific siRNAs inhibited the preadipocyte differentiation in a stage-dependent manner, supporting the conclusion that AP2α has an important role during the CI stage. Furthermore, overexpression of Dnmt3a partially rescued the impairment of adipogenesis induced by AP2α knockdown. Collectively, our findings reveal that AP2α is an essential regulator for granting preadipocyte the ability to differentiate through the upregulation of Dnmt3a expression during the CI stage.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiangnan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,School of Life Science, University of Chinese Academy of Sciences, Shanghai,China
| | - Ying Yang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianbei Zhu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Broholm C, Olsson AH, Perfilyev A, Hansen NS, Schrölkamp M, Strasko KS, Scheele C, Ribel-Madsen R, Mortensen B, Jørgensen SW, Ling C, Vaag A. Epigenetic programming of adipose-derived stem cells in low birthweight individuals. Diabetologia 2016; 59:2664-2673. [PMID: 27627980 DOI: 10.1007/s00125-016-4099-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/09/2016] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Low birthweight (LBW) is associated with dysfunctions of adipose tissue and metabolic disease in adult life. We hypothesised that altered epigenetic and transcriptional regulation of adipose-derived stem cells (ADSCs) could play a role in programming adipose tissue dysfunction in LBW individuals. METHODS ADSCs were isolated from the subcutaneous adipose tissue of 13 normal birthweight (NBW) and 13 LBW adult men. The adipocytes were cultured in vitro, and genome-wide differences in RNA expression and DNA methylation profiles were analysed in ADSCs and differentiated adipocytes. RESULTS We demonstrated that ADSCs from LBW individuals exhibit multiple expression changes as well as genome-wide alterations in methylation pattern. Reduced expression of the transcription factor cyclin T2 encoded by CCNT2 may play a key role in orchestrating several of the gene expression changes in ADSCs from LBW individuals. Indeed, silencing of CCNT2 in human adipocytes decreased leptin secretion as well as the mRNA expression of several genes involved in adipogenesis, including MGLL, LIPE, PPARG, LEP and ADIPOQ. Only subtle genome-wide mRNA expression and DNA methylation changes were seen in mature cultured adipocytes from LBW individuals. CONCLUSIONS/INTERPRETATION Epigenetic and transcriptional changes in LBW individuals are most pronounced in immature ADSCs that in turn may programme physiological characteristics of the mature adipocytes that influence the risk of metabolic diseases. Reduced expression of CCNT2 may play a key role in the developmental programming of adipose tissue.
Collapse
Affiliation(s)
- Christa Broholm
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark.
| | - Anders H Olsson
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark
| | - Alexander Perfilyev
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, CRC, Malmö, Sweden
| | - Ninna S Hansen
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maren Schrölkamp
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark
| | - Klaudia S Strasko
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark
| | - Camilla Scheele
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus Ribel-Madsen
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | | | | | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, CRC, Malmö, Sweden
| | - Allan Vaag
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center A/S, Gentofte, Denmark
| |
Collapse
|
24
|
Broholm C, Olsson AH, Perfilyev A, Gillberg L, Hansen NS, Ali A, Mortensen B, Ling C, Vaag A. Human adipogenesis is associated with genome-wide DNA methylation and gene-expression changes. Epigenomics 2016; 8:1601-1617. [PMID: 27854126 DOI: 10.2217/epi-2016-0077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM To define the genomic distribution and function of DNA methylation changes during human adipogenesis. METHODS We isolated adipocyte-derived stem cells from 13 individuals and analyzed genome-wide DNA methylation and gene expression in cultured adipocyte-derived stem cells and mature adipocytes. RESULTS We observed altered DNA methylation of 11,947 CpG sites and altered expression of 11,830 transcripts after differentiation. De novo methylation was observed across all genomic elements. Co-existence of genes with both altered expression and DNA methylation was found in genes important for cell cycle and adipokine signaling. CONCLUSION Human adipogenesis is associated with significant DNA methylation changes across the entire genome and may impact regulation of cell cycle and adipokine signaling.
