1
|
Militi S, Nibhani R, Jalali M, Pauklin S. RBL2-E2F-GCN5 guide cell fate decisions during tissue specification by regulating cell-cycle-dependent fluctuations of non-cell-autonomous signaling. Cell Rep 2023; 42:113146. [PMID: 37725511 DOI: 10.1016/j.celrep.2023.113146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
The retinoblastoma family proteins (RBs) and E2F transcription factors are cell-autonomous regulators of cell-cycle progression, but they also impact fate choice in addition to tumor suppression. The range of mechanisms involved remains to be uncovered. Here, we show that RBs, particularly RBL2/p130, repress WNT ligands such as WNT4 and WNT8A, thereby directing ectoderm specification between neural crest to neuroepithelium. RBL2 achieves this function through cell-cycle-dependent cooperation with E2Fs and GCN5 on the regulatory regions of WNT loci, which direct neuroepithelial versus neural crest specification by temporal fluctuations of WNT/β-catenin and DLL/NOTCH signaling activity. Thus, the RB-E2F bona fide cell-autonomous axis controls cell fate decisions, and RBL2 regulates field effects via WNT ligands. This reveals a non-cell-autonomous function of RBL2-E2F in stem cell and tissue progenitor differentiation that has broader implications for cell-cycle-dependent cell fate specification in organogenesis, adult stem cells, tissue homeostasis, and tumorigenesis.
Collapse
Affiliation(s)
- Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Morteza Jalali
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK.
| |
Collapse
|
2
|
Ramasubramanian L, Jyothi H, Goldbloom-Helzner L, Light BM, Kumar P, Carney RP, Farmer DL, Wang A. Development and Characterization of Bioinspired Lipid Raft Nanovesicles for Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54458-54477. [PMID: 36448709 PMCID: PMC9756296 DOI: 10.1021/acsami.2c13868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Lipid rafts are highly ordered regions of the plasma membrane enriched in signaling proteins and lipids. Their biological potential is realized in exosomes, a subclass of extracellular vesicles (EVs) that originate from the lipid raft domains. Previous studies have shown that EVs derived from human placental mesenchymal stromal cells (PMSCs) possess strong neuroprotective and angiogenic properties. However, clinical translation of EVs is challenged by very low, impure, and heterogeneous yields. Therefore, in this study, lipid rafts are validated as a functional biomaterial that can recapitulate the exosomal membrane and then be synthesized into biomimetic nanovesicles. Lipidomic and proteomic analyses show that lipid raft isolates retain functional lipids and proteins comparable to PMSC-EV membranes. PMSC-derived lipid raft nanovesicles (LRNVs) are then synthesized at high yields using a facile, extrusion-based methodology. Evaluation of biological properties reveals that LRNVs can promote neurogenesis and angiogenesis through modulation of lipid raft-dependent signaling pathways. A proof-of-concept methodology further shows that LRNVs could be loaded with proteins or other bioactive cargo for greater disease-specific functionalities, thus presenting a novel type of biomimetic nanovesicles that can be leveraged as targeted therapeutics for regenerative medicine.
Collapse
Affiliation(s)
- Lalithasri Ramasubramanian
- Department
of Surgery, School of Medicine, University of California-Davis, Sacramento, California 95817, United States
- Institute
for Pediatric Regenerative Medicine, Shriners
Hospitals for Children, Sacramento, California 95817, United States
- Department
of Biomedical Engineering, University of
California-Davis, Davis, California 95616, United States
| | - Harsha Jyothi
- Department
of Surgery, School of Medicine, University of California-Davis, Sacramento, California 95817, United States
| | - Leora Goldbloom-Helzner
- Department
of Surgery, School of Medicine, University of California-Davis, Sacramento, California 95817, United States
- Institute
for Pediatric Regenerative Medicine, Shriners
Hospitals for Children, Sacramento, California 95817, United States
- Department
of Biomedical Engineering, University of
California-Davis, Davis, California 95616, United States
| | - Brandon M. Light
- Department
of Surgery, School of Medicine, University of California-Davis, Sacramento, California 95817, United States
| | - Priyadarsini Kumar
- Department
of Surgery, School of Medicine, University of California-Davis, Sacramento, California 95817, United States
- Institute
for Pediatric Regenerative Medicine, Shriners
Hospitals for Children, Sacramento, California 95817, United States
| | - Randy P. Carney
- Department
of Biomedical Engineering, University of
California-Davis, Davis, California 95616, United States
| | - Diana L. Farmer
- Department
of Surgery, School of Medicine, University of California-Davis, Sacramento, California 95817, United States
- Institute
for Pediatric Regenerative Medicine, Shriners
Hospitals for Children, Sacramento, California 95817, United States
| | - Aijun Wang
- Department
of Surgery, School of Medicine, University of California-Davis, Sacramento, California 95817, United States
- Institute
for Pediatric Regenerative Medicine, Shriners
Hospitals for Children, Sacramento, California 95817, United States
- Department
of Biomedical Engineering, University of
California-Davis, Davis, California 95616, United States
| |
Collapse
|
3
|
Li X, Peng Z, Long L, Tuo Y, Wang L, Zhao X, Le W, Wan Y. Wnt4-modified NSC transplantation promotes functional recovery after spinal cord injury. FASEB J 2020; 34:82-94. [PMID: 31914702 DOI: 10.1096/fj.201901478rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023]
Abstract
Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction, yet there are no effective therapies currently due to the failure of reconstructing the interruption of the neuroanatomical circuit. While neural stem cell (NSC) transplantation has been considered a potential strategy to repair the neural circuit after SCI, the efficacy of this strategy remains unproven. The main reason is that most of the transplanted NSC differentiates into astrocyte rather than neuron in the microenvironment of SCI. Our results demonstrated that Wnt4 significantly promotes the differentiation of NSC into neuron by activating both β-catenin and MAPK/JNK pathways and suppressing the activation of Notch signaling, which is acknowledged as prevention of NSC differentiation into neuron, through downregulating NICD expression, translocating and preventing the combination of NICD and RbpJ in nucleus. In addition, Wnt4 rescues the negative effect of Jagged, the ligand of Notch signaling, to promote neuronal differentiation. Moreover, in vivo study, transplantation of Wnt4-modified NSC efficaciously repairs the injured spinal cord and recovers the motor function of hind limbs after SCI. This study sheds new light into mechanisms that Wnt4-modified NSC transplantation is sufficient to repair the injured spinal cord and recover the motor dysfunction after SCI.
