1
|
Khaleel A, Zakariya AB, Niazi M, Qinna NA, Dayyih WA, Tarkhan AH. Pathway Analysis of Patients with Severe Acute Respiratory Syndrome. Drug Res (Stuttg) 2022; 72:466-472. [PMID: 35952682 DOI: 10.1055/a-1886-2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND Coronaviruses are emerging threats for human health, as demonstrated by the ongoing coronavirus disease 2019 (COVID-19) pandemic that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is closely related to SARS-CoV-1, which was the cause of the 2002-2004 SARS outbreak, but SARS-CoV-1 has been the subject of a relatively limited number of studies. Understanding the potential pathways and molecular targets of SARS-CoV-1 will contribute to current drug repurposing strategies by helping to predict potential drug-disease associations. METHODS A microarray dataset, GSE1739, of 10 SARS patients and 4 healthy controls was downloaded from NCBI's GEO repository, and differential expression was identified using NCBI's GEO2R software. Pathway and enrichment analysis of the differentially expressed genes was carried out using Ingenuity Pathway Analysis and Gene Set Enrichment Analysis, respectively. RESULTS Our findings show that the drugs dexamethasone, filgrastim, interferon alfacon-1, and levodopa were among the most significant upstream regulators of differential gene expression in SARS patients, while neutrophil degranulation was the most significantly enriched pathway. CONCLUSION An enhanced understanding of the pathways and molecular targets of SARS-CoV-1 in humans will contribute to current and future drug repurposing strategies, which are an essential tool to combat rapidly emerging health threats.
Collapse
Affiliation(s)
- Anas Khaleel
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | | | - Mohammad Niazi
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | | | | |
Collapse
|
2
|
Karunakaran KB, Balakrishnan N, Ganapathiraju MK. Interactome of SARS-CoV-2 Modulated Host Proteins With Computationally Predicted PPIs: Insights From Translational Systems Biology Studies. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2. [DOI: 10.3389/fsysb.2022.815237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Accelerated efforts to identify intervention strategies for the COVID-19 pandemic caused by SARS-CoV-2 need to be supported by deeper investigations into host invasion and response mechanisms. We constructed the neighborhood interactome network of the 332 human proteins targeted by SARS-CoV-2 proteins, augmenting it with 1,941 novel human protein-protein interactions predicted using our High-precision Protein-Protein Interaction Prediction (HiPPIP) model. Novel interactors, and the interactome as a whole, showed significant enrichment for genes differentially expressed in SARS-CoV-2-infected A549 and Calu-3 cells, postmortem lung samples of COVID-19 patients and blood samples of COVID-19 patients with severe clinical outcomes. The PPIs connected host proteins to COVID-19 blood biomarkers, ACE2 (SARS-CoV-2 entry receptor), genes differentiating SARS-CoV-2 infection from other respiratory virus infections, and SARS-CoV-targeted host proteins. Novel PPIs facilitated identification of the cilium organization functional module; we deduced the potential antiviral role of an interaction between the virus-targeted NUP98 and the cilia-associated CHMP5. Functional enrichment analyses revealed promyelocytic leukaemia bodies, midbody, cell cycle checkpoints and tristetraprolin pathway as potential viral targets. Network proximity of diabetes and hypertension associated genes to host proteins indicated a mechanistic basis for these co-morbidities in critically ill/non-surviving patients. Twenty-four drugs were identified using comparative transcriptome analysis, which include those undergoing COVID-19 clinical trials, showing broad-spectrum antiviral properties or proven activity against SARS-CoV-2 or SARS-CoV/MERS-CoV in cell-based assays. The interactome is available on a webserver at http://severus.dbmi.pitt.edu/corona/.
