1
|
Sastre J, Pérez S, Sabater L, Rius-Pérez S. Redox signaling in the pancreas in health and disease. Physiol Rev 2025; 105:593-650. [PMID: 39324871 DOI: 10.1152/physrev.00044.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
This review addresses oxidative stress and redox signaling in the pancreas under healthy physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione (GSH) in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, with PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-β synthase causes blockade of the transsulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial reactive oxygen species (ROS), which trigger acinar-to-ductal metaplasia and progression to pancreatic intraepithelial neoplasia (PanIN). ROS are maintained at a sufficient level to promote cell proliferation, while avoiding cell death or senescence through formation of NADPH and GSH and activation of NRF2, HIF-1/2α, and CREB. Redox signaling also plays a fundamental role in differentiation, proliferation, and insulin secretion of β-cells. However, ROS overproduction promotes β-cell dysfunction and apoptosis in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Hospital Clínico, Department of Surgery, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Edu AV, Pahomeanu MR, Olăreanu A, Corbu DG, Treteanu AR, Constantinescu A, Șandru V, Zărnescu NO, Negreanu L. Epidemiology of Biliary Acute Pancreatitis-A Seven-Year Experience of a Large Tertiary Center. Life (Basel) 2025; 15:139. [PMID: 40003548 PMCID: PMC11856301 DOI: 10.3390/life15020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
(1) Introduction: One of the most common causes of acute pancreatitis is cholelithiasis, which is considered to be associated with female sex, older age, and recurrence. Our aim was to define a group of patients with B-AP to facilitate their diagnosis and management, while more judiciously using medical resources. (2) Materials and Methods: This retrospective, large cohort study, which was conducted by extracting data from the BUC-API registry, consisted of 1855 cases between 1 June 2015 and 1 April 2022. Each admission of the same patient was considered a separate case if it did not have signs of chronic pancreatitis. Severity and morphology were stratified according to the Revised Atlanta Classification. (3) Results: A total of 732 cases of B-AP were analyzed, with 92.5% occurring at the first attack. The median age was 65 years, with 61.9% of the patients being female. The majority (82.2%) were surgical cases, and the length of stay (LoS) was 7 days. There were 10.2% severe cases, with a mortality rate of 4%. (4) Discussion: We found positive associations between sex, age, recurrence, and morphology and biliary etiology. Compared with the general population, female sex and age over 65 years correlate better with a biliary etiology. In most scenarios, patients suffer from first attacks, with a lower probability of developing local complications. There was a tendency for biliary pancreatitis patients to be admitted to surgical wards.
Collapse
Affiliation(s)
- Andrei Vicențiu Edu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania (D.G.C.); (A.R.T.)
- Internal Medicine & Gastroenterology Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Mihai Radu Pahomeanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania (D.G.C.); (A.R.T.)
- Internal Medicine & Gastroenterology Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Olăreanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania (D.G.C.); (A.R.T.)
| | - Dana Gabriela Corbu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania (D.G.C.); (A.R.T.)
| | - Andreea Ramona Treteanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania (D.G.C.); (A.R.T.)
| | - Alexandru Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania (D.G.C.); (A.R.T.)
- Internal Medicine & Gastroenterology Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Vasile Șandru
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania (D.G.C.); (A.R.T.)
- Gastroenterology Department, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Narcis Octavian Zărnescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania (D.G.C.); (A.R.T.)
- Abdominal Surgery Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Lucian Negreanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania (D.G.C.); (A.R.T.)
- Internal Medicine & Gastroenterology Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
3
|
Koo H, Park KC, Sohn HA, Kang M, Kim DJ, Park ZY, Park S, Min SH, Park SH, You YM, Han Y, Kim BK, Lee CH, Kim YS, Chung SJ, Yeom YI, Lee DC. Anti-proteolytic regulation of KRAS by USP9X/NDRG3 in KRAS-driven cancer development. Nat Commun 2025; 16:628. [PMID: 39819877 PMCID: PMC11739382 DOI: 10.1038/s41467-024-54476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/12/2024] [Indexed: 01/19/2025] Open
Abstract
Cancers with activating mutations of KRAS show a high prevalence but remain intractable, requiring innovative strategies to overcome the poor targetability of KRAS. Here, we report that KRAS expression is post-translationally up-regulated through deubiquitination when the scaffolding function of NDRG3 (N-Myc downstream-regulated gene 3) promotes specific interaction between KRAS and a deubiquitinating enzyme, USP9X. In KRAS-mutant cancer cells KRAS protein expression, downstream signaling, and cell growth are highly dependent on NDRG3. In conditional KrasG12D knock-in mouse models of pancreatic ductal adenocarcinoma, Ndrg3 depletion abolishes Kras protein expression and suppresses intraepithelial neoplasia formation in pancreas. Mechanistically, KRAS protein binds to the C-terminal serine/threonine-rich region of NDRG3, subsequently going through deubiquitination by USP9X recruited to the complex. This interaction can be disrupted in a dominant-negative manner by a C-terminal NDRG3 fragment that binds KRAS but is defective in USP9X binding, highly suppressing KRAS protein expression and KRAS-driven cell growth. In summary, KRAS-driven cancer development critically depends on the deubiquitination of KRAS protein mediated by USP9X/NDRG3, and KRAS-addicted cancers could be effectively targeted by inhibiting the KRAS-NDRG3 interaction.
Collapse
Affiliation(s)
- Han Koo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Hyun Ahm Sohn
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Minho Kang
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Korea
- MRCRC, Dankook University, Cheonan, Chungcheongnam-do, Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sehoon Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sang Hyun Min
- Department of Innovative Pharmaceutical Sciences, Kyungpook National University, Deagu, Korea
| | - Seong-Hwan Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yeon-Mi You
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Yohan Han
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Chul-Ho Lee
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yeon-Soo Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea.
- College of Pharmacy, Chungnam National University, Daejeon, Korea.
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|
4
|
Sun Y, Chen H, Lai X. ELAVL1-dependent SOAT2 exacerbated the pancreatitis-like cellular injury of AR42J cells induced by hyperstimulation with caerulein. Kaohsiung J Med Sci 2025; 41:e12911. [PMID: 39588852 PMCID: PMC11724160 DOI: 10.1002/kjm2.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024] Open
Abstract
Pancreatitis is a severe inflammatory condition characterized by damage to the pancreas. Sterol o-acyltransferase 2 (SOAT2) has been reported to aggravate acute pancreatitis, however, the underlying mechanism remains to be elucidated. Rat pancreatic exocrine cells (AR42J) were treated with caerulein to induce pancreatitis-like cellular injury. Cell viability was determined using a cell counting kit-8 (CCK-8) assay, while cell proliferation was analyzed through a 5-Ethynyl-2'-deoxyuridine assay. Cell apoptosis was measured using flow cytometry, and enzyme-linked immunosorbent assays were performed to detect levels of pro-inflammatory cytokines IL-6 and TNF-α. Additionally, Fe2+ levels were analyzed using a colorimetric assay kit, reactive oxygen species (ROS) levels were assessed with a Cellular ROS Assay kit, and lipid peroxidation was measured using a malondialdehyde assay kit. Glutathione levels were analyzed with a detection assay. Protein and mRNA expression were evaluated through western blotting and quantitative real-time polymerase chain reaction, respectively. Furthermore, an RNA immunoprecipitation assay was conducted to investigate the association between ELAV-like RNA binding protein 1 (ELAVL1) and SOAT2. Actinomycin D assay was performed to explore the effect of ELAVL1 depletion on the transcript stability of SOAT2 mRNA. SOAT2 and ELAVL1 expression were upregulated in caerulein-exposed AR42J cells. Caerulein treatment induced pancreatitis-like cellular apoptosis, inflammatory response, ferroptosis, and cell proliferation inhibition. Silencing of SOAT2 protected against caerulein-induced AR42J cell injury. Moreover, ELAVL1 stabilized SOAT2 mRNA expression in AR42J cells. SOAT2 overexpression attenuated the effects induced by ELAVL1 silencing in caerulein-exposed AR42J cells. Additionally, ELAVL1 knockdown activated the NRF2/HO-1 pathway by downregulating SOAT2 expression in caerulein-exposed AR42J cells. SOAT2 silencing protected AR42J cells from caerulein-induced injury by inactivating the NRF2 pathway. In conclusion, ELAVL1-dependent SOAT2 exacerbated pancreatic exocrine cell injury by inactivating the NRF2/HO-1 pathway in pancreatitis. These findings provide new insights into the molecular mechanisms underlying pancreatitis and offer potential therapeutic targets for the treatment of this condition.
Collapse
Affiliation(s)
- Yu‐Jing Sun
- Emergency DepartmentZhongshan Hospital of Xiamen UniversityXiamenFujianChina
| | - Hua‐Ying Chen
- Emergency DepartmentZhongshan Hospital of Xiamen UniversityXiamenFujianChina
| | - Xiao‐Qin Lai
- Emergency DepartmentZhongshan Hospital of Xiamen UniversityXiamenFujianChina
| |
Collapse
|
5
|
Tonelli C, Deschênes A, Gaeth V, Jensen A, Vithlani N, Yao MA, Zhao Z, Park Y, Tuveson DA. Ductal pancreatic cancer interception by FGFR2 abrogation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618726. [PMID: 39463990 PMCID: PMC11507947 DOI: 10.1101/2024.10.16.618726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Activating KRAS mutations are a key feature of pancreatic ductal adenocarcinoma (PDA) and drive tumor initiation and progression. However, mutant KRAS by itself is weakly oncogenic. The pathways that cooperate with mutant KRAS to induce tumorigenesis are less-defined. Analyzing organoids and murine and human pancreatic specimens, we found that the receptor tyrosine kinase FGFR2 was progressively up-regulated in mutant KRAS-driven metaplasia, pre-neoplasia and Classical PDA. Using genetic mouse models, we showed that FGFR2 supported mutant KRAS-driven transformation of acinar cells by promoting proliferation and MAPK pathway activation. FGFR2 abrogation significantly delayed tumor formation and extended the survival of these mice. Furthermore, we discovered that FGFR2 collaborated with EGFR and dual blockade of these receptor signaling pathways significantly reduced mutant KRAS-induced pre-neoplastic lesion formation. Together, our data have uncovered a pivotal role for FGFR2 in the early phases of pancreatic tumorigenesis, paving the way for future therapeutic applications of FGFR2 inhibitors for pancreatic cancer interception. STATEMENT OF SIGNIFICANCE Mutant KRAS-expressing pancreatic intraepithelial neoplasias (PanINs), the precursor lesions of PDA, are prevalent in the average healthy adult but rarely advance to invasive carcinoma. Here, we discovered that FGFR2 promoted PDA progression by amplifying mutant KRAS signaling and that inactivation of FGFR2 intercepted disease progression.
Collapse
|
6
|
Jeon CY, Arain MA, Korc M, Kozarek RA, Phillips AE. Bidirectional relationship between acute pancreatitis and pancreatic cancer. Curr Opin Gastroenterol 2024; 40:431-438. [PMID: 38935270 PMCID: PMC11305936 DOI: 10.1097/mog.0000000000001051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW The burdens of pancreatic ductal adenocarcinoma (PDAC) and acute pancreatitis are increasing globally. We reviewed current literature on whether acute pancreatitis is a causal factor for PDAC and examined clinical manifestations of PDAC-associated acute pancreatitis. RECENT FINDINGS Recent findings detail the timing of acute pancreatitis before and after PDAC occurrence, further solidifying the evidence for PDAC-associated acute pancreatitis and for acute pancreatitis as a causal risk factor for PDAC. The risk of PDAC remains elevated above the general population in patients with distant history of acute pancreatitis. PDAC risk also increases with recurrent acute pancreatitis episodes, independent of smoking and alcohol. Mechanisms linking acute pancreatitis to PDAC include inflammation and neutrophil infiltration, which can be attenuated by suppressing inflammation and/or epigenetic modulation, thus slowing the progression of acinar-to-ductal metaplasia. Clinical presentation and management of acute pancreatitis in the context of PDAC are discussed, including challenges acute pancreatitis poses in the diagnosis and treatment of PDAC, and novel interventions for PDAC-associated acute pancreatitis. SUMMARY PDAC risk may be reduced with improved acute pancreatitis prevention and treatment, such as antiinflammatories or epigenetic modulators. Increased acute pancreatitis and PDAC burden warrant more research on better diagnosis and management of PDAC-associated acute pancreatitis.
