1
|
Matsumura F, Murayama T, Kuriyama R, Matsumura A, Yamashiro S. Myosin phosphatase targeting subunit1 controls localization and motility of Rab7-containing vesicles: Is myosin phosphatase a cytoplasmic dynein regulator? Cytoskeleton (Hoboken) 2024; 81:872-882. [PMID: 38700016 PMCID: PMC11615836 DOI: 10.1002/cm.21871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Myosin phosphatase targeting subunit1 (MYPT1) is a critical subunit of myosin phosphatase (MP), which brings PP1Cδ phosphatase and its substrate together. We previously showed that MYPT1 depletion resulted in oblique chromatid segregation. Therefore, we hypothesized that MYPT1 may control microtubule-dependent motor activity. Dynein, a minus-end microtubule motor, is known to be involved in mitotic spindle assembly. We thus examined whether MYPT1 and dynein may interact. Proximity ligation assay and co-immunoprecipitation revealed that MYPT1 and dynein intermediate chain (DIC) were associated. We found that DIC phosphorylation is increased in MYPT1-depleted cells in vivo, and that MP was able to dephosphorylate DIC in vitro. MYPT1 depletion also altered the localization and motility of Rab7-containing vesicles. MYPT1-depletion dispersed the perinuclear Rab7 localization to the peripheral in interphase cells. The dispersed Rab7 localization was rescued by microinjection of a constitutively active, truncated MYPT1 mutant, supporting that MP is responsible for the altered Rab7 localization. Analyses of Rab7 vesicle trafficking also revealed that minus-end transport was reduced in MYPT1-depleted cells. These results suggest an unexpected role of MP: MP controls dynein activity in both mitotic and interphase cells, possibly by dephosphorylating dynein subunits including DIC.
Collapse
Affiliation(s)
- Fumio Matsumura
- Department of Molecular Biology & BiochemistryRutgers UniversityPiscatawayNew JerseyUSA
| | - Takashi Murayama
- Department of PharmacologyJuntendo University School of MedicineTokyoJapan
| | - Ryoko Kuriyama
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Aya Matsumura
- Department of Molecular Biology & BiochemistryRutgers UniversityPiscatawayNew JerseyUSA
| | - Shigeko Yamashiro
- Department of Molecular Biology & BiochemistryRutgers UniversityPiscatawayNew JerseyUSA
| |
Collapse
|
2
|
Mancini AE, Rizzo MA. A Novel Single-Color FRET Sensor for Rho-Kinase Reveals Calcium-Dependent Activation of RhoA and ROCK. SENSORS (BASEL, SWITZERLAND) 2024; 24:6869. [PMID: 39517770 PMCID: PMC11548655 DOI: 10.3390/s24216869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Ras homolog family member A (RhoA) acts as a signaling hub in many cellular processes, including cytoskeletal dynamics, division, migration, and adhesion. RhoA activity is tightly spatiotemporally controlled, but whether downstream effectors share these activation dynamics is unknown. We developed a novel single-color FRET biosensor to measure Rho-associated kinase (ROCK) activity with high spatiotemporal resolution in live cells. We report the validation of the Rho-Kinase Activity Reporter (RhoKAR) biosensor. RhoKAR activation was specific to ROCK activity and was insensitive to PKA activity. We then assessed the mechanisms of ROCK activation in mouse fibroblasts. Increasing intracellular calcium with ionomycin increased RhoKAR activity and depleting intracellular calcium with EGTA decreased RhoKAR activity. We also investigated the signaling intermediates in this process. Blocking calmodulin or CaMKII prevented calcium-dependent activation of ROCK. These results indicate that ROCK activity is increased by calcium in fibroblasts and that this activation occurs downstream of CaM/CaMKII.
Collapse
Affiliation(s)
| | - Megan A. Rizzo
- Department of Pharmacology, Physiology, and Drug Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
3
|
Wang X, Wang ZY, Chen HT, Luo YY, Li SY, Luo XM, Yang JH, Ma YX, Jin XB, Liu J, Wang ZM. SZ-685C inhibits the growth of non-functioning pituitary adenoma by down-regulating miR-340-3p and inducing autophagy. Heliyon 2024; 10:e37230. [PMID: 39286117 PMCID: PMC11402753 DOI: 10.1016/j.heliyon.2024.e37230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Background SZ-685C, an anthracycline compound derived from the mangrove endophytic fungus Halorosellinia sp. (No. 1403) collected from the South China Sea, has shown strong anticancer activities. Non-functioning pituitary adenomas (NFPAs) are a type of tumor that can be challenging to manage clinically and have a significant unmet medical need. Our research has found that SZ-685C showed an inhibitory effect on the viability, migration ability, and proliferation ability of a human non-functioning pituitary tumor-derived folliculostellate (PDFS) cell line. Methods SZ-685C was prepared and purified from the mangrove endophytic fungus No. 1403. PDFS cells were exposed to SZ-685C, and the effect of SZ-685C on PDFS cells was evaluated. RNA sequencing was used to analyze the miRNA expression profile in PDFS cells of the control group and SZ-685C-treated group. Quantitative polymerase chain reaction (qPCR) was performed to verify the expression of selected miR-340-3p. The effects of SZ-685C on PDFS cells after overexpression of miR-340-3p were evaluated. Dual-luciferase reporter assays showed PPP1CB is a direct target of miR-340-3p. Finally, the action pathway of the selected miR-340-3p was predicted and evaluated through bioinformatics analysis. Results SZ-685C reduced cell viability in PDFS cells, accompanied by inhibition of migration ability and proliferation ability. The IC50 value for 24 h is 9.144 ± 0.991 μM, and for 48 h is 4.635 ± 0.551 μM. SZ-685C increased the protein levels of Beclin 1, the ratio of LC3-II to LC3-I, and LAMP-1, and down-regulated p62. MiRNA sequencing and further validation showed that miR-340-3p significantly decreased in PDFS cells treated with SZ-685C. After overexpression of miR-340-3p, the inhibition of viability, migration ability, proliferation ability, and autophagy-promoting effect of SZ-685C on PDFS cells were weakened. SZ-685C caused a decrease in PPP1CB expression and activation of the ERK pathway in PDFS cells, and this trend was reversed after overexpression of miR-340-3p. Conclusions SZ-685C downregulates the expression of miR-340-3p in PDFS cells, thereby reducing the expression of PPP1CB and activating the ERK pathway to promote autophagic cell death, leading to inhibition of PDFS cell growth.
Collapse
Affiliation(s)
- Xin Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhong-Yu Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui-Tong Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-You Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Si-Yuan Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiong-Ming Luo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jun-Hua Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-Xin Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao-Bao Jin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jing Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zong-Ming Wang
- Pituitary Tumor Center, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
4
|
Dedigama-Arachchige PM, Acharige NPN, Zhang X, Bremer HJ, Yi Z, Pflum MKH. Identification of PP1c-PPP1R12A Substrates Using Kinase-Catalyzed Biotinylation to Identify Phosphatase Substrates. ACS OMEGA 2023; 8:35628-35637. [PMID: 37810667 PMCID: PMC10552495 DOI: 10.1021/acsomega.3c01944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/21/2023] [Indexed: 10/10/2023]
Abstract
Protein phosphatase 1 regulatory subunit 12A (PPP1R12A) interacts with the catalytic subunit of protein phosphatase 1 (PP1c) to form the myosin phosphatase complex. In addition to a well-documented role in muscle contraction, the PP1c-PPP1R12A complex is associated with cytoskeleton organization, cell migration and adhesion, and insulin signaling. Despite the variety of biological functions, only a few substrates of the PP1c-PPP1R12A complex are characterized, which limit a full understanding of PP1c-PPP1R12A activities in muscle contraction and cytoskeleton regulation. Here, the chemoproteomics method Kinase-catalyzed Biotinylation to Identify Phosphatase Substrates (K-BIPS) was used to identify substrates of the PP1c-PPP1R12A complex in L6 skeletal muscle cells. K-BIPS enriched 136 candidate substrates with 14 high confidence hits. One high confidence hit, AKT1 kinase, was validated as a novel PP1c-PPP1R12A substrate. Given the previously documented role of AKT1 in PPP1R12A phosphorylation and cytoskeleton organization, the data suggest that PP1c-PPP1R12A regulates its own phosphatase activity through an AKT1-dependent feedback mechanism to influence cytoskeletal arrangement in muscle cells.
Collapse
Affiliation(s)
| | - Nuwan P N Acharige
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit 48202-3489, Michigan, United States
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit 48201, Michigan, United States
| | - Hannah J Bremer
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit 48202-3489, Michigan, United States
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit 48201, Michigan, United States
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit 48202-3489, Michigan, United States
| |
Collapse
|
5
|
Patil RS, Kovacs-Kasa A, Gorshkov BA, Fulton DJR, Su Y, Batori RK, Verin AD. Serine/Threonine Protein Phosphatases 1 and 2A in Lung Endothelial Barrier Regulation. Biomedicines 2023; 11:1638. [PMID: 37371733 PMCID: PMC10296329 DOI: 10.3390/biomedicines11061638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular barrier dysfunction is characterized by increased permeability and inflammation of endothelial cells (ECs), which are prominent features of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis, and a major complication of the SARS-CoV-2 infection and COVID-19. Functional impairment of the EC barrier and accompanying inflammation arises due to microbial toxins and from white blood cells of the lung as part of a defensive action against pathogens, ischemia-reperfusion or blood product transfusions, and aspiration syndromes-based injury. A loss of barrier function results in the excessive movement of fluid and macromolecules from the vasculature into the interstitium and alveolae resulting in pulmonary edema and collapse of the architecture and function of the lungs, and eventually culminates in respiratory failure. Therefore, EC barrier integrity, which is heavily dependent on cytoskeletal elements (mainly actin filaments, microtubules (MTs), cell-matrix focal adhesions, and intercellular junctions) to maintain cellular contacts, is a critical requirement for the preservation of lung function. EC cytoskeletal remodeling is regulated, at least in part, by Ser/Thr phosphorylation/dephosphorylation of key cytoskeletal proteins. While a large body of literature describes the role of phosphorylation of cytoskeletal proteins on Ser/Thr residues in the context of EC barrier regulation, the role of Ser/Thr dephosphorylation catalyzed by Ser/Thr protein phosphatases (PPases) in EC barrier regulation is less documented. Ser/Thr PPases have been proposed to act as a counter-regulatory mechanism that preserves the EC barrier and opposes EC contraction. Despite the importance of PPases, our knowledge of the catalytic and regulatory subunits involved, as well as their cellular targets, is limited and under-appreciated. Therefore, the goal of this review is to discuss the role of Ser/Thr PPases in the regulation of lung EC cytoskeleton and permeability with special emphasis on the role of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) as major mammalian Ser/Thr PPases. Importantly, we integrate the role of PPases with the structural dynamics of the cytoskeleton and signaling cascades that regulate endothelial cell permeability and inflammation.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Boris A. Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Lubomirov LT, Schroeter MM, Hasse V, Frohn M, Metzler D, Bust M, Pryymachuk G, Hescheler J, Grisk O, Chalovich JM, Smyth NR, Pfitzer G, Papadopoulos S. Dual thick and thin filament linked regulation of stretch- and L-NAME-induced tone in young and senescent murine basilar artery. Front Physiol 2023; 14:1099278. [PMID: 37057180 PMCID: PMC10088910 DOI: 10.3389/fphys.2023.1099278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Stretch-induced vascular tone is an important element of autoregulatory adaptation of cerebral vasculature to maintain cerebral flow constant despite changes in perfusion pressure. Little is known as to the regulation of tone in senescent basilar arteries. We tested the hypothesis, that thin filament mechanisms in addition to smooth muscle myosin-II regulatory-light-chain-(MLC20)-phosphorylation and non-muscle-myosin-II, contribute to regulation of stretch-induced tone. In young BAs (y-BAs) mechanical stretch does not lead to spontaneous tone generation. Stretch-induced tone in y-BAs appeared only after inhibition of NO-release by L-NAME and was fully prevented by treatment with 3 μmol/L RhoA-kinase (ROK) inhibitor Y27632. L-NAME-induced tone was reduced in y-BAs from heterozygous mice carrying a point mutation of the targeting-subunit of the myosin phosphatase, MYPT1 at threonine696 (MYPT1-T696A/+). In y-BAs, MYPT1-T696A-mutation also blunted the ability of L-NAME to increase MLC20-phosphorylation. In contrast, senescent BAs (s-BAs; >24 months) developed stable spontaneous stretch-induced tone and pharmacological inhibition of NO-release by L-NAME led to an additive effect. In s-BAs the MYPT1-T696A mutation also blunted MLC20-phosphorylation, but did not prevent development of stretch-induced tone. In s-BAs from both lines, Y27632 completely abolished stretch- and L-NAME-induced tone. In s-BAs phosphorylation of non-muscle-myosin-S1943 and PAK1-T423, shown to be down-stream effectors of ROK was also reduced by Y27632 treatment. Stretch- and L-NAME tone were inhibited by inhibition of non-muscle myosin (NM-myosin) by blebbistatin. We also tested whether the substrate of PAK1 the thin-filament associated protein, caldesmon is involved in the regulation of stretch-induced tone in advanced age. BAs obtained from heterozygotes Cald1+/− mice generated stretch-induced tone already at an age of 20–21 months old BAs (o-BA). The magnitude of stretch-induced tone in Cald1+/− o-BAs was similar to that in s-BA. In addition, truncation of caldesmon myosin binding Exon2 (CaD-▵Ex2−/−) did not accelerate stretch-induced tone. Our study indicates that in senescent cerebral vessels, mechanisms distinct from MLC20 phosphorylation contribute to regulation of tone in the absence of a contractile agonist. While in y-and o-BA the canonical pathways, i.e., inhibition of MLCP by ROK and increase in pMLC20, predominate, tone regulation in senescence involves ROK regulated mechanisms, involving non-muscle-myosin and thin filament linked mechanisms involving caldesmon.