Collapse
Affiliation(s)
- Christa Broholm
- Department of Endocrinology, Diabetes & Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Anders Henrik Olsson
- Department of Endocrinology, Diabetes & Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Alexander Perfilyev
- Department of Clinical Sciences, Epigenetics & Diabetes Unit, Lund University Diabetes Centre, CRC, Malmö, Sweden
| | - Linn Gillberg
- Department of Endocrinology, Diabetes & Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Ninna Schiøler Hansen
- Department of Endocrinology, Diabetes & Metabolism, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ashfaq Ali
- Department of Clinical Sciences, GAME, Lund University Diabetes Centre, CRC, Malmö, Sweden
| | | | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics & Diabetes Unit, Lund University Diabetes Centre, CRC, Malmö, Sweden
| | - Allan Vaag
- Department of Endocrinology, Diabetes & Metabolism, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Centre A/S, Gentofte, Denmark
| |
Collapse
|
25
|
Pazienza V, Panebianco C, Rappa F, Memoli D, Borghesan M, Cannito S, Oji A, Mazza G, Tamburrino D, Fusai G, Barone R, Bolasco G, Villarroya F, Villarroya J, Hatsuzawa K, Cappello F, Tarallo R, Nakanishi T, Vinciguerra M. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenetics Chromatin 2016; 9:45. [PMID: 27800025 PMCID: PMC5078890 DOI: 10.1186/s13072-016-0098-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
Background Obesity has tremendous impact on the health systems. Its epigenetic bases are unclear. MacroH2A1 is a variant of histone H2A, present in two alternatively exon-spliced isoforms macroH2A1.1 and macroH2A1.2, regulating cell plasticity and proliferation, during pluripotency and tumorigenesis. Their role in adipose tissue plasticity is unknown. Results Here, we show evidence that macroH2A1.1 protein levels in the visceral adipose tissue of obese humans positively correlate with BMI, while macroH2A1.2 is nearly absent. We thus introduced a constitutive GFP-tagged transgene for macroH2A1.2 in mice, and we characterized their metabolic health upon being fed a standard chow diet or a high fat diet. Despite unchanged food intake, these mice exhibit lower adipose mass and improved glucose metabolism both under a chow and an obesogenic diet. In the latter regimen, transgenic mice display smaller pancreatic islets and significantly less inflammation. MacroH2A1.2 overexpression in the mouse adipose tissue induced dramatic changes in the transcript levels of key adipogenic genes; genomic analyses comparing pre-adipocytes to mature adipocytes uncovered only minor changes in macroH2A1.2 genomic distribution upon adipogenic differentiation and suggested differential cooperation with transcription factors. MacroH2A1.2 overexpression markedly inhibited adipogenesis, while overexpression of macroH2A1.1 had opposite effects. Conclusions MacroH2A1.2 is an unprecedented chromatin component powerfully promoting metabolic health by modulating anti-adipogenic transcriptional networks in the differentiating adipose tissue. Strategies aiming at enhancing macroH2A1.2 expression might counteract excessive adiposity in humans. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0098-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy
| | - Concetta Panebianco
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy ; Department of Legal, Society and Sport Sciences, University of Palermo, 90133 Palermo, Italy ; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, 84081 Baronissi, SA Italy
| | - Michela Borghesan
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy ; Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, NW3 2PF UK
| | - Sara Cannito
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy
| | - Asami Oji
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871 Japan
| | - Giuseppe Mazza
- Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, NW3 2PF UK
| | - Domenico Tamburrino
- Centre for HPB Surgery and Liver Transplantation, Royal Free Hospital, London, NW3 2QG UK
| | - Giuseppe Fusai
- Centre for HPB Surgery and Liver Transplantation, Royal Free Hospital, London, NW3 2QG UK
| | - Rosario Barone
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy ; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
| | - Giulia Bolasco
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
| | - Francesc Villarroya
- Departament de Bioquimica i Biologia Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), and CIBER Fisiopatologia de la Obesidad y Nutricion, University of Barcelona, Barcelona, 08007 Spain ; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN) ISCIII, Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquimica i Biologia Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), and CIBER Fisiopatologia de la Obesidad y Nutricion, University of Barcelona, Barcelona, 08007 Spain ; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN) ISCIII, Madrid, Spain
| | | | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy ; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, 84081 Baronissi, SA Italy
| | - Tomoko Nakanishi
- Faculty of Medicine, Tottori University, Yonago, 683-8503 Japan ; The Institute of Medical Sciences, University of Tokyo, Tokyo, 108-8639 Japan
| | - Manlio Vinciguerra
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy ; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy ; Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, NW3 2PF UK ; Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, 656 91 Czech Republic
| |
Collapse
|
26
|
Kuroda M, Tominaga A, Nakagawa K, Nishiguchi M, Sebe M, Miyatake Y, Kitamura T, Tsutsumi R, Harada N, Nakaya Y, Sakaue H. DNA Methylation Suppresses Leptin Gene in 3T3-L1 Adipocytes. PLoS One 2016; 11:e0160532. [PMID: 27494408 PMCID: PMC4975473 DOI: 10.1371/journal.pone.0160532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023] Open
Abstract
Leptin is a key regulator of energy intake and expenditure. This peptide hormone is expressed in mouse white adipose tissue, but hardly expressed in 3T3-L1 adipocytes. Using bisulfite sequencing, we found that CpG islands in the leptin promoter are highly methylated in 3T3-L1cells. 5-azacytidine, an inhibitor of DNA methyltransferase, markedly increased leptin expression as pre-adipocytes matured into adipocytes. Remarkably, leptin expression was stimulated by insulin in adipocytes derived from precursor cells exposed to 5-azacytidine, but suppressed by thiazolidinedione and dexamethasone. In contrast, adipocytes derived from untreated precursor cells were unresponsive to both 5-azacytidine and hormonal stimuli, although lipid accumulation was sufficient to boost leptin expression in the absence of demethylation. Taken together, the results suggest that leptin expression in 3T3-L1 cells requires DNA demethylation prior to adipogenesis, transcriptional activation during adipogenesis, and lipid accumulation after adipogenesis.