Collapse
Affiliation(s)
- Christie Y. Jeon
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Mustafa A. Arain
- Center for Interventional Endoscopy, AdventHealth, Orlando, FL 32803
| | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697
| | | | - Anna E. Phillips
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
7
|
Joris S, Giron P, Olsen C, Seneca S, Gheldof A, Staessens S, Shahi RB, De Brakeleer S, Teugels E, De Grève J, Hes FJ. Identification of RAD17 as a candidate cancer predisposition gene in families with histories of pancreatic and breast cancers. BMC Cancer 2024; 24:723. [PMID: 38872153 PMCID: PMC11170902 DOI: 10.1186/s12885-024-12442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Among the 10% of pancreatic cancers that occur in a familial context, around a third carry a pathogenic variant in a cancer predisposition gene. Genetic studies of pancreatic cancer predisposition are limited by high mortality rates amongst index patients and other affected family members. The genetic risk for pancreatic cancer is often shared with breast cancer susceptibility genes, most notably BRCA2, PALB2, ATM and BRCA1. Therefore, we hypothesized that additional shared genetic etiologies might be uncovered by studying families presenting with both breast and pancreatic cancer. METHODS Focusing on a multigene panel of 276 DNA Damage Repair (DDR) genes, we performed next-generation sequencing in a cohort of 41 families with at least three breast cancer cases and one pancreatic cancer. When the index patient with pancreatic cancer was deceased, close relatives (first or second-degree) affected with breast cancer were tested (39 families). RESULTS We identified 27 variants of uncertain significance in DDR genes. A splice site variant (c.1605 + 2T > A) in the RAD17 gene stood out, as a likely loss of function variant. RAD17 is a checkpoint protein that recruits the MRN (MRE11-RAD50-NBS1) complex to initiate DNA signaling, leading to DNA double-strand break repair. CONCLUSION Within families with breast and pancreatic cancer, we identified RAD17 as a novel candidate predisposition gene. Further genetic studies are warranted to better understand the potential pathogenic effect of RAD17 variants and in other DDR genes.
Collapse
Affiliation(s)
- Sofie Joris
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium.
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Philippe Giron
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Catharina Olsen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Sara Seneca
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Alexander Gheldof
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Shula Staessens
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Rajendra Bahadur Shahi
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sylvia De Brakeleer
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erik Teugels
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacques De Grève
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frederik J Hes
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| |
Collapse
|
8
|
Abstract
All cancers arise from normal cells whose progeny acquire the cancer-initiating mutations and epigenetic modifications leading to frank tumorigenesis. The identity of those "cells-of-origin" has historically been a source of controversy across tumor types, as it has not been possible to witness the dynamic events giving rise to human tumors. Genetically engineered mouse models (GEMMs) of cancer provide an invaluable substitute, enabling researchers to interrogate the competence of various naive cellular compartments to initiate tumors in vivo. Researchers using these models have relied on lineage-specific promoters, knowledge of preneoplastic disease states in humans, and technical advances allowing more precise manipulations of the mouse germline. These approaches have given rise to the emerging view that multiple lineages within a given organ may generate tumors with similar histopathology. Here, we review some of the key studies leading to this conclusion in solid tumors and highlight the biological and clinical ramifications.
Collapse
Affiliation(s)
- Jason R Pitarresi
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Tsesmelis M, Büttner UFG, Gerstenlauer M, Manfras U, Tsesmelis K, Du Z, Sperb N, Weissinger SE, Möller P, Barth TFE, Maier HJ, Chan LK, Wirth T. NEMO/NF-κB signaling functions as a double-edged sword in PanIN formation versus progression to pancreatic cancer. Mol Cancer 2024; 23:103. [PMID: 38755681 PMCID: PMC11097402 DOI: 10.1186/s12943-024-01989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/31/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is marked by a dismal survival rate, lacking effective therapeutics due to its aggressive growth, late-stage diagnosis, and chemotherapy resistance. Despite debates on NF-κB targeting for PDAC treatment, no successful approach has emerged. METHODS To elucidate the role of NF-κB, we ablated NF-κB essential modulator (NEMO), critical for conventional NF-κB signaling, in the pancreata of mice that develop precancerous lesions (KC mouse model). Secretagogue-induced pancreatitis by cerulein injections was utilized to promote inflammation and accelerate PDAC development. RESULTS NEMO deletion reduced fibrosis and inflammation in young KC mice, resulting in fewer pancreatic intraepithelial neoplasias (PanINs) at later stages. Paradoxically, however, NEMO deletion accelerated the progression of these fewer PanINs to PDAC and reduced median lifespan. Further, analysis of tissue microarrays from human PDAC sections highlighted the correlation between reduced NEMO expression in neoplastic cells and poorer prognosis, supporting our observation in mice. Mechanistically, NEMO deletion impeded oncogene-induced senescence (OIS), which is normally active in low-grade PanINs. This blockage resulted in fewer senescence-associated secretory phenotype (SASP) factors, reducing inflammation. However, blocked OIS fostered replication stress and DNA damage accumulation which accelerated PanIN progression to PDAC. Finally, treatment with the DNA damage-inducing reagent etoposide resulted in elevated cell death in NEMO-ablated PDAC cells compared to their NEMO-competent counterparts, indicative of a synthetic lethality paradigm. CONCLUSIONS NEMO exhibited both oncogenic and tumor-suppressive properties during PDAC development. Caution is suggested in therapeutic interventions targeting NF-κB, which may be detrimental during PanIN progression but beneficial post-PDAC development.
Collapse
Affiliation(s)
- Miltiadis Tsesmelis
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | - Ulrike F G Büttner
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | - Melanie Gerstenlauer
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | - Uta Manfras
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | - Konstantinos Tsesmelis
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | - Ziwei Du
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | - Nadine Sperb
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
| | | | - Peter Möller
- Institute of Pathology, University of Ulm, 89081, Ulm, Baden-Württemberg, Germany
| | - Thomas F E Barth
- Institute of Pathology, University of Ulm, 89081, Ulm, Baden-Württemberg, Germany
| | - Harald J Maier
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany
- Novartis Pharma, 4056, Basel, AG, Switzerland
| | - Lap Kwan Chan
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany.
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, 8091, Zurich, Switzerland.
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland.
| | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, Meyerhofstrasse, 89081, Ulm, Baden-Württemberg, Germany.
| |
Collapse
|
10
|
Liou GY, Byrd CJ, Storz P, Messex JK. Cytokine CCL9 Mediates Oncogenic KRAS-Induced Pancreatic Acinar-to-Ductal Metaplasia by Promoting Reactive Oxygen Species and Metalloproteinases. Int J Mol Sci 2024; 25:4726. [PMID: 38731942 PMCID: PMC11083758 DOI: 10.3390/ijms25094726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Crystal J. Byrd
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Justin K. Messex
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| |
Collapse
|
11
|
Wiley MB, Bauer J, Alvarez V, Mehrotra K, Cheng W, Kolics Z, Giarrizzo M, Ingle K, Bialkowska AB, Jung B. Activin A signaling stimulates neutrophil activation and macrophage migration in pancreatitis. Sci Rep 2024; 14:9382. [PMID: 38654064 PMCID: PMC11039671 DOI: 10.1038/s41598-024-60065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Acute Pancreatitis (AP) is associated with high mortality and current treatment options are limited to supportive care. We found that blockade of activin A (activin) in mice improves outcomes in two murine models of AP. To test the hypothesis that activin is produced early in response to pancreatitis and is maintained throughout disease progression to stimulate immune cells, we first performed digital spatial profiling (DSP) of human chronic pancreatitis (CP) patient tissue. Then, transwell migration assays using RAW264.7 mouse macrophages and qPCR analysis of "neutrophil-like" HL-60 cells were used for functional correlation. Immunofluorescence and western blots on cerulein-induced pancreatitis samples from pancreatic acinar cell-specific Kras knock-in (Ptf1aCreER™; LSL-KrasG12D) and functional WT Ptf1aCreER™ mouse lines mimicking AP and CP to allow for in vivo confirmation. Our data suggest activin promotes neutrophil and macrophage activation both in situ and in vitro, while pancreatic activin production is increased as early as 1 h in response to pancreatitis and is maintained throughout CP in vivo. Taken together, activin is produced early in response to pancreatitis and is maintained throughout disease progression to promote neutrophil and macrophage activation.
Collapse
Affiliation(s)
- Mark B Wiley
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Jessica Bauer
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Valentina Alvarez
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Kunaal Mehrotra
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Wenxuan Cheng
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Zoe Kolics
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Komala Ingle
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Jung
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
12
|
Jeong SH, Hurh K, Park EC, Leigh JH, Kim SH, Jang SI. Risk of Pancreatic Cancer After Acute Pancreatitis: A Retrospective Analysis of the Korean National Sample Cohort. J Korean Med Sci 2024; 39:e21. [PMID: 38288535 PMCID: PMC10825454 DOI: 10.3346/jkms.2024.39.e21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Acute pancreatitis may increase the risk of pancreatic cancer, although this association remains unclear. Therefore, we aimed to investigate this association. METHODS We retrospectively analyzed the 2002-2019 Korean National Health Insurance Service-National Sample Cohort using 1:3 propensity score matching for sex and age (acute pancreatitis, n = 4,494; matched controls, n = 13,482). We calculated the hazard ratio (HR) for pancreatic cancer risk in patients with acute pancreatitis using Cox proportional hazards regression. RESULTS Acute pancreatitis was significantly associated with an increased risk of pancreatic cancer throughout the study period (adjusted HR, 7.56 [95% confidence interval, 5.00-11.41]), which persisted for 2, 2-5, and > 5 years post-diagnosis (19.11 [9.60-38.05], 3.46 [1.35-8.33], and 2.73 [1.21-6.15], respectively). This pancreatitis-related pancreatic cancer risk became insignificant beyond 10 years of follow-up (1.24 [0.24-6.49]). Furthermore, this risk notably increased as the number of recurrent acute pancreatitis episodes increased (1 episode: 5.25 [3.31-8.33], 2 episodes: 11.35 [6.38-20.19], ≥ 3 episodes: 24.58 [13.66-44.26]). CONCLUSION Following an acute pancreatitis diagnosis, the risk of pancreatic cancer increases significantly in the initial years, with a rapid increase further accentuated with recurrent acute pancreatitis episodes. Additional study is needed to evaluate whether this increased risk of carcinogenesis is attributed to accumulated inflammation.
Collapse
Affiliation(s)
- Sung Hoon Jeong
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Korea
- Institute of Health Services Research, Yonsei University, Seoul, Korea
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Korea
| | - Kyungduk Hurh
- Institute of Health Services Research, Yonsei University, Seoul, Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Cheol Park
- Institute of Health Services Research, Yonsei University, Seoul, Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ja-Ho Leigh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Korea
| | - Seung Hoon Kim
- Institute of Health Services Research, Yonsei University, Seoul, Korea
- Department of Preventive Medicine, Eulji University School of Medicine, Daejeon, Korea.
| | - Sung-In Jang
- Institute of Health Services Research, Yonsei University, Seoul, Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Alavi M, Mejia-Bautista A, Tang M, Bandovic J, Rosenberg AZ, Bialkowska AB. Krüppel-like Factor 5 Plays an Important Role in the Pathogenesis of Chronic Pancreatitis. Cancers (Basel) 2023; 15:5427. [PMID: 38001687 PMCID: PMC10670257 DOI: 10.3390/cancers15225427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic pancreatitis results in the formation of pancreatic intraepithelial neoplasia (PanIN) and poses a risk of developing pancreatic cancer. Our previous study demonstrated that Krüppel-like factor 5 (KLF5) is necessary for forming acinar-to-ductal metaplasia (ADM) in acute pancreatitis. Here, we investigated the role of KLF5 in response to chronic injury in the pancreas. Human tissues originating from chronic pancreatitis patients showed increased levels of epithelial KLF5. An inducible genetic model combining the deletion of Klf5 and the activation of KrasG12D mutant expression in pancreatic acinar cells together with chemically induced chronic pancreatitis was used. The chronic injury resulted in increased levels of KLF5 in both control and KrasG12D mutant mice. Furthermore, it led to numerous ADM and PanIN lesions and extensive fibrosis in the KRAS mutant mice. In contrast, pancreata with Klf5 loss (with or without KrasG12D) failed to develop ADM, PanIN, or significant fibrosis. Furthermore, the deletion of Klf5 reduced the expression level of cytokines and fibrotic components such as Il1b, Il6, Tnf, Tgfb1, Timp1, and Mmp9. Notably, using ChIP-PCR, we showed that KLF5 binds directly to the promoters of Il1b, Il6, and Tgfb1 genes. In summary, the inactivation of Klf5 inhibits ADM and PanIN formation and the development of pancreatic fibrosis.