Collapse
Affiliation(s)
- Lubomir T. Lubomirov
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- Research Cluster, Molecular Mechanisms of Cardiovascular Diseases, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- *Correspondence: Lubomir T. Lubomirov,
| | - Mechthild M. Schroeter
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
- Center of Physiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Veronika Hasse
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Marina Frohn
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Doris Metzler
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Maria Bust
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Galyna Pryymachuk
- Institute of Anatomy, University of Cologne, Cologne, Germany
- Institute of Anatomy, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Jürgen Hescheler
- Center of Physiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- Research Cluster, Molecular Mechanisms of Cardiovascular Diseases, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Joseph M. Chalovich
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Neil R. Smyth
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Gabriele Pfitzer
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Symeon Papadopoulos
- Center of Physiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Han Y, Drobisch P, Krüger A, William D, Grützmann K, Böthig L, Polster H, Seifert L, Seifert AM, Distler M, Pecqueux M, Riediger C, Plodeck V, Nebelung H, Weber GF, Pilarsky C, Kahlert U, Hinz U, Roth S, Hackert T, Weitz J, Wong FC, Kahlert C. Plasma extracellular vesicle messenger RNA profiling identifies prognostic EV signature for non-invasive risk stratification for survival prediction of patients with pancreatic ductal adenocarcinoma. J Hematol Oncol 2023; 16:7. [PMID: 36737824 PMCID: PMC9896775 DOI: 10.1186/s13045-023-01404-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The prognosis of pancreatic ductal adenocarcinoma (PDAC) is one of the most dismal of all cancers and the median survival of PDAC patients is only 6-8 months after diagnosis. While decades of research effort have been focused on early diagnosis and understanding of molecular mechanisms, few clinically useful markers have been universally applied. To improve the treatment and management of PDAC, it is equally relevant to identify prognostic factors for optimal therapeutic decision-making and patient survival. Compelling evidence have suggested the potential use of extracellular vesicles (EVs) as non-invasive biomarkers for PDAC. The aim of this study was thus to identify non-invasive plasma-based EV biomarkers for the prediction of PDAC patient survival after surgery. METHODS Plasma EVs were isolated from a total of 258 PDAC patients divided into three independent cohorts (discovery, training and validation). RNA sequencing was first employed to identify differentially-expressed EV mRNA candidates from the discovery cohort (n = 65) by DESeq2 tool. The candidates were tested in a training cohort (n = 91) by digital droplet polymerase chain reaction (ddPCR). Cox regression models and Kaplan-Meier analyses were used to build an EV signature which was subsequently validated on a multicenter cohort (n = 83) by ddPCR. RESULTS Transcriptomic profiling of plasma EVs revealed differentially-expressed mRNAs between long-term and short-term PDAC survivors, which led to 10 of the top-ranked candidate EV mRNAs being tested on an independent training cohort with ddPCR. The results of ddPCR enabled an establishment of a novel prognostic EV mRNA signature consisting of PPP1R12A, SCN7A and SGCD for risk stratification of PDAC patients. Based on the EV mRNA signature, PDAC patients with high risk displayed reduced overall survival (OS) rates compared to those with low risk in the training cohort (p = 0.014), which was successfully validated on another independent cohort (p = 0.024). Interestingly, the combination of our signature and tumour stage yielded a superior prognostic performance (p = 0.008) over the signature (p = 0.022) or tumour stage (p = 0.016) alone. It is noteworthy that the EV mRNA signature was demonstrated to be an independent unfavourable predictor for PDAC prognosis. CONCLUSION This study provides a novel and non-invasive prognostic EV mRNA signature for risk stratification and survival prediction of PDAC patients.
Collapse
Affiliation(s)
- Yi Han
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Pascal Drobisch
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Alexander Krüger
- Core Unit for Molecular Tumour Diagnostics, National Center for Tumour Diseases, Dresden, Germany
| | - Doreen William
- Core Unit for Molecular Tumour Diagnostics, National Center for Tumour Diseases, Dresden, Germany
| | - Konrad Grützmann
- Core Unit for Molecular Tumour Diagnostics, National Center for Tumour Diseases, Dresden, Germany
| | - Lukas Böthig
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Heike Polster
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,National Center for Tumour Diseases, Partner Site Dresden, Heidelberg, Germany
| | - Adrian M Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,National Center for Tumour Diseases, Partner Site Dresden, Heidelberg, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,National Center for Tumour Diseases, Partner Site Dresden, Heidelberg, Germany
| | - Mathieu Pecqueux
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,National Center for Tumour Diseases, Partner Site Dresden, Heidelberg, Germany
| | - Carina Riediger
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,National Center for Tumour Diseases, Partner Site Dresden, Heidelberg, Germany
| | - Verena Plodeck
- Department of Diagnostic and Interventional Radiology, Carl Gustav Carus University Hospital Dresden, Dresden, Germany
| | - Heiner Nebelung
- Department of Diagnostic and Interventional Radiology, Carl Gustav Carus University Hospital Dresden, Dresden, Germany
| | - Georg F Weber
- Department of Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Ulf Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Medical Faculty University Hospital Magdeburg, Magdeburg, Germany
| | - Ulf Hinz
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Susanne Roth
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany.,National Center for Tumour Diseases, Partner Site Dresden, Heidelberg, Germany
| | - Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany. .,National Center for Tumour Diseases, Partner Site Dresden, Heidelberg, Germany.
| |
Collapse
|
8
|
Aguilar VM, Paul A, Lazarko D, Levitan I. Paradigms of endothelial stiffening in cardiovascular disease and vascular aging. Front Physiol 2023; 13:1081119. [PMID: 36714307 PMCID: PMC9874005 DOI: 10.3389/fphys.2022.1081119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Endothelial cells, the inner lining of the blood vessels, are well-known to play a critical role in vascular function, while endothelial dysfunction due to different cardiovascular risk factors or accumulation of disruptive mechanisms that arise with aging lead to cardiovascular disease. In this review, we focus on endothelial stiffness, a fundamental biomechanical property that reflects cell resistance to deformation. In the first part of the review, we describe the mechanisms that determine endothelial stiffness, including RhoA-dependent contractile response, actin architecture and crosslinking, as well as the contributions of the intermediate filaments, vimentin and lamin. Then, we review the factors that induce endothelial stiffening, with the emphasis on mechanical signals, such as fluid shear stress, stretch and stiffness of the extracellular matrix, which are well-known to control endothelial biomechanics. We also describe in detail the contribution of lipid factors, particularly oxidized lipids, that were also shown to be crucial in regulation of endothelial stiffness. Furthermore, we discuss the relative contributions of these two mechanisms of endothelial stiffening in vasculature in cardiovascular disease and aging. Finally, we present the current state of knowledge about the role of endothelial stiffening in the disruption of endothelial cell-cell junctions that are responsible for the maintenance of the endothelial barrier.
Collapse
Affiliation(s)
- Victor M. Aguilar
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Amit Paul
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Dana Lazarko
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Wu CT, Lidsky PV, Xiao Y, Cheng R, Lee IT, Nakayama T, Jiang S, He W, Demeter J, Knight MG, Turn RE, Rojas-Hernandez LS, Ye C, Chiem K, Shon J, Martinez-Sobrido L, Bertozzi CR, Nolan GP, Nayak JV, Milla C, Andino R, Jackson PK. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 2023; 186:112-130.e20. [PMID: 36580912 PMCID: PMC9715480 DOI: 10.1016/j.cell.2022.11.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.
Collapse
Affiliation(s)
- Chien-Ting Wu
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Ran Cheng
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Ivan T Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tsuguhisa Nakayama
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wei He
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Miguel G Knight
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Rachel E Turn
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Laura S Rojas-Hernandez
- Department of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chengjin Ye
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kevin Chiem
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Carlos Milla
- Department of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA.
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Picard JY, Morin G, Devouassoux-Shisheboran M, Van der Smagt J, Klosowski S, Pienkowski C, Pierre-Renoult P, Masson C, Bole C, Josso N. Persistent Müllerian duct syndrome associated with genetic defects in the regulatory subunit of myosin phosphatase. Hum Reprod 2022; 37:2952-2959. [PMID: 36331510 DOI: 10.1093/humrep/deac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
STUDY QUESTION Can mutations of genes other than AMH or AMHR2, namely PPP1R12A coding myosin phosphatase, lead to persistent Müllerian duct syndrome (PMDS)? SUMMARY ANSWER The detection of PPP1R12A truncation mutations in five cases of PMDS suggests that myosin phosphatase is involved in Müllerian regression, independently of the anti-Müllerian hormone (AMH) signaling cascade. WHAT IS KNOWN ALREADY Mutations of AMH and AMHR2 are detectable in an overwhelming majority of PMDS patients but in 10% of cases, both genes are apparently normal, suggesting that other genes may be involved. STUDY DESIGN, SIZE, DURATION DNA samples from 39 PMDS patients collected from 1990 to present, in which Sanger sequencing had failed to detect biallelic AMH or AMHR2 mutations, were screened by massive parallel sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS To rule out the possibility that AMH or AMHR2 mutations could have been missed, all DNA samples of good quality were analyzed by targeted next-generation sequencing. Twenty-four samples in which the absence of AMH or AMHR2 biallelic mutations was confirmed were subjected to whole-exome sequencing with the aim of detecting variants of other genes potentially involved in PMDS. MAIN RESULTS AND THE ROLE OF CHANCE Five patients out of 24 (21%) harbored deleterious truncation mutations of PP1R12A, the gene coding for the regulatory subunit of myosin phosphatase, were detected. In addition to PMDS, three of these patients presented with ileal and one with esophageal atresia. The congenital abnormalities associated with PMDS in our patients are consistent with those described in the literature for PPP1R12A variants and have never been described in cases of AMH or AMHR2 mutations. The role of chance is therefore extremely unlikely. LIMITATIONS, REASONS FOR CAUTION The main limitation of the study is the lack of experimental validation of the role of PPP1R12A in Müllerian regression. Only circumstantial evidence is available, myosin phosphatase is required for cell mobility, which plays a major role in Müllerian regression. Alternatively, PPP1R12A mutations could affect the AMH transduction pathway. WIDER IMPLICATIONS OF THE FINDINGS The study supports the conclusion that failure of Müllerian regression in males is not necessarily associated with a defect in AMH signaling. Extending the scope of molecular analysis should shed light upon the mechanism of the initial steps of male sex differentiation. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by la Fondation Maladies Rares, GenOmics 2021_0404 and la Fondation pour la Recherche Médicale, grant EQU201903007868. The authors report no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jean-Yves Picard
- Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, Lipodystrophies, Adaptations Métaboliques et Hormonales et Vieillissement, UMR_S 938, Paris, France
| | - Gilles Morin
- Department of Medical Genetics, Centre Hospitalo-Universitaire d'Amiens, Amiens, France
| | | | | | - Serge Klosowski
- Service de Néonatologie, Centre Universitaire de Lens, Lens, France
| | | | | | - Cécile Masson
- Bioinformatics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes University, Sorbonne Paris Cite University, Paris, France
| | - Christine Bole
- Genomics Core Facility, Institut Imagine, Structure Fédérative de Recherche Necker, INSERM 1163, INSERM US24/CNRS UAR3633, Paris Descartes University, Sorbonne Paris Cité University, Paris, France
| | - Nathalie Josso
- Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, Lipodystrophies, Adaptations Métaboliques et Hormonales et Vieillissement, UMR_S 938, Paris, France
| |
Collapse
|
11
|
Lee E, Liu Z, Nguyen N, Nairn A, Chang AN. Myosin light chain phosphatase catalytic subunit dephosphorylates cardiac myosin via mechanisms dependent and independent of the MYPT regulatory subunits. J Biol Chem 2022; 298:102296. [PMID: 35872014 PMCID: PMC9418503 DOI: 10.1016/j.jbc.2022.102296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022] Open
Abstract
Cardiac muscle myosin regulatory light chain (RLC) is constitutively phosphorylated at ∼0.4 mol phosphate/mol RLC in normal hearts, and phosphorylation is maintained by balanced activities of dedicated cardiac muscle–specific myosin light chain kinase and myosin light chain phosphatase (MLCP). Previously, the identity of the cardiac-MLCP was biochemically shown to be similar to the smooth muscle MLCP, which is a well-characterized trimeric protein comprising the regulatory subunit (MYPT1), catalytic subunit PP1cβ, and accessory subunit M20. In smooth muscles in vivo, MYPT1 and PP1cβ co-stabilize each other and are both necessary for normal smooth muscle contractions. In the cardiac muscle, MYPT1 and MYPT2 are both expressed, but contributions to physiological regulation of cardiac myosin dephosphorylation are unclear. We hypothesized that the main catalytic subunit for cardiac-MLCP is PP1cβ, and maintenance of RLC phosphorylation in vivo is dependent on regulation by striated muscle–specific MYPT2. Here, we used PP1cβ conditional knockout mice to biochemically define cardiac-MLCP proteins and developed a cardiac myofibrillar phosphatase assay to measure the direct contribution of MYPT-regulated and MYPT-independent phosphatase activities toward phosphorylated cardiac myosin. We report that (1) PP1cβ is the main isoform expressed in the cardiac myocyte, (2) cardiac muscle pathogenesis in PP1cβ knockout animals involve upregulation of total PP1cα in myocytes and non-muscle cells, (3) the stability of cardiac MYPT1 and MYPT2 proteins in vivo is not dependent on the PP1cβ expression, and (4) phosphorylated myofibrillar cardiac myosin is dephosphorylated by both myosin-targeted and soluble MYPT-independent PP1cβ activities. These results contribute to our understanding of the cardiac-MLCP in vivo.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas 75390 USA
| | - Zhenan Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas 75390 USA
| | - Nhu Nguyen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas 75390 USA
| | - Angus Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven CT 06508 USA
| | - Audrey N Chang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas 75390 USA; Pak Center for Mineral Metabolism and Clinical Research, UTSW Medical Center, Dallas Texas 75390 USA.