Collapse
Affiliation(s)
- Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
- Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Ayako Tominaga
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Kasumi Nakagawa
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Misa Nishiguchi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Mayu Sebe
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Yumiko Miyatake
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Nagakatsu Harada
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Yutaka Nakaya
- Cardiovascular Medicine, Shikoku Central Hospital of the Mutual aid Association of Public School Teachers, Shikokuchuo-city, Ehime, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
- Diabetes Therapeutics and Research Center, Tokushima University, Tokushima-city, Tokushima, Japan
- * E-mail:
| |
Collapse
|
27
|
Du J, Cheng X, Shen L, Tan Z, Luo J, Wu X, Liu C, Yang Q, Jiang Y, Tang G, Li X, Zhang S, Zhu L. Methylation of miR-145a-5p promoter mediates adipocytes differentiation. Biochem Biophys Res Commun 2016; 475:140-8. [PMID: 27179777 DOI: 10.1016/j.bbrc.2016.05.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs, miR) play important roles in adipocyte development. Recent studies showed that the expression of several miRNAs is closely related with promoter methylation. However, it is not known whether miRNA mediates adipocytes differentiation by means of DNA methylation. Here, we showed that miR-145a-5p was poorly expressed in adipose tissue from mice fed a high fat diet (HFD). Overexpression or inhibition of miR-145a-5p was unfavorable or beneficial, respectively, for adipogenesis, and these effects were achieved by regulating adipocyte-specific genes involved in lipogenic transcription, fatty acid synthesis, and fatty acid transportation. Particularly, we first suggested that miR-145a-5p mimics or inhibitors promoted or repressed adipocytes proliferation by regulating p53 and p21, which act as cell cycle regulating factors. Surprisingly, the miR-145a-5p-repressed adipocyte differentiation was enhanced or rescued when cells treated with 5-Aza-dC were transfected with miR-145a-5p mimics or inhibitors, respectively. These data indicated that, as a new mean to positively regulate adipocyte proliferation, the process of miR-145a-5p-inhibited adipogenesis may be regulated by DNA methylation.
Collapse
Affiliation(s)
- Jingjing Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao Cheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhendong Tan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqian Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chendong Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiong Yang
- Department of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611100, Sichuan, China
| | - Yanzhi Jiang
- College of Life and Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
28
|
van den Dungen MW, Murk AJ, Kok DE, Steegenga WT. Comprehensive DNA Methylation and Gene Expression Profiling in Differentiating Human Adipocytes. J Cell Biochem 2016; 117:2707-2718. [PMID: 27061314 DOI: 10.1002/jcb.25568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/05/2016] [Indexed: 01/09/2023]
Abstract
Insight into the processes controlling adipogenesis is important in the battle against the obesity epidemic and its related disorders. The transcriptional regulatory cascade involved in adipocyte differentiation has been extensively studied, however, the mechanisms driving the transcription activation are still poorly understood. In this study, we explored the involvement of DNA methylation in transcriptional regulation during adipocyte differentiation of primary human mesenchymal stem cells (hMSCs). Genome-wide changes in DNA methylation were measured using the Illumina 450K BeadChip. In addition, expression of 84 adipogenic genes was determined, of which 43 genes showed significant expression changes during the differentiation process. Among these 43 differentially expressed genes, differentially methylated regions (DMRs) were detected in only three genes. By comparing genome-wide DNA methylation profiles in undifferentiated and differentiated adipocytes 793 significant DMRs were detected. Pathway analysis revealed the adipogenesis pathway as the most statistically significant, although only a small number of genes were differentially methylated. Genome-wide DNA methylation changes for single probes were most often located in intergenic regions, and underrepresented close to the transcription start site. In conclusion, DNA methylation remained relatively stable during adipocyte differentiation, implying that changes in DNA methylation are not the underlying mechanism regulating gene expression during adipocyte differentiation. J. Cell. Biochem. 117: 2707-2718, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Myrthe W van den Dungen
- Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.,Division of Human Nutrition, Wageningen University, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Albertinka J Murk
- Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.,Marine Animal Ecology Group, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Dieuwertje E Kok
- Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Wilma T Steegenga
- Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
29
|
Yang Q, Mas A, Diamond MP, Al-Hendy A. The Mechanism and Function of Epigenetics in Uterine Leiomyoma Development. Reprod Sci 2016; 23:163-75. [PMID: 25922306 PMCID: PMC5933172 DOI: 10.1177/1933719115584449] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Uterine leiomyomas, also known as uterine fibroids, are the most common pelvic tumors, occurring in nearly 70% of all reproductive-aged women and are the leading indication for hysterectomy worldwide. The development of uterine leiomyomas involve a complex and heterogeneous constellation of hormones, growth factors, stem cells, genetic, and epigenetic abnormalities. An increasing body of evidence emphasizes the important contribution of epigenetics in the pathogenesis of leiomyomas. Genome-wide methylation analysis demonstrates that a subset of estrogen receptor (ER) response genes exhibit abnormal hypermethylation levels that are inversely correlated with their RNA expression. Several tumor suppressor genes, including Kruppel-like factor 11 (KLF11), deleted in lung and esophageal cancer 1 (DLEC1), keratin 19 (KRT19), and death-associated protein kinase 1 (DAPK1) also display higher hypermethylation levels in leiomyomas when compared to adjacent normal tissues. The important role of active DNA demethylation was recently identified with regard to the ten-eleven translocation protein 1 and ten-eleven translocation protein 3-mediated elevated levels of 5-hydroxymethylcytosine in leiomyoma. In addition, both histone deacetylase and histone methyltransferase are reported to be involved in the biology of leiomyomas. A number of deregulated microRNAs have been identified in leiomyomas, leading to an altered expression of their targets. More recently, the existence of side population (SP) cells with characteristics of tumor-initiating cells have been characterized in leiomyomas. These SP cells exhibit a tumorigenic capacity in immunodeficient mice when exposed to 17β-estradiol and progesterone, giving rise to fibroid-like tissue in vivo. These new findings will likely enhance our understanding of the crucial role epigenetics plays in the pathogenesis of uterine leiomyomas as well as point the way to novel therapeutic options.