Collapse
Affiliation(s)
- Maryam Alavi
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA (M.T.)
| | - Ana Mejia-Bautista
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA (M.T.)
| | - Meiyi Tang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA (M.T.)
| | - Jela Bandovic
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21217, USA;
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA (M.T.)
| |
Collapse
|
14
|
Montrazi ET, Sasson K, Agemy L, Peters DC, Brenner O, Scherz A, Frydman L. High-sensitivity deuterium metabolic MRI differentiates acute pancreatitis from pancreatic cancers in murine models. Sci Rep 2023; 13:19998. [PMID: 37968574 PMCID: PMC10652017 DOI: 10.1038/s41598-023-47301-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
Deuterium metabolic imaging (DMI) is a promising tool for investigating a tumor's biology, and eventually contribute in cancer diagnosis and prognosis. In DMI, [6,6'-2H2]-glucose is taken up and metabolized by different tissues, resulting in the formation of HDO but also in an enhanced formation of [3,3'-2H2]-lactate at the tumor site as a result of the Warburg effect. Recent studies have shown DMI's suitability to highlight pancreatic cancer in murine models by [3,3'-2H2]-lactate formation; an important question is whether DMI can also differentiate between these tumors and pancreatitis. This differentiation is critical, as these two diseases are hard to distinguish today radiologically, but have very different prognoses requiring distinctive treatments. Recent studies have shown the limitations that hyperpolarized MRI faces when trying to distinguish these pancreatic diseases by monitoring the [1-13C1]-pyruvate→[1-13C1]-lactate conversion. In this work, we explore DMI's capability to achieve such differentiation. Initial tests used a multi-echo (ME) SSFP sequence, to identify any metabolic differences between tumor and acute pancreatitis models that had been previously elicited very similar [1-13C1]-pyruvate→[1-13C1]-lactate conversion rates. Although ME-SSFP provides approximately 5 times greater signal-to-noise ratio (SNR) than the standard chemical shift imaging (CSI) experiment used in DMI, no lactate signal was observed in the pancreatitis model. To enhance lactate sensitivity further, we developed a new, weighted-average, CSI-SSFP approach for DMI. Weighted-average CSI-SSFP improved DMI's SNR by another factor of 4 over ME-SSFP-a sensitivity enhancement that sufficed to evidence natural abundance 2H fat in abdominal images, something that had escaped the previous approaches even at ultrahigh (15.2 T) MRI fields. Despite these efforts to enhance DMI's sensitivity, no lactate signal could be detected in acute pancreatitis models (n = 10; [3,3'-2H2]-lactate limit of detection < 100 µM; 15.2 T). This leads to the conclusion that pancreatic tumors and acute pancreatitis may be clearly distinguished by DMI, based on their different abilities to generate deuterated lactate.
Collapse
Affiliation(s)
- Elton T Montrazi
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Sasson
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Agemy
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Bhalerao N, Chakraborty A, Marciel MP, Hwang J, Britain CM, Silva AD, Eltoum IE, Jones RB, Alexander KL, Smythies LE, Smith PD, Crossman DK, Crowley MR, Shin B, Harrington LE, Yan Z, Bethea MM, Hunter CS, Klug CA, Buchsbaum DJ, Bellis SL. ST6GAL1 sialyltransferase promotes acinar to ductal metaplasia and pancreatic cancer progression. JCI Insight 2023; 8:e161563. [PMID: 37643018 PMCID: PMC10619436 DOI: 10.1172/jci.insight.161563] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
The role of aberrant glycosylation in pancreatic ductal adenocarcinoma (PDAC) remains an under-investigated area of research. In this study, we determined that ST6 β-galactoside α2,6 sialyltransferase 1 (ST6GAL1), which adds α2,6-linked sialic acids to N-glycosylated proteins, was upregulated in patients with early-stage PDAC and was further increased in advanced disease. A tumor-promoting function for ST6GAL1 was elucidated using tumor xenograft experiments with human PDAC cells. Additionally, we developed a genetically engineered mouse (GEM) model with transgenic expression of ST6GAL1 in the pancreas and found that mice with dual expression of ST6GAL1 and oncogenic KRASG12D had greatly accelerated PDAC progression compared with mice expressing KRASG12D alone. As ST6GAL1 imparts progenitor-like characteristics, we interrogated ST6GAL1's role in acinar to ductal metaplasia (ADM), a process that fosters neoplasia by reprogramming acinar cells into ductal, progenitor-like cells. We verified ST6GAL1 promotes ADM using multiple models including the 266-6 cell line, GEM-derived organoids and tissues, and an in vivo model of inflammation-induced ADM. EGFR is a key driver of ADM and is known to be activated by ST6GAL1-mediated sialylation. Importantly, EGFR activation was dramatically increased in acinar cells and organoids from mice with transgenic ST6GAL1 expression. These collective results highlight a glycosylation-dependent mechanism involved in early stages of pancreatic neoplasia.
Collapse
Affiliation(s)
| | | | | | - Jihye Hwang
- Department of Cell, Developmental, and Integrative Biology
| | | | | | | | | | | | | | | | | | | | - Boyoung Shin
- Department of Cell, Developmental, and Integrative Biology
| | | | - Zhaoqi Yan
- Department of Cell, Developmental, and Integrative Biology
| | | | | | | | - Donald J. Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
16
|
Azevedo-Pouly A, Hale MA, Swift GH, Hoang CQ, Deering TG, Xue J, Wilkie TM, Murtaugh LC, MacDonald RJ. Key transcriptional effectors of the pancreatic acinar phenotype and oncogenic transformation. PLoS One 2023; 18:e0291512. [PMID: 37796967 PMCID: PMC10553828 DOI: 10.1371/journal.pone.0291512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs. The changes most emphatically included transcription of the genes for the secretory digestive enzymes (which conscript more than 90% of acinar cell protein synthesis), a potent anabolic metabolism that provides the energy and materials for protein synthesis, suppressed and properly balanced cellular replication, and susceptibility to transformation by oncogenic KrasG12D. The simultaneous inactivation of Foxa2 and Gata4 caused a greater-than-additive disruption of gene expression and uncovered their collaboration to maintain Ptf1a expression and control PAC replication. A measure of PAC dedifferentiation ranked the effects of the conditional knockouts as Foxa2+Gata4 > Ptf1a > Nr5a2 > Foxa2 > Gata4. Whereas the loss of Ptf1a or Nr5a2 greatly accelerated Kras-mediated transformation of mature acinar cells in vivo, the absence of Foxa2, Gata4, or Foxa2+Gata4 together blocked transformation completely, despite extensive dedifferentiation. A lack of correlation between PAC dedifferentiation and sensitivity to oncogenic KrasG12D negates the simple proposition that the level of differentiation determines acinar cell resistance to transformation.
Collapse
Affiliation(s)
- Ana Azevedo-Pouly
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael A. Hale
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Galvin H. Swift
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chinh Q. Hoang
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tye G. Deering
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jumin Xue
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thomas M. Wilkie
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - L. Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Raymond J. MacDonald
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
17
|
Bednar F, Pasca di Magliano M. Calligraphy tool offers clues to the origin of pancreatic cancer. Nature 2023; 621:265-266. [PMID: 37587278 DOI: 10.1038/d41586-023-02518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
18
|
Pan L, Mulaw MA, Gout J, Guo M, Zarrin H, Schwarz P, Baumann B, Seufferlein T, Wagner M, Oswald F. RBPJ Deficiency Sensitizes Pancreatic Acinar Cells to KRAS-Mediated Pancreatic Intraepithelial Neoplasia Initiation. Cell Mol Gastroenterol Hepatol 2023; 16:783-807. [PMID: 37543088 PMCID: PMC10520364 DOI: 10.1016/j.jcmgh.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND AND AIMS Development of pancreatic ductal adenocarcinoma (PDAC) is a multistep process intensively studied; however, precocious diagnosis and effective therapy still remain unsatisfactory. The role for Notch signaling in PDAC has been discussed controversially, as both cancer-promoting and cancer-antagonizing functions have been described. Thus, an improved understanding of the underlying molecular mechanisms is necessary. Here, we focused on RBPJ, the receiving transcription factor in the Notch pathway, examined its expression pattern in PDAC, and characterized its function in mouse models of pancreatic cancer development and in the regeneration process after acute pancreatitis. METHODS Conditional transgenic mouse models were used for functional analysis of RBPJ in the adult pancreas, initiation of PDAC precursor lesions, and pancreatic regeneration. Pancreata and primary acinar cells were tested for acinar-to-ductal metaplasia together with immunohistology and comprehensive transcriptional profiling by RNA sequencing. RESULTS We identified reduced RBPJ expression in a subset of human PDAC specimens. Ptf1α-CreERT-driven depletion of RBPJ in transgenic mice revealed that its function is dispensable for the homeostasis and maintenance of adult acinar cells. However, primary RBPJ-deficient acinar cells underwent acinar-to-ductal differentiation in ex vivo. Importantly, oncogenic KRAS expression in the context of RBPJ deficiency facilitated the development of pancreatic intraepithelial neoplasia lesions with massive fibrotic stroma formation. Interestingly, RNA-sequencing data revealed a transcriptional profile associated with the cytokine/chemokine and extracellular matrix changes. In addition, lack of RBPJ delays the course of acute pancreatitis and critically impairs it in the context of KRASG12D expression. CONCLUSIONS Our findings imply that downregulation of RBPJ in PDAC patients derepresses Notch targets and promotes KRAS-mediated pancreatic acinar cells transformation and desmoplasia development.
Collapse
Affiliation(s)
- Leiling Pan
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Medhanie A Mulaw
- Unit for Single-cell Genomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Johann Gout
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Min Guo
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hina Zarrin
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Peggy Schwarz
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martin Wagner
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
19
|
Park BK, Seo JH, Son KJ, Choi JK. Risk of pancreatic cancer after acute pancreatitis: A population-based matched cohort study. Pancreatology 2023; 23:449-455. [PMID: 37230893 DOI: 10.1016/j.pan.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND We investigated the short- and long-term risks of pancreatic cancer after the diagnosis of acute pancreatitis. METHODS This population-based matched-cohort study used data from the Korean National Health Insurance Service database. Patients with acute pancreatitis (n = 25,488) were matched with the control group (n = 127,440) based on age, sex, body mass index, smoking status, and diabetes. We estimated the hazard ratios for developing pancreatic cancer in both groups using Cox regression analysis. RESULTS During a median follow-up of 5.4 years, pancreatic cancer developed in 479 patients (1.9%) in the acute pancreatitis group and 317 patients (0.2%) in the control group. Compared with the control group, the risk of pancreatic cancer in the acute pancreatitis group was very high within the first 2 years, which gradually decreased over time. The hazard ratio for the risk of developing pancreatitis was 8.46 (95% confidence interval, 5.57-12.84) at 1-2 years, and then decreased to 3.62 (95% confidence interval, 2.26-4.91) at 2-4 years. However, even after 8-10 years, the hazard ratio was still statistically significantly increased to 2.80 (95% confidence interval, 1.42-5.53). After 10 years, there was no significant difference in the risk of pancreatic cancer between the two groups. CONCLUSIONS The risk of pancreatic cancer increases rapidly after acute pancreatitis diagnosis, gradually declines after 2 years, and remains elevated for up to 10 years. Further studies are needed to determine the long-term effects of acute pancreatitis on the risk of pancreatic cancer.