Collapse
|
3
|
Zhao X, Chen D, Li X, Griffith L, Chang J, An P, Guo JT. Interferon Control of Human Coronavirus Infection and Viral Evasion: Mechanistic Insights and Implications for Antiviral Drug and Vaccine Development. J Mol Biol 2022; 434:167438. [PMID: 34990653 PMCID: PMC8721920 DOI: 10.1016/j.jmb.2021.167438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022]
Abstract
Recognition of viral infections by various pattern recognition receptors (PRRs) activates an inflammatory cytokine response that inhibits viral replication and orchestrates the activation of adaptive immune responses to control the viral infection. The broadly active innate immune response puts a strong selective pressure on viruses and drives the selection of variants with increased capabilities to subvert the induction and function of antiviral cytokines. This revolutionary process dynamically shapes the host ranges, cell tropism and pathogenesis of viruses. Recent studies on the innate immune responses to the infection of human coronaviruses (HCoV), particularly SARS-CoV-2, revealed that HCoV infections can be sensed by endosomal toll-like receptors and/or cytoplasmic RIG-I-like receptors in various cell types. However, the profiles of inflammatory cytokines and transcriptome response induced by a specific HCoV are usually cell type specific and determined by the virus-specific mechanisms of subverting the induction and function of interferons and inflammatory cytokines as well as the genetic trait of the host genes of innate immune pathways. We review herein the recent literatures on the innate immune responses and their roles in the pathogenesis of HCoV infections with emphasis on the pathobiological roles and therapeutic effects of type I interferons in HCoV infections and their antiviral mechanisms. The knowledge on the mechanism of innate immune control of HCoV infections and viral evasions should facilitate the development of therapeutics for induction of immune resolution of HCoV infections and vaccines for efficient control of COVID-19 pandemics and other HCoV infections.
Collapse
Affiliation(s)
- Xuesen Zhao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xinglin Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lauren Griffith
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Ping An
- Basic Research Laboratory, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| |
Collapse
|
4
|
Garcia-del-Barco D, Risco-Acevedo D, Berlanga-Acosta J, Martos-Benítez FD, Guillén-Nieto G. Revisiting Pleiotropic Effects of Type I Interferons: Rationale for Its Prophylactic and Therapeutic Use Against SARS-CoV-2. Front Immunol 2021; 12:655528. [PMID: 33841439 PMCID: PMC8033157 DOI: 10.3389/fimmu.2021.655528] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The pandemic distribution of SARS-CoV-2 together with its particular feature of inactivating the interferon-based endogenous response and accordingly, impairing the innate immunity, has become a challenge for the international scientific and medical community. Fortunately, recombinant interferons as therapeutic products have accumulated a long history of beneficial therapeutic results in the treatment of chronic and acute viral diseases and also in the therapy of some types of cancer. One of the first antiviral treatments during the onset of COVID-19 in China was based on the use of recombinant interferon alfa 2b, so many clinicians began to use it, not only as therapy but also as a prophylactic approach, mainly in medical personnel. At the same time, basic research on interferons provided new insights that have contributed to a much better understanding of how treatment with interferons, initially considered as antivirals, actually has a much broader pharmacological scope. In this review, we briefly describe interferons, how they are induced in the event of a viral infection, and how they elicit signaling after contact with their specific receptor on target cells. Additionally, some of the genes stimulated by type I interferons are described, as well as the way interferon-mediated signaling is torpedoed by coronaviruses and in particular by SARS-CoV-2. Angiotensin converting enzyme 2 (ACE2) gene is one of the interferon response genes. Although for many scientists this fact could result in an adverse effect of interferon treatment in COVID-19 patients, ACE2 expression contributes to the balance of the renin-angiotensin system, which is greatly affected by SARS-CoV-2 in its internalization into the cell. This manuscript also includes the relationship between type I interferons and neutrophils, NETosis, and interleukin 17. Finally, under the subtitle of "take-home messages", we discuss the rationale behind a timely treatment with interferons in the context of COVID-19 is emphasized.