Collapse
Affiliation(s)
- Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiming Peng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Tuo
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liqin Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wang Le
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| |
Collapse
|
4
|
Tara S, Krishnan LK. Differentiation of circulating neural progenitor cells in vitro on fibrin-based composite -matrix involves Wnt- β-catenin-like signaling. J Cell Commun Signal 2018; 13:27-38. [PMID: 29856041 DOI: 10.1007/s12079-018-0467-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 04/19/2018] [Indexed: 02/07/2023] Open
Abstract
Isolation of progenitors with regenerative potential and their in vitro induction to specific lineage may be necessary for effective cell transplantation outcome. Earlier, we standardized specific niche for derivation of neural progenitor cells (NPCs) from circulating mononuclear cells to neural like cells (NLC) in vitro, for applications in neural regeneration. The current study analysed the prospective involvement of signaling mechanism for in vitro lineage commitment of circulating NPCs. Preferred mechanism selected was Wnt-like signaling because this is one of the pathways implicated in the central nervous system (CNS) development and homeostasis. We sought to determine the activation of Wnt3a-specific genes in the standardized NPC culture system. To start with, it was found that when standardized NPC culture niche was supplemented with Wnt 3a protein, no additional morphological changes happen. Chemical inhibitors of the pathway retarded NPC to NLC conversion both in the absence and presence of supplemented Wnt-3a. In earlier studies, involvement of the niche constituents- fibronectin (FN), laminin (La) and fibrin (Fib)- for NPC growth and differentiation was established. In an attempt to study the role of these adhesive proteins by adding antibodies against FN, La & Fib together, molecular level signaling changes seen were comparable to that occur in response to Wnt3a chemical inhibitor. Therefore, induction of Wnt 3a-like signal from the matrix-dependent niche constituents may be implicated in the differentiation of NPC to NLC. The results substantiate the potential applications of the fibrin-based composite niche in neural engineering for regeneration.
Collapse
Affiliation(s)
- S Tara
- Division of Thrombosis Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, 695012, India
| | - Lissy K Krishnan
- Division of Thrombosis Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, 695012, India.
| |
Collapse
|
5
|
Yang F, Feng X, Rolfs A, Luo J. Lovastatin promotes myelin formation in NPC1 mutant oligodendrocytes. J Neurol Sci 2018; 386:56-63. [PMID: 29406968 DOI: 10.1016/j.jns.2018.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 01/09/2023]
Abstract
Niemann-Pick Type C (NPC) disease is a rare neurovisceral disorder caused by mutations of either NPC1 or NPC2 gene and characterized by defective intracellular transport of cholesterol and glycosphingolipids, leading to neuron loss and myelin aberration in the central nervous system. In this study, by comparing protein expression in the cortical white matter tracts from mice at different postnatal days, we identified that in the NPC1 mutant (NPC1-/-) mice, the onset of myelination is delayed and the amount of the major myelin protein MBP and PLP, and oligodendrocyte regulatory factor Olig1 and Olig2, but not NG2 and Sox10, decreased significantly, suggesting a disruption of oligodendrocyte differentiation. Furthermore, in in vitro oligodendrocyte cultivation, NPC1-/- oligodendrocytes showed less response to the stimulation of neuron-conditioned medium (CdM), indicating a defect of oligodendrocyte per se. Interestingly, lovastatin restores the number of mature myelin-forming oligodendrocytes by increasing Olig1 and Olig2 expressions. Our data suggest a potential strategy for improving myelination using lovastatin in NPC disease.
Collapse
Affiliation(s)
- Fan Yang
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | - Xiao Feng
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany; Centre for Transdisciplinary Neuroscience Rostock, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany.
| |
Collapse
|
6
|
Harrill JA. Human-Derived Neurons and Neural Progenitor Cells in High Content Imaging Applications. Methods Mol Biol 2018; 1683:305-338. [PMID: 29082500 DOI: 10.1007/978-1-4939-7357-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to advances in the fields of stem cell biology and cellular engineering, a variety of commercially available human-derived neurons and neural progenitor cells (NPCs) are now available for use in research applications, including small molecule efficacy or toxicity screening. The use of human-derived neural cells is anticipated to address some of the uncertainties associated with the use of nonhuman culture models or transformed cell lines derived from human tissues. Many of the human-derived neurons and NPCs currently available from commercial sources recapitulate critical process of nervous system development including NPC proliferation, neurite outgrowth, synaptogenesis, and calcium signaling, each of which can be evaluated using high content image analysis (HCA). Human-derived neurons and NPCs are also amenable to culture in multiwell plate formats and thus may be adapted for use in HCA-based screening applications. This article reviews various types of HCA-based assays that have been used in conjunction with human-derived neurons and NPC cultures. This article also highlights instances where lower throughput analysis of neurodevelopmental processes has been performed and which demonstrate a potential for adaptation to higher-throughout imaging methods. Finally, a generic protocol for evaluating neurite outgrowth in human-derived neurons using a combination of immunocytochemistry and HCA is presented. The information provided in this article is intended to serve as a resource for cell model and assay selection for those interested in evaluating neurodevelopmental processes in human-derived cells.
Collapse
Affiliation(s)
- Joshua A Harrill
- Center for Toxicology and Environmental Health, LLC, 5120 Northshore Drive, Little Rock, AR, 72118, USA.
| |
Collapse
|
7
|
Mykicki N, Herrmann AM, Schwab N, Deenen R, Sparwasser T, Limmer A, Wachsmuth L, Klotz L, Köhrer K, Faber C, Wiendl H, Luger TA, Meuth SG, Loser K. Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease. Sci Transl Med 2017; 8:362ra146. [PMID: 27797962 DOI: 10.1126/scitranslmed.aaf8732] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
In inflammation-associated progressive neuroinflammatory disorders, such as multiple sclerosis (MS), inflammatory infiltrates containing T helper 1 (TH1) and TH17 cells cause demyelination and neuronal degeneration. Regulatory T cells (Treg) control the activation and infiltration of autoreactive T cells into the central nervous system (CNS). In MS and experimental autoimmune encephalomyelitis (EAE) in mice, Treg function is impaired. We show that a recently approved drug, Nle4-d-Phe7-α-melanocyte-stimulating hormone (NDP-MSH), induced functional Treg, resulting in amelioration of EAE progression in mice. NDP-MSH also prevented immune cell infiltration into the CNS by restoring the integrity of the blood-brain barrier. NDP-MSH exerted long-lasting neuroprotective effects in mice with EAE and prevented excitotoxic death and reestablished action potential firing in mouse and human neurons in vitro. Neuroprotection by NDP-MSH was mediated via signaling through the melanocortin-1 and orphan nuclear 4 receptors in mouse and human neurons. NDP-MSH may be of benefit in treating neuroinflammatory diseases such as relapsing-remitting MS and related disorders.