Collapse
Affiliation(s)
- Byung Kyu Park
- Division of Gastroenterology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Jeong Hun Seo
- Division of Gastroenterology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, South Korea.
| | - Kang Ju Son
- Department of Policy Research Affairs, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Jung Kyu Choi
- Health Insurance Research Institute, National Health Insurance Service, Wonju, South Korea
| |
Collapse
|
20
|
Wan L, Lin KT, Rahman MA, Ishigami Y, Wang Z, Jensen MA, Wilkinson JE, Park Y, Tuveson DA, Krainer AR. Splicing Factor SRSF1 Promotes Pancreatitis and KRASG12D-Mediated Pancreatic Cancer. Cancer Discov 2023; 13:1678-1695. [PMID: 37098965 PMCID: PMC10330071 DOI: 10.1158/2159-8290.cd-22-1013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 04/27/2023]
Abstract
Inflammation is strongly associated with pancreatic ductal adenocarcinoma (PDAC), a highly lethal malignancy. Dysregulated RNA splicing factors have been widely reported in tumorigenesis, but their involvement in pancreatitis and PDAC is not well understood. Here, we report that the splicing factor SRSF1 is highly expressed in pancreatitis, PDAC precursor lesions, and tumors. Increased SRSF1 is sufficient to induce pancreatitis and accelerate KRASG12D-mediated PDAC. Mechanistically, SRSF1 activates MAPK signaling-partly by upregulating interleukin 1 receptor type 1 (IL1R1) through alternative-splicing-regulated mRNA stability. Additionally, SRSF1 protein is destabilized through a negative feedback mechanism in phenotypically normal epithelial cells expressing KRASG12D in mouse pancreas and in pancreas organoids acutely expressing KRASG12D, buffering MAPK signaling and maintaining pancreas cell homeostasis. This negative feedback regulation of SRSF1 is overcome by hyperactive MYC, facilitating PDAC tumorigenesis. Our findings implicate SRSF1 in the etiology of pancreatitis and PDAC, and point to SRSF1-misregulated alternative splicing as a potential therapeutic target. SIGNIFICANCE We describe the regulation of splicing factor SRSF1 expression in the context of pancreas cell identity, plasticity, and inflammation. SRSF1 protein downregulation is involved in a negative feedback cellular response to KRASG12D expression, contributing to pancreas cell homeostasis. Conversely, upregulated SRSF1 promotes pancreatitis and accelerates KRASG12D-mediated tumorigenesis through enhanced IL1 and MAPK signaling. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Ledong Wan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Yuma Ishigami
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zhikai Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mads A. Jensen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - John E. Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
21
|
Wang H, Moniruzzaman R, Li L, Ji B, Liu Y, Zuo X, Abbasgholizadeh R, Zhao J, Liu G, Wang R, Tang H, Sun R, Su X, Tan TH, Maitra A, Wang H. Hematopoietic progenitor kinase 1 inhibits the development and progression of pancreatic intraepithelial neoplasia. J Clin Invest 2023; 133:e163873. [PMID: 37140994 PMCID: PMC10266776 DOI: 10.1172/jci163873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/02/2023] [Indexed: 05/05/2023] Open
Abstract
Ras plays an essential role in the development of acinar-to-ductal metaplasia (ADM) and pancreatic ductal adenocarcinoma (PDAC). However, mutant Kras is an inefficient driver for PDAC development. The mechanisms of the switching from low Ras activity to high Ras activity that are required for development and progression of pancreatic intraepithelial neoplasias (PanINs) are unclear. In this study, we found that hematopoietic progenitor kinase 1 (HPK1) was upregulated during pancreatic injury and ADM. HPK1 interacted with the SH3 domain and phosphorylated Ras GTPase-activating protein (RasGAP) and upregulated RasGAP activity. Using transgenic mouse models of HPK1 or M46, a kinase-dead mutant of HPK1, we showed that HPK1 inhibited Ras activity and its downstream signaling and regulated acinar cell plasticity. M46 promoted the development of ADM and PanINs. Expression of M46 in KrasG12D Bac mice promoted the infiltration of myeloid-derived suppressor cells and macrophages, inhibited the infiltration of T cells, and accelerated the progression of PanINs to invasive and metastatic PDAC, while HPK1 attenuated mutant Kras-driven PanIN progression. Our results showed that HPK1 plays an important role in ADM and the progression of PanINs by regulating Ras signaling. Loss of HPK1 kinase activity promotes an immunosuppressive tumor microenvironment and accelerates the progression of PanINs to PDAC.
Collapse
Affiliation(s)
- Hua Wang
- Department of Gastrointestinal Medical Oncology and
| | - Rohan Moniruzzaman
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Li
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yi Liu
- Department of Gastrointestinal Medical Oncology and
| | | | - Reza Abbasgholizadeh
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jun Zhao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guangchao Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruiqi Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Ryan Sun
- Department of Biostatistics, and
| | - Xiaoping Su
- Advanced Technology Genomics Core
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology and
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology and
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
22
|
Marstrand-Daucé L, Lorenzo D, Chassac A, Nicole P, Couvelard A, Haumaitre C. Acinar-to-Ductal Metaplasia (ADM): On the Road to Pancreatic Intraepithelial Neoplasia (PanIN) and Pancreatic Cancer. Int J Mol Sci 2023; 24:9946. [PMID: 37373094 PMCID: PMC10298625 DOI: 10.3390/ijms24129946] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Adult pancreatic acinar cells show high plasticity allowing them to change in their differentiation commitment. Pancreatic acinar-to-ductal metaplasia (ADM) is a cellular process in which the differentiated pancreatic acinar cells transform into duct-like cells. This process can occur as a result of cellular injury or inflammation in the pancreas. While ADM is a reversible process allowing pancreatic acinar regeneration, persistent inflammation or injury can lead to the development of pancreatic intraepithelial neoplasia (PanIN), which is a common precancerous lesion that precedes pancreatic ductal adenocarcinoma (PDAC). Several factors can contribute to the development of ADM and PanIN, including environmental factors such as obesity, chronic inflammation and genetic mutations. ADM is driven by extrinsic and intrinsic signaling. Here, we review the current knowledge on the cellular and molecular biology of ADM. Understanding the cellular and molecular mechanisms underlying ADM is critical for the development of new therapeutic strategies for pancreatitis and PDAC. Identifying the intermediate states and key molecules that regulate ADM initiation, maintenance and progression may help the development of novel preventive strategies for PDAC.
Collapse
Affiliation(s)
- Louis Marstrand-Daucé
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Diane Lorenzo
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anaïs Chassac
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Pascal Nicole
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anne Couvelard
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Cécile Haumaitre
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| |
Collapse
|
23
|
Song H, Tan Q, Yuan Y, Liu X, Chen Y, Wang X. Preoperative acute pancreatitis and hyperenzymemia are associated with poor prognosis in patients with nonfunctional pancreatic neuroendocrine tumors. J Surg Oncol 2023; 127:1135-1142. [PMID: 36912877 DOI: 10.1002/jso.27227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND We aimed to investigate the prevalence of acute pancreatitis (AP) and hyperenzymemia as well as their clinical impact on postoperative survival outcomes in patients with pancreatic neuroendocrine tumors (PNETs). METHODS A retrospective cohort study of 218 patients who underwent radical surgical resection for nonfunctional PNETs (NF-PNETs) was conducted. Multivariate survival analysis was performed by the Cox proportional hazard model, with results expressed as hazard ratio (HR) and 95% confidence interval (CI). RESULTS Of the 151 patients who met the inclusion criteria, the incidences of preoperative AP and hyperenzymemia were 7.9% (12/152) and 23.2% (35/151), respectively. The mean recurrence-free survival (RFS, 95% CI) for patients in control, AP, and hyperenzymemia groups was 136 (127-144), 88 (74-103), and 90 (61-122) months, with a 5-year RFS rate of 86.5%, 58.3%, and 68.9%, respectively. In the multivariable-adjusted Cox hazard model that included tumor grade and lymph node status, the adjusted HR of AP and hyperenzymemia for recurrence was 2.58 (95% CI: 1.47-7.86, p = 0.008) and 2.43 (95% CI: 1.08-7.06, p = 0.040). CONCLUSION Preoperative AP and hyperenzymemia are associated with poor RFS following radical surgical resection in NF-PNETs patients.
Collapse
Affiliation(s)
- Haiyu Song
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingquan Tan
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Yuan
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xubao Liu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yonghua Chen
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xing Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
24
|
Burdziak C, Alonso-Curbelo D, Walle T, Reyes J, Barriga FM, Haviv D, Xie Y, Zhao Z, Zhao CJ, Chen HA, Chaudhary O, Masilionis I, Choo ZN, Gao V, Luan W, Wuest A, Ho YJ, Wei Y, Quail DF, Koche R, Mazutis L, Chaligné R, Nawy T, Lowe SW, Pe’er D. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science 2023; 380:eadd5327. [PMID: 37167403 PMCID: PMC10316746 DOI: 10.1126/science.add5327] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023]
Abstract
The response to tumor-initiating inflammatory and genetic insults can vary among morphologically indistinguishable cells, suggesting as yet uncharacterized roles for epigenetic plasticity during early neoplasia. To investigate the origins and impact of such plasticity, we performed single-cell analyses on normal, inflamed, premalignant, and malignant tissues in autochthonous models of pancreatic cancer. We reproducibly identified heterogeneous cell states that are primed for diverse, late-emerging neoplastic fates and linked these to chromatin remodeling at cell-cell communication loci. Using an inference approach, we revealed signaling gene modules and tissue-level cross-talk, including a neoplasia-driving feedback loop between discrete epithelial and immune cell populations that was functionally validated in mice. Our results uncover a neoplasia-specific tissue-remodeling program that may be exploited for pancreatic cancer interception.
Collapse
Affiliation(s)
- Cassandra Burdziak
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Direna Alonso-Curbelo
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028, Spain
| | - Thomas Walle
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ); Heidelberg 69120, Germany
- Department of Medical Oncology, National Center for Tumor Diseases; Heidelberg University Hospital, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK); Heidelberg 69120, Germany
| | - José Reyes
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Francisco M. Barriga
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Doron Haviv
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Yubin Xie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Zhen Zhao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Chujun Julia Zhao
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
| | - Hsuan-An Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Ignas Masilionis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Zi-Ning Choo
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Vianne Gao
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Wei Luan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Alexandra Wuest
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yuhong Wei
- Rosalind and Morris Goodman Cancer Institute, McGill University; Montreal, QC H3A 1A3, Canada
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University; Montreal, QC H3A 1A3, Canada
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
- Institute of Biotechnology, Life Sciences Centre; Vilnius University, Vilnius LT 02158, Lithuania
| | - Ronan Chaligné
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Tal Nawy
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| | - Dana Pe’er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| |
Collapse
|
25
|
Wagle MM, Kedige AR, Kabekkodu SP, Mallya S. Integrated Bioinformatics Analysis Identifies Crucial Biochemical Processes Shared between Pancreatitis and Pancreatic Ductal Adenocarcinoma. Asian Pac J Cancer Prev 2023; 24:1601-1610. [PMID: 37247279 PMCID: PMC10495878 DOI: 10.31557/apjcp.2023.24.5.1601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy associated with rapid progression and an abysmal prognosis. Previous research has shown that chronic pancreatitis can significantly increase the risk of developing PDAC. The overarching hypothesis is that some of the biological processes disrupted during the inflammatory stage tend to show significant dysregulation, even in cancer. This might explain why chronic inflammation increases the risk of carcinogenesis and uncontrolled proliferation. Here, we try to pinpoint such complex processes by comparing the expression profiles of pancreatitis and PDAC tissues. METHODS We analyzed a total of six gene expression datasets retrieved from the EMBL-EBI ArrayExpress and NCBI GEO databases, which included 306 PDAC, 68 pancreatitis and 172 normal pancreatic samples. The disrupted genes identified were used to perform downstream analysis for ontology, interaction, enriched pathways, potential druggability, promoter methylation, and the associated prognostic value. Further, we performed expression analysis based on gender, patient's drinking habit, race, and pancreatitis status. RESULTS Our study identified 45 genes with altered expression levels shared between PDAC and pancreatitis. Over-representation analysis revealed that protein digestion and absorption, ECM-receptor interaction, PI3k-Akt signaling, and proteoglycans in cancer pathways as significantly enriched. Module analysis identified 15 hub genes, of which 14 were found to be in the druggable genome category. CONCLUSION In summary, we have identified critical genes and various biochemical processes disrupted at a molecular level. These results can provide valuable insights into certain events leading to carcinogenesis, and therefore help identify novel therapeutic targets to improve PDAC treatment in the future.