Collapse
Affiliation(s)
- Diana Garcia-del-Barco
- Neuroprotection Project, Center for Genetic Engineering and Biotechnology, Pharmaceutical Division, Havana, Cuba
| | - Daniela Risco-Acevedo
- Neuroprotection Project, Center for Genetic Engineering and Biotechnology, Pharmaceutical Division, Havana, Cuba
| | - Jorge Berlanga-Acosta
- Cytoprotection Project, Center for Genetic Engineering and Biotechnology, Pharmaceutical Division, Havana, Cuba
| | | | - Gerardo Guillén-Nieto
- Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
5
|
Mousavi SM, Hashemi SA, Parvin N, Gholami A, Ramakrishna S, Omidifar N, Moghadami M, Chiang WH, Mazraedoost S. Recent biotechnological approaches for treatment of novel COVID-19: from bench to clinical trial. Drug Metab Rev 2020; 53:141-170. [PMID: 33138652 DOI: 10.1080/03602532.2020.1845201] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global spread of the novel coronavirus (SARS-CoV-2) and increasing rate of mortality among different countries has raised the global concern regarding this disease. This illness is able to infect human beings through person-to-person contact at an extremely high rate. World Health Organization proclaimed that COVID-19 disease is known as the sixth public health emergency of international concern (30 January 2020) and also as one pandemic (12 March 2020). Owing to the rapid outbreak of COVID-19 worldwide, health authorities focused on discovery of effective prevention and treatment techniques for this novel virus. To date, an effective drug for reliable treatment of COVID-19 has not been registered or introduced to the international community. This review aims to provide recently presented techniques and protocols for efficient treatment of COVID-19 and investigate its morphology and treatment/prevention approaches, among which usage of antiviral drugs, anti-malarial drugs, corticosteroids, and traditional medicines, biotechnological drugs (e.g. combination of HCQ and azithromycin, remdesivir, interferons, novaferon, interferon-alpha-1b, thymosin, and monoclonal antibodies) can be mentioned.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Seyyed Alireza Hashemi
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| | - Najmeh Parvin
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Ahmad Gholami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghadami
- Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Sargol Mazraedoost
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
6
|
Beeraka NM, Sadhu SP, Madhunapantula SV, Rao Pragada R, Svistunov AA, Nikolenko VN, Mikhaleva LM, Aliev G. Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors-The Current Status. Front Immunol 2020; 11:552925. [PMID: 33072093 PMCID: PMC7531039 DOI: 10.3389/fimmu.2020.552925] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4 million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths as on June 11 2020) and economic loss (a 3.2% shrink in global economy in 2020) across 212 countries globally. The clinical manifestations of this disease are pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS). Currently, there is no vaccine or effective pharmacological agents available for the prevention/treatment of SARS-CoV2 infections. Moreover, development of a suitable vaccine is a challenging task due to antibody-dependent enhancement (ADE) and Th-2 immunopathology, which aggravates infection with SARS-CoV-2. Furthermore, the emerging SARS-CoV-2 strain exhibits several distinct genomic and structural patterns compared to other coronavirus strains, making the development of a suitable vaccine even more difficult. Therefore, the identification of novel small molecule inhibitors (NSMIs) that can interfere with viral entry or viral propagation is of special interest and is vital in managing already infected cases. SARS-CoV-2 infection is mediated by the binding of viral Spike proteins (S-protein) to human cells through a 2-step process, which involves Angiotensin Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease (TMPRSS)-2. Therefore, the development of novel inhibitors of ACE2/TMPRSS2 is likely to be beneficial in combating SARS-CoV-2 infections. However, the usage of ACE-2 inhibitors to block the SARS-CoV-2 viral entry requires additional studies as there are conflicting findings and severe health complications reported for these inhibitors in patients. Hence, the current interest is shifted toward the development of NSMIs, which includes natural antiviral phytochemicals and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed structural features of SARS-CoV-2 with special emphasis on key molecular targets and their known modulators that can be considered for the development of NSMIs.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - SubbaRao V. Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | | | - Andrey A. Svistunov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Vladimir N. Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Gjumrakch Aliev
- Research Institute of Human Morphology, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia
- GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|
7
|
Karunakaran KB, Balakrishnan N, Ganapathiraju M. Potentially repurposable drugs for COVID-19 identified from SARS-CoV-2 Host Protein Interactome. RESEARCH SQUARE 2020:rs.3.rs-30363. [PMID: 32702734 PMCID: PMC7336709 DOI: 10.21203/rs.3.rs-30363/v1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously presented the protein-protein interaction network - the 'HoP' or the host protein interactome - of 332 host proteins that were identified to interact with 27 nCoV19 viral proteins by Gordon et al. Here, we studied drugs targeting the proteins in this interactome to identify whether any of them may potentially be repurposable against SARS-CoV-2. We studied each of the drugs using the BaseSpace Correlation Engine and identified those that induce gene expression profiles negatively correlated with SARS-associated expression profile. This analysis resulted in 20 drugs whose differential gene expression (drug versus normal) had an anti-correlation with differential expression for SARS (viral infection versus normal). These included drugs that were already being tested for their clinical activity against SARS-CoV-2, those with proven activity against SARS-CoV/MERS-CoV, broad-spectrum antiviral drugs, and those identified/prioritized by other computational re-purposing studies. In summary, our integrated computational analysis of the HoP interactome in conjunction with drug-induced transcriptomic data resulted in drugs that may be repurposable for COVID-19.