Collapse
Affiliation(s)
- Qiwei Yang
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| | - Aymara Mas
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| | - Michael P Diamond
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| | - Ayman Al-Hendy
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
30
|
Cho YD, Bae HS, Lee DS, Yoon WJ, Woo KM, Baek JH, Lee G, Park JC, Ku Y, Ryoo HM. Epigenetic Priming Confers Direct Cell Trans-Differentiation From Adipocyte to Osteoblast in a Transgene-Free State. J Cell Physiol 2015; 231:1484-94. [PMID: 26335354 DOI: 10.1002/jcp.25183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022]
Abstract
The bone marrow of healthy individuals is primarily composed of osteoblasts and hematopoietic cells, while that of osteoporosis patients has a larger portion of adipocytes. There is evidence that the epigenetic landscape can strongly influence cell differentiation. We have shown that it is possible to direct the trans-differentiation of adipocytes to osteoblasts by modifying the epigenetic landscape with a DNA methyltransferase inhibitor (DNMTi), 5'-aza-dC, followed by Wnt3a treatment to signal osteogenesis. Treating 3T3-L1 adipocytes with 5'-aza-dC induced demethylation in the hypermethylated CpG regions of bone marker genes; subsequent Wnt3a treatment drove the cells to osteogenic differentiation. When old mice with predominantly adipose marrow were treated with both 5'-aza-dC and Wnt3a, decreased fatty tissue and increased bone volume were observed. Together, our results indicate that epigenetic modification permits direct programming of adipocytes into osteoblasts in a mouse model of osteoporosis, suggesting that this approach could be useful in bone tissue-engineering applications.
Collapse
Affiliation(s)
- Young-Dan Cho
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea.,Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Han-Sol Bae
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Dong-Seol Lee
- Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Kyung-Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Gene Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Young Ku
- Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| |
Collapse
|
31
|
Ito S, Hirabayashi K, Moriishi K, Matsui Y, Moriya K, Koike K, Matsuura Y, Shiota K, Yagi S. Novel sex-dependent differentially methylated regions are demethylated in adult male mouse livers. Biochem Biophys Res Commun 2015; 462:332-8. [PMID: 25960295 DOI: 10.1016/j.bbrc.2015.04.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 11/27/2022]
Abstract
In mammalian livers, sexual dimorphisms are observed in tissue-specific functions and diseases such as hepatocellular carcinoma. We identified sex-dependent differentially methylated regions (S-DMRs) which had been previously been characterized as growth hormone- STAT5 dependent. In this study, we performed genome-wide screening and identified ten additional hypomethylated S-DMR gene regions in male livers. Of these S-DMRs, Uggt2 and Sarnp were hypomethylated in both male and female livers compared to brain and embryonic stem (ES) cells. Similarly, Adam2, Uggt2, and Scp2 were hypomethylated in female embryonic germ (EG) cells and not in male EG cells, indicating that these S-DMRs are liver-specific male hypo-S-DMRs. Interestingly, the five S-DMRs were free from STAT5 chromatin immunoprecipitation (ChIP) signals, suggesting that S-DMRs are independent of the growth hormone-STAT5-pathway. Instead, the DNA methylation statuses of the S-DMRs of Adam2, Snx29, Uggt2, Sarnp, and Rnpc3 genes were under the control of testosterone. Importantly, the hypomethylated S-DMRs of the Adam2 and Snx29 regions showed chromatin decondensation. Epigenetic factors could be responsible for the sexual dimorphisms in DNA methylation status and chromatin structure, as the expression of Dnmt1, Dnmt3b, and Tet2 genes was lower in male mice compared to female mice and TET2 expression recovered following orchidectomy by testosterone treatment. In conclusion, we identified novel male-specific hypomethylated S-DMRs that contribute to chromatin decondensation in the liver. S-DMRs were tissue-specific and the hypomethylation is testosterone-dependent.
Collapse
Affiliation(s)
- Shuhei Ito
- Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiji Hirabayashi
- Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohji Moriishi
- Department of Microbiology, Division of Medicine, Interdisciplinary Graduate School of Medicine and Engineering (Faculty of Medicine), University of Yamanashi, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Kyoji Moriya
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases Osaka University, Osaka, Japan
| | - Kunio Shiota
- Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Shintaro Yagi
- Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
32
|
Sun R, Wu Y, Wang Y, Zang K, Wei H, Wang F, Yu M. DNA methylation regulates bromodomain-containing protein 2 expression during adipocyte differentiation. Mol Cell Biochem 2015; 402:23-31. [DOI: 10.1007/s11010-014-2310-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/20/2014] [Indexed: 01/24/2023]
|
33
|
Ngo S, Li X, O'Neill R, Bhoothpur C, Gluckman P, Sheppard A. Elevated S-adenosylhomocysteine alters adipocyte functionality with corresponding changes in gene expression and associated epigenetic marks. Diabetes 2014; 63:2273-83. [PMID: 24574043 DOI: 10.2337/db13-1640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maternal deficiencies in micronutrients affecting one-carbon metabolism before and during pregnancy can influence metabolic status and the degree of insulin resistance and obesity of the progeny in adulthood. Notably, maternal and progeny plasma S-adenosylhomocysteine (SAH) levels are both elevated after vitamin deficiency in pregnancy. Therefore, we investigated whether this key one-carbon cycle intermediate directly affects adipocyte differentiation and function. We found that expansion and differentiation of murine 3T3-L1 preadipocytes in the presence of SAH impaired both basal and induced glucose uptake as well as lipolysis compared with untreated controls. SAH did not alter preadipocyte factor 1 (Dlk1) or peroxisome proliferator-activated receptor-γ 2 (Pparγ2) but significantly reduced expression of CAAT enhancer-binding protein-α (Cebpα), Cebpβ, and retinoid x receptor-α (Rxrα) compared with untreated adipocytes. SAH increased Rxrα methylation on a CpG unit (chr2:27,521,057+, chr2:27,521,049+) and CpG residue (chr2:27,521,080+), but not Cebpβ methylation, relative to untreated adipocytes. Trimethylated histone H3-Lys27 occupancy was significantly increased on Cebpα and Rxrα promoters in SAH-treated adipocytes, consistent with the reduction in gene expression. In conclusion, SAH did not affect adipogenesis per se but altered adipocyte functionality through epigenetic mechanisms, such that they exhibited altered glucose disposal and lipolysis. Our findings implicate micronutrient imbalance in subsequent modulation of adipocyte function.