| |
Collapse
|
12
|
Pasapera AM, Heissler SM, Eto M, Nishimura Y, Fischer RS, Thiam HR, Waterman CM. MARK2 regulates directed cell migration through modulation of myosin II contractility and focal adhesion organization. Curr Biol 2022; 32:2704-2718.e6. [PMID: 35594862 DOI: 10.1016/j.cub.2022.04.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/23/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Cancer cell migration during metastasis is mediated by a highly polarized cytoskeleton. MARK2 and its invertebrate homolog Par1B are kinases that regulate the microtubule cytoskeleton to mediate polarization of neurons in mammals and embryos in invertebrates. However, the role of MARK2 in cancer cell migration is unclear. Using osteosarcoma cells, we found that in addition to its known localizations on microtubules and the plasma membrane, MARK2 also associates with the actomyosin cytoskeleton and focal adhesions. Cells depleted of MARK proteins demonstrated that MARK2 promotes phosphorylation of both myosin II and the myosin phosphatase targeting subunit MYPT1 to synergistically drive myosin II contractility and stress fiber formation in cells. Studies with isolated proteins showed that MARK2 directly phosphorylates myosin II regulatory light chain, while its effects on MYPT1 phosphorylation are indirect. Using a mutant lacking the membrane-binding domain, we found that membrane association is required for focal adhesion targeting of MARK2, where it specifically enhances cell protrusion by promoting FAK phosphorylation and formation of focal adhesions oriented in the direction of migration to mediate directionally persistent cell motility. Together, our results define MARK2 as a master regulator of the actomyosin and microtubule cytoskeletal systems and focal adhesions to mediate directional cancer cell migration.
Collapse
Affiliation(s)
- Ana M Pasapera
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA
| | - Sarah M Heissler
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 370 W. 9th Avenue, Columbus, OH 43210, USA
| | - Masumi Eto
- Department of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Yukako Nishimura
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA; Division of Developmental Physiology, Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan
| | - Robert S Fischer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA
| | - Hawa R Thiam
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Wang H, Fang F, Chen S, Jing X, Zhuang Y, Xie Y. Dual efficacy of Fasudil at improvement of survival and reinnervation of flap through RhoA/ROCK/PI3K/Akt pathway. Int Wound J 2022; 19:2000-2011. [PMID: 35315211 PMCID: PMC9705174 DOI: 10.1111/iwj.13800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022] Open
Abstract
Fasudil is reported to be effective at protecting against ischaemic diseases, and at augmenting axon growth. In this study, we aim to evaluate its efficacy in promoting flap survival and reinnervation. Ninety-two Institute of Cancer Research (ICR) mice were used and divided into the control, Fasudil, LY294002, Fasudil+LY294002 groups, receiving a daily intraperitoneal injection of normal saline, Fasudil (10 mg/kg), LY294002 (5 mg/kg), and Fasudil (10 mg/kg) + LY294002 (5 mg/kg), respectively. On days 0 and 5, the blood perfusion and diameter of the iliolumbar artery in the pedicle of the flaps in the four groups were evaluated using laser speckling contrast imaging (LSCI). On day 5, the flaps were photographed and the necrosis rate of the flaps was calculated using Photoshop CS6. In addition, tissues were harvested from the flaps and divided into two parts. One part underwent routine cryosection and immunofluorescent staining using the antibody against CD31 for evaluation of the microvascular density in the four groups. In the other part, the expression of RhoA, ROCK1+2, p-CPI-17, p-MYPT, p-PTEN, p-PI3K, p-Akt, and vascular endothelial growth factor (VEGF) within the flaps were determined using western blotting. Moreover, at days 0, 7, 15, and 30 after flap surgery, the axons within the flaps were evaluated using immunofluorescent staining with the antibody against Neurofilament-200. It turned out that the necrosis rate was (24.4 ± 7.7)%, (5.2 ± 1.6)%, (29.8 ± 4.2)%, and (30.9 ± 7.1)%, respectively, in the control, Fasudil, LY294002, LY294002+Fasudil groups. There was a significant reduction in the necrosis rate of the flaps in the Fasudil group (P < .001). The LSCI and immunofluorescent staining demonstrated that Fasudil could significantly expand the diameter of the iliolumbar artery in the pedicle, boost the overall blood perfusion, and increase the microvascular density of the flaps in the Fasudil group (P < .05), which could all be abolished by PI3K inhibitor LY294002. On day 5, the expression of p-CPI-17, p-MYPT, and p-PTEN were downregulated, whereas pPI3K, p-Akt, and VEGF were upregulated in the Fasudil group (P < .001). As for reinnervation, Neurofilament-200 fluorescent staining revealed that at days 15 and 30 after flap harvest, only in the Fasudil group could new axons be observed. It can be concluded that Fasudil could simultaneously improve the survival and axon growth after flap harvest, a dual efficacy achieved by inhibition of the RhoA/ROCK pathway, which in turn activates /PI3K/AKT pathway.
Collapse
Affiliation(s)
- Hai Wang
- Orthopedic Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Fang Fang
- Department of pharmacology, Fujian Medical University, Fuzhou, China
| | - Shaofeng Chen
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Institute of Clinical Applied Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xing Jing
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Institute of Clinical Applied Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuehong Zhuang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Institute of Clinical Applied Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yun Xie
- Orthopedic Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Liu D, Xu W, Tang Y, Cao J, Chen R, Wu D, Chen H, Su B, Xu J. Nebulization of risedronate alleviates airway obstruction and inflammation of chronic obstructive pulmonary diseases via suppressing prenylation-dependent RAS/ERK/NF-κB and RhoA/ROCK1/MLCP signaling. Respir Res 2022; 23:380. [PMID: 36575527 PMCID: PMC9795678 DOI: 10.1186/s12931-022-02274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a progressive disorder that causes airway obstruction and lung inflammation. The first-line treatment of COPD is the bronchodilators of β2-agonists and antimuscarinic drugs, which can help control the airway obstruction, but the long-term use might render the drug tolerance. Bisphosphonates are widely used in osteoclast-mediated bone diseases treatment for decades. For drug repurposing, can delivery of a third generation of nitrogen-containing bisphosphonate, risedronate (RIS) ameliorate the progression of COPD? METHODS COPD rats or mice models have been established through cigarette-smoking and elastase injection, and then the animals are received RIS treatment via nebulization. Lung deposition of RIS was primarily assessed by high-performance liquid chromatography (HPLC). The respiratory parameters of airway obstruction in COPD rats and mice were documented using plethysmography method and resistance-compliance system. RESULTS High lung deposition and bioavailability of RIS was monitored with 88.8% of RIS input dose. We found that RIS could rescue the lung function decline of airspace enlargement and mean linear intercept in the COPD lung. RIS could curb the airway obstruction by suppressing 60% of the respiratory resistance and elevating the airway's dynamic compliance, tidal volume and mid-expiratory flow. As an inhibitor of farnesyl diphosphate synthase (FDPS), RIS suppresses FDPS-mediated RAS and RhoA prenylation to obstruct its membrane localization in airway smooth muscle cells (ASMCs), leading to the inhibition of downstream ERK-MLCK and ROCK1-MLCP pathway to cause ASMCs relaxation. Additionally, RIS nebulization impeded pro-inflammatory cell accumulation, particularly macrophages infiltration in alveolar parenchyma. The NF-κB, tumor necrosis factor-alpha, IL-1β, IL-8, and IL-6 declined in microphages following RIS nebulization. Surprisingly, nebulization of RIS could overcome the tolerance of β2-agonists in COPD-rats by increasing the expression of β2 receptors. CONCLUSIONS Nebulization of RIS could alleviate airway obstruction and lung inflammation in COPD, providing a novel strategy for treating COPD patients, even those with β2-agonists tolerance.
Collapse
Affiliation(s)
- Di Liu
- grid.24516.340000000123704535Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China ,grid.24516.340000000123704535Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Wen Xu
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yuan Tang
- grid.24516.340000000123704535Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China ,grid.252957.e0000 0001 1484 5512Basic Medical College, Bengbu Medical College, Bengbu, People’s Republic of China
| | - Jingxue Cao
- grid.24516.340000000123704535Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China ,grid.24516.340000000123704535Department of Radiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Ran Chen
- grid.24516.340000000123704535Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Dingwei Wu
- Zhejiang Xianju Pharmaceutical Co., Ltd, Xianju, People’s Republic of China
| | - Hongpeng Chen
- Zhejiang Xianju Pharmaceutical Co., Ltd, Xianju, People’s Republic of China
| | - Bo Su
- grid.24516.340000000123704535Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China ,grid.252957.e0000 0001 1484 5512School of Life Sciences, Bengbu Medical College, Bengbu, People’s Republic of China
| | - Jinfu Xu
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Major E, Keller I, Horváth D, Tamás I, Erdődi F, Lontay B. Smoothelin-Like Protein 1 Regulates the Thyroid Hormone-Induced Homeostasis and Remodeling of C2C12 Cells via the Modulation of Myosin Phosphatase. Int J Mol Sci 2021; 22:10293. [PMID: 34638630 PMCID: PMC8508602 DOI: 10.3390/ijms221910293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
The pathological elevation of the active thyroid hormone (T3) level results in the manifestation of hyperthyroidism, which is associated with alterations in the differentiation and contractile function of skeletal muscle (SKM). Myosin phosphatase (MP) is a major cellular regulator that hydrolyzes the phosphoserine of phosphorylated myosin II light chain. MP consists of an MYPT1/2 regulatory and a protein phosphatase 1 catalytic subunit. Smoothelin-like protein 1 (SMTNL1) is known to inhibit MP by directly binding to MP as well as by suppressing the expression of MYPT1 at the transcriptional level. Supraphysiological vs. physiological concentration of T3 were applied on C2C12 myoblasts and differentiated myotubes in combination with the overexpression of SMTNL1 to assess the role and regulation of MP under these conditions. In non-differentiated myoblasts, MP included MYPT1 in the holoenzyme complex and its expression and activity was regulated by SMTNL1, affecting the phosphorylation level of MLC20 assessed using semi-quantitative Western blot analysis. SMTNL1 negatively influenced the migration and cytoskeletal remodeling of myoblasts measured by high content screening. In contrast, in myotubes, the expression of MYPT2 but not MYPT1 increased in a T3-dependent and SMTNL1-independent manner. T3 treatment combined with SMTNL1 overexpression impeded the activity of MP. In addition, MP interacted with Na+/K+-ATPase and dephosphorylated its inhibitory phosphorylation sites, identifying this protein as a novel MP substrate. These findings may help us gain a better understanding of myopathy, muscle weakness and the disorder of muscle regeneration in hyperthyroid patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (E.M.); (I.K.); (D.H.); (I.T.); (F.E.)
| |
Collapse
|
16
|
Maiques O, Sanz-Moreno V. Location, location, location: Melanoma cells "living at the edge". Exp Dermatol 2021; 31:82-88. [PMID: 34185923 DOI: 10.1111/exd.14423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023]
Abstract
Abnormal cell migration and invasion underlie metastatic dissemination, one of the major challenges for cancer treatment. Melanoma is one of the deadliest and most aggressive forms of skin cancer due in part to its migratory and metastatic potential. Cancer cells use a variety of migratory strategies regulated by cytoskeletal remodelling. In particular, we discuss the importance of amoeboid invasive melanoma strategies, since they have been identified at the edge of human melanomas. We hypothesize that the presence of amoeboid melanoma cells will favour tumor progression since they are invasive and metastatic; they support immunosuppression; they harbour cancer stem cell properties and they are involved in therapy resistance. The Rho-ROCK-Myosin II pathway is key to maintain amoeboid melanoma invasion but this pathway is further regulated by pro-tumorigenic/pro-metastatic/pro-survival signalling pathways such as JAK-STAT3, TGFβ-SMAD, NF-κB, Wnt11/5-FDZ7 and BRAFV600E -MEK-ERK. These pathways support amoeboid behaviour and are actionable in the clinic. After melanoma wide surgical margin removal, we propose that possible remaining melanoma cells should be eradicated using anti-amoeboid therapies.