Collapse
|
8
|
Abstract
Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-α/β present as ideal candidate broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ben X Wang
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Eleanor N Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
9
|
The Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Inhibits Type I Interferon Production by Interfering with TRIM25-Mediated RIG-I Ubiquitination. J Virol 2017; 91:JVI.02143-16. [PMID: 28148787 DOI: 10.1128/jvi.02143-16] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is a respiratory disease, caused by a coronavirus (SARS-CoV), that is characterized by atypical pneumonia. The nucleocapsid protein (N protein) of SARS-CoV plays an important role in inhibition of type I interferon (IFN) production via an unknown mechanism. In this study, the SARS-CoV N protein was found to bind to the SPRY domain of the tripartite motif protein 25 (TRIM25) E3 ubiquitin ligase, thereby interfering with the association between TRIM25 and retinoic acid-inducible gene I (RIG-I) and inhibiting TRIM25-mediated RIG-I ubiquitination and activation. Type I IFN production induced by poly I·C or Sendai virus (SeV) was suppressed by the SARS-CoV N protein. SARS-CoV replication was increased by overexpression of the full-length N protein but not N amino acids 1 to 361, which could not interact with TRIM25. These findings provide an insightful interpretation of the SARS-CoV-mediated host innate immune suppression caused by the N protein.IMPORTANCE The SARS-CoV N protein is essential for the viral life cycle and plays a key role in the virus-host interaction. We demonstrated that the interaction between the C terminus of the N protein and the SPRY domain of TRIM25 inhibited TRIM25-mediated RIG-I ubiquitination, which resulted in the inhibition of IFN production. We also found that the Middle East respiratory syndrome CoV (MERS-CoV) N protein interacted with TRIM25 and inhibited RIG-I signaling. The outcomes of these findings indicate the function of the coronavirus N protein in modulating the host's initial innate immune response.
Collapse
|
10
|
Zhang W, Zhang L, Wu Z, Tien P. Differential interferon pathway gene expression patterns in Rhabdomyosarcoma cells during Enterovirus 71 or Coxsackievirus A16 infection. Biochem Biophys Res Commun 2014; 447:550-5. [PMID: 24735544 DOI: 10.1016/j.bbrc.2014.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/07/2014] [Indexed: 01/21/2023]
Abstract
Exposure of cells to type I interferon (IFN) induces an antiviral state that prevents viral infection, but viruses can utilize multiple tactics to antagonize the host immune system. Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are two major pathogens that cause hand, foot, and mouth disease (HFMD), which is prevalent among children. We found that both EV71 and CA16 have different reactions to type I IFN pretreatment and induction patterns of type I IFN on Rhabdomyosarcoma (RD) cells. Further, a human-α and β IFN PCR array was employed to analyze the expressions of 84 genes related to the type I IFN pathway. We found significant up-regulation of multiple genes in the presence of type I IFN and differential regulation patterns during EV71 or CA16 infection in RD cells. For instance, EV71 infection repressed the JAK-STAT signaling pathway and interferon-stimulated gene (ISG) expression, whereas CA16 infection normally triggers the JAK-STAT pathway, leading to the expression of ISGs. Taken together, this study provides a comprehensive view of the differential impacts of EV71 and CA16 infection on 84 genes in the IFN pathway, shedding light on the different resistances of these viruses to type I IFN treatment and cytotoxic effects in RD cells.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Lei Zhang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhiyong Wu
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Po Tien
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
11
|
Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep 2013; 3:1686. [PMID: 23594967 PMCID: PMC3629412 DOI: 10.1038/srep01686] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/27/2013] [Indexed: 01/11/2023] Open
Abstract
The identification of a novel β coronavirus, nCoV, as the causative agent of severe respiratory illness in humans originating in Saudi Arabia, Qatar and Jordan has raised concerns about the possibility of a coronavirus pandemic similar to that of SARS-CoV. As a definitive treatment regimen has never been thoroughly evaluated for coronavirus infections, there is an urgent need to rapidly identify potential therapeutics to address future cases of nCoV. To determine an intervention strategy, the effect of interferon-α2b and ribavirin on nCoV isolate hCoV-EMC/2012 replication in Vero and LLC-MK2 cells was evaluated. hCoV-EMC/2012 was sensitive to both interferon-α2b and ribavirin alone in Vero and LLC-MK2 cells, but only at relatively high concentrations; however, when combined, lower concentrations of interferon-α2b and ribavirin achieved comparable endpoints. Thus, a combination of interferon-α2b and ribavirin, which are already commonly used in the clinic, may be useful for patient management in the event of future nCoV infections.