Collapse
Affiliation(s)
- Manoj M Wagle
- School of Mathematics and Statistics and Computational Systems Biology Group, Children’s Medical Research Institute, University of Sydney, New South Wales, Australia.
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, India.
| | - Ananya Rao Kedige
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, India.
- Université Grenoble Alpes, CNRS, CEA, Grenoble, France.
| | - Shama P Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, India.
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, India.
| |
Collapse
|
26
|
Munigala S, Almaskeen S, Subramaniam DS, Bandi S, Bowe B, Xian H, Sheth SG, Burroughs TE, Agarwal B. Acute Pancreatitis Recurrences Augment Long-Term Pancreatic Cancer Risk. Am J Gastroenterol 2023; 118:727-737. [PMID: 36473072 PMCID: PMC10045975 DOI: 10.14309/ajg.0000000000002081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/25/2022] [Indexed: 03/30/2023]
Abstract
INTRODUCTION In animal models, inflammation caused by experimental acute pancreatitis (AP) promotes pancreatic carcinogenesis that is preventable by suppressing inflammation. Recent studies noted higher long-term risk of pancreatic ductal adenocarcinoma (PDAC) after AP. In this study, we evaluated whether the long-term PDAC risk after AP was influenced by the etiology of AP, number of recurrences, and if it was because of progression to chronic pancreatitis (CP). METHODS This retrospective study used nationwide Veterans Administration database spanning 1999-2015. A 2-year washout period was applied to exclude patients with preexisting AP and PDAC. PDAC risk was estimated in patients with AP without (AP group) and with underlying CP (APCP group) and those with CP alone (CP group) and compared with PDAC risk in patients in a control group, respectively, using cause-specific hazards model. RESULTS The final cohort comprised 7,147,859 subjects (AP-35,550 and PDAC-16,475). The cumulative PDAC risk 3-10 years after AP was higher than in controls (0.61% vs 0.18%), adjusted hazard ratio (1.7 [1.4-2.0], P < 0.001). Adjusted hazard ratio was 1.5 in AP group, 2.4 in the CP group, and 3.3 in APCP group. PDAC risk increased with the number of AP episodes. Elevated PDAC risk after AP was not influenced by the etiology of AP (gallstones, smoking, or alcohol). DISCUSSION There is a higher PDAC risk 3-10 years after AP irrespective of the etiology of AP, increases with the number of episodes of AP and is additive to higher PDAC risk because of CP.
Collapse
Affiliation(s)
- Satish Munigala
- College for Public Health and Social Justice, Saint Louis University, Saint, Louis, Missouri, USA;
| | - Sami Almaskeen
- Department of Medicine, Division of Gastroenterology, VA Saint Louis Health Care System, Saint Louis, Missouri, USA;
| | - Divya S. Subramaniam
- AHEAD Institute, Department of Health and Clinical Outcomes Research, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Sriya Bandi
- John Burroughs School, Saint Louis, Missouri, USA;
| | - Benjamin Bowe
- Clinical Epidemiology Center, Research and Education Service, VA Saint Louis Health Care System, Saint Louis, Missouri, USA
| | - Hong Xian
- Department of Epidemiology & Biostatistics, College for Public Health and Social Justice, Saint Louis University, Saint Louis, Missouri, USA;
| | - Sunil G. Sheth
- Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, USA;
| | - Thomas E. Burroughs
- College for Public Health and Social Justice, Saint Louis University, Saint, Louis, Missouri, USA;
| | - Banke Agarwal
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
27
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
28
|
Increasing Stress to Induce Apoptosis in Pancreatic Cancer via the Unfolded Protein Response (UPR). Int J Mol Sci 2022; 24:ijms24010577. [PMID: 36614019 PMCID: PMC9820188 DOI: 10.3390/ijms24010577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
High rates of cell proliferation and protein synthesis in pancreatic cancer are among many factors leading to endoplasmic reticulum (ER) stress. To restore cellular homeostasis, the unfolded protein response (UPR) activates as an adaptive mechanism through either the IRE1α, PERK, or ATF6 pathways to reduce the translational load and process unfolded proteins, thus enabling tumor cells to proliferate. Under severe and prolonged ER stress, however, the UPR may promote adaptation, senescence, or apoptosis under these same pathways if homeostasis is not restored. In this review, we present evidence that high levels of ER stress and UPR activation are present in pancreatic cancer. We detail the mechanisms by which compounds activate one or many of the three arms of the UPR and effectuate downstream apoptosis and examine available data on the pre-clinical and clinical-phase ER stress inducers with the potential for anti-tumor efficacy in pancreatic cancer. Finally, we hypothesize a potential new approach to targeting pancreatic cancer by increasing levels of ER stress and UPR activation to incite apoptotic cell death.
Collapse
|
29
|
Hashimoto A, Handa H, Hata S, Hashimoto S. Orchestration of mesenchymal plasticity and immune evasiveness via rewiring of the metabolic program in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1005566. [PMID: 36408139 PMCID: PMC9669439 DOI: 10.3389/fonc.2022.1005566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most fatal cancer in humans, due to its difficulty of early detection and its high metastatic ability. The occurrence of epithelial to mesenchymal transition in preinvasive pancreatic lesions has been implicated in the early dissemination, drug resistance, and cancer stemness of PDAC. PDAC cells also have a reprogrammed metabolism, regulated by driver mutation-mediated pathways, a desmoplastic tumor microenvironment (TME), and interactions with stromal cells, including pancreatic stellate cells, fibroblasts, endothelial cells, and immune cells. Such metabolic reprogramming and its functional metabolites lead to enhanced mesenchymal plasticity, and creates an acidic and immunosuppressive TME, resulting in the augmentation of protumor immunity via cancer-associated inflammation. In this review, we summarize our recent understanding of how PDAC cells acquire and augment mesenchymal features via metabolic and immunological changes during tumor progression, and how mesenchymal malignancies induce metabolic network rewiring and facilitate an immune evasive TME. In addition, we also present our recent findings on the interesting relevance of the small G protein ADP-ribosylation factor 6-based signaling pathway driven by KRAS/TP53 mutations, inflammatory amplification signals mediated by the proinflammatory cytokine interleukin 6 and RNA-binding protein ARID5A on PDAC metabolic reprogramming and immune evasion, and finally discuss potential therapeutic strategies for the quasi-mesenchymal subtype of PDAC.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| | - Haruka Handa
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Soichiro Hata
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| |
Collapse
|
30
|
Suryadevara V, Roy A, Sahoo J, Kamalanathan S, Naik D, Mohan P, Kalayarasan R. Incretin based therapy and pancreatic cancer: Realising the reality. World J Gastroenterol 2022; 28:2881-2889. [PMID: 35978867 PMCID: PMC9280733 DOI: 10.3748/wjg.v28.i25.2881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/23/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Incretin-based therapies like glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors help maintain the glycaemic control in patients with type 2 diabetes mellitus with additional systemic benefits and little risk of hypoglycaemia. These medications are associated with low-grade chronic pancreatitis in animal models inconsistently. The incidence of acute pancreatitis was also reported in some human studies. This inflammation provides fertile ground for developing pancreatic carcinoma (PC). Although the data from clinical trials and population-based studies have established safety regarding PC, the pathophysiological possibility that low-grade chronic pancreatitis leads to PC remains. We review the existing literature and describe the relationship between incretin-based therapies and PC.
Collapse
Affiliation(s)
- Varun Suryadevara
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Ayan Roy
- Department of Endocrinology, All India Institute of Medical Sciences, Kalyani 741245, West Bengal, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Pazhanivel Mohan
- Department of Medical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Raja Kalayarasan
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
31
|
Scales MK, Velez-Delgado A, Steele NG, Schrader HE, Stabnick AM, Yan W, Mercado Soto NM, Nwosu ZC, Johnson C, Zhang Y, Salas-Escabillas DJ, Menjivar RE, Maurer HC, Crawford HC, Bednar F, Olive KP, Pasca di Magliano M, Allen BL. Combinatorial Gli activity directs immune infiltration and tumor growth in pancreatic cancer. PLoS Genet 2022; 18:e1010315. [PMID: 35867772 PMCID: PMC9348714 DOI: 10.1371/journal.pgen.1010315] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/03/2022] [Accepted: 06/27/2022] [Indexed: 01/16/2023] Open
Abstract
Proper Hedgehog (HH) signaling is essential for embryonic development, while aberrant HH signaling drives pediatric and adult cancers. HH signaling is frequently dysregulated in pancreatic cancer, yet its role remains controversial, with both tumor-promoting and tumor-restraining functions reported. Notably, the GLI family of HH transcription factors (GLI1, GLI2, GLI3), remain largely unexplored in pancreatic cancer. We therefore investigated the individual and combined contributions of GLI1-3 to pancreatic cancer progression. At pre-cancerous stages, fibroblast-specific Gli2/Gli3 deletion decreases immunosuppressive macrophage infiltration and promotes T cell infiltration. Strikingly, combined loss of Gli1/Gli2/Gli3 promotes macrophage infiltration, indicating that subtle changes in Gli expression differentially regulate immune infiltration. In invasive tumors, Gli2/Gli3 KO fibroblasts exclude immunosuppressive myeloid cells and suppress tumor growth by recruiting natural killer cells. Finally, we demonstrate that fibroblasts directly regulate macrophage and T cell migration through the expression of Gli-dependent cytokines. Thus, the coordinated activity of GLI1-3 directs the fibroinflammatory response throughout pancreatic cancer progression.
Collapse
Affiliation(s)
- Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nina G. Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hannah E. Schrader
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anna M. Stabnick
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Yan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nayanna M. Mercado Soto
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zeribe C. Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Rosa E. Menjivar
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - H. Carlo Maurer
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York city, New York, United States of America
- Internal Medicine II, School of Medicine, Technische Universität München, Munich, Germany
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kenneth P. Olive
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York city, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York city, New York, United States of America
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
32
|
Navarro-Serer B, Wood LD. Organoids: A Promising Preclinical Model for Pancreatic Cancer Research. Pancreas 2022; 51:608-616. [PMID: 36206467 DOI: 10.1097/mpa.0000000000002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Pancreatic cancer is one of the most lethal cancer types, estimated to become the second leading cause of cancer-related deaths in the United States in 2030. The use of 3-dimensional culture systems has greatly expanded over the past few years, providing a valuable tool for the study of pancreatic cancer. In this review, we highlight some of the preclinical in vitro and in vivo models used in pancreatic cancer research, each with its own advantages and disadvantages, and focus on one of the recently used 3-dimensional culture models: organoids. Organoids are multicellular units derived from tissue samples and embedded within extracellular matrix gels after mechanical and enzymatic digestion. We define organoids, differentiate them from other 3-dimensional culture systems such as spheroids, and describe some applications of this model that have recently advanced our understanding of pancreatic cancer and its tumor microenvironment. Organoids have provided valuable insights into pancreatic cancer progression, heterogeneity, and invasion, and they have enabled the creation of biobanks, providing a platform for drug screening. In addition, we discuss some of the future directions and challenges in this model when addressing research questions.
Collapse
Affiliation(s)
- Bernat Navarro-Serer
- From the Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine
| | | |
Collapse
|
33
|
Sca-1 is a marker for cell plasticity in murine pancreatic epithelial cells and induced by IFN-β in vitro. Pancreatology 2022; 22:294-303. [PMID: 35120820 DOI: 10.1016/j.pan.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/16/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Sca-1 is a surface marker for murine hematopoietic stem cells (HSCs) and type-I interferon is a key regulator for Lin-Sca-1+ HSCs expansion through Ifnar/Stat-1/Sca-1-signaling. In this study we aimed to characterize the role and regulation of Sca-1+ cells in pancreatic regeneration. METHODS To characterize Sca-1 in vivo, immunohistochemistry and immunofluorescence staining of Sca-1 was conducted in normal pancreas, in cerulein-mediated acute pancreatitis, and in Kras-triggered cancerous lesions. Ifnar/Stat-1/Sca-1-signaling was studied in type-I IFN-treated epithelial explants of adult wildtype, Ifnar-/-, and Stat-1-/- mice. Sca-1 induction was analyzed by gene expression and FACS analysis. After isolation of pancreatic epithelial Lin-Sca-1+cells, pancreatosphere-formation and immunofluorescence-assays were carried out to investigate self-renewal and differentiation capabilities. RESULTS Sca-1+ cells were located in periacinar and periductal spaces and showed an enrichment during cerulein-induced acute pancreatitis (23.2/100 μm2 ± 4.9 SEM) and in early inflammation-mediated carcinogenic lesions of the pancreas of KrasG12D mice (35.8/100 μm2 ± SEM 1.9) compared to controls (3.6/100 μm2 ± 1.3 SEM). Pancreatic Lin-Sca-1+ cells displayed a small population of 1.46% ± 0.12 SEM in FACS. In IFN-β treated pancreatic epithelial explants, Sca-1 expression was increased, and Lin-Sca-1+ cells were enriched in vitro (from 1.49% ± 0.36 SEM to 3.85% ± 0.78 SEM). Lin-Sca-1+ cells showed a 12 to 51-fold higher capacity for clonal self-renewal compared to Lin-Sca-1- cells and generated cells express markers of the acinar and ductal compartment. CONCLUSIONS Pancreatic Sca-1+ cells enriched during parenchymal damage showed a significant capacity for cell renewal and in vitro plasticity, suggesting that corresponding to the type I interferon-dependent regulation of Lin-Sca-1+ hematopoietic stem cells, pancreatic Sca-1+ cells also employ type-I-interferon for regulating progenitor-cell-homeostasis.