Collapse
Affiliation(s)
- Oscar Maiques
- Barts Cancer Institute, John Vane Science Building, Queen Mary University of London, London, UK
| | - Victoria Sanz-Moreno
- Barts Cancer Institute, John Vane Science Building, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
Mfge8 attenuates human gastric antrum smooth muscle contractions. J Muscle Res Cell Motil 2021; 42:219-231. [PMID: 34085177 PMCID: PMC8332633 DOI: 10.1007/s10974-021-09604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 12/02/2022]
Abstract
Coordinated gastric smooth muscle contraction is critical for proper digestion and is adversely affected by a number of gastric motility disorders. In this study we report that the secreted protein Mfge8 (milk fat globule-EGF factor 8) inhibits the contractile responses of human gastric antrum muscles to cholinergic stimuli by reducing the inhibitory phosphorylation of the MYPT1 (myosin phosphatase-targeting subunit (1) subunit of MLCP (myosin light chain phosphatase), resulting in reduced LC20 (smooth muscle myosin regulatory light chain (2) phosphorylation. Mfge8 reduced the agonist-induced increase in the F-actin/G-actin ratios of β-actin and γ-actin1. We show that endogenous Mfge8 is bound to its receptor, α8β1 integrin, in human gastric antrum muscles, suggesting that human gastric antrum muscle mechanical responses are regulated by Mfge8. The regulation of gastric antrum smooth muscles by Mfge8 and α8 integrin functions as a brake on gastric antrum mechanical activities. Further studies of the role of Mfge8 and α8 integrin in regulating gastric antrum function will likely reveal additional novel aspects of gastric smooth muscle motility mechanisms.
Collapse
|
18
|
Complex functionality of protein phosphatase 1 isoforms in the heart. Cell Signal 2021; 85:110059. [PMID: 34062239 DOI: 10.1016/j.cellsig.2021.110059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 02/04/2023]
Abstract
Protein phosphatase 1(PP1) is a key regulator of cardiac function through dephosphorylating serine/threonine residues within target proteins to oppose the function of protein kinases. Studies from failing hearts of animal models and human patients have demonstrated significant increase of PP1 activity in myocardium, while elevated PP1 activity in transgenic mice leads to cardiac dysfunction, suggesting that PP1 might be a therapeutic target to ameliorate cardiac dysfunction in failing hearts. In fact, cardiac overexpression of inhibitor 1, the endogenous inhibitor of PP1, increases cardiac contractility and suppresses heart failure progression. However, this notion of PP1 inhibition for heart failure treatment has been challenged by recent studies on the isoform-specific roles of PP1 in the heart. PP1 is a holoenzyme composed of catalytic subunits (PP1α, PP1β, or PP1γ) and regulatory proteins that target them to distinct subcellular locations for functional specificity. This review will summarize how PP1 regulates phosphorylation of some of the key cardiac proteins involved in Ca2+ handling and cardiac contraction, and the potential role of PP1 isoforms in controlling cardiac physiology and pathophysiology.
Collapse
|
19
|
Kasikara C, Schilperoort M, Gerlach B, Xue C, Wang X, Zheng Z, Kuriakose G, Dorweiler B, Zhang H, Fredman G, Saleheen D, Reilly MP, Tabas I. Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis. J Clin Invest 2021; 131:145275. [PMID: 33630758 DOI: 10.1172/jci145275] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Efferocytosis, the process through which apoptotic cells (ACs) are cleared through actin-mediated engulfment by macrophages, prevents secondary necrosis, suppresses inflammation, and promotes resolution. Impaired efferocytosis drives the formation of clinically dangerous necrotic atherosclerotic plaques, the underlying etiology of coronary artery disease (CAD). An intron of the gene encoding PHACTR1 contains rs9349379 (A>G), a common variant associated with CAD. As PHACTR1 is an actin-binding protein, we reasoned that if the rs9349379 risk allele G causes lower PHACTR1 expression in macrophages, it might link the risk allele to CAD via impaired efferocytosis. We show here that rs9349379-G/G was associated with lower levels of PHACTR1 and impaired efferocytosis in human monocyte-derived macrophages and human atherosclerotic lesional macrophages compared with rs9349379-A/A. Silencing PHACTR1 in human and mouse macrophages compromised AC engulfment, and Western diet-fed Ldlr-/- mice in which hematopoietic Phactr1 was genetically targeted showed impaired lesional efferocytosis, increased plaque necrosis, and thinner fibrous caps - all signs of vulnerable plaques in humans. Mechanistically, PHACTR1 prevented dephosphorylation of myosin light chain (MLC), which was necessary for AC engulfment. In summary, rs9349379-G lowered PHACTR1, which, by lowering phospho-MLC, compromised efferocytosis. Thus, rs9349379-G may contribute to CAD risk, at least in part, by impairing atherosclerotic lesional macrophage efferocytosis.
Collapse
Affiliation(s)
- Canan Kasikara
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Brennan Gerlach
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Chenyi Xue
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ze Zheng
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - George Kuriakose
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Hanrui Zhang
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, New York, USA
| | - Danish Saleheen
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Muredach P Reilly
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Physiology and Cellular Biophysics and.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
20
|
Kovacs-Kasa A, Kovacs L, Cherian-Shaw M, Patel V, Meadows ML, Fulton DJ, Su Y, Verin AD. Inhibition of Class IIa HDACs improves endothelial barrier function in endotoxin-induced acute lung injury. J Cell Physiol 2021; 236:2893-2905. [PMID: 32959895 PMCID: PMC9946131 DOI: 10.1002/jcp.30053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is an acute inflammatory process arises from a wide range of lung insults. A major cause of ALI is dysfunction of the pulmonary vascular endothelial barrier but the mechanisms involved are incompletely understood. The therapeutic potential of histone deacetylase (HDAC) inhibitors for the treatment of cardiovascular and inflammatory diseases is increasingly apparent, but the mechanisms by which HDACs regulate pulmonary vascular barrier function remain to be resolved. We found that specific Class IIa HDACs inhibitor, TMP269, significantly attenuated the lipopolysaccharide (LPS)-induced human lung microvascular endothelial cells (HLMVEC) barrier compromise in vitro and improved vascular barrier integrity and lung function in murine model of ALI in vivo. TMP269 decreased LPS-induced myosin light chain phosphorylation suggesting the role for Class IIa HDACs in LPS-induced cytoskeleton reorganization. TMP269 did not affect microtubule structure and tubulin acetylation in contrast to the HDAC6-specific inhibitor, Tubastatin A suggesting that Class IIa HDACs and HDAC6 (Class IIb) regulate endothelial cytoskeleton and permeability via different mechanisms. Furthermore, LPS increased the expression of ArgBP2 which has recently been attributed to HDAC-mediated activation of Rho. Depletion of ArgBP2 abolished the ability of LPS to disrupt barrier function in HLMVEC and both TMP269 and Tubastatin A decreased the level of ArgBP2 expression after LPS stimulation suggesting that both Class IIa and IIb HDACs regulate endothelial permeability via ArgBP2-dependent mechanism. Collectively, our data strongly suggest that Class IIa HDACs are involved in LPS-induced ALI in vitro and in vivo via specific mechanism which involved contractile responses, but not microtubule reorganization.
Collapse
Affiliation(s)
- Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Laszlo Kovacs
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mary L. Meadows
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - David J. Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yunchao Su
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
21
|
Kono A, Shinya K, Nakayama T, Shikata E, Yamamoto T, Kawana K. Haplotype-based, case-control study of myosin phosphatase target subunit 1 ( PPP1R12A) gene and hypertensive disorders of pregnancy. Hypertens Pregnancy 2021; 40:88-96. [PMID: 33459569 DOI: 10.1080/10641955.2021.1872613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: Hypertensive disorders of pregnancy (HDP) are thought to be a multifactorial genetic disease. Myosin light chain phosphorylation, which is involved in the regulation of vascular smooth muscle contraction and relaxation and thus contributes to the maintenance of blood pressure, is related to HDP. The official symbol of the gene for the production of MYPT1 protein is PPP1R12A gene. Thus, we investigated the possibility that the PPP1R12A gene is related to HDP. Methods: Subjects were 194 pregnant women with HDP and a control group of 262 pregnant women from those women examined. Four SNVs (rs7296839, rs11114256, rs2596793, and rs2694657) were selected from the PPP1R12A gene region. The HDP group was divided according to disease type, and each group was analyzed in comparison with the control group. Results: In the association analysis using the PPP1R12A gene, there were significant differences between the control group and the superimposed preeclampsia (SPE) group for rs11114256 in allele frequency distribution (P = 0.017) and genome frequency distribution in the dominant model (P = 0.014), and for rs2694657 genotype distribution frequency in the recessive model (P = 0.018). In the association analysis using haplotypes, there was a significant difference for G-A-A-G (rs7296839-rs11114256-rs2596793-rs2694657). In an analysis of haplotype-based case-control study, there was a significant difference for G-A-A-G between the control group (0.00%) and the HDP group (2.46%) (P = 0.038). Furthermore, the G-T-A-G haplotype was significantly higher in SPE group than in control group (P = 0.011). Conclusions: The implication is that the PPP1R12A gene may be a disease-susceptibility gene for SPE.
Collapse
Affiliation(s)
- Ai Kono
- Department of Obstetrics and Gynecology, Nihon University School of Medicine , Tokyo, Japan
| | - Kaori Shinya
- Department of Obstetrics and Gynecology, Nihon University School of Medicine , Tokyo, Japan
| | - Tomohiro Nakayama
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine , Tokyo, Japan
| | - Elisa Shikata
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine , Tokyo, Japan
| | - Tatsuo Yamamoto
- Department of Obstetrics and Gynecology, Nihon University School of Medicine , Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Nihon University School of Medicine , Tokyo, Japan
| |
Collapse
|
22
|
Yao Y, Feng Q, Shen J. Myosin light chain kinase regulates intestinal permeability of mucosal homeostasis in Crohn's disease. Expert Rev Clin Immunol 2020; 16:1127-1141. [PMID: 33183108 DOI: 10.1080/1744666x.2021.1850269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Researchers have investigated the potential role of intestinal permeability in Crohn's disease pathogenesis. Intestinal permeability is usually mediated by cytoskeleton and intercellular junctions. The myosin light chain kinase (MLCK) is an enzyme that activates the myosin light chain to exert its function related to cytoskeleton contraction and tight junction regulation. The correlation between MLCK and Crohn's disease pathogenesis has been consistently proven. Areas covered: This study aims to expand the understanding of the regulation and function of MLCK in Crohn's disease. An extensive literature search in the MEDLINE database (via PubMed) has been performed up to Oct. 2020. The roles of MLCK in tight junction activation, intestinal permeability enhancement, and cell signal regulation are comprehensively discussed. Expert opinion: Targeting the MLCK-related pathways such as TNF-α in CD treatment has been put into clinical use. More accurate targeting such as MLCK and TNFR2 has been proposed to reduce side effects. MLCK may also have the potential to become biomarkers in fields like CD activity. With the application of cutting age research methods and tools, the MLCK research could be accelerated.
Collapse
Affiliation(s)
- Yiran Yao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University , Shanghai, China
| | - Qi Feng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
23
|
Platenkamp A, Detmar E, Sepulveda L, Ritz A, Rogers SL, Applewhite DA. The Drosophila melanogaster Rab GAP RN-tre cross-talks with the Rho1 signaling pathway to regulate nonmuscle myosin II localization and function. Mol Biol Cell 2020; 31:2379-2397. [PMID: 32816624 PMCID: PMC7851959 DOI: 10.1091/mbc.e20-03-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
To identify novel regulators of nonmuscle myosin II (NMII) we performed an image-based RNA interference screen using stable Drosophila melanogaster S2 cells expressing the enhanced green fluorescent protein (EGFP)-tagged regulatory light chain (RLC) of NMII and mCherry-Actin. We identified the Rab-specific GTPase-activating protein (GAP) RN-tre as necessary for the assembly of NMII RLC into contractile actin networks. Depletion of RN-tre led to a punctate NMII phenotype, similar to what is observed following depletion of proteins in the Rho1 pathway. Depletion of RN-tre also led to a decrease in active Rho1 and a decrease in phosphomyosin-positive cells by immunostaining, while expression of constitutively active Rho or Rho-kinase (Rok) rescues the punctate phenotype. Functionally, RN-tre depletion led to an increase in actin retrograde flow rate and cellular contractility in S2 and S2R+ cells, respectively. Regulation of NMII by RN-tre is only partially dependent on its GAP activity as overexpression of constitutively active Rabs inactivated by RN-tre failed to alter NMII RLC localization, while a GAP-dead version of RN-tre partially restored phosphomyosin staining. Collectively, our results suggest that RN-tre plays an important regulatory role in NMII RLC distribution, phosphorylation, and function, likely through Rho1 signaling and putatively serving as a link between the secretion machinery and actomyosin contractility.