Collapse
Affiliation(s)
- Sherry Ngo
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Xiaoling Li
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Renelle O'Neill
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Chandrakanth Bhoothpur
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Peter Gluckman
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Allan Sheppard
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Zych J, Stimamiglio MA, Senegaglia AC, Brofman PRS, Dallagiovanna B, Goldenberg S, Correa A. The epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells. Braz J Med Biol Res 2014; 46:405-16. [PMID: 23797495 PMCID: PMC3854397 DOI: 10.1590/1414-431x20132893] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/11/2013] [Indexed: 01/10/2023] Open
Abstract
Epigenetic mechanisms such as DNA methylation and histone modification are
important in stem cell differentiation. Methylation is principally associated
with transcriptional repression, and histone acetylation is correlated with an
active chromatin state. We determined the effects of these epigenetic mechanisms
on adipocyte differentiation in mesenchymal stem cells (MSCs) derived from bone
marrow (BM-MSCs) and adipose tissue (ADSCs) using the chromatin-modifying agents
trichostatin A (TSA), a histone deacetylase inhibitor, and
5-aza-2′-deoxycytidine (5azadC), a demethylating agent. Subconfluent MSC
cultures were treated with 5, 50, or 500 nM TSA or with 1, 10, or
100 µM 5azadC for 2 days before the initiation of adipogenesis. The
differentiation was quantified and expression of the adipocyte genes PPARG and
FABP4 and of the anti-adipocyte gene GATA2 was evaluated. TSA decreased
adipogenesis, except in BM-MSCs treated with 5 nM TSA. Only treatment
with 500 nM TSA decreased cell proliferation. 5azadC treatment decreased
proliferation and adipocyte differentiation in all conditions evaluated,
resulting in the downregulation of PPARG and FABP4 and the upregulation of
GATA2. The response to treatment was stronger in ADSCs than in BM-MSCs,
suggesting that epigenetic memories may differ between cells of different
origins. As epigenetic signatures affect differentiation, it should be possible
to direct the use of MSCs in cell therapies to improve process efficiency by
considering the various sources available.
Collapse
Affiliation(s)
- J Zych
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ, Curitiba, PR, Brasil.
| | | | | | | | | | | | | |
Collapse
|
35
|
Martínez JA, Milagro FI, Claycombe KJ, Schalinske KL. Epigenetics in adipose tissue, obesity, weight loss, and diabetes. Adv Nutr 2014; 5:71-81. [PMID: 24425725 PMCID: PMC3884103 DOI: 10.3945/an.113.004705] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Given the role that diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that external factors can cause cell type-dependent epigenetic changes, including DNA methylation, histone tail modifications, and chromatin remodeling, the regulation of these processes, the magnitude of the changes and the cell types in which they occur, the individuals more predisposed, and the more crucial stages of life remain to be elucidated. There is evidence that obese and diabetic people have a pattern of epigenetic marks different from nonobese and nondiabetic individuals. The main long-term goals in this field are the identification and understanding of the role of epigenetic marks that could be used as early predictors of metabolic risk and the development of drugs or diet-related treatments able to delay these epigenetic changes and even reverse them. But weight gain and insulin resistance/diabetes are influenced not only by epigenetic factors; different epigenetic biomarkers have also been identified as early predictors of weight loss and the maintenance of body weight after weight loss. The characterization of all the factors that are able to modify the epigenetic signatures and the determination of their real importance are hindered by the following factors: the magnitude of change produced by dietary and environmental factors is small and cumulative; there are great differences among cell types; and there are many factors involved, including age, with multiple interactions between them.
Collapse
Affiliation(s)
- J. Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain,CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain,To whom correspondence should be addressed. E-mail:
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain,CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Kate J. Claycombe
- USDA-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND; and
| | - Kevin L. Schalinske
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA
| |
Collapse
|
36
|
Bastos Sales L, Kamstra J, Cenijn P, van Rijt L, Hamers T, Legler J. Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation. Toxicol In Vitro 2013; 27:1634-43. [DOI: 10.1016/j.tiv.2013.04.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 11/25/2022]
|
37
|
Guintivano J, Aryee MJ, Kaminsky ZA. A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics 2013; 8:290-302. [PMID: 23426267 PMCID: PMC3669121 DOI: 10.4161/epi.23924] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Brain cellular heterogeneity may bias cell type specific DNA methylation patterns, influencing findings in psychiatric epigenetic studies. We performed fluorescence activated cell sorting (FACS) of neuronal nuclei and Illumina HM450 DNA methylation profiling in post mortem frontal cortex of 29 major depression and 29 matched controls. We identify genomic features and ontologies enriched for cell type specific epigenetic variation. Using the top cell epigenotype specific (CETS) marks, we generated a publically available R package, “CETS,” capable of quantifying neuronal proportions and generating in silico neuronal profiles from DNA methylation data. We demonstrate a significant overlap in major depression DNA methylation associations between FACS separated and CETS model generated neuronal profiles relative to bulk profiles. CETS derived neuronal proportions correlated significantly with age in the frontal cortex and cerebellum and accounted for epigenetic variation between brain regions. CETS based control of cellular heterogeneity will enable more robust hypothesis testing in the brain.
