1
|
Bernard C, Liu Y, Larrouy-Maumus G, Guilhot C, Cam K, Chalut C. Altered serine metabolism promotes drug tolerance in Mycobacterium abscessus via a WhiB7-mediated adaptive stress response. Antimicrob Agents Chemother 2024; 68:e0145623. [PMID: 38651855 PMCID: PMC11620514 DOI: 10.1128/aac.01456-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
Mycobacterium abscessus is an emerging opportunistic pathogen responsible for chronic lung diseases, especially in patients with cystic fibrosis. Treatment failure of M. abscessus infections is primarily associated with intrinsic or acquired antibiotic resistance. However, there is growing evidence that antibiotic tolerance, i.e., the ability of bacteria to transiently survive exposure to bactericidal antibiotics through physiological adaptations, contributes to the relapse of chronic infections and the emergence of acquired drug resistance. Yet, our understanding of the molecular mechanisms that underlie antibiotic tolerance in M. abscessus remains limited. In the present work, a mutant with increased cross-tolerance to the first- and second-line antibiotics cefoxitin and moxifloxacin, respectively, has been isolated by experimental evolution. This mutant harbors a mutation in serB2, a gene involved in L-serine biosynthesis. Metabolic changes caused by this mutation alter the intracellular redox balance to a more reduced state that induces overexpression of the transcriptional regulator WhiB7 during the stationary phase, promoting tolerance through activation of a WhiB7-dependant adaptive stress response. These findings suggest that alteration of amino acid metabolism and, more generally, conditions that trigger whiB7 overexpression, makes M. abscessus more tolerant to antibiotic treatment.
Collapse
Affiliation(s)
- Célia Bernard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Yi Liu
- Faculty of Natural Sciences, Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Gérald Larrouy-Maumus
- Faculty of Natural Sciences, Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Kaymeuang Cam
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
2
|
Wang N, Luo J, Deng F, Huang Y, Zhou H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front Pharmacol 2022; 13:839808. [PMID: 35281905 PMCID: PMC8905495 DOI: 10.3389/fphar.2022.839808] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
After the first aminoglycoside antibiotic streptomycin being applied in clinical practice in the mid-1940s, aminoglycoside antibiotics (AGAs) are widely used to treat clinical bacterial infections and bacterial resistance to AGAs is increasing. The bacterial resistance to AGAs is owed to aminoglycoside modifying enzyme modification, active efflux pump gene overexpression and 16S rRNA ribosomal subunit methylation, leading to modification of AGAs' structures and decreased concentration of drugs within bacteria. As AGAs's side effects and bacterial resistance, the development of AGAs is time-consuming and difficult. Because bacterial resistance may occur in a short time after application in clinical practice, it was found that the antibacterial effect of the combination was not only better than that of AGAs alone but also reduce the dosage of antibiotics, thereby reducing the occurrence of side effects. This article reviews the clinical use of AGAs, the antibacterial mechanisms, the molecular mechanisms of bacterial resistance, and especially focuses a recent development of the combination of AGAs with other drugs to exert a synergistic antibacterial effect to provide a new strategy to overcome bacterial resistance to AGAs.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhou
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Xu Q, Hu X, Wang Y. Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections. Mol Biotechnol 2021; 63:1103-1124. [PMID: 34309796 DOI: 10.1007/s12033-021-00371-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Antibiotics have been denoted as the orthodox therapeutic agents for fighting bacteria-related infections in clinical practices for decades. Nevertheless, overuse of antibiotics has led to the upsurge of species with antimicrobial resistance (AMR) or multi-drug resistance. Bacteria can also grow into the biofilm, which accounts for at least two-thirds of infections. Distinct gene expression and self-produced heterogeneous hydrated extracellular polymeric substance matrix architecture of biofilm contribute to their tolerance and externally manifest as antibiotic resistance. In this review, the difficulties in combating biofilm formation and AMR are introduced, and novel alternatives to antibiotics such as metal nanoparticles and quaternary ammonium compounds, chitosan and its derivatives, antimicrobial peptides, stimuli-responsive materials, phage therapy and other therapeutic strategies, from compounds to hydrogel, from inorganic to biological, are discussed. We expect to provide useful information for the readers who are seeking for solutions to the problem of AMR and biofilm-related infections.