Collapse
Affiliation(s)
| | - Elizabeth Detmar
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Liz Sepulveda
- Department of Biology, Reed College, Portland, OR 97202
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202
| | - Stephen L Rogers
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | | |
Collapse
|
24
|
Wang S, Wang H, Su X, Liu B, Wang L, Yan H, Mao S, Huang H, Huang C, Cheng M, Wu G. β-adrenergic activation may promote myosin light chain kinase degradation through calpain in pressure overload-induced cardiac hypertrophy: β-adrenergic activation results in MLCK degradation. Biomed Pharmacother 2020; 129:110438. [PMID: 32768940 DOI: 10.1016/j.biopha.2020.110438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND β-adrenergic activation is able to exacerbate cardiac hypertrophy. Myosin light chain kinase (MLCK) and its phosphorylated substrate, phospho-myosin light chain 2 (p-MLC2), play vital roles in regulating cardiac hypertrophy. However, it is not yet clear whether there is a relationship between β-adrenergic activation and MLCK in the progression of cardiac hypertrophy. Therefore, we explored this relationship and the underlying mechanisms in this work. METHODS Cardiac hypertrophy and cardiomyocyte hypertrophy were induced by pressure overload and isoproterenol (ISO) stimulation, respectively. Echocardiography, histological analysis, immunofluorescence and qRT-PCR were used to confirm the successful establishment of the models. A β-blocker (metoprolol) and a calpain inhibitor (calpeptin) were administered to inhibit β-adrenergic activity in rats and calpain in cardiomyocytes, respectively. The protein expression levels of MLCK, myosin light chain 2 (MLC2), p-MLC2, myosin phosphatase 2 (MYPT2), calmodulin (CaM) and calpain were measured using western blotting. A cleavage assay was performed to assess the degradation of recombinant human MLCK by recombinant human calpain. RESULTS The β-blocker alleviated cardiac hypertrophy and dysfunction, increased MLCK and MLC2 phosphorylation and decreased calpain expression in pressure overload-induced cardiac hypertrophy. Additionally, the calpain inhibitor calpeptin attenuated cardiomyocyte hypertrophy, upregulated MLCK and p-MLC2 and reduced MLCK degradation in ISO-induced cardiomyocyte hypertrophy. Recombinant human calpain degraded recombinant human MLCK in vitro in concentration- and time-dependent manners, and this degradation was inhibited by the calpain inhibitor calpeptin. CONCLUSION Our study suggested that β-adrenergic activation may promote the degradation of MLCK through calpain in pressure overload-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Haixiong Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030001, China
| | - Xiaoling Su
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Beilei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Le Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Hui Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Shuai Mao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China; Department of Cardiology, Ezhou Hospital, Renmin Hospital of Wuhan University, Ezhou, 436000, China.
| |
Collapse
|
25
|
Coelho NM, Wang A, Petrovic P, Wang Y, Lee W, McCulloch CA. MRIP Regulates the Myosin IIA Activity and DDR1 Function to Enable Collagen Tractional Remodeling. Cells 2020; 9:cells9071672. [PMID: 32664526 PMCID: PMC7407560 DOI: 10.3390/cells9071672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
DDR1 is a collagen adhesion-mechanoreceptor expressed in fibrotic lesions. DDR1 mediates non-muscle myosin IIA (NMIIA)-dependent collagen remodeling. We discovered that the myosin phosphatase Rho-interacting protein (MRIP), is enriched in DDR1-NMIIA adhesions on collagen. MRIP regulates RhoA- and myosin phosphatase-dependent myosin activity. We hypothesized that MRIP regulates DDR1-NMIIA interactions to enable cell migration and collagen tractional remodeling. After deletion of MRIP in β1-integrin null cells expressing DDR1, in vitro wound closure, collagen realignment, and contraction were reduced. Cells expressing DDR1 and MRIP formed larger and more abundant DDR1 clusters on collagen than cells cultured on fibronectin or cells expressing DDR1 but null for MRIP or cells expressing a non-activating DDR1 mutant. Deletion of MRIP reduced DDR1 autophosphorylation and blocked myosin light chain-dependent contraction. Deletion of MRIP did not disrupt the association of DDR1 with NMIIA. We conclude that MRIP regulates NMIIA-dependent DDR1 cluster growth and activation. Accordingly, MRIP may provide a novel drug target for dysfunctional DDR1-related collagen tractional remodeling in fibrosis.
Collapse
|
26
|
Mechanisms of thrombin-Induced myometrial contractions: Potential targets of progesterone. PLoS One 2020; 15:e0231944. [PMID: 32365105 PMCID: PMC7197857 DOI: 10.1371/journal.pone.0231944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
Intrauterine bleeding during pregnancy is a major risk factor for preterm birth. Thrombin, the most abundant coagulation factor in blood, is associated with uterine myometrial contraction. Here, we investigated the molecular mechanism and signaling of thrombin-induced myometrial contraction. First, histologic studies of placental abruption, as a representative intrauterine bleeding, revealed that thrombin was expressed within the infiltrating hemorrhage and that thrombin receptor (protease-activated receptor 1, PAR1) was highly expressed in myometrial cells surrounding the hemorrhage. Treatment of human myometrial cells with thrombin resulted in augmented contraction via PAR1. Thrombin-induced signaling to myosin was then mediated by activation of myosin light chain kinase- and Rho-induced phosphorylation of myosin light chain-2. In addition, thrombin increased prostaglandin-endoperoxidase synthase-2 (PTGS2 or COX2) mRNA and prostaglandin E2 and F2α synthesis in human myometrial cells. Thrombin significantly increased the mRNA level of interleukine-1β, whereas it decreased the expressions of prostaglandin EP3 and F2α receptors. Progesterone partially blocked thrombin-induced myometrial contractions, which was accompanied by suppression of the thrombin-induced increase of PTGS2 and IL1B mRNA expressions as well as suppression of PAR1 expression. Collectively, thrombin induces myometrial contractions by two mechanisms, including direct activation of myosin and indirect increases in prostaglandin synthesis. The results suggest a therapeutic potential of progesterone for preterm labor complicated by intrauterine bleeding.
Collapse
|
27
|
Costa AR, Sousa SC, Pinto-Costa R, Mateus JC, Lopes CD, Costa AC, Rosa D, Machado D, Pajuelo L, Wang X, Zhou FQ, Pereira AJ, Sampaio P, Rubinstein BY, Mendes Pinto I, Lampe M, Aguiar P, Sousa MM. The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction. eLife 2020; 9:55471. [PMID: 32195665 PMCID: PMC7105375 DOI: 10.7554/elife.55471] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Neurons have a membrane periodic skeleton (MPS) composed of actin rings interconnected by spectrin. Here, combining chemical and genetic gain- and loss-of-function assays, we show that in rat hippocampal neurons the MPS is an actomyosin network that controls axonal expansion and contraction. Using super-resolution microscopy, we analyzed the localization of axonal non-muscle myosin II (NMII). We show that active NMII light chains are colocalized with actin rings and organized in a circular periodic manner throughout the axon shaft. In contrast, NMII heavy chains are mostly positioned along the longitudinal axonal axis, being able to crosslink adjacent rings. NMII filaments can play contractile or scaffolding roles determined by their position relative to actin rings and activation state. We also show that MPS destabilization through NMII inactivation affects axonal electrophysiology, increasing action potential conduction velocity. In summary, our findings open new perspectives on axon diameter regulation, with important implications in neuronal biology.
Collapse
Affiliation(s)
- Ana Rita Costa
- Nerve Regeneration Group, Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sara C Sousa
- Nerve Regeneration Group, Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rita Pinto-Costa
- Nerve Regeneration Group, Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - José C Mateus
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Neuroengineering and Computational Neuroscience Group, INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Cátia Df Lopes
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Neuroengineering and Computational Neuroscience Group, INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Catarina Costa
- Nerve Regeneration Group, Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Neuroengineering and Computational Neuroscience Group, INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - David Rosa
- Nerve Regeneration Group, Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Diana Machado
- Nerve Regeneration Group, Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Luis Pajuelo
- Nerve Regeneration Group, Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Xuewei Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - António J Pereira
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Chromosome Instability and Dynamics Group, Porto, Portugal
| | - Paula Sampaio
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Advanced Light Microscopy, IBMC- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | - Marko Lampe
- Advanced Light Microscopy Facility, EMBL, Heidelberg, Germany
| | - Paulo Aguiar
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Neuroengineering and Computational Neuroscience Group, INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Monica M Sousa
- Nerve Regeneration Group, Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Pillet LE, Cresto N, Saillour Y, Ghézali G, Bemelmans AP, Livet J, Bienvenu T, Rouach N, Billuart P. The intellectual disability protein Oligophrenin-1 controls astrocyte morphology and migration. Glia 2020; 68:1729-1742. [PMID: 32073702 DOI: 10.1002/glia.23801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are involved in several aspects of neuronal development and properties which are altered in intellectual disability (ID). Oligophrenin-1 is a RhoGAP protein implicated in actin cytoskeleton regulation, and whose mutations are associated with X-linked ID. Oligophrenin-1 is expressed in neurons, where its functions have been widely reported at the synapse, as well as in glial cells. However, its roles in astrocytes are still largely unexplored. Using in vitro and in vivo models of oligophrenin1 disruption in astrocytes, we found that oligophrenin1 regulates at the molecular level the RhoA/ROCK/MLC2 pathway in astroglial cells. We also showed at the cellular level that oligophrenin1 modulates astrocyte morphology and migration both in vitro and in vivo, and is involved in glial scar formation. Altogether, these data suggest that oligophrenin1 deficiency alters not only neuronal but also astrocytic functions, which might contribute to the development of ID.
Collapse
Affiliation(s)
- Laure-Elise Pillet
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.,Doctoral School N°562, Paris Descartes University, Paris, France.,Institut Cochin, INSERM UMR 1016, CNRS UMR 8104, Université de Paris, Paris, France
| | - Noémie Cresto
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Yoann Saillour
- Institut Cochin, INSERM UMR 1016, CNRS UMR 8104, Université de Paris, Paris, France
| | - Grégory Ghézali
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut de biologie François Jacob, MIRCen, and CNRS UMR 9199, Université Paris-Sud, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Thierry Bienvenu
- Institut Cochin, INSERM UMR 1016, CNRS UMR 8104, Université de Paris, Paris, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Pierre Billuart
- Institut Cochin, INSERM UMR 1016, CNRS UMR 8104, Université de Paris, Paris, France
| |
Collapse
|
29
|
Schipper K, Drenth AP, van der Burg E, Cornelissen S, Klarenbeek S, Nethe M, Jonkers J. Truncated ASPP2 Drives Initiation and Progression of Invasive Lobular Carcinoma via Distinct Mechanisms. Cancer Res 2020; 80:1486-1497. [PMID: 32060147 DOI: 10.1158/0008-5472.can-19-3607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/21/2019] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Invasive lobular carcinoma (ILC) accounts for 8%-14% of all breast cancer cases. The main hallmark of ILCs is the functional loss of the cell-cell adhesion protein E-cadherin. Nonetheless, loss of E-cadherin alone does not predispose mice to mammary tumor development, indicating that additional perturbations are required for ILC formation. Previously, we identified an N-terminal truncation variant of ASPP2 (t-ASPP2) as a driver of ILC in mice with mammary-specific loss of E-cadherin. Here we showed that expression of t-ASPP2 induced actomyosin relaxation, enabling adhesion and survival of E-cadherin-deficient murine mammary epithelial cells on stiff matrices like fibrillar collagen. The induction of actomyosin relaxation by t-ASPP2 was dependent on its interaction with protein phosphatase 1, but not on t-ASPP2-induced YAP activation. Truncated ASPP2 collaborated with both E-cadherin loss and PI3K pathway activation via PTEN loss in ILC development. t-ASPP2-induced actomyosin relaxation was required for ILC initiation, but not progression. Conversely, YAP activation induced by t-ASPP2 contributed to tumor growth and progression while being dispensable for tumor initiation. Together, these findings highlight two distinct mechanisms through which t-ASPP2 promotes ILC initiation and progression. SIGNIFICANCE: Truncated ASPP2 cooperates with E-cadherin and PTEN loss to drive breast cancer initiation and progression via two distinct mechanisms. ASPP2-induced actomyosin relaxation drives tumor initiation, while ASPP2-mediated YAP activation enhances tumor progression.