Collapse
|
34
|
Velez-Delgado A, Donahue KL, Brown KL, Du W, Irizarry-Negron V, Menjivar RE, Lasse Opsahl EL, Steele NG, The S, Lazarus J, Sirihorachai VR, Yan W, Kemp SB, Kerk SA, Bollampally M, Yang S, Scales MK, Avritt FR, Lima F, Lyssiotis CA, Rao A, Crawford HC, Bednar F, Frankel TL, Allen BL, Zhang Y, Pasca di Magliano M. Extrinsic KRAS Signaling Shapes the Pancreatic Microenvironment Through Fibroblast Reprogramming. Cell Mol Gastroenterol Hepatol 2022; 13:1673-1699. [PMID: 35245687 PMCID: PMC9046274 DOI: 10.1016/j.jcmgh.2022.02.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Oncogenic Kirsten Rat Sarcoma virus (KRAS) is the hallmark mutation of human pancreatic cancer and a driver of tumorigenesis in genetically engineered mouse models of the disease. Although the tumor cell-intrinsic effects of oncogenic Kras expression have been widely studied, its role in regulating the extensive pancreatic tumor microenvironment is less understood. METHODS Using a genetically engineered mouse model of inducible and reversible oncogenic Kras expression and a combination of approaches that include mass cytometry and single-cell RNA sequencing we studied the effect of oncogenic KRAS in the tumor microenvironment. RESULTS We have discovered that non-cell autonomous (ie, extrinsic) oncogenic KRAS signaling reprograms pancreatic fibroblasts, activating an inflammatory gene expression program. As a result, fibroblasts become a hub of extracellular signaling, and the main source of cytokines mediating the polarization of protumorigenic macrophages while also preventing tissue repair. CONCLUSIONS Our study provides fundamental knowledge on the mechanisms underlying the formation of the fibroinflammatory stroma in pancreatic cancer and highlights stromal pathways with the potential to be exploited therapeutically.
Collapse
Affiliation(s)
| | | | | | - Wenting Du
- Department of Surgery, Ann Arbor, Michigan
| | | | | | | | - Nina G Steele
- Department of Cell and Developmental Biology, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan
| | | | | | - Wei Yan
- Department of Surgery, Ann Arbor, Michigan
| | - Samantha B Kemp
- Molecular and Cellular Pathology Program, Ann Arbor, Michigan
| | | | | | - Sion Yang
- Life Sciences and Arts College, Ann Arbor, Michigan
| | - Michael K Scales
- Department of Cell and Developmental Biology, Ann Arbor, Michigan
| | | | | | - Costas A Lyssiotis
- Cancer Biology Program, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan
| | - Arvind Rao
- Cancer Biology Program, Ann Arbor, Michigan; Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan; Michigan Institute of Data Science, Ann Arbor, Michigan; Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Howard C Crawford
- Cancer Biology Program, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan
| | - Timothy L Frankel
- Department of Surgery, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, Ann Arbor, Michigan; Cancer Biology Program, Ann Arbor, Michigan; Department of Surgery, Ann Arbor, Michigan; Cellular and Molecular Biology Program, Ann Arbor, Michigan; Rogel Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
35
|
Abstract
Complex multicellular organisms have evolved specific mechanisms to replenish cells in homeostasis and during repair. Here, we discuss how emerging technologies (e.g., single-cell RNA sequencing) challenge the concept that tissue renewal is fueled by unidirectional differentiation from a resident stem cell. We now understand that cell plasticity, i.e., cells adaptively changing differentiation state or identity, is a central tissue renewal mechanism. For example, mature cells can access an evolutionarily conserved program (paligenosis) to reenter the cell cycle and regenerate damaged tissue. Most tissues lack dedicated stem cells and rely on plasticity to regenerate lost cells. Plasticity benefits multicellular organisms, yet it also carries risks. For one, when long-lived cells undergo paligenotic, cyclical proliferation and redif-ferentiation, they can accumulate and propagate acquired mutations that activate oncogenes and increase the potential for developing cancer. Lastly, we propose a new framework for classifying patterns of cell proliferation in homeostasis and regeneration, with stem cells representing just one of the diverse methods that adult tissues employ.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Charles J. Cho
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA,Departments of Pathology and Immunology and Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Departments of Medicine, Pathology and Immunology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
36
|
Korpela T, Ristimäki A, Udd M, Vuorela T, Mustonen H, Haglund C, Kylänpää L, Seppänen H. Pancreatic fibrosis, acinar atrophy and chronic inflammation in surgical specimens associated with survival in patients with resectable pancreatic ductal adenocarcinoma. BMC Cancer 2022; 22:23. [PMID: 34980011 PMCID: PMC8721973 DOI: 10.1186/s12885-021-09080-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), one of the most lethal malignancies, is increasing in incidence. However, the stromal reaction pathophysiology and its role in PDAC development remain unknown. We, therefore, investigated the potential role of histological chronic pancreatitis findings and chronic inflammation on surgical PDAC specimens and disease-specific survival (DSS). METHODS Between 2000 and 2016, we retrospectively enrolled 236 PDAC patients treated with curative-intent pancreatic surgery at Helsinki University Hospital. All pancreatic transection margin slides were re-reviewed and histological findings were evaluated applying international guidelines. RESULTS DSS among patients with no fibrosis, acinar atrophy or chronic inflammation identified on pathology slides was significantly better than DSS among patients with fibrosis, acinar atrophy and chronic inflammation [median survival: 41.8 months, 95% confidence interval (CI) 26.0-57.6 vs. 20.6 months, 95% CI 10.3-30.9; log-rank test p = 0.001]. Multivariate analysis revealed that Ca 19-9 > 37 kU/l [hazard ratio (HR) 1.48, 95% CI 1.02-2.16], lymph node metastases N1-2 (HR 1.71, 95% CI 1.16-2.52), tumor size > 30 mm (HR 1.47, 95% CI 1.04-2.08), the combined effect of fibrosis and acinar atrophy (HR 1.91, 95% CI 1.27-2.88) and the combined effect of fibrosis, acinar atrophy and chronic inflammation (HR 1.63, 95% CI 1.03-2.58) independently served as unfavorable prognostic factors for DSS. However, we observed no significant associations between tumor size (> 30 mm) and the degree of perilobular fibrosis (p = 0.655), intralobular fibrosis (p = 0.587), acinar atrophy (p = 0.584) or chronic inflammation (p = 0.453). CONCLUSIONS Our results indicate that the pancreatic stroma is associated with PDAC patients' DSS. Additionally, the more severe the fibrosis, acinar atrophy and chronic inflammation, the worse the impact on DSS, thereby warranting further studies investigating stroma-targeted therapies.
Collapse
Affiliation(s)
- Taija Korpela
- Gastroenterological Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00029, PL 340, Helsinki, HUS, Finland.
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marianne Udd
- Gastroenterological Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00029, PL 340, Helsinki, HUS, Finland
| | - Tiina Vuorela
- Gastroenterological Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00029, PL 340, Helsinki, HUS, Finland
| | - Harri Mustonen
- Gastroenterological Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00029, PL 340, Helsinki, HUS, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Gastroenterological Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00029, PL 340, Helsinki, HUS, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leena Kylänpää
- Gastroenterological Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00029, PL 340, Helsinki, HUS, Finland
| | - Hanna Seppänen
- Gastroenterological Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00029, PL 340, Helsinki, HUS, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
37
|
Borrello MT, Martin MB, Pin CL. The unfolded protein response: An emerging therapeutic target for pancreatitis and pancreatic ductal adenocarcinoma. Pancreatology 2022; 22:148-159. [PMID: 34774415 DOI: 10.1016/j.pan.2021.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Pancreatitis is a debilitating disease involving inflammation and fibrosis of the exocrine pancreas. Recurrent or chronic forms of pancreatitis are a significant risk factor for pancreatic ductal adenocarcinoma. While genetic factors have been identified for both pathologies, environmental stresses play a large role in their etiology. All cells have adapted mechanisms to handle acute environmental stress that alters energy demands. A common pathway involved in the stress response involves endoplasmic reticulum stress and the unfolded protein response (UPR). While rapidly activated by many external stressors, in the pancreas the UPR plays a fundamental biological role, likely due to the high protein demands in acinar cells. Despite this, increased UPR activity is observed in response to acute injury or following exposure to risk factors associated with pancreatitis and pancreatic cancer. Studies in animal and cell cultures models show the importance of affecting the UPR in the context of both diseases, and inhibitors have been developed for several specific mediators of the UPR. Given the importance of the UPR to normal acinar cell function, efforts to affect the UPR in the context of disease must be able to specifically target pathology vs. physiology. In this review, we highlight the importance of the UPR to normal and pathological conditions of the exocrine pancreas. We discuss recent studies suggesting the UPR may be involved in the initiation and progression of pancreatitis and PDAC, as well as contributing to chemoresistance that occurs in pancreatic cancer. Finally, we discuss the potential of targeting the UPR for treatment.
Collapse
Affiliation(s)
- M Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Mickenzie B Martin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher L Pin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
38
|
Alhobayb T, Peravali R, Ashkar M. The Relationship between Acute and Chronic Pancreatitis with Pancreatic Adenocarcinoma: Review. Diseases 2021; 9:diseases9040093. [PMID: 34940031 PMCID: PMC8700754 DOI: 10.3390/diseases9040093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with poor prognosis, leading to significant cancer-related mortality and an overall five-year survival rate of about nine percent. Acute and chronic pancreatitis have been associated with PDAC through common risk factors based on multiple epidemiological studies. Acute pancreatitis (AP) might be one of the earliest manifestations of PDAC, but evolving chronic pancreatitis (CP) following recurrent bouts of AP has been proposed as a risk factor for cancer development in the setting of persistent inflammation and ongoing exposure to carcinogens. This review aims to highlight the evidence supporting the relationship between acute and chronic pancreatitis with PDAC.