Collapse
Affiliation(s)
- Qian Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Patel RR, Kandel PP, Traverso E, Hockett KL, Triplett LR. Pseudomonas syringae pv. phaseolicola Uses Distinct Modes of Stationary-Phase Persistence To Survive Bacteriocin and Streptomycin Treatments. mBio 2021; 12:e00161-21. [PMID: 33849974 PMCID: PMC8092213 DOI: 10.1128/mbio.00161-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial treatment of bacteria often results in a small population of surviving tolerant cells, or persisters, that may contribute to recurrent infection. Antibiotic persisters are metabolically dormant, but the basis of their persistence in the presence of membrane-disrupting biological compounds is less well understood. We previously found that the model plant pathogen Pseudomonas syringae pv. phaseolicola 1448A (Pph) exhibits persistence to tailocin, a membrane-disrupting biocontrol compound with potential for sustainable disease control. Here, we compared physiological traits associated with persistence to tailocin and to the antibiotic streptomycin and established that both treatments leave similar frequencies of persisters. Microscopic profiling of treated populations revealed that while tailocin rapidly permeabilizes most cells, streptomycin treatment results in a heterogeneous population in the redox and membrane permeability state. Intact cells were sorted into three fractions according to metabolic activity, as indicated by a redox-sensing reporter dye. Streptomycin persisters were cultured from the fraction associated with the lowest metabolic activity, but tailocin persisters were cultured from a fraction associated with an active metabolic signal. Cells from culturable fractions were able to infect host plants, while the nonculturable fractions were not. Tailocin and streptomycin were effective in eliminating all persisters when applied sequentially, in addition to eliminating cells in other viable states. This study identifies distinct metabolic states associated with antibiotic persistence, tailocin persistence, and loss of virulence and demonstrates that tailocin is highly effective in eliminating dormant cells.IMPORTANCE Populations of genetically identical bacteria encompass heterogeneous physiological states. The small fraction of bacteria that are dormant can help the population survive exposure to antibiotics and other stresses, potentially contributing to recurring infection cycles in animal or plant hosts. Membrane-disrupting biological control treatments are effective in killing dormant bacteria, but these treatments also leave persister-like survivors. The current work demonstrates that in Pph, persisters surviving treatment with membrane-disrupting tailocin proteins have an elevated redox state compared to that of dormant streptomycin persisters. Combination treatment was effective in killing both persister types. Culturable persisters corresponded closely with infectious cells in each treated population, whereas the high-redox and unculturable fractions were not infectious. In linking redox states to heterogeneous phenotypes of tailocin persistence, streptomycin persistence, and infection capability, this work will inform the search for mechanisms and markers for each phenotype.
Collapse
Affiliation(s)
- Ravikumar R Patel
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Prem P Kandel
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Eboni Traverso
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lindsay R Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Rapacka-Zdonczyk A, Wozniak A, Nakonieczna J, Grinholc M. Development of Antimicrobial Phototreatment Tolerance: Why the Methodology Matters. Int J Mol Sci 2021; 22:2224. [PMID: 33672375 PMCID: PMC7926562 DOI: 10.3390/ijms22042224] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Due to rapidly growing antimicrobial resistance, there is an urgent need to develop alternative, non-antibiotic strategies. Recently, numerous light-based approaches, demonstrating killing efficacy regardless of microbial drug resistance, have gained wide attention and are considered some of the most promising antimicrobial modalities. These light-based therapies include five treatments for which high bactericidal activity was demonstrated using numerous in vitro and in vivo studies: antimicrobial blue light (aBL), antimicrobial photodynamic inactivation (aPDI), pulsed light (PL), cold atmospheric plasma (CAP), and ultraviolet (UV) light. Based on their multitarget activity leading to deleterious effects to numerous cell structures-i.e., cell envelopes, proteins, lipids, and genetic material-light-based treatments are considered to have a low risk for the development of tolerance and/or resistance. Nevertheless, the most recent studies indicate that repetitive sublethal phototreatment may provoke tolerance development, but there is no standard methodology for the proper evaluation of this phenomenon. The statement concerning the lack of development of resistance to these modalities seem to be justified; however, the most significant motivation for this review paper was to critically discuss existing dogma concerning the lack of tolerance development, indicating that its assessment is more complex and requires better terminology and methodology.