Collapse
|
12
|
Es-Saad S, Tremblay N, Baril M, Lamarre D. Regulators of innate immunity as novel targets for panviral therapeutics. Curr Opin Virol 2012; 2:622-8. [PMID: 23017246 PMCID: PMC7102864 DOI: 10.1016/j.coviro.2012.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 08/30/2012] [Indexed: 12/21/2022]
Abstract
Interferons (IFNs) have long been used as an immunomodulatory therapy for a large array of acute and chronic viral infections. However, IFN therapies have been plagued by severe side effects. The discovery of pathogen recognition receptors (PRR) rejuvenated the interest for immunomodulatory therapies. The successes obtained with Toll-like receptor (TLR) agonists in activating immune cells and as adjuvant for prophylactic vaccines against different viruses paved the way to targeted immunomodulatory therapy. Better characterization of pathogen-induced immune disorders and newly discovered regulators of innate immunity have now the potential to specifically withdraw prevailing subversion mechanisms and to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies.
Collapse
Affiliation(s)
- Salwa Es-Saad
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Montréal, Québec, Canada
| | - Nicolas Tremblay
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Montréal, Québec, Canada
| | - Martin Baril
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Montréal, Québec, Canada
| | - Daniel Lamarre
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Wang BX, Fish EN. The yin and yang of viruses and interferons. Trends Immunol 2012; 33:190-7. [PMID: 22321608 PMCID: PMC7106503 DOI: 10.1016/j.it.2012.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/21/2011] [Accepted: 01/04/2012] [Indexed: 12/15/2022]
Abstract
Interferons (IFNs)-α/β are critical effectors of the innate immune response to virus infections. Through activation of the IFN-α/β receptor (IFNAR), they induce expression of IFN-stimulated genes (ISGs) that encode antiviral proteins capable of suppressing viral replication and promoting viral clearance. Many highly pathogenic viruses have evolved mechanisms to evade an IFN response and the balance between the robustness of the host immune response and viral antagonistic mechanisms determines whether or not the virus is cleared. Here, we discuss IFNs as broad-spectrum antivirals for treatment of acute virus infections. In particular, they are useful for treatment of re-emerging virus infections, where direct-acting antivirals (DAAs) have limited utility due to DAA-resistant mutations, and for newly emerging virus strains in which the time to vaccine availability precludes vaccination at the onset of an outbreak.
Collapse
Affiliation(s)
- Ben X Wang
- University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Almeida C, Kehraus S, Prudêncio M, König GM. Marilones A-C, phthalides from the sponge-derived fungus Stachylidium sp. Beilstein J Org Chem 2011; 7:1636-42. [PMID: 22238541 PMCID: PMC3252867 DOI: 10.3762/bjoc.7.192] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/02/2011] [Indexed: 12/17/2022] Open
Abstract
The marine-derived fungus Stachylidium sp. was isolated from the sponge Callyspongia sp. cf. C. flammea. Culture on a biomalt medium supplemented with sea salt led to the isolation of three new phthalide derivatives, i.e., marilones A-C (1-3), and the known compound silvaticol (4). The skeleton of marilones A and B is most unusual, and its biosynthesis is suggested to require unique biochemical reactions considering fungal secondary metabolism. Marilone A (1) was found to have antiplasmodial activity against Plasmodium berghei liver stages with an IC(50) of 12.1 µM. Marilone B (2) showed selective antagonistic activity towards the serotonin receptor 5-HT(2B) with a K(i) value of 7.7 µM.