Collapse
Affiliation(s)
- Nadine Mykicki
- Department of Dermatology, University of Münster, 48149 Münster, Germany.,Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Alexander M Herrmann
- Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany.,Department of Neurology, University of Münster, 48149 Münster, Germany
| | - Nicholas Schwab
- Department of Neurology, University of Münster, 48149 Münster, Germany
| | - René Deenen
- Biological and Medical Research Center, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Andreas Limmer
- Clinic for Orthopedic and Trauma Surgery, University Clinic of Bonn, 53127 Bonn, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University of Münster, 48149 Münster, Germany
| | - Luisa Klotz
- Department of Neurology, University of Münster, 48149 Münster, Germany
| | - Karl Köhrer
- Biological and Medical Research Center, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Cornelius Faber
- Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany.,Department of Clinical Radiology, University of Münster, 48149 Münster, Germany.,CRC1009 Breaking Barriers and CRC-TR 128 Multiple Sclerosis, University of Münster, 48149 Münster, Germany
| | - Heinz Wiendl
- Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany.,Department of Neurology, University of Münster, 48149 Münster, Germany.,CRC1009 Breaking Barriers and CRC-TR 128 Multiple Sclerosis, University of Münster, 48149 Münster, Germany
| | - Thomas A Luger
- Department of Dermatology, University of Münster, 48149 Münster, Germany.,Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Sven G Meuth
- Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany.,Department of Neurology, University of Münster, 48149 Münster, Germany.,CRC1009 Breaking Barriers and CRC-TR 128 Multiple Sclerosis, University of Münster, 48149 Münster, Germany
| | - Karin Loser
- Department of Dermatology, University of Münster, 48149 Münster, Germany. .,Cells in Motion-Cluster of Excellence, University of Münster, 48149 Münster, Germany.,CRC1009 Breaking Barriers and CRC-TR 128 Multiple Sclerosis, University of Münster, 48149 Münster, Germany
| |
Collapse
|
8
|
Narendra Talabattula VA, Morgan P, Frech MJ, Uhrmacher AM, Herchenröder O, Pützer BM, Rolfs A, Luo J. Non-canonical pathway induced by Wnt3a regulates β-catenin via Pyk2 in differentiating human neural progenitor cells. Biochem Biophys Res Commun 2017; 491:40-46. [DOI: 10.1016/j.bbrc.2017.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
9
|
Markus-Koch A, Schmitt O, Seemann S, Lukas J, Koczan D, Ernst M, Fuellen G, Wree A, Rolfs A, Luo J. ADAM23 promotes neuronal differentiation of human neural progenitor cells. Cell Mol Biol Lett 2017; 22:16. [PMID: 28828010 PMCID: PMC5562998 DOI: 10.1186/s11658-017-0045-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/24/2017] [Indexed: 11/10/2022] Open
Abstract
Background ADAM23 is widely expressed in the embryonic central nervous system and plays an important role in tissue formation. Results In this study, we showed that ADAM23 contributes to cell survival and is involved in neuronal differentiation during the differentiation of human neural progenitor cells (hNPCs). Upregulation of ADAM23 in hNPCs was found to increase the number of neurons and the length of neurite, while its downregulation decreases them and triggers cell apoptosis. RNA microarray analysis revealed mechanistic insights into genes and pathways that may become involved in multiple cellular processes upon up- or downregulation of ADAM23. Conclusions Our results suggest that ADAM23 regulates neuronal differentiation by triggering specific signaling pathways during hNPC differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s11658-017-0045-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annett Markus-Koch
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, 18055 Rostock, Germany
| | - Susanne Seemann
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Dirk Koczan
- Institute for Immunology, Rostock University Medical Center, Schillingallee 70, 18055 Rostock, Germany
| | - Mathias Ernst
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, 18055 Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| |
Collapse
|
10
|
Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, Liu S, Han S, Fang Y, Wei J, Wang X, Ma X, Dai J. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep 2016; 6:23300. [PMID: 26996236 PMCID: PMC4800422 DOI: 10.1038/srep23300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 03/03/2016] [Indexed: 11/09/2022] Open
Abstract
Increasing evidence suggests that three dimensional (3-D) cell cultures are an improvement over traditional two dimensional (2-D) cell cultures. Current researches have extensively focused on the study of utilizing biomaterial-based 3-D culture systems to study and direct stem-cell fate both in vitro and in vivo. Here in our study, we screened the differential expression patterns of miRNAs between 2-D cultured and 3-D cultured NPCs using microarray analysis. Among these differentially expressed miRNAs, miR-20 was found to increase during differentiation of NPCs. Specifically, the facilitative effect on neural differentiation of miR-20 is mediated, at least in part by directly target the Rest gene, which is essential for preventing neural differentiation and maintaining NPCs self-renewal. Furthermore, the expression of miR-20 was decreased when the WNT pathway was inhibited by knock down of β-catenin or by exogenous Dkk protein, whereas it increased when the WNT pathway was activated by exogenous Wnt3a protein. Overall, miR-20, Rest and Wnt signaling are suggested to be involved in a regulatory circuit that can modulate the neural differention of NPCs. This novel regulatory circuit provides additional insight into how microRNAs interact with signaling molecules during neural differentiation of NPCs, allowing for fine-tuning of intricate cellular processes.
Collapse
Affiliation(s)
- Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China.,State key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Han
- State key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhifeng Xiao
- State key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Tong Chen
- University of Chinese Academy of Sciences, Beijing 100049, China.,The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- State key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Chen
- State key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Sumei Liu
- State key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Sufang Han
- State key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Jianshu Wei
- State key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiujie Wang
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Ma
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China
| | - Jianwu Dai
- State key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Yang JW, Ma W, Luo T, Wang DY, Lu JJ, Li XT, Wang TT, Cheng JR, Ru J, Gao Y, Liu J, Liang Z, Yang ZY, Dai P, He YS, Guo XB, Guo JH, Li LY. BDNF promotes human neural stem cell growth via GSK-3β-mediated crosstalk with the wnt/β-catenin signaling pathway. Growth Factors 2016; 34:19-32. [PMID: 27144323 DOI: 10.3109/08977194.2016.1157791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays important roles in neural stem cell (NSC) growth. In this study, we investigated whether BDNF exerts its neurotrophic effects through the Wnt/β-catenin signaling pathway in human embryonic spinal cord NSCs (hESC-NSCs) in vitro. We found an increase in hESC-NSC growth by BDNF overexpression. Furthermore, expression of Wnt1, Frizzled1 and Dsh was upregulated, whereas GSK-3β expression was downregulated. In contrast, hESC-NSC growth was decreased by BDNF RNA interference. BDNF, Wnt1 and β-catenin components were all downregulated, whereas GSK-3β was upregulated. Next, we treated hESC-NSCs with 6-bromoindirubin-3'-oxime (BIO), a small molecule inhibitor of GSK-3β. BIO reduced the effects of BDNF upregulation/downregulation on the cell number, soma size and differentiation, and suppressed the effect of BDNF modulation on the Wnt signaling pathway. Our findings suggest that BDNF promotes hESC-NSC growth in vitro through crosstalk with the Wnt/β-catenin signaling pathway, and that this interaction may be mediated by GSK-3β.