Collapse
Affiliation(s)
- Koen Schipper
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Samuel Cornelissen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Micha Nethe
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
30
|
Localized Inhibition of Protein Phosphatase 1 by NUAK1 Promotes Spliceosome Activity and Reveals a MYC-Sensitive Feedback Control of Transcription. Mol Cell 2020; 77:1322-1339.e11. [PMID: 32006464 PMCID: PMC7086158 DOI: 10.1016/j.molcel.2020.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 01/19/2023]
Abstract
Deregulated expression of MYC induces a dependence on the NUAK1 kinase, but the molecular mechanisms underlying this dependence have not been fully clarified. Here, we show that NUAK1 is a predominantly nuclear protein that associates with a network of nuclear protein phosphatase 1 (PP1) interactors and that PNUTS, a nuclear regulatory subunit of PP1, is phosphorylated by NUAK1. Both NUAK1 and PNUTS associate with the splicing machinery. Inhibition of NUAK1 abolishes chromatin association of PNUTS, reduces spliceosome activity, and suppresses nascent RNA synthesis. Activation of MYC does not bypass the requirement for NUAK1 for spliceosome activity but significantly attenuates transcription inhibition. Consequently, NUAK1 inhibition in MYC-transformed cells induces global accumulation of RNAPII both at the pause site and at the first exon-intron boundary but does not increase mRNA synthesis. We suggest that NUAK1 inhibition in the presence of deregulated MYC traps non-productive RNAPII because of the absence of correctly assembled spliceosomes. Nuclear NUAK1 associates with PP1 and phosphorylates its targeting subunit PNUTS NUAK1, PP1, and PNUTS form a trimer that associates with the splicing machinery Inhibition of NUAK1 reduces spliceosome activity and nascent RNA synthesis When MYC is deregulated, NUAK1 inhibition traps RNAPII at the intron-exon boundary
Collapse
|
31
|
Caven L, Carabeo RA. Pathogenic Puppetry: Manipulation of the Host Actin Cytoskeleton by Chlamydia trachomatis. Int J Mol Sci 2019; 21:ijms21010090. [PMID: 31877733 PMCID: PMC6981773 DOI: 10.3390/ijms21010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022] Open
Abstract
The actin cytoskeleton is crucially important to maintenance of the cellular structure, cell motility, and endocytosis. Accordingly, bacterial pathogens often co-opt the actin-restructuring machinery of host cells to access or create a favorable environment for their own replication. The obligate intracellular organism Chlamydia trachomatis and related species exemplify this dynamic: by inducing actin polymerization at the site of pathogen-host attachment, Chlamydiae induce their own uptake by the typically non-phagocytic epithelium they infect. The interaction of chlamydial adhesins with host surface receptors has been implicated in this effect, as has the activity of the chlamydial effector TarP (translocated actin recruitment protein). Following invasion, C. trachomatis dynamically assembles and maintains an actin-rich cage around the pathogen’s membrane-bound replicative niche, known as the chlamydial inclusion. Through further induction of actin polymerization and modulation of the actin-crosslinking protein myosin II, C. trachomatis promotes egress from the host via extrusion of the inclusion. In this review, we present the experimental findings that can inform our understanding of actin-dependent chlamydial pathogenesis, discuss lingering questions, and identify potential avenues of future study.
Collapse
Affiliation(s)
- Liam Caven
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
- Correspondence: ; Tel.: +1-402-836-9778
| |
Collapse
|
32
|
Dong G, Huang Y, Ding H, Luo L, Zhang Y, Huang H, Ruan H. Mypt1 regulates Bmp signaling to promote embryonic exocrine pancreas growth in zebrafish. Genesis 2019; 58:e23345. [PMID: 31705616 DOI: 10.1002/dvg.23345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Myosin phosphatase targeting subunit 1 (Mypt1) is the regulatory subunit of myosin phosphatase which dephosphorylates the light chain of myosin II to inhibit its contraction. Although biochemical properties of Mypt1 have been characterized in detail, its biological functions in organisms are not well understood. The zebrafish mypt1 sq181 allele was found defective in the ventral pancreatic bud and extrapancreatic duct development, resulting in dysplasia of exocrine pancreas. In mypt1 sq181 mutant, the early growth of the ventral pancreatic bud was initiated but failed to expand due to impaired cell proliferation and increased cell apoptosis. As Mypt1 is essential for cell migration, the loss-of-function of Mypt1 in the mutant disrupted the lateral plate mesoderm migration during gut looping, therefore, altering the Bmp2a expression pattern within it, and eventually leading to impaired Bmp signaling in the adjacent exocrine pancreas. Overexpression of bmp2a could rescue the development of exocrine pancreas, suggesting that the impaired Bmp2a signaling is responsible for the pancreatic development defects. Bmp2a has been reported to promote the early specification of the ventral pancreatic bud, and our study reveals that it continues to serve as a cell proliferation/survival signal to ensure pancreatic bud growth properly in zebrafish.
Collapse
Affiliation(s)
- Guoping Dong
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Yueyue Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Huimei Ding
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Honghui Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Hua Ruan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Miller KN, Clark JP, Martin SA, Howell PR, Burhans MS, Haws SA, Johnson NB, Rhoads TW, Pavelec DM, Eliceiri KW, Roopra AS, Ntambi JM, Denu JM, Parks BW, Anderson RM. PGC-1a integrates a metabolism and growth network linked to caloric restriction. Aging Cell 2019; 18:e12999. [PMID: 31267675 PMCID: PMC6718593 DOI: 10.1111/acel.12999] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022] Open
Abstract
Deleterious changes in energy metabolism have been linked to aging and disease vulnerability, while activation of mitochondrial pathways has been linked to delayed aging by caloric restriction (CR). The basis for these associations is poorly understood, and the scope of impact of mitochondrial activation on cellular function has yet to be defined. Here, we show that mitochondrial regulator PGC-1a is induced by CR in multiple tissues, and at the cellular level, CR-like activation of PGC-1a impacts a network that integrates mitochondrial status with metabolism and growth parameters. Transcriptional profiling reveals that diverse functions, including immune pathways, growth, structure, and macromolecule homeostasis, are responsive to PGC-1a. Mechanistically, these changes in gene expression were linked to chromatin remodeling and RNA processing. Metabolic changes implicated in the transcriptional data were confirmed functionally including shifts in NAD metabolism, lipid metabolism, and membrane lipid composition. Delayed cellular proliferation, altered cytoskeleton, and attenuated growth signaling through post-transcriptional and post-translational mechanisms were also identified as outcomes of PGC-1a-directed mitochondrial activation. Furthermore, in vivo in tissues from a genetically heterogeneous mouse population, endogenous PGC-1a expression was correlated with this same metabolism and growth network. These data show that small changes in metabolism have broad consequences that arguably would profoundly alter cell function. We suggest that this PGC-1a sensitive network may be the basis for the association between mitochondrial function and aging where small deficiencies precipitate loss of function across a spectrum of cellular activities.
Collapse
Affiliation(s)
- Karl N. Miller
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Josef P. Clark
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Stephen A. Martin
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Porsha R. Howell
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Maggie S. Burhans
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Spencer A. Haws
- Department of Biomolecular Chemistry University of Wisconsin Madison Wisconsin USA
- Wisconsin Institute for Discovery University of Wisconsin Madison Wisconsin USA
| | - Nathan B. Johnson
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Timothy W Rhoads
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Derek M. Pavelec
- Biotechnology Center University of Wisconsin Madison Wisconsin USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation University of Wisconsin Madison Wisconsin USA
| | - Avtar S. Roopra
- Department of Neuroscience University of Wisconsin Madison Wisconsin USA
| | - James M. Ntambi
- Department of Biochemistry University of Wisconsin Madison Wisconsin USA
- Department of Nutritional Sciences University of Wisconsin Madison Wisconsin USA
| | - John M. Denu
- Department of Biomolecular Chemistry University of Wisconsin Madison Wisconsin USA
- Wisconsin Institute for Discovery University of Wisconsin Madison Wisconsin USA
- Morgridge Institute for Research Madison Wisconsin USA
| | - Brian W. Parks
- Department of Nutritional Sciences University of Wisconsin Madison Wisconsin USA
| | - Rozalyn M. Anderson
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
- Geriatric Research, Education, and Clinical Center William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
| |
Collapse
|
34
|
Generation of Spontaneous Tone by Gastrointestinal Sphincters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31183822 DOI: 10.1007/978-981-13-5895-1_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
An important feature of the gastrointestinal (GI) muscularis externa is its ability to generate phasic contractile activity. However, in some GI regions, a more sustained contraction, referred to as "tone," also occurs. Sphincters are muscles oriented in an annular manner that raise intraluminal pressure, thereby reducing or blocking the movement of luminal contents from one compartment to another. Spontaneous tone generation is often a feature of these muscles. Four distinct smooth muscle sphincters are present in the GI tract: the lower esophageal sphincter (LES), the pyloric sphincter (PS), the ileocecal sphincter (ICS), and the internal anal sphincter (IAS). This chapter examines how tone generation contributes to the functional behavior of these sphincters. Historically, tone was attributed to contractile activity arising directly from the properties of the smooth muscle cells. However, there is increasing evidence that interstitial cells of Cajal (ICC) play a significant role in tone generation in GI muscles. Indeed, ICC are present in each of the sphincters listed above. In this chapter, we explore various mechanisms that may contribute to tone generation in sphincters including: (1) summation of asynchronous phasic activity, (2) partial tetanus, (3) window current, and (4) myofilament sensitization. Importantly, the first two mechanisms involve tone generation through summation of phasic events. Thus, the historical distinction between "phasic" versus "tonic" smooth muscles in the GI tract requires revision. As described in this chapter, it is clear that the unique functional role of each sphincter in the GI tract is accompanied by a unique combination of contractile mechanisms.
Collapse
|
35
|
An Interaction Network of the Human SEPT9 Established by Quantitative Mass Spectrometry. G3-GENES GENOMES GENETICS 2019; 9:1869-1880. [PMID: 30975701 PMCID: PMC6553528 DOI: 10.1534/g3.119.400197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Septins regulate the organization of the actin cytoskeleton, vesicle transport and fusion, chromosome alignment and segregation, and cytokinesis in mammalian cells. SEPT9 is part of the core septin hetero-octamer in human cells which is composed of SEPT2, SEPT6, SEPT7, and SEPT9. SEPT9 has been linked to a variety of intracellular functions as well as to diseases and diverse types of cancer. A targeted high-throughput approach to systematically identify the interaction partners of SEPT9 has not yet been performed. We applied a quantitative proteomics approach to establish an interactome of SEPT9 in human fibroblast cells. Among the newly identified interaction partners were members of the myosin family and LIM domain containing proteins. Fluorescence microscopy of SEPT9 and its interaction partners provides additional evidence that SEPT9 might participate in vesicle transport from and to the plasma membrane as well as in the attachment of actin stress fibers to cellular adhesions.
Collapse
|
36
|
Keef KD, Cobine CA. Control of Motility in the Internal Anal Sphincter. J Neurogastroenterol Motil 2019; 25:189-204. [PMID: 30827084 PMCID: PMC6474703 DOI: 10.5056/jnm18172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
The internal anal sphincter (IAS) plays an important role in the maintenance of fecal continence since it generates tone and is responsible for > 70% of resting anal pressure. During normal defecation the IAS relaxes. Historically, tone generation in gastrointestinal muscles was attributed to mechanisms arising directly from smooth muscle cells, ie, myogenic activity. However, slow waves are now known to play a fundamental role in regulating gastrointestinal motility and these electrical events are generated by the interstitial cells of Cajal. Recently, interstitial cells of Cajal, as well as slow waves, have also been identified in the IAS making them viable candidates for tone generation. In this review we discuss four different mechanisms that likely contribute to tone generation in the IAS. Three of these involve membrane potential, L-type Ca2+ channels and electromechanical coupling (ie, summation of asynchronous phasic activity, partial tetanus, and window current), whereas the fourth involves the regulation of myofilament Ca2+ sensitivity. Contractile activity in the IAS is also modulated by sympathetic motor neurons that significantly increase tone and anal pressure, as well as inhibitory motor neurons (particularly nitrergic and vasoactive intestinal peptidergic) that abolish contraction and assist with normal defecation. Alterations in IAS motility are associated with disorders such as fecal incontinence and anal fissures that significantly decrease the quality of life. Understanding in greater detail how tone is regulated in the IAS is important for developing more effective treatment strategies for these debilitating defecation disorders.
Collapse
Affiliation(s)
- Kathleen D Keef
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
37
|
Xie Y, Perrino BA. Quantitative in situ proximity ligation assays examining protein interactions and phosphorylation during smooth muscle contractions. Anal Biochem 2019; 577:1-13. [PMID: 30981700 DOI: 10.1016/j.ab.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022]
Abstract
Antibody-based in situ proximity ligation assays (isPLA) have the potential to study protein phosphorylation and protein interactions with spatial resolution in intact tissues. However, the application of isPLA at the tissue level is limited by a lack of appropriate positive and negative controls and the difficulty in accounting for changes in tissue shape. Here we demonstrate a set of experimental and computational approaches using gastric fundus smooth muscles to improve the validity of quantitative isPLA. Appropriate positive and negative biological controls and PLA technical controls were selected to ensure experimental rigor. To account for changes in morphology between relaxed and contracted smooth muscles, target PLA spots were normalized to smooth muscle myosin light chain 20 PLA spots or the cellular cross-sectional areas. We describe the computational steps necessary to filter out false-positive improperly sized spots and set the thresholds for counting true positive PLA spots to quantify the PLA signals. We tested our approach by examining protein phosphorylation and protein interactions in smooth muscle myofilament Ca2+ sensitization pathways from resting and contracted gastric fundus smooth muscles. In conclusion, our tissue-level isPLA method enables unbiased quantitation of protein phosphorylation and protein-protein interactions in intact smooth muscle tissues, suggesting the potential for quantitative isPLA applications in other types of intact tissues.