Collapse
Affiliation(s)
- Celso Almeida
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Malaria Unit, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| |
Collapse
|
15
|
Barnard DL, Kumaki Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol 2011; 6:615-631. [PMID: 21765859 DOI: 10.2217/fvl.11.33] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in early 2003 to cause a very severe acute respiratory syndrome, which eventually resulted in a 10% case-fatality rate. Owing to excellent public health measures that isolated focus cases and their contacts, and the use of supportive therapies, the epidemic was suppressed to the point that further cases have not appeared since 2005. However, despite intensive research since then (over 3500 publications), it remains an untreatable disease. The potential for re-emergence of the SARS-CoV or a similar virus with unknown but potentially serious consequences remains high. This is due in part to the extreme genetic variability of RNA viruses such as the coronaviruses, the many animal reservoirs that seem to be able host the SARS-CoV in which reassortment or recombination events could occur and the ability coronaviruses have to transmit relatively rapidly from species to species in a short period of time. Thus, it seems prudent to continue to explore and develop antiviral chemotherapies to treat SARS-CoV infections. To this end, the various efficacious anti-SARS-CoV therapies recently published from 2007 to 2010 are reviewed in this article. In addition, compounds that have been tested in various animal models and were found to reduce virus lung titers and/or were protective against death in lethal models of disease, or otherwise have been shown to ameliorate the effects of viral infection, are also reported.
Collapse
Affiliation(s)
- Dale L Barnard
- Utah State University, Institute for Antiviral Research, Department of Animal, Dairy & Veterinary Science, 5600 Old Main Hill, Logan, UT 84322, USA
| | | |
Collapse
|
16
|
Kumaki Y, Wandersee MK, Smith AJ, Zhou Y, Simmons G, Nelson NM, Bailey KW, Vest ZG, Li JKK, Chan PKS, Smee DF, Barnard DL. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Res 2011; 90:22-32. [PMID: 21338626 PMCID: PMC3085190 DOI: 10.1016/j.antiviral.2011.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 02/04/2023]
Abstract
Urtica dioica agglutinin (UDA) is a small plant monomeric lectin, 8.7 kDa in size, with an N-acetylglucosamine specificity that inhibits viruses from Nidovirales in vitro. In the current study, we first examined the efficacy of UDA on the replication of different SARS-CoV strains in Vero 76 cells. UDA inhibited virus replication in a dose-dependent manner and reduced virus yields of the Urbani strain by 90% at 1.1 ± 0.4 μg/ml in Vero 76 cells. Then, UDA was tested for efficacy in a lethal SARS-CoV-infected BALB/c mouse model. BALB/c mice were infected with two LD50 (575 PFU) of virus for 4 h before the mice were treated intraperitoneally with UDA at 20, 10, 5 or 0 mg/kg/day for 4 days. Treatment with UDA at 5 mg/kg significantly protected the mice against a lethal infection with mouse-adapted SARS-CoV (p < 0.001), but did not significantly reduce virus lung titers. All virus-infected mice receiving UDA treatments were also significantly protected against weight loss (p < 0.001). UDA also effectively reduced lung pathology scores. At day 6 after virus exposure, all groups of mice receiving UDA had much lower lung weights than did the placebo-treated mice. Thus, our data suggest that UDA treatment of SARS infection in mice leads to a substantial therapeutic effect that protects mice against death and weight loss. Furthermore, the mode of action of UDA in vitro was further investigated using live SARS-CoV Urbani strain virus and retroviral particles pseudotyped with SARS-CoV spike (S). UDA specifically inhibited the replication of live SARS-CoV or SARS-CoV pseudotyped virus when added just before, but not after, adsorption. These data suggested that UDA likely inhibits SARS-CoV infection by targeting early stages of the replication cycle, namely, adsorption or penetration. In addition, we demonstrated that UDA neutralizes the virus infectivity, presumably by binding to the SARS-CoV spike (S) glycoprotein. Finally, the target molecule for the inhibition of virus replication was partially characterized. When UDA was exposed to N-acetylglucosamine and then UDA was added to cells just prior to adsorption, UDA did not inhibit the virus infection. These data support the conclusion that UDA might bind to N-acetylglucosamine-like residues present on the glycosylated envelope glycoproteins, thereby preventing virus attachment to cells.