Collapse
Affiliation(s)
- Jin-Wei Yang
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Wei Ma
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Tao Luo
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Dong-Yan Wang
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Jian-Jun Lu
- c Department of Anatomy and Biomedical Sciences , Monash University , Melbourne , Australia
| | - Xing-Tong Li
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Tong-Tong Wang
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Jing-Ru Cheng
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Jin Ru
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Yan Gao
- d Department of Pathology , Children's Hospital of Kunming City , Yunnan Kunming , China , and
| | - Jia Liu
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Zhang Liang
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Zhi-Yong Yang
- e Department of Neurosurgery , First Affiliated Hospital of Kunming Medical University , Yunnan Kunming , China
| | - Ping Dai
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Yong-Sheng He
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Xiao-Bing Guo
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Jian-Hui Guo
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Li-Yan Li
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| |
Collapse
|
12
|
Bain LJ, Liu JT, League RE. Arsenic inhibits stem cell differentiation by altering the interplay between the Wnt3a and Notch signaling pathways. Toxicol Rep 2016; 3:405-413. [PMID: 27158593 PMCID: PMC4855706 DOI: 10.1016/j.toxrep.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
data indicates that arsenic exposure inhibits stem cell differentiation. This study investigated whether arsenic disrupted the Wnt3a signaling pathway, critical in the formation of myotubes and neurons, during the differentiation in P19 mouse embryonic stem cells. Cells were exposed to 0, 0.1, or 0.5 μM arsenite, with or without exogenous Wnt3a, for up to 9 days of differentiation. Arsenic exposure alone inhibits the differentiation of stem cells into neurons and skeletal myotubes, and reduces the expression of both β-catenin and GSK3β mRNA to ~55% of control levels. Co-culture of the arsenic-exposed cells with exogenous Wnt3a rescues the morphological phenotype, but does not alter transcript, protein, or phosphorylation status of GSK3β or β-catenin. However, arsenic exposure maintains high levels of Hes5 and decreases the expression of MASH1 by 2.2-fold, which are anti- and pro-myogenic and neurogenic genes, respectively, in the Notch signaling pathway. While rescue with exogenous Wnt3a reduced Hes5 levels, MASH1 levels stay repressed. Thus, while Wnt3a can partially rescue the inhibition of differentiation from arsenic, it does so by also modulating Notch target genes rather than only working through the canonical Wnt signaling pathway. These results indicate that arsenic alters the interplay between multiple signaling pathways, leading to reduced stem cell differentiation.
Collapse
Affiliation(s)
- Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 23964, USA
| | - Jui-Tung Liu
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Ryan E League
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| |
Collapse
|
13
|
Jaeger A, Fröhlich M, Klum S, Lantow M, Viergutz T, Weiss DG, Kriehuber R. Characterization of Apoptosis Signaling Cascades During the Differentiation Process of Human Neural ReNcell VM Progenitor Cells In Vitro. Cell Mol Neurobiol 2015; 35:1203-16. [PMID: 26022602 PMCID: PMC11486231 DOI: 10.1007/s10571-015-0213-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/17/2015] [Indexed: 12/12/2022]
Abstract
Apoptosis is an essential physiological process accompanying the development of the central nervous system and human neurogenesis. However, the time scale and the underlying molecular mechanisms are yet poorly understood. Due to this fact, we investigated the functionality and general inducibility of apoptosis in the human neural ReNcell VM progenitor cell line during differentiation and also after exposure to staurosporine (STS) and ultraviolet B (UVB) irradiation. Transmission light microscopy, flow cytometry, and Western-/Immunoblot analysis were performed to compare proliferating and differentiating, in addition to STS- and UVB-treated cells. In particular, from 24 to 72 h post-initiation of differentiation, G0/G1 cell cycle arrest, increased loss of apoptotic cells, activation of pro-apoptotic BAX, Caspase-3, and cleavage of its substrate PARP were observed during cell differentiation and, to a higher extent, after treatment with STS and UVB. We conclude that redundant or defective cells are eliminated by apoptosis, while otherwise fully differentiated cells were less responsive to apoptosis induction by STS than proliferating cells, likely as a result of reduced APAF-1 expression, and increased levels of BCL-2. These data provide the evidence that apoptotic mechanisms in the neural ReNcell VM progenitor cell line are not only functional, but also inducible by external stimuli like growth factor withdrawal or treatment with STS and UVB, which marks this cell line as a suitable model to investigate apoptosis signaling pathways in respect to the differentiation processes of human neural progenitor cells in vitro.
Collapse
Affiliation(s)
- Alexandra Jaeger
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Michael Fröhlich
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Susanne Klum
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Margareta Lantow
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Torsten Viergutz
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Dieter G Weiss
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Ralf Kriehuber
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany.
- Department of Safety and Radiation Protection, Radiation Biology Unit (S-US), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
14
|
Abstract
Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer's disease (AD), because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel 3D culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of amyloid-β (Aβ) and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix and the analysis of AD pathogenesis. The 3D culture generation takes 1-2 d. The aggregation of Aβ is observed after 6 weeks of differentiation, followed by robust tau pathology after 10-14 weeks.
Collapse
|
15
|
Jang S, Park JS, Jeong HS. Neural Differentiation of Human Adipose Tissue-Derived Stem Cells Involves Activation of the Wnt5a/JNK Signalling. Stem Cells Int 2015; 2015:178618. [PMID: 26106419 PMCID: PMC4461786 DOI: 10.1155/2015/178618] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/13/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022] Open
Abstract
Stem cells are a powerful resource for cell-based transplantation therapies, but understanding of stem cell differentiation at the molecular level is not clear yet. We hypothesized that the Wnt pathway controls stem cell maintenance and neural differentiation. We have characterized the transcriptional expression of Wnt during the neural differentiation of hADSCs. After neural induction, the expressions of Wnt2, Wnt4, and Wnt11 were decreased, but the expression of Wnt5a was increased compared with primary hADSCs in RT-PCR analysis. In addition, the expression levels of most Fzds and LRP5/6 ligand were decreased, but not Fzd3 and Fzd5. Furthermore, Dvl1 and RYK expression levels were downregulated in NI-hADSCs. There were no changes in the expression of ß-catenin and GSK3ß. Interestingly, Wnt5a expression was highly increased in NI-hADSCs by real time RT-PCR analysis and western blot. Wnt5a level was upregulated after neural differentiation and Wnt3, Dvl2, and Naked1 levels were downregulated. Finally, we found that the JNK expression was increased after neural induction and ERK level was decreased. Thus, this study shows for the first time how a single Wnt5a ligand can activate the neural differentiation pathway through the activation of Wnt5a/JNK pathway by binding Fzd3 and Fzd5 and directing Axin/GSK-3ß in hADSCs.