Collapse
Affiliation(s)
- Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada Reno, School of Medicine, MS 0352, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada Reno, School of Medicine, MS 0352, 1664 N Virginia St, Reno, NV, 89557, USA.
| |
Collapse
|
38
|
CPI-17-mediated contraction of vascular smooth muscle is essential for the development of hypertension in obese mice. J Genet Genomics 2019; 46:109-118. [PMID: 30948334 DOI: 10.1016/j.jgg.2019.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Several factors have been implicated in obesity-related hypertension, but the genesis of the hypertension is largely unknown. In this study, we found a significantly upregulated expression of CPI-17 (C-kinase-potentiated protein phosphatase 1 inhibitor of 17 kDa) and protein kinase C (PKC) isoforms in the vascular smooth muscles of high-fat diet (HFD)-fed obese mice. The obese wild-type mice showed a significant elevation of blood pressure and enhanced calcium-sensitized contraction of vascular smooth muscles. However, the obese CPI-17-deficient mice showed a normotensive blood pressure, and the calcium-sensitized contraction was consistently reduced. In addition, the mutant muscle displayed an abolished responsive force to a PKC activator and a 30%-50% reduction in both the initial peak force and sustained force in response to various G protein-coupled receptor (GPCR) agonists. Our observations showed that CPI-17-mediated calcium sensitization is mediated through a GPCR/PKC/CPI-17/MLCP/RLC signaling pathway. We therefore propose that the upregulation of CPI-17-mediated calcium-sensitized vasocontraction by obesity contributes to the development of obesity-related hypertension.
Collapse
|
39
|
Lubomirov LT, Gagov H, Schroeter MM, Wiesner RJ, Franko A. Augmented contractility of murine femoral arteries in a streptozotocin diabetes model is related to increased phosphorylation of MYPT1. Physiol Rep 2019; 7:e13975. [PMID: 30740930 PMCID: PMC6369311 DOI: 10.14814/phy2.13975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with high prevalence, and a major risk factor for macro- and microvascular abnormalities. This study was undertaken to explore the mechanisms of hypercontractility of murine femoral arteries (FA) obtained from mice with streptozotocin (STZ)-induced diabetes and its relation to the phosphorylation profile of the myosin phosphatase target subunit 1, MYPT1. The immunoreactivity of MYPT1 toward phospho-MYPT1-T696, MYPT1-T853, or MYPT1-S695, used as a read out for MYPT1 phosphorylation, has been studied by Western Blotting. Contractile activity of FA from control and STZ mice has been studied by wire myography. At basal conditions (no treatment), the immunoreactivity of MYPT1-T696/T853 was ~2-fold higher in the STZ arteries compared with controls. No changes in MYPT1-T696/853 phosphorylation were observed after stimulation with the Thromboxan-A2 analog, U46619. Neither basal nor U46619-stimulated phosphorylation of MYPT1 at S695 was affected by STZ treatment. Mechanical distensibility and basal tone of FA obtained from STZ animals were similar to controls. Maximal force after treatment of FA with the contractile agonists phenylephrine (10 μmol/L) or U46619 (1 μmol/L) was augmented in the arteries of STZ mice by ~2- and ~1.5-fold, respectively. In summary, our study suggests that development of a hypercontractile phenotype in murine FA in STZ diabetes is at least partially related to an increase in phosphorylation of MLCP at MYPT1-T696/853. Interestingly, the phosphorylation at S695 site was not altered in STZ-induced diabetes, supporting the view that S695 may serve as a sensor for mechanical activity which is not directly involved in tone regulation.
Collapse
Affiliation(s)
| | - Hristo Gagov
- Faculty of BiologySofia University St. Kliment OhridskiSofiaBulgaria
| | | | - Rudolf J. Wiesner
- Institute of Vegetative PhysiologyUniversity of CologneKölnGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)KölnGermany
| | - Andras Franko
- Institute of Vegetative PhysiologyUniversity of CologneKölnGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
- Division of EndocrinologyDepartment of Internal Medicine IVDiabetology, Angiology, Nephrology and Clinical ChemistryUniversity of TübingenTübingenGermany
| |
Collapse
|
40
|
TesG is a type I secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection. Nat Microbiol 2019; 4:459-469. [PMID: 30617346 DOI: 10.1038/s41564-018-0322-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/16/2018] [Indexed: 02/05/2023]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen with intricate intracellular regulatory networks that enable it to adapt to and flourish in a variety of biotic and abiotic habitats. However, the mechanism permitting the persistent survival of P. aeruginosa within host tissues and causing chronic symptoms still remains largely elusive. By using in situ RNA sequencing, here we show that P. aeruginosa adopts different metabolic pathways and virulence repertoires to dominate the progression of acute and chronic lung infections. Notably, a virulence factor named TesG, which is controlled by the vital quorum-sensing system and secreted by the downstream type I secretion system, can suppress the host inflammatory response and facilitate the development of chronic lung infection. Mechanically, TesG can enter the intracellular compartment of macrophages through clathrin-mediated endocytosis, competitively inhibit the activity of eukaryotic small GTPase and thus suppress subsequent neutrophil influx, cell cytoskeletal rearrangement of macrophages and the secretion of cytokines and chemokines. Therefore, the identification of TesG in this study reveals a type I secretion apparatus of P. aeruginosa that functions during the host-pathogen interaction, and may open an avenue for the further mechanistic study of chronic respiratory diseases and the development of antibacterial therapy.
Collapse
|
41
|
Activation of the Nuclear Factor-kappa B Signaling Pathway Damages the Epithelial Barrier in the Human Pancreatic Ductal Adenocarcinoma Cell Line HPAF-II. Pancreas 2019; 48:1380-1385. [PMID: 31688605 PMCID: PMC6867665 DOI: 10.1097/mpa.0000000000001441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Injury of the pancreatic duct epithelial barrier plays a critical role in the development of acute pancreatitis. The activity of the nuclear factor-kappa B (NF-κB) pathway is involved in the disruption of the pancreatic duct epithelial barrier. This study investigated how NF-κB impacts the dysfunction of the pancreatic duct epithelial barrier. METHODS A human pancreatic ductal adenocarcinoma cell line was treated with tumor necrosis factor-alpha (TNF-α) and pyrrolidine dithiocarbamate. The expression levels of p65 and p-p65 were detected to evaluate NF-κB activity. Tricellulin (TRIC) expression levels were measured to assess the change in tight junction (TJ)-related proteins. The expression and localization of myosin light chain kinase (MLCK) were investigated. The structure of TJs and monolayer permeability were also examined. RESULTS NF-κB was activated by TNF-α and suppressed by pyrrolidine dithiocarbamate. Activation of NF-κB upregulated the expression levels of TRIC and MLCK. Broadened TJs were observed after NF-κB was activated. Lower monolayer permeability was observed when NF-κB was suppressed. CONCLUSIONS Activation of the NF-κB pathway induced by TNF-α leads to increased TRIC and MLCK expression, resulting in broadened TJs and high permeability, which contribute to damage to the pancreatic duct epithelial barrier.
Collapse
|
42
|
González-Torres A, Bañuelos-Villegas EG, Martínez-Acuña N, Sulpice E, Gidrol X, Alvarez-Salas LM. MYPT1 is targeted by miR-145 inhibiting viability, migration and invasion in 2D and 3D HeLa cultures. Biochem Biophys Res Commun 2018; 507:348-354. [DOI: 10.1016/j.bbrc.2018.11.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/06/2018] [Indexed: 11/27/2022]
|
43
|
Angulo-Urarte A, Casado P, Castillo SD, Kobialka P, Kotini MP, Figueiredo AM, Castel P, Rajeeve V, Milà-Guasch M, Millan J, Wiesner C, Serra H, Muixi L, Casanovas O, Viñals F, Affolter M, Gerhardt H, Huveneers S, Belting HG, Cutillas PR, Graupera M. Endothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility. Nat Commun 2018; 9:4826. [PMID: 30446640 PMCID: PMC6240100 DOI: 10.1038/s41467-018-07172-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is a dynamic process relying on endothelial cell rearrangements within vascular tubes, yet the underlying mechanisms and functional relevance are poorly understood. Here we show that PI3Kα regulates endothelial cell rearrangements using a combination of a PI3Kα-selective inhibitor and endothelial-specific genetic deletion to abrogate PI3Kα activity during vessel development. Quantitative phosphoproteomics together with detailed cell biology analyses in vivo and in vitro reveal that PI3K signalling prevents NUAK1-dependent phosphorylation of the myosin phosphatase targeting-1 (MYPT1) protein, thereby allowing myosin light chain phosphatase (MLCP) activity and ultimately downregulating actomyosin contractility. Decreased PI3K activity enhances actomyosin contractility and impairs junctional remodelling and stabilization. This leads to overstretched endothelial cells that fail to anastomose properly and form aberrant superimposed layers within the vasculature. Our findings define the PI3K/NUAK1/MYPT1/MLCP axis as a critical pathway to regulate actomyosin contractility in endothelial cells, supporting vascular patterning and expansion through the control of cell rearrangement. Angiogenesis requires dynamic endothelial rearrangements and relative position changes within the vascular tubes. Here the authors show that a PI3K/NUAK1/MYPT1/MLCP pathway regulates actomyosin contractility in endothelial cells and cellular rearrangement during vascular patterning.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pedro Casado
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sandra D Castillo
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Piotr Kobialka
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ana M Figueiredo
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Vinothini Rajeeve
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Maria Milà-Guasch
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Jaime Millan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Calle Nicolás Cabrera, 28049, Madrid, Spain
| | - Cora Wiesner
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Helena Serra
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Laia Muixi
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Oriol Casanovas
- Translation Research Laboratory, ProCURE, Oncobell Program, IDIBELL, Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Viñals
- Translation Research Laboratory, ProCURE, Oncobell Program, IDIBELL, Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain.,Departament de Ciències Fisiològiques II, Universitat de Barcelona, Carrer de la Feixa Llarga, 08907, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Holger Gerhardt
- Max-Delbrueck Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany.,The German Center for Cardiovascular Research (DZHK), Oudenarder Str. 16, 13347, Berlin, Germany.,The Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mariona Graupera
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain. .,CIBERONC, Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain.
| |
Collapse
|
44
|
Chang AN, Gao N, Liu Z, Huang J, Nairn AC, Kamm KE, Stull JT. The dominant protein phosphatase PP1c isoform in smooth muscle cells, PP1cβ, is essential for smooth muscle contraction. J Biol Chem 2018; 293:16677-16686. [PMID: 30185619 PMCID: PMC6204911 DOI: 10.1074/jbc.ra118.003083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/30/2018] [Indexed: 12/29/2022] Open
Abstract
Contractile force development of smooth muscle is controlled by balanced kinase and phosphatase activities toward the myosin regulatory light chain (RLC). Numerous biochemical and pharmacological studies have investigated the specificity and regulatory activity of smooth muscle myosin light-chain phosphatase (MLCP) bound to myosin filaments and comprised of the regulatory myosin phosphatase target subunit 1 (MYPT1) and catalytic protein phosphatase 1cβ (PP1cβ) subunits. Recent physiological and biochemical evidence obtained with smooth muscle tissues from a conditional MYPT1 knockout suggests that a soluble, MYPT1-unbound form of PP1cβ may additionally contribute to myosin RLC dephosphorylation and relaxation of smooth muscle. Using a combination of isoelectric focusing and isoform-specific immunoblotting, we found here that more than 90% of the total PP1c in mouse smooth muscles is the β isoform. Moreover, conditional knockout of PP1cα or PP1cγ in adult smooth muscles did not result in an apparent phenotype in mice up to 6 months of age and did not affect smooth muscle contractions ex vivo In contrast, smooth muscle-specific conditional PP1cβ knockout decreased contractile force development in bladder, ileal, and aortic tissues and reduced mouse survival. Bladder smooth muscle tissue from WT mice was selectively permeabilized to remove soluble PP1cβ to measure contributions of total (α-toxin treatment) and myosin-bound (Triton X-100 treatment) phosphatase activities toward phosphorylated RLC in myofilaments. Triton X-100 reduced PP1cβ content by 60% and the rate of RLC dephosphorylation by 2-fold. These results are consistent with the selective dephosphorylation of RLC by both MYPT1-bound and -unbound PP1cβ forms in smooth muscle.