Collapse
Affiliation(s)
- Tamara Alhobayb
- Department of Medicine, Division of Gastroenterology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Rahul Peravali
- Department of Internal Medicine, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Motaz Ashkar
- Department of Medicine, Division of Gastroenterology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
- Correspondence:
| |
Collapse
|
39
|
Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol 2021; 18:804-823. [PMID: 34331036 DOI: 10.1038/s41575-021-00486-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is a devastating gastrointestinal cancer characterized by late diagnosis, limited treatment success and dismal prognosis. Exocrine tumours account for 95% of pancreatic cancers and the most common pathological type is pancreatic ductal adenocarcinoma (PDAC). The occurrence and progression of PDAC involve multiple factors, including internal genetic alterations and external inflammatory stimuli. The biology and therapeutic response of PDAC are further shaped by various forms of regulated cell death, such as apoptosis, necroptosis, ferroptosis, pyroptosis and alkaliptosis. Cell death induced by local or systemic treatments suppresses tumour proliferation, invasion and metastasis. However, unrestricted cell death or tissue damage might result in an inflammation-related immunosuppressive microenvironment, which is conducive to tumour progression or recurrence. The precise extent to which cell death affects PDAC is not yet well described. A growing body of preclinical and clinical studies document significant correlations between mutations (for example, in KRAS and TP53), stress responses (such as hypoxia and autophagy), metabolic reprogramming and chemotherapeutic responses. Here, we describe the molecular machinery of cell death, discuss the complexity and multifaceted nature of lethal signalling in PDAC cells, and highlight the challenges and opportunities for activating cell death pathways through precision oncology treatments.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
40
|
Dey S, Udari LM, RiveraHernandez P, Kwon JJ, Willis B, Easler JJ, Fogel EL, Pandol S, Kota J. Loss of miR-29a/b1 promotes inflammation and fibrosis in acute pancreatitis. JCI Insight 2021; 6:e149539. [PMID: 34464354 PMCID: PMC8525644 DOI: 10.1172/jci.insight.149539] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-29 (miR-29) is a critical regulator of fibroinflammatory processes in human diseases. In this study, we found a decrease in miR-29a in experimental and human chronic pancreatitis, leading us to investigate the regulatory role of the miR-29a/b1 cluster in acute pancreatitis (AP) utilizing a conditional miR-29a/b1-KO mouse model. miR-29a/b1-sufficient (WT) and -deficient (KO) mice were administered supramaximal caerulein to induce AP and characterized at different time points, utilizing an array of IHC and biochemical analyses for AP parameters. In caerulein-induced WT mice, miR-29a remained dramatically downregulated at injury. Despite high-inflammatory milieu, fibrosis, and parenchymal disarray in the WT mice during early AP, the pancreata fully restored during recovery. miR-29a/b1-KO mice showed significantly greater inflammation, lymphocyte infiltration, macrophage polarization, and ECM deposition, continuing until late recovery with persistent parenchymal disorganization. The increased pancreatic fibrosis was accompanied by enhanced TGFβ1 coupled with persistent αSMA+ PSC activation. Additionally, these mice exhibited higher circulating IL-6 and inflammation in lung parenchyma. Together, this collection of studies indicates that depletion of miR-29a/b1 cluster impacts the fibroinflammatory mechanisms of AP, resulting in (a) aggravated pathogenesis and (b) delayed recovery from the disease, suggesting a protective role of the molecule against AP.
Collapse
Affiliation(s)
- Shatovisha Dey
- Department of Medical and Molecular Genetics, Indiana University (IU) School of Medicine, Indianapolis, Indiana, USA
| | - Lata M Udari
- Department of Medical and Molecular Genetics, Indiana University (IU) School of Medicine, Indianapolis, Indiana, USA
| | - Primavera RiveraHernandez
- Department of Medical and Molecular Genetics, Indiana University (IU) School of Medicine, Indianapolis, Indiana, USA
| | - Jason J Kwon
- Department of Medical and Molecular Genetics, Indiana University (IU) School of Medicine, Indianapolis, Indiana, USA
| | | | - Jeffrey J Easler
- Department of Medicine, Division of Gastroenterology/Hepatology, IU Health, IU School of Medicine, Indianapolis, Indiana, USA.,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, Indiana, USA
| | - Evan L Fogel
- Department of Medicine, Division of Gastroenterology/Hepatology, IU Health, IU School of Medicine, Indianapolis, Indiana, USA.,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, Indiana, USA
| | - Stephen Pandol
- Department of Medicine, Cedar-Sinai Medical Center, Los Angeles, California, USA
| | - Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University (IU) School of Medicine, Indianapolis, Indiana, USA.,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, Indiana, USA
| |
Collapse
|
41
|
Tang D, Kroemer G, Kang R. Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges. Mol Cancer 2021; 20:128. [PMID: 34607583 PMCID: PMC8489073 DOI: 10.1186/s12943-021-01422-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Across a broad range of human cancers, gain-of-function mutations in RAS genes (HRAS, NRAS, and KRAS) lead to constitutive activity of oncoproteins responsible for tumorigenesis and cancer progression. The targeting of RAS with drugs is challenging because RAS lacks classic and tractable drug binding sites. Over the past 30 years, this perception has led to the pursuit of indirect routes for targeting RAS expression, processing, upstream regulators, or downstream effectors. After the discovery that the KRAS-G12C variant contains a druggable pocket below the switch-II loop region, it has become possible to design irreversible covalent inhibitors for the variant with improved potency, selectivity and bioavailability. Two such inhibitors, sotorasib (AMG 510) and adagrasib (MRTX849), were recently evaluated in phase I-III trials for the treatment of non-small cell lung cancer with KRAS-G12C mutations, heralding a new era of precision oncology. In this review, we outline the mutations and functions of KRAS in human tumors and then analyze indirect and direct approaches to shut down the oncogenic KRAS network. Specifically, we discuss the mechanistic principles, clinical features, and strategies for overcoming primary or secondary resistance to KRAS-G12C blockade.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
42
|
Dosch AR, Singh S, Dai X, Mehra S, Silva IDC, Bianchi A, Srinivasan S, Gao Z, Ban Y, Chen X, Banerjee S, Nagathihalli NS, Datta J, Merchant NB. Targeting Tumor-Stromal IL6/STAT3 Signaling through IL1 Receptor Inhibition in Pancreatic Cancer. Mol Cancer Ther 2021; 20:2280-2290. [PMID: 34518296 DOI: 10.1158/1535-7163.mct-21-0083] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Accepted: 09/10/2021] [Indexed: 01/05/2023]
Abstract
A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the presence of a dense, desmoplastic stroma and the consequent altered interactions between cancer cells and their surrounding tumor microenvironment (TME) that promote disease progression, metastasis, and chemoresistance. We have previously shown that IL6 secreted from pancreatic stellate cells (PSC) stimulates the activation of STAT3 signaling in tumor cells, an established mechanism of therapeutic resistance in PDAC. We have now identified the tumor cell-derived cytokine IL1α as an upstream mediator of IL6 release from PSCs that is involved in STAT3 activation within the TME. Herein, we show that IL1α is overexpressed in both murine and human PDAC tumors and engages with its cognate receptor IL1R1, which is strongly expressed on stromal cells. Further, we show that IL1R1 inhibition using anakinra (recombinant IL1 receptor antagonist) significantly reduces stromal-derived IL6, thereby suppressing IL6-dependent STAT3 activation in human PDAC cell lines. Anakinra treatment results in significant reduction in IL6 and activated STAT3 levels in pancreatic tumors from Ptf1aCre/+;LSL-KrasG12D/+; Tgfbr2flox/flox (PKT) mice. Additionally, the combination of anakinra with cytotoxic chemotherapy significantly extends overall survival compared with vehicle treatment or anakinra monotherapy in this aggressive genetic mouse model of PDAC. These data highlight the importance of IL1 in mediating tumor-stromal IL6/STAT3 cross-talk in the TME and provide a preclinical rationale for targeting IL1 signaling as a therapeutic strategy in PDAC.
Collapse
Affiliation(s)
- Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Samara Singh
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Xizi Dai
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Siddharth Mehra
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Iago De Castro Silva
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Anna Bianchi
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Supriya Srinivasan
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Zhen Gao
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuguang Ban
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Xi Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Sulagna Banerjee
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Jashodeep Datta
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
43
|
Yuan C, Morales-Oyarvide V, Khalaf N, Perez K, Tabung FK, Ho GYF, Kooperberg C, Shadyab AH, Qi L, Kraft P, Sesso HD, Giovannucci EL, Manson JE, Stampfer MJ, Ng K, Fuchs CS, Wolpin BM, Babic A. Prediagnostic Inflammation and Pancreatic Cancer Survival. J Natl Cancer Inst 2021; 113:1186-1193. [PMID: 33739411 DOI: 10.1093/jnci/djab040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/21/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic inflammation may promote initiation and progression of pancreatic cancer, but no studies have examined the association between inflammation in the period before diagnosis and pancreatic cancer survival. METHODS We prospectively examined the association of prediagnostic plasma levels of C-reactive protein, interleukin-6, and tumor necrosis factor-α receptor 2 with survival among 492 participants from 5 large US prospective cohort studies who developed pancreatic cancer. Using an empirical dietary inflammatory pattern (EDIP) score, we evaluated whether long-term proinflammatory diets were associated with survival among 1153 patients from 2 of the 5 cohorts. Cox proportional hazards regression was used to estimate hazard ratios for death with adjustment for potential confounders. All statistical tests were 2-sided. RESULTS Higher prediagnostic levels of C-reactive protein, interleukin-6, and tumor necrosis factor-α receptor 2 were individually associated with reduced survival (Ptrend = .03, .01, and .04, respectively). Compared with patients with a combined inflammatory biomarker score of 0 (all 3 marker levels below medians), those with a score of 3 (all 3 marker levels above medians) had a hazard ratio for death of 1.57 (95% confidence interval = 1.16 to 2.12; Ptrend = .003), corresponding to median overall survival times of 8 vs 5 months. Patients consuming the most proinflammatory diets (EDIP quartile 4) in the prediagnostic period had a hazard ratio for death of 1.34 (95% confidence interval = 1.13 to 1.59; Ptrend = .01), compared with those consuming the least proinflammatory diets (EDIP quartile 1). CONCLUSION Prediagnostic levels of inflammatory biomarkers and long-term proinflammatory diets were inversely associated with pancreatic cancer survival.
Collapse
Affiliation(s)
- Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Vicente Morales-Oyarvide
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Natalia Khalaf
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Fred K Tabung
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gloria Y F Ho
- Department of Occupational Medicine, Epidemiology and Prevention, Feinstein Institute for Medical Research, Northwell Health, Great Neck, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Aladdin H Shadyab
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Lihong Qi
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis School of Medicine, Davis, CA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Howard D Sesso
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Division of Preventive Medicine and Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Division of Preventive Medicine and Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meir J Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Sano M, Takahashi R, Ijichi H, Ishigaki K, Yamada T, Miyabayashi K, Kimura G, Mizuno S, Kato H, Fujiwara H, Nakatsuka T, Tanaka Y, Kim J, Masugi Y, Morishita Y, Tanaka M, Ushiku T, Nakai Y, Tateishi K, Ishii Y, Isayama H, Moses HL, Koike K. Blocking VCAM-1 inhibits pancreatic tumour progression and cancer-associated thrombosis/thromboembolism. Gut 2021; 70:1713-1723. [PMID: 33087490 DOI: 10.1136/gutjnl-2020-320608] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is the deadliest cancer. Cancer-associated thrombosis/thromboembolism (CAT), frequently observed in PDAC, is known as a poor prognostic factor. Here, we investigated the underlying mechanisms between PDAC and CAT, and performed a trial of therapeutic approach for PDAC using a genetically engineered mouse model, PKF (Ptf1acre/+;LSL-KrasG12D/+;Tgfbr2flox/flox ). DESIGN Presence of CAT in PKF mice was detected by systemic autopsy. Plasma cytokines were screened by cytokine antibody array. Murine and human plasma atrial natriuretic peptide (ANP) and soluble vascular cell adhesion molecule 1 (sVCAM-1) were determined by ELISA. Distribution of VCAM-1 in PKF mice and human autopsy samples was detected by immunohistochemistry. PKF mice were treated with anti-VCAM-1 antibody and the effects on survival, distribution of CAT and the tumour histology were analysed. RESULTS We found spontaneous CAT with cardiomegaly in 68.4% PKF mice. Increase of plasma ANP and sVCAM-1 was observed in PKF mice and PDAC patients with CAT. VCAM-1 was detected in the activated endothelium and thrombi. Administration of anti-VCAM-1 antibody to PKF mice inhibited tumour growth, neutrophil/macrophage infiltration, tumour angiogenesis and progression of CAT; moreover, it dramatically extended survival (from 61 to 253 days, p<0.01). CONCLUSION Blocking VCAM-1/sVCAM-1 might be a potent therapeutic approach for PDAC as well as CAT, which can contribute to the prognosis. Increase of plasma ANP and sVCAM-1 might be a diagnostic approach for CAT in PDAC.