Collapse
Affiliation(s)
- Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Gwangju 501746, Republic of Korea
| | - Jong-Seong Park
- Department of Physiology, Chonnam National University Medical School, Gwangju 501746, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Gwangju 501746, Republic of Korea
| |
Collapse
|
16
|
Haack F, Lemcke H, Ewald R, Rharass T, Uhrmacher AM. Spatio-temporal model of endogenous ROS and raft-dependent WNT/beta-catenin signaling driving cell fate commitment in human neural progenitor cells. PLoS Comput Biol 2015; 11:e1004106. [PMID: 25793621 PMCID: PMC4368204 DOI: 10.1371/journal.pcbi.1004106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/31/2014] [Indexed: 02/03/2023] Open
Abstract
Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the model. Thus, our results provide both new insights and means to further our understanding of canonical WNT/β-catenin signaling and the role of ROS as intracellular signaling mediator. Human neural progenitor cells offer the promising perspective of using in-vitro grown neural cell populations for replacement therapies in the context of neurodegenerative diseases, such as Parkinson’s or Huntington’s disease. However, to control hNPC differentiation within the scope of stem cell engineering, a thorough understanding of cell fate determination and its endogenous regulation is required. Here we investigate the spatio-temporal regulation of WNT/β-catenin signaling in the process of cell fate commitment in hNPCs, which has been reported to play a crucial role for the differentiation process of hNPCs. Based on a combined in-vitro and in-silico approach we demonstrate an elaborate interplay between endogenous ROS and lipid raft dependent WNT/beta-catenin signaling controlling the nuclear beta-catenin levels throughout the initial phase of neural differentiation. The stochastic multi-level computational model we derive from our experimental measurements adds to the family of existing WNT models, addressing major biochemical and spatial aspects of WNT/beta-catenin signaling that have not been considered in existing models so far. Cross validation studies manifest its predictive capability for other cells and cell lines rendering the model a suitable basis for further studies also in the context of embryonic development, developmental disorders and cancers.
Collapse
Affiliation(s)
- Fiete Haack
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
- * E-mail:
| | - Heiko Lemcke
- Live Cell Imaging Center, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University Medical Center Rostock, Rostock, Germany
| | - Roland Ewald
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
| | - Tareck Rharass
- Live Cell Imaging Center, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin-Buch, Berlin-Buch, Germany
| | - Adelinde M. Uhrmacher
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
| |
Collapse
|
17
|
Rharass T, Lemcke H, Lantow M, Kuznetsov SA, Weiss DG, Panáková D. Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/β-catenin pathway activation to facilitate cell differentiation. J Biol Chem 2014; 289:27937-51. [PMID: 25124032 PMCID: PMC4183826 DOI: 10.1074/jbc.m114.573519] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that reactive oxygen species (ROS) can stimulate the Wnt/β-catenin pathway in a number of cellular processes. However, potential sources of endogenous ROS have not been thoroughly explored. Here, we show that growth factor depletion in human neural progenitor cells induces ROS production in mitochondria. Elevated ROS levels augment activation of Wnt/β-catenin signaling that regulates neural differentiation. We find that growth factor depletion stimulates the release of Ca(2+) from the endoplasmic reticulum stores. Ca(2+) subsequently accumulates in the mitochondria and triggers ROS production. The inhibition of mitochondrial Ca(2+) uptake with simultaneous growth factor depletion prevents the rise in ROS metabolism. Moreover, low ROS levels block the dissociation of the Wnt effector Dishevelled from nucleoredoxin. Attenuation of the response amplitudes of pathway effectors delays the onset of the Wnt/β-catenin pathway activation and results in markedly impaired neuronal differentiation. Our findings reveal Ca(2+)-mediated ROS metabolic cues that fine-tune the efficiency of cell differentiation by modulating the extent of the Wnt/β-catenin signaling output.
Collapse
Affiliation(s)
- Tareck Rharass
- From Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch and Cell Biology and Biosystems Technology, Institute of Biological Sciences, and Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Heiko Lemcke
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, and Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Margareta Lantow
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, and
| | - Sergei A Kuznetsov
- Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Dieter G Weiss
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, and Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Daniela Panáková
- From Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch and
| |
Collapse
|
18
|
Mußmann C, Hübner R, Trilck M, Rolfs A, Frech MJ. HES5 is a key mediator of Wnt-3a-induced neuronal differentiation. Stem Cells Dev 2014; 23:1328-39. [PMID: 24548083 DOI: 10.1089/scd.2013.0557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Human neural stem/progenitor cell (hNPC)-derived neuronal progeny has been suggested as a promising cell source in a variety of neurodegenerative diseases. Understanding the underlying mechanisms that regulate neuronal differentiation is essential for efficient cell-based therapies. Wnt and Notch signaling has been shown to be crucial in this process. However, their interactions in the process of neuronal differentiation remain elusive. By using human fetal (ReNcell VM) and iPS-derived hNPCs we demonstrate that Wnt-3a immediately induced a transient HES1 upregulation and a sustained HES5 repression that was accompanied by upregulation of the proneural gene MASH1. Conversely, overexpression of HES5 resulted in reduced MASH1 expression. Remarkably, HES5 overexpression efficiently blocked Wnt-3a as well as γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT)-induced neuronal differentiation that was accompanied by a strong MASH1 downregulation thus directly linking HES5 repression/MASH1 induction to the proneurogenic effect of Wnt-3a. Stabilized β-catenin or treatment with the specific glycogen synthase kinase 3 beta (GSK3β) inhibitor SB-216763 failed to or only partially mimicked these effects, suggesting a GSK3β- and β-catenin-independent mechanism. Further, inhibition of Wnt-3a-LDL-receptor-related protein 5/6 (LRP5/6) interactions using Dickkopf-1 (Dkk-1) failed to inhibit the modulatory effect of Wnt-3a on HES1/5 and neuronal differentiation. Taken together, these data identify HES5 as a key mediator of the Wnt-3a proneurogenic effect occurring independently of the classical Wnt/β-catenin signaling cascade thus further deciphering crosstalk mechanisms of Wnt and Notch signaling pathways regulating cell fate of hNPCs.