Collapse
Affiliation(s)
- Jerry Guintivano
- The Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
38
|
Hirabayashi K, Shiota K, Yagi S. DNA methylation profile dynamics of tissue-dependent and differentially methylated regions during mouse brain development. BMC Genomics 2013; 14:82. [PMID: 23387509 PMCID: PMC3599493 DOI: 10.1186/1471-2164-14-82] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 01/31/2013] [Indexed: 01/23/2023] Open
Abstract
Background Tissues and their component cells have unique DNA methylation profiles comprising DNA methylation patterns of tissue-dependent and differentially methylated regions (T-DMRs). Previous studies reported that DNA methylation plays crucial roles in cell differentiation and development. Here, we investigated the genome-wide DNA methylation profiles of mouse neural progenitors derived from different developmental stages using HpyCH4IV, a methylation-sensitive restriction enzyme that recognizes ACGT residues, which are uniformly distributed across the genome. Results Using a microarray-based genome-wide DNA methylation analysis system focusing on 8.5-kb regions around transcription start sites (TSSs), we analyzed the DNA methylation profiles of mouse neurospheres derived from telencephalons at embryonic days 11.5 (E11.5NSph) and 14.5 (E14.5NSph) and the adult brain (AdBr). We identified T-DMRs with different DNA methylation statuses between E11.5NSph and E14.5NSph at genes involved in neural development and/or associated with neurological disorders in humans, such as Dclk1, Nrcam, Nfia, and Ntng1. These T-DMRs were located not only within 2 kb but also distal (several kbs) from the TSSs, and those hypomethylated in E11.5NSph tended to be in CpG island (CGI-) associated genes. Most T-DMRs that were hypomethylated in neurospheres were also hypomethylated in the AdBr. Interestingly, among the T-DMRs hypomethylated in the progenitors, there were T-DMRs that were hypermethylated in the AdBr. Although certain genes, including Ntng1, had hypermethylated T-DMRs 5′ upstream, we identified hypomethylated T-DMRs in the AdBr, 3′ downstream from their TSSs. This observation could explain why Ntng1 was highly expressed in the AdBr despite upstream hypermethylation. Conclusion Mouse adult brain DNA methylation and gene expression profiles could be attributed to developmental dynamics of T-DMRs in neural-related genes.
Collapse
Affiliation(s)
- Keiji Hirabayashi
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
39
|
Wu G, Hirabayashi K, Sato S, Akiyama N, Akiyama T, Shiota K, Yagi S. DNA methylation profile of Aire-deficient mouse medullary thymic epithelial cells. BMC Immunol 2012; 13:58. [PMID: 23116172 PMCID: PMC3546423 DOI: 10.1186/1471-2172-13-58] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 10/27/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Medullary thymic epithelial cells (mTECs) are characterized by ectopic expression of self-antigens during the establishment of central tolerance. The autoimmune regulator (Aire), which is specifically expressed in mTECs, is responsible for the expression of a large repertoire of tissue-restricted antigens (TRAs) and plays a role in the development of mTECs. However, Aire-deficient mTECs still express TRAs. Moreover, a subset of mTECs, which are considered to be at a stage of terminal differentiation, exists in the Aire-deficient thymus. The phenotype of a specific cell type in a multicellular organism is governed by the epigenetic regulation system. DNA methylation modification is an important component of this system. Every cell or tissue type displays a DNA methylation profile, consisting of tissue-dependent and differentially methylated regions (T-DMRs), and this profile is involved in cell-type-specific genome usage. The aim of this study was to examine the DNA methylation profile of mTECs by using Aire-deficient mTECs as a model. RESULTS We identified the T-DMRs of mTECs (mTEC-T-DMRs) via genome-wide DNA methylation analysis of Aire(-/-) mTECs by comparison with the liver, brain, thymus, and embryonic stem cells. The hypomethylated mTEC-T-DMRs in Aire(-/-) mTECs were associated with mTEC-specific genes, including Aire, CD80, and Trp63, as well as other genes involved in the RANK signaling pathway. While these mTEC-T-DMRs were also hypomethylated in Aire(+/+) mTECs, they were hypermethylated in control thymic stromal cells. We compared the pattern of DNA methylation levels at a total of 55 mTEC-T-DMRs and adjacent regions and found that the DNA methylation status was similar for Aire(+/+) and Aire(-/-) mTECs but distinct from that of athymic cells and tissues. CONCLUSIONS These results indicate a unique DNA methylation profile that is independent of Aire in mTECs. This profile is distinct from other cell types in the thymic microenvironment and is indicated to be involved in the differentiation of the mTEC lineage.