Collapse
Affiliation(s)
- Yohichi Kumaki
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kumaki Y, Ennis J, Rahbar R, Turner JD, Wandersee MK, Smith AJ, Bailey KW, Vest ZG, Madsen JR, Li JKK, Barnard DL. Single-dose intranasal administration with mDEF201 (adenovirus vectored mouse interferon-alpha) confers protection from mortality in a lethal SARS-CoV BALB/c mouse model. Antiviral Res 2010; 89:75-82. [PMID: 21093489 PMCID: PMC3018546 DOI: 10.1016/j.antiviral.2010.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/04/2010] [Accepted: 11/11/2010] [Indexed: 11/21/2022]
Abstract
Interferons (IFNs) are a first line of defense against viral infection. Herein we describe the use of an adenovirus vectored mouse IFN alpha gene (mDEF201) as a prophylactic and treatment countermeasure in a SARS-CoV-infected BALB/c mouse model. Complete survival protection was observed in mice given a single dose of mDEF201 administered intranasally 1, 3, 5, 7, or 14 days prior to lethal SARS-CoV challenge (p < 0.001), and body weights of these treated mice were unaffected by the challenge. In addition, low doses of mDEF201 protected lungs in a dose dependent manner as measured by a reduction in gross pathology. Intranasal treatment with mDEF201 ranging from 106 to 108 PFU significantly protected mice against a lethal SARS-CoV infection in a dose dependent manner up to 12 h post infection (p < 0.001). The data suggest that mDEF201 is a new class of antiviral agent further development as treatment for SARS-CoV infections.
Collapse
Affiliation(s)
- Yohichi Kumaki
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| | - Jane Ennis
- Defyrus Inc., 2 Bloor Street West, Suite 2602, Toronto, Ontario, Canada M4W 3E2
- Corresponding author. Tel.: +1 416 966 5536.
| | - Ramtin Rahbar
- Defyrus Inc., 2 Bloor Street West, Suite 2602, Toronto, Ontario, Canada M4W 3E2
| | - Jeffrey D. Turner
- Defyrus Inc., 2 Bloor Street West, Suite 2602, Toronto, Ontario, Canada M4W 3E2
| | - Miles K. Wandersee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| | - Aaron J. Smith
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| | - Kevin W. Bailey
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| | - Zachary G. Vest
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| | - Jason R. Madsen
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
| | - Joseph K.-K. Li
- Department of Biology, 5305 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Dale L. Barnard
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Logan, Utah State University, Logan, UT 84322, USA
- Corresponding author. Tel.: +1 435 797 2696; fax: +1 435 797 3959.
| |
Collapse
|
18
|
Almeida C, Eguereva E, Kehraus S, Siering C, König GM. Hydroxylated sclerosporin derivatives from the marine-derived fungus Cadophora malorum. JOURNAL OF NATURAL PRODUCTS 2010; 73:476-8. [PMID: 20052971 PMCID: PMC2846207 DOI: 10.1021/np900608d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The marine-derived fungus Cadophora malorum was isolated from the green alga Enteromorpha sp. Growth on a biomalt medium supplemented with sea salt yielded an extract, from which we have isolated sclerosporin and four new hydroxylated sclerosporin derivatives, namely, 15-hydroxysclerosporin (2), 12-hydroxysclerosporin (3), 11-hydroxysclerosporin (4), and 8-hydroxysclerosporin (5). The compounds were evaluated in various biological activity assays. Compound 5 showed a weak fat-accumulation inhibitory activity against 3T3-L1 murine adipocytes.