Collapse
Affiliation(s)
- Carolin Mußmann
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University of Rostock , Rostock, Germany
| | | | | | | | | |
Collapse
|
19
|
Yan X, Lin J, Talabattula VAN, Mußmann C, Yang F, Wree A, Rolfs A, Luo J. ADAM10 negatively regulates neuronal differentiation during spinal cord development. PLoS One 2014; 9:e84617. [PMID: 24404179 PMCID: PMC3880303 DOI: 10.1371/journal.pone.0084617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/15/2013] [Indexed: 12/22/2022] Open
Abstract
Members of the ADAM (a disintegrin and metalloprotease) family are involved in embryogenesis and tissue formation via their proteolytic function, cell-cell and cell-matrix interactions. ADAM10 is expressed temporally and spatially in the developing chicken spinal cord, but its function remains elusive. In the present study, we address this question by electroporating ADAM10 specific morpholino antisense oligonucleotides (ADAM10-mo) or dominant-negative ADAM10 (dn-ADAM10) plasmid into the developing chicken spinal cord as well as by in vitro cell culture investigation. Our results show that downregulation of ADAM10 drives precocious differentiation of neural progenitor cells and radial glial cells, resulting in an increase of neurons in the developing spinal cord, even in the prospective ventricular zone. Remarkably, overexpression of the dn-ADAM10 plasmid mutated in the metalloprotease domain (dn-ADAM10-me) mimics the phenotype as found by the ADAM10-mo transfection. Furthermore, in vitro experiments on cultured cells demonstrate that downregulation of ADAM10 decreases the amount of the cleaved intracellular part of Notch1 receptor and its target, and increases the number of βIII-tubulin-positive cells during neural progenitor cell differentiation. Taken together, our data suggest that ADAM10 negatively regulates neuronal differentiation, possibly via its proteolytic effect on the Notch signaling during development of the spinal cord.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
| | - Juntang Lin
- Key Laboratory for Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, P.R. China
- Institute of Anatomy I, School of Medicine University of Jena, Jena, Germany
| | | | - Carolin Mußmann
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
| | - Fan Yang
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, School of Medicine University of Rostock, Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
- * E-mail:
| |
Collapse
|
20
|
Hovakimyan M, Meyer A, Lukas J, Luo J, Gudziol V, Hummel T, Rolfs A, Wree A, Witt M. Olfactory deficits in Niemann-Pick type C1 (NPC1) disease. PLoS One 2013; 8:e82216. [PMID: 24391715 PMCID: PMC3877006 DOI: 10.1371/journal.pone.0082216] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/24/2013] [Indexed: 01/22/2023] Open
Abstract
Background Niemann-Pick type C disease (NPC) is a rare autosomal recessive lipid storage disease characterized by progressive neurodegeneration. As only a few studies have been conducted on the impact of NPC on sensory systems, we used a mutant mouse model (NPC1−/−) to examine the effects of this disorder to morphologically distinct regions of the olfactory system, namely the olfactory epithelium (OE) and olfactory bulb (OB). Methodology/Principal findings For structural and functional analysis immunohistochemistry, electron microscopy, western blotting, and electrophysiology have been applied. For histochemistry and western blotting, we used antibodies against a series of neuronal and glia marker proteins, as well as macrophage markers. NPC1−/− animals present myelin-like lysosomal deposits in virtually all types of cells of the peripheral and central olfactory system. Especially supporting cells of the OE and central glia cells are affected, resulting in pronounced astrocytosis and microgliosis in the OB and other olfactory cortices. Up-regulation of Galectin-3, Cathepsin D and GFAP in the cortical layers of the OB underlines the critical role and location of the OB as a possible entrance gate for noxious substances. Unmyelinated olfactory afferents of the lamina propria seem less affected than ensheathing cells. Supporting the structural findings, electro-olfactometry of the olfactory mucosa suggests that NPC1−/− animals exhibit olfactory and trigeminal deficits. Conclusions/Significance Our data demonstrate a pronounced neurodegeneration and glia activation in the olfactory system of NPC1−/−, which is accompanied by sensory deficits.
Collapse
Affiliation(s)
- Marina Hovakimyan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Anja Meyer
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Jan Lukas
- Albrecht-Kossel Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Germany
| | - Volker Gudziol
- Department of Otorhinolaryngology, University of Dresden Medical School, Dresden, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, University of Dresden Medical School, Dresden, Germany
| | - Arndt Rolfs
- Albrecht-Kossel Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- * E-mail:
| |
Collapse
|
21
|
Van Camp JK, Beckers S, Zegers D, Van Hul W. Wnt Signaling and the Control of Human Stem Cell Fate. Stem Cell Rev Rep 2013; 10:207-29. [DOI: 10.1007/s12015-013-9486-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Yu Q, Liu L, Duan Y, Wang Y, Xuan X, Zhou L, Liu W. Wnt/β-catenin signaling regulates neuronal differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2013; 439:297-302. [DOI: 10.1016/j.bbrc.2013.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 11/26/2022]
|
23
|
Lemcke H, Nittel ML, Weiss DG, Kuznetsov SA. Neuronal differentiation requires a biphasic modulation of gap junctional intercellular communication caused by dynamic changes of connexin43 expression. Eur J Neurosci 2013; 38:2218-28. [PMID: 23607708 DOI: 10.1111/ejn.12219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
It was suggested that gap junctional intercellular communication (GJIC) and connexin (Cx) proteins play a crucial role in cell proliferation and differentiation. However, the mechanisms of cell coupling in regulating cell fate during embryonic development are poorly understood. To study the role of GJIC in proliferation and differentiation, we used a human neural progenitor cell line derived from the ventral mesencephalon. Fluorescence recovery after photobleaching (FRAP) showed that dye coupling was extensive in proliferating cells but diminished after the induction of differentiation, as indicated by a 2.5-fold increase of the half-time of fluorescence recovery. Notably, recovery half-time decreased strongly (five-fold) in the later stage of differentiation. Western blot analysis revealed a similar time-dependent expression profile of Cx43, acting as the main gap junction-forming protein. Interestingly, large amounts of cytoplasmic Cx43 were retained mainly in the Golgi network during proliferation but decreased when differentiation was induced. Furthermore, down-regulation of Cx43 by small interfering RNA reduced functional cell coupling, which in turn resulted in a 50% decrease of both the proliferation rate and neuronal differentiation. Our findings suggest a dual function of Cx43 and GJIC in the neural development of ReNcell VM197 human progenitor cells. GJIC accompanied by high Cx43 expression is necessary (1) to maintain cells in a proliferative state and (2) to complete neuronal differentiation, including the establishment of a neural network. However, uncoupling of cells is crucial in the early stage of differentiation during cell fate commitment.