Collapse
Affiliation(s)
- Guoying Wu
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keiji Hirabayashi
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shinya Sato
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nobuko Akiyama
- Division of Cellular and Molecular Biology, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | - Taishin Akiyama
- Division of Cellular and Molecular Biology, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kunio Shiota
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shintaro Yagi
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
40
|
Musri MM, Gomis R, Párrizas M. A chromatin perspective of adipogenesis. Organogenesis 2012; 6:15-23. [PMID: 20592861 DOI: 10.4161/org.6.1.10226] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/01/2009] [Indexed: 12/11/2022] Open
Abstract
The transcriptional cascade governing adipogenesis has been thoroughly examined throughout the years. Transcription factors PPARγ and C/EBPα are universally recognized as the master regulators of adipocyte differentiation and together they direct the establishment of the gene expression pattern of mature adipose cells. However, this familiar landscape has been considerably broadened in recent years by the identification of novel factors that participate in the regulation of adipogenesis, either favoring or inhibiting it, through their effects on chromatin. Epigenetic signals and chromatin-modifying proteins contribute to adipogenesis and, through regulation of the phenotypic maintenance of the mature adipocytes, to the control of metabolism. In this review we intend to summarize the recently described epigenetic events that participate in adipogenesis and their connections with the main factors that constitute the classical transcriptional cascade.
Collapse
Affiliation(s)
- Melina M Musri
- Endocrinology and Nutrition Unit, IDIBAPS, CIBERDEM, Barcelona, Spain
| | | | | |
Collapse
|
41
|
Abstract
Owing to their potential for differentiation into multiple cell types, multipotent stem cells extracted from many adult tissues are an attractive stem cell resource for the replacement of damaged tissues in regenerative medicine. The requirements for cellular differentiation of an adult stem cell are a loss of proliferation potential and a gain of cell-type identity. These processes could be restricted by epigenetic modifications that prevent the risks of lineage-unrelated gene expression or the undifferentiated features of stem cells in adult somatic cells. In this review, we focus on the role of DNA methylation in controlling the transcriptional activity of genes important for self-renewal, the dynamism of CpG methylation of tissue-specific genes during several differentiation programs, and whether the multilineage potential of adult stem cells could be imposed early in the original precursor stem cells through CpG methylation. Additionally, we draw attention to the role of DNA methylation in adult stem cell differentiation by reviewing the reports on spontaneous differentiation after treatment with demethylating agents and by considering the evidence provided by reprogramming of somatic cells into undifferentiated cells (that is, somatic nuclear transfer or generation of induced pluripotent cells). It is clear from the evidence that DNA methylation is necessary for controlling stem cell proliferation and differentiation, but their exact contribution in each lineage program is still unclear. As a consequence, in a clinical setting, caution should be exerted before employing adult stem cells or their derivatives in regenerative medicine and appropriate tests should be applied to ensure the integrity of the genome and epigenome.
Collapse
Affiliation(s)
- María Berdasco
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908, L'Hospitalet de Llobregat, Av, Gran Via 199-203, Barcelona, Catalonia, Spain
| | | |
Collapse
|
42
|
DNA methylation restricts spontaneous multi-lineage differentiation of mesenchymal progenitor cells, but is stable during growth factor-induced terminal differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:839-49. [PMID: 21277338 DOI: 10.1016/j.bbamcr.2011.01.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/14/2022]
Abstract
The progressive restriction of differentiation potential from pluripotent embryonic stem cells, via multipotent progenitor cells to terminally differentiated, mature somatic cells, involves step-wise changes in transcription patterns that are tightly controlled by the coordinated action of key transcription factors and changes in epigenetic modifications. While previous studies have demonstrated tissue-specific differences in DNA methylation patterns that might function in lineage restriction, it is unclear at what exact developmental stage these differences arise. Here, we have studied whether terminal, multi-lineage differentiation of C2C12 myoblasts is accompanied by lineage-specific changes in DNA methylation patterns. Using bisulfite sequencing and genome-wide methylated DNA- and chromatin immunoprecipitation-on-chip techniques we show that in these cells, in general, myogenic genes are enriched for RNA polymerase II and hypomethylated, whereas osteogenic genes show lower polymerase occupancy and are hypermethylated. Removal of DNA methylation marks by 5-azacytidine (5AC) treatment alters the myogenic lineage commitment of these cells and induces spontaneous osteogenic and adipogenic differentiation. This is accompanied by upregulation of key lineage-specific transcription factors. We subsequently analyzed genome-wide changes in DNA methylation and polymerase II occupancy during BMP2-induced osteogenesis. Our data indicate that BMP2 is able to induce the transcriptional program underlying osteogenesis without changing the methylation status of the genome. We conclude that DNA methylation primes C2C12 cells for myogenesis and prevents spontaneous osteogenesis, but still permits induction of the osteogenic transcriptional program upon BMP2 stimulation. Based on these results, we propose that cell type-specific DNA methylation patterns are established prior to terminal differentiation of adult progenitor cells. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
|
43
|
Li HX, Xiao L, Wang C, Gao JL, Zhai YG. Review: Epigenetic regulation of adipocyte differentiation and adipogenesis. J Zhejiang Univ Sci B 2011; 11:784-91. [PMID: 20872986 DOI: 10.1631/jzus.b0900401] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is generally agreed that adipocytes originate from mesenchymal stem cells in what can be divided into two processes: determination and differentiation. In the past decade, many factors associated with epigenetic signals have been proved to be pivotal for the appropriate timing of adipogenesis progression. A large number of coregulators at critical gene promoters set up specific patterns of DNA methylation, histone acetylation and methylation, and nucleosome rearrangement, that act as an epigenetic code to modulate the correct progress of adipocyte differentiation and adipogenesis during adipogenesis. In this review, we focus on the functions and roles of epigenetic processes in preadipocyte differentiation and adipogenesis.