Collapse
Affiliation(s)
- Makoto Sano
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| | - Ryota Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Clinical Nutrition Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunaga Ishigaki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoharu Yamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Miyabayashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gen Kimura
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Suguru Mizuno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jinsuk Kim
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yasuyuki Morishita
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Endoscopy and Endoscopic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukimoto Ishii
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroyuki Isayama
- Department of Gastoroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Harold L Moses
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Acute Pancreatitis as the Initial Presentation of Pancreatic Adenocarcinoma does not Impact Short- and Long-term Outcomes of Curative Intent Surgery: A Study of the French Surgical Association. World J Surg 2021; 45:3146-3156. [PMID: 34191085 DOI: 10.1007/s00268-021-06205-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Acute pancreatitis (AP) can be one of the earliest clinical presentation of pancreatic ductal adenocarcinoma (PDAC). Information about the impact of AP on postoperative outcomes as well as its influences on PDAC survival is scarce. This study aimed to determine whether AP as initial clinical presentation of PDAC impact the short- and long-term outcomes of curative intent pancreatic resection. PATIENTS AND METHODS From 2004 to 2009, 1449 patients with PDAC underwent pancreatic resection in 37 institutions (France, Belgium and Switzerland). We used univariate and multivariate analysis to identify factors associated with severe complications and pancreatic fistula as well as overall and disease-free survivals. RESULTS There were 764 males (52,7%), and the median age was 64 years. A total of 781 patients (53.9%) developed at least one complication, among whom 317 (21.8%) were classified as Clavien-Dindo ≥ 3. A total of 114 (8.5%) patients had AP as the initial clinical manifestation of PDAC. This situation was not associated with any increase in the rates of postoperative fistula (21.2% vs 16.4%, P = 0.19), postoperative complications (57% vs 54.2%, P = 0.56), and 30 day mortality (2.6% vs 3.4%, P = 1). In multivariate analysis, AP did not correlate with postoperative complications or pancreatic fistula. The median length of follow-up was 22.4 months. The median overall survival after surgery was 29.9 months in the AP group and 30.5 months in the control group. Overall recurrence rate and local recurrence rate did not differ between groups. CONCLUSION AP before PDAC resection did not impact postoperative morbidity and mortality, as well as recurrence rate and survival.
Collapse
|
46
|
Zhang H, Corredor ALG, Messina-Pacheco J, Li Q, Zogopoulos G, Kaddour N, Wang Y, Shi BY, Gregorieff A, Liu JL, Gao ZH. REG3A/REG3B promotes acinar to ductal metaplasia through binding to EXTL3 and activating the RAS-RAF-MEK-ERK signaling pathway. Commun Biol 2021; 4:688. [PMID: 34099862 PMCID: PMC8184755 DOI: 10.1038/s42003-021-02193-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/07/2021] [Indexed: 11/09/2022] Open
Abstract
Persistent acinar to ductal metaplasia (ADM) is a recently recognized precursor of pancreatic ductal adenocarcinoma (PDAC). Here we show that the ADM area of human pancreas tissue adjacent to PDAC expresses significantly higher levels of regenerating protein 3A (REG3A). Exogenous REG3A and its mouse homolog REG3B induce ADM in the 3D culture of primary human and murine acinar cells, respectively. Both Reg3b transgenic mice and REG3B-treated mice with caerulein-induced pancreatitis develop and sustain ADM. Two out of five Reg3b transgenic mice with caerulein-induced pancreatitis show progression from ADM to pancreatic intraepithelial neoplasia (PanIN). Both in vitro and in vivo ADM models demonstrate activation of the RAS-RAF-MEK-ERK signaling pathway. Exostosin-like glycosyltransferase 3 (EXTL3) functions as the receptor for REG3B and mediates the activation of downstream signaling proteins. Our data indicates that REG3A/REG3B promotes persistent ADM through binding to EXTL3 and activating the RAS-RAF-MEK-ERK signaling pathway. Targeting REG3A/REG3B, its receptor EXTL3, or other downstream molecules could interrupt the ADM process and prevent early PDAC carcinogenesis.
Collapse
Affiliation(s)
- Huairong Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Andrea Liliam Gomez Corredor
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Julia Messina-Pacheco
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - George Zogopoulos
- Department of Surgery, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Nancy Kaddour
- Department of Medicine, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Yifan Wang
- Department of Surgery, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Bing-Yin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Alex Gregorieff
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Jun-Li Liu
- Department of Medicine, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Zu-Hua Gao
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
47
|
Chen JX, Cheng CS, Gao HF, Chen ZJ, Lv LL, Xu JY, Shen XH, Xie J, Zheng L. Overexpression of Interferon-Inducible Protein 16 Promotes Progression of Human Pancreatic Adenocarcinoma Through Interleukin-1β-Induced Tumor-Associated Macrophage Infiltration in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:640786. [PMID: 34150748 PMCID: PMC8213213 DOI: 10.3389/fcell.2021.640786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of inflammasomes has been reported in human pancreatic adenocarcinoma (PAAD); however, the expression pattern and functional role of inflammasome-related proteins in PAAD have yet to be identified. In this study, we systemically examined the expression and role of different inflammasome proteins by retrieving human expression data. Several genes were found to be differentially expressed; however, only interferon-inducible protein 16 (IFI16) expression was found to be adversely correlated with the overall survival of PAAD patients. Overexpression of IFI16 significantly promoted tumor growth, increased tumor size and weight in the experimental PAAD model of mice, and specifically increased the population of tumor-associated macrophages (TAMs) in the tumor microenvironment. Depletion of TAMs by injection of liposome clodronate attenuated the IFI16 overexpression-induced tumor growth in PAAD. In vitro treatment of conditioned medium from IFI16-overexpressing PAAD cells induced maturation, proliferation, and migration of bone marrow-derived monocytes, suggesting that IFI16 overexpression resulted in cytokine secretion that favored the TAM population. Further analysis suggested that IFI16 overexpression activated inflammasomes, thereby increasing the release of IL-1β. Neutralization of IL-1β attenuated TAM maturation, proliferation, and migration induced by the conditioned medium from IFI16-overexpressing PAAD cells. Additionally, knockdown of IFI16 could significantly potentiate gemcitabine treatment in PAAD, which may be associated with the reduced infiltration of TAMs in the tumor microenvironment. The findings of our study shed light on the role of IFI16 as a potential therapeutic target for PAAD.
Collapse
Affiliation(s)
- Jing-Xian Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Fang Gao
- Department of Oncology, Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Jie Chen
- Department of Geriatrics, Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Ling Lv
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Jia-Yue Xu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Xiao-Heng Shen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Jing Xie
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
48
|
Otto L, Rahn S, Daunke T, Walter F, Winter E, Möller JL, Rose-John S, Wesch D, Schäfer H, Sebens S. Initiation of Pancreatic Cancer: The Interplay of Hyperglycemia and Macrophages Promotes the Acquisition of Malignancy-Associated Properties in Pancreatic Ductal Epithelial Cells. Int J Mol Sci 2021; 22:ijms22105086. [PMID: 34064969 PMCID: PMC8151031 DOI: 10.3390/ijms22105086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/26/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive solid malignancies with a poor prognosis. Obesity and type 2 diabetes mellitus (T2DM) are two major risk factors linked to the development and progression of PDAC, both often characterized by high blood glucose levels. Macrophages represent the main immune cell population in PDAC contributing to PDAC development. It has already been shown that pancreatic ductal epithelial cells (PDEC) undergo epithelial–mesenchymal transition (EMT) when exposed to hyperglycemia or macrophages. Thus, this study aimed to investigate whether concomitant exposure to hyperglycemia and macrophages aggravates EMT-associated alterations in PDEC. Exposure to macrophages and elevated glucose levels (25 mM glucose) impacted gene expression of EMT inducers such as IL-6 and TNF-α as well as EMT transcription factors in benign (H6c7-pBp) and premalignant (H6c7-kras) PDEC. Most strikingly, exposure to hyperglycemic coculture with macrophages promoted downregulation of the epithelial marker E-cadherin, which was associated with an elevated migratory potential of PDEC. While blocking IL-6 activity by tocilizumab only partially reverted the EMT phenotype in H6c7-kras cells, neutralization of TNF-α by etanercept was able to clearly impair EMT-associated properties in premalignant PDEC. Altogether, the current study attributes a role to a T2DM-related hyperglycemic, inflammatory micromilieu in the acquisition of malignancy-associated alterations in premalignant PDEC, thus providing new insights on how metabolic diseases might promote PDAC initiation.
Collapse
Affiliation(s)
- Lilli Otto
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Sascha Rahn
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany; (S.R.); (S.R.-J.)
| | - Tina Daunke
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Frederik Walter
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Elsa Winter
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Julia Luisa Möller
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany;
| | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany; (S.R.); (S.R.-J.)
| | - Daniela Wesch
- Institute of Immunology, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany;
| | - Heiner Schäfer
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
- Correspondence: ; Tel.: +49-431-500-30501
| |
Collapse
|
49
|
Jiang W, Chen C, Huang L, Shen J, Yang L. GATA4 Regulates Inflammation-Driven Pancreatic Ductal Adenocarcinoma Progression. Front Cell Dev Biol 2021; 9:640391. [PMID: 33996796 PMCID: PMC8117218 DOI: 10.3389/fcell.2021.640391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
Cancer-associated inflammation is a key molecular feature in the progression of pancreatic ductal adenocarcinoma (PDAC). GATA4 is a transcription factor that participates in the regulation and normal development of several endoderm- and mesoderm-derived tissues such as the pancreas. However, it remains unclear whether GATA4 is involved in the inflammation-driven development of pancreatic cancer. Here, we employed quantitative reverse transcription PCR, immunohistochemistry, and differential expression analysis to investigate the association between GATA4 and inflammation-driven PDAC. We found that overexpression of GATA4 in pancreatic tumor tissue was accompanied by increased levels of inflammatory macrophages. We used macrophage-conditioned medium to validate inflammation models following treatment with varying concentrations of lipopolysaccharide and determined whether GATA4-dependent inflammatory stimuli affected pancreatic cancer cell invasion and growth in vitro. Nude mouse models of dibutyltin dichloride-induced chronic pancreatitis with orthotopic tumor xenografts were used to evaluate the effect of the inflammatory microenvironment on GATA4 expression in vivo. Our findings indicate that overexpression of GATA4 dramatically aggravated inflammatory stimuli-induced pancreatic cancer cell invasion and growth via NF-κB and STAT3 signaling, whereas silencing of GATA4 attenuated invasion and growth. Overall, our findings suggest that inflammation-driven cancer progression is dependent on GATA4 expression and is mediated through the STAT3 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Yang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Okada F, Izutsu R, Goto K, Osaki M. Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects. Cancers (Basel) 2021; 13:cancers13040921. [PMID: 33671768 PMCID: PMC7926701 DOI: 10.3390/cancers13040921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In multicellular organisms, inflammation is the body’s most primitive and essential protective response against any external agent. Inflammation, however, not only causes various modern diseases such as cardiovascular disorders, neurological disorders, autoimmune diseases, metabolic syndrome, infectious diseases, and cancer but also shortens the healthy life expectancy. This review focuses on the onset of carcinogenesis due to chronic inflammation caused by pathogen infections and inhalation/ingestion of foreign substances. This study summarizes animal models associated with inflammation-related carcinogenesis by organ. By determining factors common to inflammatory carcinogenesis models, we examined strategies for the prevention and treatment of inflammatory carcinogenesis in humans. Abstract Inflammation-related carcinogenesis has long been known as one of the carcinogenesis patterns in humans. Common carcinogenic factors are inflammation caused by infection with pathogens or the uptake of foreign substances from the environment into the body. Inflammation-related carcinogenesis as a cause for cancer-related death worldwide accounts for approximately 20%, and the incidence varies widely by continent, country, and even region of the country and can be affected by economic status or development. Many novel approaches are currently available concerning the development of animal models to elucidate inflammation-related carcinogenesis. By learning from the oldest to the latest animal models for each organ, we sought to uncover the essential common causes of inflammation-related carcinogenesis. This review confirmed that a common etiology of organ-specific animal models that mimic human inflammation-related carcinogenesis is prolonged exudation of inflammatory cells. Genotoxicity or epigenetic modifications by inflammatory cells resulted in gene mutations or altered gene expression, respectively. Inflammatory cytokines/growth factors released from inflammatory cells promote cell proliferation and repair tissue injury, and inflammation serves as a “carcinogenic niche”, because these fundamental biological events are common to all types of carcinogenesis, not just inflammation-related carcinogenesis. Since clinical strategies are needed to prevent carcinogenesis, we propose the therapeutic apheresis of inflammatory cells as a means of eliminating fundamental cause of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
- Correspondence: ; Tel.: +81-859-38-6241
| | - Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
| | - Keisuke Goto
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Division of Gastrointestinal and Pediatric Surgery, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|