Collapse
Affiliation(s)
- Audrey N Chang
- From the Departments of Physiology and
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040 and
| | - Ning Gao
- From the Departments of Physiology and
| | | | | | - Angus C Nairn
- the Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| | | | | |
Collapse
|
45
|
Basu S, Barbur I, Calderon A, Banerjee S, Proweller A. Notch signaling regulates arterial vasoreactivity through opposing functions of Jagged1 and Dll4 in the vessel wall. Am J Physiol Heart Circ Physiol 2018; 315:H1835-H1850. [PMID: 30168730 DOI: 10.1152/ajpheart.00293.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Functional interactions between endothelial cells (ECs) and smooth muscle cells (SMCs) in the arterial wall are necessary for controlling vasoreactivity that underlies vascular resistance and tone. Key signaling pathways converge on the phosphorylation of myosin light chain (p-MLC), the molecular signature of force production in SMCs, through coordinating the relative activities of myosin light chain kinase (MLCK) and myosin phosphatase (MP). Notch signaling in the vessel wall serves critical roles in arterial formation and maturation and has been implicated in arterial vasoregulation. In this report, we hypothesized that Notch signaling through ligands Jagged1 (in SMCs) and delta-like protein-4 (Dll4; in ECs) regulates vasoreactivity via homotypic (SMC-SMC) and heterotypic (EC-SMC) cell interactions. Using ligand induction assays, we demonstrated that Jagged1 selectively induced smooth muscle MLCK gene expression and p-MLC content while inhibiting MP function (i.e., increased Ca2+ sensitization) in a Rho kinase II-dependent manner. Likewise, selective deficiency of smooth muscle Jagged1 in mice resulted in MLCK and p-MLC loss, reduced Ca2+ sensitization, and impaired arterial force generation measured by myography. In contrast, smooth muscle Notch signaling triggered by Dll4 increased expression of MP-targeting subunit 1 (MYPT1; the MP regulatory subunit), whereas arteries from endothelial Dll4-deficient mice featured reduced MYPT1 levels, enhanced force production, and impaired relaxation independent of endothelium-derived nitric oxide signaling. Taken together, this study identifies novel opposing vasoregulatory functions for ligand-specific Notch signaling in the vessel wall, underscoring instructional signaling between ECs and SMCs and suggesting that Notch signals might behave as a "rheostat" in arterial tone control. NEW & NOTEWORTHY The present study unveils novel roles for ligand-specific Notch signaling in arterial function. Smooth muscle Jagged1 and endothelial cell delta-like protein-4 ligands exhibit selective regulation of myosin light chain kinase and myosin phosphatase-targeting subunit 1/myosin phosphatase, respectively, providing a mechanistic link through which Notch signals modulate contractile activities in vascular smooth muscle. These findings may inform vascular derangements observed in human syndromes of Notch signaling deficiency while offering fundamental molecular insights into arterial physiological function.
Collapse
Affiliation(s)
- Sanchita Basu
- Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University , Cleveland, Ohio
| | - Iulia Barbur
- Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University , Cleveland, Ohio
| | - Alexander Calderon
- Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University , Cleveland, Ohio
| | - Suhanti Banerjee
- Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University , Cleveland, Ohio
| | - Aaron Proweller
- Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
46
|
Xie Y, Han KH, Grainger N, Li W, Corrigan RD, Perrino BA. A role for focal adhesion kinase in facilitating the contractile responses of murine gastric fundus smooth muscles. J Physiol 2018. [PMID: 29528115 DOI: 10.1113/jp275406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Activation of focal adhesion kinase (FAK) by integrin signalling facilitates smooth muscle contraction by transmitting the force generated by myofilament activation to the extracellular matrix and throughout the smooth muscle tissue. Here we report that electrical field stimulation (EFS) of cholinergic motor neurons activates FAK in gastric fundus smooth muscles, and that FAK activation by EFS is atropine-sensitive but nicardipine-insensitive. PDBu and calyculin A contracted gastric fundus muscles Ca2+ -independently and also activated FAK. Inhibition of FAK activation inhibits the contractile responses evoked by EFS, and inhibits CPI-17 phosphorylation at T38. This study indicates that mechanical force or tension is sufficient to activate FAK, and that FAK appears to be involved in the activation of the protein kinase C-CPI-17 Ca2+ sensitization pathway in gastric fundus smooth muscles. These results reveal a novel role for FAK in gastric fundus smooth muscle contraction by facilitating CPI-17 phosphorylation. ABSTRACT Smooth muscle contraction involves regulating myosin light chain phosphorylation and dephosphorylation by myosin light chain kinase and myosin light chain phosphatase. C-kinase potentiated protein phosphatase-1 inhibitor of 17 kDa (CPI-17) and myosin phosphatase targeting subunit of myosin light-chain phosphatase (MYPT1) are crucial for regulating gastrointestinal smooth muscle contraction by inhibiting myosin light chain phosphatase. Integrin signalling involves the dynamic recruitment of several proteins, including focal adhesion kinase (FAK), to focal adhesions. FAK tyrosine kinase activation is involved in cell adhesion to the extracellular matrix via integrin signalling. FAK participates in linking the force generated by myofilament activation to the extracellular matrix and throughout the smooth muscle tissue. Here, we show that cholinergic stimulation activates FAK in gastric fundus smooth muscles. Electrical field stimulation in the presence of Nω -nitro-l-arginine methyl ester and MRS2500 contracted gastric fundus smooth muscle strips and increased FAK Y397 phosphorylation (pY397). Atropine blocked the contractions and prevented the increase in pY397. The FAK inhibitor PF-431396 inhibited the contractions and the increase in pY397. PF-431396 also inhibited the electrical field stimulation-induced increase in CPI-17 T38 phosphorylation, and reduced MYPT1 T696 and T853, and myosin light chain S19 phosphorylation. Ca2+ influx was unaffected by PF-431396. Nicardipine inhibited the contractions but had no effect on the increase in pY397. Phorbol 12,13-dibutyrate or calyculin A contracted gastric fundus smooth muscle strips Ca2+ independently and increased pY397. Our findings suggest that FAK is activated by mechanical forces during contraction and reveal a novel role of FAK in the regulation of CPI-17 phosphorylation.
Collapse
Affiliation(s)
- Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Koon Hee Han
- Department of Internal Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Nathan Grainger
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Wen Li
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Robert D Corrigan
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
47
|
Hu X, Li Z, Ding Y, Geng Q, Xiahou Z, Ru H, Dong MQ, Xu X, Li J. Chk1 modulates the interaction between myosin phosphatase targeting protein 1 (MYPT1) and protein phosphatase 1cβ (PP1cβ). Cell Cycle 2018; 17:421-427. [PMID: 29262732 PMCID: PMC5927650 DOI: 10.1080/15384101.2017.1418235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is an instrumental kinase that modulates many aspects of the cell cycle. Previous investigations have indicated that Plk1 is a target of the DNA damage response, and Plk1 inhibition is dependent on ATM/ATR and Chk1. But the exact mechanism remains elusive. In a proteomic screen to identify Chk1-interacting proteins, we found that myosin phosphatase targeting protein 1 (MYPT1) was present in the immunocomplex. MYPT1 is phosphorylated by CDK1, thus recruiting protein phosphatase 1β (PP1cβ) to dephosphorylate and inactivate Plk1. Here we identified that Chk1 directly interacts with MYPT1 and preferentially phosphorylates MYPT1 at Ser20, which is essential for MYPT1-PP1cβ interaction and subsequent Plk1 dephosphorylation. Phosphorylation of Ser20 is abolished during mitotic damage when Chk1 is inhibited. The degradation of MYPT1 is also regulated by Chk1 phosphorylation. Our results thus unveil the underlying machinery that attenuates Plk1 activity during mitotic damage through Chk1-induced phosphorylation of MYPT1.
Collapse
Affiliation(s)
- Xiaomei Hu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhe Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qizhi Geng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhikai Xiahou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huanwei Ru
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
48
|
Kovacs-Kasa A, Kim KM, Cherian-Shaw M, Black SM, Fulton DJ, Verin AD. Extracellular adenosine-induced Rac1 activation in pulmonary endothelium: Molecular mechanisms and barrier-protective role. J Cell Physiol 2018; 233:5736-5746. [PMID: 29168172 DOI: 10.1002/jcp.26281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
We have previously shown that Gs-coupled adenosine receptors (A2a) are primarily involved in adenosine-induced human pulmonary artery endothelial cell (HPAEC) barrier enhancement. However, the downstream events that mediate the strengthening of the endothelial cell (EC) barrier via adenosine signaling are largely unknown. In the current study, we tested the overall hypothesis that adenosine-induced Rac1 activation and EC barrier enhancement is mediated by Gs-dependent stimulation of cAMP-dependent Epac1-mediated signaling cascades. Adenoviral transduction of HPAEC with constitutively-active (C/A) Rac1 (V12Rac1) significantly increases transendothelial electrical resistance (TER) reflecting an enhancement of the EC barrier. Conversely, expression of an inactive Rac1 mutant (N17Rac1) decreases TER reflecting a compromised EC barrier. The adenosine-induced increase in TER was accompanied by activation of Rac1, decrease in contractility (MLC dephosphorylation), but not Rho inhibition. Conversely, inhibition of Rac1 activity attenuates adenosine-induced increase in TER. We next examined the role of cAMP-activated Epac1 and its putative downstream targets Rac1, Vav2, Rap1, and Tiam1. Depletion of Epac1 attenuated the adenosine-induced Rac1 activation and the increase in TER. Furthermore, silencing of Rac1 specific guanine nucleotide exchange factors (GEFs), Vav2 and Rap1a expression significantly attenuated adenosine-induced increases in TER and activation of Rac1. Depletion of Rap1b only modestly impacted adenosine-induced increases in TER and Tiam1 depletion had no effect on adenosine-induced Rac1 activation and TER. Together these data strongly suggest that Rac1 activity is required for adenosine-induced EC barrier enhancement and that the activation of Rac1 and ability to strengthen the EC barrier depends, at least in part, on cAMP-dependent Epac1/Vav2/Rap1-mediated signaling.
Collapse
Affiliation(s)
- Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Kyung Mi Kim
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Stephen M Black
- Center for Lung Vascular Pathobiology, University of Arizona, Phoenix, Arizona
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
49
|
Grey J, Jones D, Wilson L, Nakjang S, Clayton J, Temperley R, Clark E, Gaughan L, Robson C. Differential regulation of the androgen receptor by protein phosphatase regulatory subunits. Oncotarget 2018; 9:3922-3935. [PMID: 29423094 PMCID: PMC5790511 DOI: 10.18632/oncotarget.22883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022] Open
Abstract
The Androgen Receptor (AR) is a key molecule in the development, maintenance and progression of prostate cancer (PC). However, the relationship between the AR and co-regulatory proteins that facilitate AR activity in castrate resistant settings remain understudied. Here we show that protein phosphatase 1 regulatory subunits, identified from a phosphatase RNAi screen, direct PP1 catalytic subunits to a varied yet significant response in AR function. As such, we have characterised the PP1β holoenzyme, myosin phosphatase (MLCP), as a novel ligand independent regulator of the AR. Sustained MLCP activity through down-regulation of the MLCP inhibitory subunit, PPP1R14C, results in impaired AR nuclear translocation, protein stability and transcriptional activity in distinct models of PC progression, culminating in restoration of a non-malignant prostate genotype. Phenotypically, a marked reduction in cell proliferation and migration, characterised by G1 cell cycle arrest is observed, confirming PP1 holoenzyme disruption as a novel treatment approach in PC.
Collapse
Affiliation(s)
- James Grey
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Dominic Jones
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura Wilson
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Sirintra Nakjang
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jake Clayton
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Richard Temperley
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma Clark
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig Robson
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
50
|
Li W, Sasse KC, Bayguinov Y, Ward SM, Perrino BA. Contractile Protein Expression and Phosphorylation and Contractility of Gastric Smooth Muscles from Obese Patients and Patients with Obesity and Diabetes. J Diabetes Res 2018; 2018:8743874. [PMID: 29955616 PMCID: PMC6000859 DOI: 10.1155/2018/8743874] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Ingested food is received, mixed, and ground into chyme by distinct gastric motility patterns. Diabetes impairs gastric muscle function, but the mechanisms underlying diabetes-induced gastric muscle dysfunction are unknown. Here, we compared the expression and phosphorylation of Ca2+ sensitization and contractile proteins in human gastric muscles from obese nondiabetic and diabetic patients. We also compared the spontaneous phasic contractions and the contractile responses evoked by electrical field stimulation of cholinergic motor neurons. Fundus and antrum muscles were obtained from sleeve gastrectomies and were used in in vitro myobath contractile studies and for capillary electrophoresis and immunodetection of γ-actin, CPI-17, pT38-CPI-17, MYPT1, pT853-MYPT1, pT696-MYPT1, myosin light chain (MYL9), pS19-MYL9, myosin light chain kinase (MYLK), protein phosphatase-1δ (PP1δ), and Rho-associated kinase (ROCK2). In diabetic fundus muscles, MYLK, ROCK2, and PP1δ expression was unchanged; MYPT1 and CPI-17 expression was decreased; and the pT853/MYPT1 and pT38/CPI-17 ratios, but not the pT696/MYPT1 ratio, were increased. Although MYL9 expression was increased, the pS19/MYL9 ratio was unchanged in diabetic fundus muscles. In diabetic antrum muscles, MYLK and MYL9 expression was unchanged, but ROCK2, CPI-17, and PP1δ expression was decreased. The pT38/CPI-17 ratio was unchanged, while the pS19/MYL9, pT853/MYPT1, and pT696/MYPT1 ratios were decreased, consistent with the reduced ROCK2 expression. The frequencies of spontaneous phasic contractions from nondiabetic and diabetic gastric fundus and antrum muscles did not significantly differ from each other, regardless of age, sex, or diabetic status. The fold increases in the contractions of diabetic fundus and antrum muscles in response to increased frequencies of electrical field stimulation were significantly lower compared to nondiabetic fundus and antrum muscles. The altered contractile responses and the protein expression and phosphorylation in gastric muscles of obese patients with diabetes illustrate the importance of understanding how smooth muscle Ca2+ sensitization mechanisms contribute to gastric motility.
Collapse
Affiliation(s)
- Wen Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Kent C. Sasse
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- Sasse Surgical Associates, Reno NV 89502, USA
- Renown Regional Medical Center, Reno, NV 89502, USA
| | - Yulia Bayguinov
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Brian A. Perrino
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|