Collapse
Affiliation(s)
- Heiko Lemcke
- Department of Animal Physiology, Cell Biology and Biosystems Technology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059, Rostock, Germany
| | | | | | | |
Collapse
|
24
|
Liedmann A, Frech S, Morgan PJ, Rolfs A, Frech MJ. Differentiation of human neural progenitor cells in functionalized hydrogel matrices. Biores Open Access 2013; 1:16-24. [PMID: 23515105 PMCID: PMC3560381 DOI: 10.1089/biores.2012.0209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hydrogel-based three-dimensional (3D) scaffolds are widely used in the field of regenerative medicine, translational medicine, and tissue engineering. Recently, we reported the effect of scaffold formation on the differentiation and survival of human neural progenitor cells (hNPCs) using PuraMatrix™ (RADA-16) scaffolds. Here, we were interested in the impact of PuraMatrix modified by the addition of short peptide sequences, based on a bone marrow homing factor and laminin. The culture and differentiation of the hNPCs in the modified matrices resulted in an approximately fivefold increase in neuronal cells. The examination of apoptotic and necrotic cells, as well as the level of the anti-apoptotic protein Bcl-2, indicates benefits for cells hosted in the modified formulations. In addition, we found a trend to lower proportions of apoptotic or necrotic neuronal cells in the modified matrices. Interestingly, the neural progenitor cell pool was increased in all the tested matrices in comparison to the standard 2D culture system, while no difference was found between the modified matrices. We conclude that a combination of elevated neuronal differentiation and a protective effect of the modified matrices underlies the increased proportion of neuronal cells.
Collapse
Affiliation(s)
- Andrea Liedmann
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock , Rostock, Germany
| | | | | | | | | |
Collapse
|
25
|
Esfandiari F, Fathi A, Gourabi H, Kiani S, Nemati S, Baharvand H. Glycogen synthase kinase-3 inhibition promotes proliferation and neuronal differentiation of human-induced pluripotent stem cell-derived neural progenitors. Stem Cells Dev 2012; 21:3233-3243. [PMID: 22642687 DOI: 10.1089/scd.2011.0678] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human-induced pluripotent stem cell-derived neural progenitors (hiPSC-NPs) have the ability to self-renew and differentiate into glial and neuronal lineages, which makes them an invaluable source in cell replacement therapy for neurological diseases. Therefore, their enhanced proliferation and neuronal differentiation are pivotal features that can be used in repairing neurological injuries. One of the main regulators of neural development is Wnt signaling, which results in the inhibition of glycogen synthase kinase 3 (GSK-3). Here, we assess the impact of GSK-3 inhibition by the small molecule CHIR99021 on the expansion and differentiation of hiPSC-NPs in an adherent condition and a defined medium. Cell proliferation analyses have revealed that inhibition of GSK-3 in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) increased the proliferation of hiPSC-NPs across 10 passages. The inhibition of β-catenin signaling by XAV and NOTCH signaling by DAPT reversed CHIR impact on hiPSC-NPs proliferation. The target genes of β-catenin, C-MYC and CYCLIN D1 as well as NOTCH target genes, HES1 and HES5 were upregulated. The treatment of NPs by CHIR in the absence of bFGF and EGF resulted in an increase of neuronal differentiation rather than proliferation by stabilization of β-catenin regardless of the NOTCH pathway. Thus, GSK-3 inhibition has been shown to promote proliferation of the NPs by activating β-catenin and NOTCH-related cell cycle genes in the presence of bFGF and EGF. Additionally, during GSK-3 inhibition, an absence of these growth factors allows for the switch to neuronal differentiation with a bias toward a dopaminergic fate. This may provide desired cells that can be used in therapeutic applications and offer insights into the etiology of some neurological disorders.
Collapse
Affiliation(s)
- Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
26
|
Elucidating the sources of β-catenin dynamics in human neural progenitor cells. PLoS One 2012; 7:e42792. [PMID: 22952611 PMCID: PMC3431164 DOI: 10.1371/journal.pone.0042792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/11/2012] [Indexed: 01/03/2023] Open
Abstract
Human neural progenitor cells (hNPCs) form a new prospect for replacement therapies in the context of neurodegenerative diseases. The Wnt/β-catenin signaling pathway is known to be involved in the differentiation process of hNPCs. RVM cells form a common cell model of hNPCs for in vitro investigation. Previous observations in RVM cells raise the question of whether observed kinetics of the Wnt/β-catenin pathway in later differentiation phases are subject to self-induced signaling. However, a concern when investigating RVM cells is that experimental results are possibly biased by the asynchrony of cells w.r.t. the cell cycle. In this paper, we present, based on experimental data, a computational modeling study on the Wnt/β-catenin signaling pathway in RVM cell populations asynchronously distributed w.r.t. to their cell cycle phases. Therefore, we derive a stochastic model of the pathway in single cells from the reference model in literature and extend it by means of cell populations and cell cycle asynchrony. Based on this, we show that the impact of the cell cycle asynchrony on wet-lab results that average over cell populations is negligible. We then further extend our model and the thus-obtained simulation results provide additional evidence that self-induced Wnt signaling occurs in RVM cells. We further report on significant stochastic effects that directly result from model parameters provided in literature and contradict experimental observations.
Collapse
|
27
|
Morgan PJ, Liedmann A, Hübner R, Hovakimyan M, Rolfs A, Frech MJ. Human neural progenitor cells show functional neuronal differentiation and regional preference after engraftment onto hippocampal slice cultures. Stem Cells Dev 2011; 21:1501-12. [PMID: 21867424 DOI: 10.1089/scd.2011.0335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transplantation of stem cells offers potential therapies for many neurodegenerative disorders that currently have limited or no treatment options. However, relatively little is known about how the host environment affects the development and integration of these cells. In this study we have engrafted immortalized human midbrain neural progenitor cells (NPCs) onto rat hippocampal brain slice cultures to examine the influence of a neural environment on differentiation. Patch clamp recordings revealed that the transplanted progenitor cells could express neuronal-type voltage-gated currents and rapidly receive synaptic input from the hippocampal brain slice. The distribution of progenitor cells across the hippocampal slices was strongly influenced by the neural architecture, with most cells located in the fissural regions and sending processes parallel to the laminar structure, while in contrast, cells located in the dentate gyrus showed no organized pattern. Almost no cells were found in the stratum radiatum or pyramidal cell layers. Together, these results demonstrate the potential for the architecture of the host environment to regulate the integration of transplanted cells, and highlight the utility of coculture systems for studying the mechanisms underlying the migration, integration, and differentiation of human NPCs in structured neural environments.