Collapse
Affiliation(s)
- Hong-xing Li
- Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
44
|
Abstract
Body fat distribution plays an important role in determining metabolic health. Whereas central obesity is closely associated with the development of CVD and type 2 diabetes, lower body fat appears to be protective and is paradoxically associated with improved metabolic and cardiovascular profiles. Physiological studies have demonstrated that fatty acid handling differs between white adipose tissue depots, with lower body white adipose tissue acting as a more efficient site for long-term lipid storage. The regulatory mechanisms governing these regional differences in function remain to be elucidated. Although the local microenvironment is likely to be a contributing factor, recent findings point towards the tissues being intrinsically distinct at the level of the adipocyte precursor cells (pre-adipocytes). The multi-potent pre-adipocytes are capable of generating cells of the mesenchymal lineage, including adipocytes. Regional differences in the adipogenic and replicative potential of these cells, as well as metabolic and biochemical activity, have been reported. Intriguingly, the genetic and metabolic characteristics of these cells can be retained through multiple generations when the cells are cultured in vitro. The rapidly emerging field of epigenetics may hold the key for explaining regional differences in white adipose tissue gene expression and function. Epigenetics describes the regulation of gene expression that occurs independently of changes in DNA sequence, for instance, DNA methylation or histone protein modification. In this review, we will discuss the contribution of DNA methylation to the determination of cells of adipogenic fate as well as the role DNA methylation may play during adipocyte terminal differentiation.
Collapse
|
45
|
Epigenetics for Biomedical Sciences. Cornea 2009. [DOI: 10.1097/ico.0b013e3181ae96bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
|
47
|
Chung H, Sidhu KS. Epigenetic modifications of embryonic stem cells: current trends and relevance in developing regenerative medicine. Stem Cells Cloning 2008; 1:11-21. [PMID: 24198501 PMCID: PMC3781683 DOI: 10.2147/sccaa.s3566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epigenetics is a growing field not only in the area of cancer research but recently in stem cells including human embryonic stem cell (hESC) research. The hallmark of profiling epigenetic changes in stem cells lies in maintaining pluripotency or multipotency and in attaining lineage specifications that are relevant for regenerative medicine. Epigenetic modifications including DNA methylation, histone acetylation and methylation, play important roles in regulating gene expressions. Other epigenetic modifications include X chromosome silencing, genomic stability and imprinting and mammalian development. This review attempts to elucidate the mechanism(s) behind epigenetic modifications and review techniques scientists use for identifying each modification. We also discuss some of the trends of epigenetic modifications in the fields of directed differentiation of embryonic stem cells and de-differentiation of somatic cells.
Collapse
Affiliation(s)
- Henry Chung
- Stem Cell Lab, Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Kuldip S Sidhu
- Stem Cell Lab, Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
48
|
Fox KE, Colton LA, Erickson PF, Friedman JE, Cha HC, Keller P, MacDougald OA, Klemm DJ. Regulation of cyclin D1 and Wnt10b gene expression by cAMP-responsive element-binding protein during early adipogenesis involves differential promoter methylation. J Biol Chem 2008; 283:35096-105. [PMID: 18957421 DOI: 10.1074/jbc.m806423200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin D1 expression is elevated and Wnt10b is repressed by cAMP during the first few hours of adipogenesis. cAMP-responsive element-binding protein (CREB) is a primary target for cAMP signaling, and we have shown that activation of CREB promotes adipogenesis and adipocyte survival. Here we tested the impact of CREB on expression of cyclin D1 and wingless-related mouse mammary tumor virus integration site 10b (Wnt10b) in 3T3-L1 cells. Forced depletion of CREB blocked Bt(2)cAMP-stimulated cyclin D1 expression and basal Wnt10b gene expression. Two CREB-binding sites were identified in the Wnt10b promoter region. Ablation of either site partially blocked promoter activity, while mutation of both sites completely suppressed promoter activity. These results suggest that CREB activates transcription from both the cyclin D1 and Wnt10b gene promoters. What accounts for the differential regulation of cyclin D1 and Wnt10b genes by cAMP? Chromatin immunoprecipitation revealed CREB bound to the Wnt10b promoter in untreated preadipocytes but not following treatment with Bt(2)cAMP. CREB binding to the cyclin D1 promoter was detected in untreated cells and post-Bt(2)cAMP. Differences between CREB binding to the two genes correlated with increasing methylation of the Wnt10b promoter following Bt(2)cAMP treatment, whereas no methylation of the cyclin D1 promoter was observed. Treatment of cells with the methylase inhibitor 5-azacytidine restored CREB binding to the Wnt10b gene promoter and prevented the inhibition of Wnt10b RNA expression by Bt(2)cAMP. We conclude that cAMP stimulates phosphorylation and binding of CREB to the cyclin D1 gene promoter. Simultaneously, hypermethylation of the Wnt10b gene promoter suppresses binding of CREB, allowing adipogenesis to proceed.
Collapse
Affiliation(s)
- Keith E Fox
- Cardiovascular Pulmonary Research Laboratory and Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|