Collapse
Affiliation(s)
- Celso Almeida
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
19
|
Kumaki Y, Day CW, Bailey KW, Wandersee MK, Wong MH, Madsen JR, Madsen JS, Nelson NM, Hoopes JD, Woolcott JD, McLean TZ, Blatt LM, Salazar AM, Smee DF, Barnard DL. Induction of interferon-gamma-inducible protein 10 by SARS-CoV infection, interferon alfacon 1 and interferon inducer in human bronchial epithelial Calu-3 cells and BALB/c mice. Antivir Chem Chemother 2010; 20:169-77. [PMID: 20231782 DOI: 10.3851/imp1477] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) is poorly understood. Several mechanisms involving both direct effects on target cells and indirect effects via the immune system might exist. SARS-CoV has been shown in vitro to induce changes of cytokines and chemokines in various human and animal cells. We previously reported that interferon (IFN) alfacon-1 was more active against SARS-CoV infection in human bronchial epithelial Calu-3 cells than in African green monkey kidney epithelial cells on day 3 post-infection. METHODS In the current study, we first evaluated the efficacy of IFN-alfacon 1 in Calu-3 cells during the first 7 days of virus infection. We then used the two-antibody sandwich ELISA method to detect IFN-gamma-inducible protein 10 (IP-10). We further evaluated the efficacy of antivirals directed against SARS-CoV infection in BALB/c mice. RESULTS A potent, prolonged inhibition of SARS-CoV replication in Calu-3 cells with IFN-alfacon 1 was observed. Furthermore, IP-10, an IFN-inducible leukocyte chemoattractant, was detected in Calu-3 cells after SARS-CoV infection. Interestingly, IP-10 expression was shown to be significantly increased when SARS-CoV-infected Calu-3 cells were treated with IFN alfacon-1. IP-10 expression was detected in the lungs of SARS-CoV-infected BALB/c mice. Significantly high levels of mouse IP-10 in BALB/c mice was also detected when SARS-CoV-infected mice were treated with the interferon inducer, polyriboinosinic-polyribocytidylic acid stabilized with poly-L-lysine and carboxymethyl cellulose (poly IC:LC). Treatment with poly IC:LC by intranasal route were effective in protecting mice against a lethal infection with mouse-adapted SARS-CoV and reduced the viral lung titres. CONCLUSIONS Our data might provide an important insight into the mechanism of pathogenesis of SARS-CoV and these properties might be therapeutically advantageous.
Collapse
Affiliation(s)
- Yohichi Kumaki
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Day CW, Baric R, Cai SX, Frieman M, Kumaki Y, Morrey JD, Smee DF, Barnard DL. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology 2009; 395:210-22. [PMID: 19853271 PMCID: PMC2787736 DOI: 10.1016/j.virol.2009.09.023] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 06/26/2009] [Accepted: 09/16/2009] [Indexed: 12/17/2022]
Abstract
Severe acute respiratory syndrome (SARS) is a highly lethal emerging disease caused by coronavirus SARS-CoV. New lethal animal models for SARS were needed to facilitate antiviral research. We adapted and characterized a new strain of SARS-CoV (strain v2163) that was highly lethal in 5- to 6-week-old BALB/c mice. It had nine mutations affecting 10 amino acid residues. Strain v2163 increased IL-1alpha, IL-6, MIP-1alpha, MCP-1, and RANTES in mice, and high IL-6 expression correlated with mortality. The infection largely mimicked human disease, but lung pathology lacked hyaline membrane formation. In vitro efficacy against v2163 was shown with known inhibitors of SARS-CoV replication. In v2163-infected mice, Ampligen was fully protective, stinging nettle lectin (UDA) was partially protective, ribavirin was disputable and possibly exacerbated disease, and EP128533 was inactive. Ribavirin, UDA, and Ampligen decreased IL-6 expression. Strain v2163 provided a valuable model for anti-SARS research.
Collapse
Affiliation(s)
- Craig W Day
- Institute for Antiviral Research, Utah State University, UMC 5600, Logan, UT 84322-5600, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tong TR. Therapies for coronaviruses. Part 2: Inhibitors of intracellular life cycle. Expert Opin Ther Pat 2009; 19:415-31. [PMID: 19441924 DOI: 10.1517/13543770802600698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome (SARS) coronavirus emerged from an animal reservoir in 2002 and has the potential to reemerge, as shown by the occurrence of non-laboratory-associated new cases in the winter of 2003. In the absence of a vaccine, broad spectrum anticoronaviral medications are needed. OBJECTIVE Anticoronavirals targeting viral entry were reviewed in part I. Here we review anticoronaviral therapies directed against the intracellular life cycle, with an emphasis on allowed patents and pending patents. METHOD The published literature, in particular, patent publications is searched for relevant documents. The information is organized and critiqued. RESULTS/CONCLUSION Many promising anticoronaviral strategies are identified. Monoclonal antibodies, protease inhibitors, interferon-based drugs and nucleic-acid based antivirals are most advanced, each having its own advantages and disadvantages. A multi-pronged approach, keeping all venues open, is advocated.
Collapse
Affiliation(s)
- Tommy R Tong
- Jack D Weiler Hospital, Montefiore Medical Center, Department of Pathology, 1825 Eastchester Road, Bronx, NY 10461, USA.
| |
Collapse
|