Collapse
Affiliation(s)
- Peter J Morgan
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock, Rostock, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Yan X, Lukas J, Witt M, Wree A, Hübner R, Frech M, Köhling R, Rolfs A, Luo J. Decreased expression of myelin gene regulatory factor in Niemann-Pick type C 1 mouse. Metab Brain Dis 2011; 26:299-306. [PMID: 21938520 DOI: 10.1007/s11011-011-9263-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/02/2011] [Indexed: 10/17/2022]
Abstract
Niemann-Pick type C 1 (NPC1) disease is an autosomal recessive cholesterol transport defect resulting in a neurodegenerative process in patients mainly at an early age, although some patients may start with manifestation in adult. Since loss of myelin is considered as a main pathogenetic factor, the precise mechanism inducing dysmylination in NPC1 disease is still unclear. In the present study, a quantitative evaluation on the myelin protein and its regulatory factors of oligodendrocytes, such as SRY-related HMG-box 10 (Sox10), Yin Yang 1 factor (YY1) and myelin gene regulatory factor (MRF), in different parts of the brain and spinal cord was performed in NPC1-mutant mice. The results showed that NPC1 protein was expressed in oligodendrocytes and the amount of myelin protein was generally decreased in all parts of the brain and spinal cord in NPC1-mutant mice. Compared to wild type, the amount of Sox10 and YY1 was not different in NPC1-mutant mice, but MRF was significantly decreased, suggesting a possible mechanism perturbing differentiation of oligodendrocytes and the myelination process in the NPC1-mutant mouse.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine, University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Quantitative and kinetic profile of Wnt/β-catenin signaling components during human neural progenitor cell differentiation. Cell Mol Biol Lett 2011; 16:515-38. [PMID: 21805133 PMCID: PMC6275579 DOI: 10.2478/s11658-011-0021-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/03/2011] [Indexed: 12/30/2022] Open
Abstract
ReNcell VM is an immortalized human neural progenitor cell line with the ability to differentiate in vitro into astrocytes and neurons, in which the Wnt/β-catenin pathway is known to be involved. However, little is known about kinetic changes of this pathway in human neural progenitor cell differentiation. In the present study, we provide a quantitative profile of Wnt/β-catenin pathway dynamics showing its spatio-temporal regulation during ReNcell VM cell differentiation. We show first that T-cell factor dependent transcription can be activated by stabilized β-catenin. Furthermore, endogenous Wnt ligands, pathway receptors and signaling molecules are temporally controlled, demonstrating changes related to differentiation stages. During the first three hours of differentiation the signaling molecules LRP6, Dvl2 and β-catenin are spatio-temporally regulated between distinct cellular compartments. From 24 h onward, components of the Wnt/β-catenin pathway are strongly activated and regulated as shown by mRNA up-regulation of Wnt ligands (Wnt5a and Wnt7a), receptors including Frizzled-2, -3, -6, -7, and -9, and co-receptors, and target genes including Axin2. This detailed temporal profile of the Wnt/β-catenin pathway is a first step to understand, control and to orientate, in vitro, human neural progenitor cell differentiation.
Collapse
|
30
|
Ortinau S, Schmich J, Block S, Liedmann A, Jonas L, Weiss DG, Helm CA, Rolfs A, Frech MJ. Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells. Biomed Eng Online 2010; 9:70. [PMID: 21070668 PMCID: PMC2996398 DOI: 10.1186/1475-925x-9-70] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 11/11/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3D-microenviroment being important in determining the fate of the embedded cells. Here we used a hydrogel-based scaffold to investigate the influences of matrix concentration and functionalisation with laminin on the formation of the scaffolds, and the effect of these scaffolds on human neural progenitor cells cultured within them. METHODS In this study we used different concentrations of the hydrogel-based matrix PuraMatrix. In some experiments we functionalised the matrix with laminin I. The impact of concentration and treatment with laminin on the formation of the scaffold was examined with atomic force microscopy. Cells from a human fetal neural progenitor cell line were cultured in the different matrices, as well as in a 2D culture system, and were subsequently analysed with antibody stainings against neuronal markers. In parallel, the survival rate of the cells was determined by a live/dead assay. RESULTS Atomic force microscopy measurements demonstrated that the matrices are formed by networks of isolated PuraMatrix fibres and aggregates of fibres. An increase of the hydrogel concentration led to a decrease in the mesh size of the scaffolds and functionalisation with laminin promoted aggregation of the fibres (bundle formation), which further reduces the density of isolated fibres. We showed that laminin-functionalisation is essential for human neural progenitor cells to build up 3D-growth patterns, and that proliferation of the cells is also affected by the concentration of matrix. In addition we found that 3D-cultures enhanced neuronal differentiation and the survival rate of the cells compared to 2D-cultures. CONCLUSIONS Taken together, we have demonstrated a direct influence of the 3D-scaffold formation on the survival and neuronal differentiation of human neural progenitor cells. These findings emphasize the importance of optimizing 3D-scaffolds protocols prior to in vivo engraftment of stem and progenitor cells in the context of regenerative medicine.
Collapse
Affiliation(s)
- Stefanie Ortinau
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lange C, Mix E, Frahm J, Glass A, Müller J, Schmitt O, Schmöle AC, Klemm K, Ortinau S, Hübner R, Frech MJ, Wree A, Rolfs A. Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells. Neurosci Lett 2010; 488:36-40. [PMID: 21056624 DOI: 10.1016/j.neulet.2010.10.076] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/22/2010] [Accepted: 10/31/2010] [Indexed: 12/26/2022]
Abstract
Human neural progenitor cells provide a source for cell replacement therapy to treat neurodegenerative diseases. Therefore, there is great interest in mechanisms and tools to direct the fate of multipotent progenitor cells during their differentiation to increase the yield of a desired cell type. We tested small molecule inhibitors of glycogen synthase kinase-3 (GSK-3) for their functionality and their influence on neurogenesis using the human neural progenitor cell line ReNcell VM. Here we report the enhancement of neurogenesis of human neural progenitor cells by treatment with GSK-3 inhibitors. We tested different small molecule inhibitors of GSK-3 i.e. LiCl, sodium-valproate, kenpaullone, indirubin-3-monoxime and SB-216763 for their ability to inhibit GSK-3 in human neural progenitor cells. The highest in situ GSK-3 inhibitory effect of the drugs was found for kenpaullone and SB-216763. Accordingly, kenpaullone and SB-216763 were the only drugs tested in this study to stimulate the Wnt/β-catenin pathway that is antagonized by GSK-3. Analysis of human neural progenitor differentiation revealed an augmentation of neurogenesis by SB-216763 and kenpaullone, without changing cell cycle exit or cell survival. Small molecule inhibitors of GSK-3 enhance neurogenesis of human neural progenitor cells and may be used to direct the differentiation of neural stem and progenitor cells in therapeutic applications.
Collapse
Affiliation(s)
- Christian Lange
- Neurobiological Laboratory, Department of Neurology, University of Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|