Collapse
Affiliation(s)
- Aleksandra Rapacka-Zdonczyk
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
- Department of Pharmaceutical Microbiology, The Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Agata Wozniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
| |
Collapse
|
6
|
Ikram M, Javed B, Raja NI, Mashwani ZUR. Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. Int J Nanomedicine 2021; 16:249-268. [PMID: 33469285 PMCID: PMC7811472 DOI: 10.2147/ijn.s295053] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have advantages over other nanomaterials because of the promising role of selenium in the stabilization of the immune system and activation of the defense response. The use of SeNPs and their supplements not only have pharmacological significance but also boost and prepare the body's immune system to fight the pathogens. This review summarizes the recent progress in the biogenesis of plant-based SeNPs by using various plant species and the role of secondary metabolites on their biocompatible functioning. Phyto-synthesis of SeNPs results in the synthesis of nanomaterials of various, size, shape and biochemical nature and has advantages over other routine physical and chemical methods because of their biocompatibility, eco-friendly nature and in vivo actions. Unfortunately, the plant-based SeNPs failed to attain considerable attention in the pharmaceutical industry. However, a few studies were performed to explore the therapeutic potential of the SeNPs against various cancer cells, microbial pathogens, viral infections, hepatoprotective actions, diabetic management, and antioxidant approaches. Further, some of the selenium-based drug delivery systems are developed by engineering the SeNPs with the functional ligands to deliver drugs to the targeted sites. This review also provides up-to-date information on the mechanistic actions that the SeNPs adopt to achieve their designated tasks as it may help to develop precision medicine with customized treatment and healthcare for the ailing population.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|
7
|
Kawano A, Yamasaki R, Sakakura T, Takatsuji Y, Haruyama T, Yoshioka Y, Ariyoshi W. Reactive Oxygen Species Penetrate Persister Cell Membranes of Escherichia coli for Effective Cell Killing. Front Cell Infect Microbiol 2020; 10:496. [PMID: 33042869 PMCID: PMC7530241 DOI: 10.3389/fcimb.2020.00496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 08/10/2020] [Indexed: 02/05/2023] Open
Abstract
Persister cells are difficult to eliminate because they are tolerant to antibiotic stress. In the present study, using artificially induced Escherichia coli persister cells, we found that reactive oxygen species (ROS) have greater effects on persister cells than on exponential cells. Thus, we examined which types of ROS could effectively eliminate persister cells and determined the mechanisms underlying the effects of these ROS. Ultraviolet (UV) light irradiation can kill persister cells, and bacterial viability is markedly increased under UV shielding. UV induces the production of ROS, which kill bacteria by moving toward the shielded area. Electron spin resonance-based analysis confirmed that hydroxyl radicals are produced by UV irradiation, although singlet oxygen is not produced. These results clearly revealed that ROS sterilizes persister cells more effectively compared to the sterilization of exponential cells (**p < 0.01). These ROS do not injure the bacterial cell wall but rather invade the cell, followed by cell killing. Additionally, the sterilization effect on persister cells was increased by exposure to oxygen plasma during UV irradiation. However, vapor conditions decreased persister cell sterilization by reducing the levels of hydroxyl radicals. We also verified the effect of ROS against bacteria in biofilms that are more resistant than planktonic cells. Although UV alone could not completely sterilize the biofilm bacteria, UV with ROS achieved complete sterilization. Our results demonstrate that persister cells strongly resist the effects of antibiotics and starvation stress but are less able to withstand exposure to ROS. It was shown that ROS does not affect the cell membrane but penetrates it and acts internally to kill persister cells. In particular, it was clarified that the hydroxy radical is an effective sterilizer to kill persister cells.
Collapse
Affiliation(s)
- Aki Kawano
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Tatsuya Sakakura
- Division of Functional Interface Engineering, Department of Biological Systems and Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Yoshiyuki Takatsuji
- Division of Functional Interface Engineering, Department of Biological Systems and Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Tetsuya Haruyama
- Division of Functional Interface Engineering, Department of Biological Systems and Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Yoshie Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
8
|
Salcedo-Sora JE, Kell DB. A Quantitative Survey of Bacterial Persistence in the Presence of Antibiotics: Towards Antipersister Antimicrobial Discovery. Antibiotics (Basel) 2020; 9:E508. [PMID: 32823501 PMCID: PMC7460088 DOI: 10.3390/antibiotics9080508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Bacterial persistence to antibiotics relates to the phenotypic ability to survive lethal concentrations of otherwise bactericidal antibiotics. The quantitative nature of the time-kill assay, which is the sector's standard for the study of antibiotic bacterial persistence, is an invaluable asset for global, unbiased, and cross-species analyses. Methods: We compiled the results of antibiotic persistence from antibiotic-sensitive bacteria during planktonic growth. The data were extracted from a sample of 187 publications over the last 50 years. The antibiotics used in this compilation were also compared in terms of structural similarity to fluorescent molecules known to accumulate in Escherichia coli. Results: We reviewed in detail data from 54 antibiotics and 36 bacterial species. Persistence varies widely as a function of the type of antibiotic (membrane-active antibiotics admit the fewest), the nature of the growth phase and medium (persistence is less common in exponential phase and rich media), and the Gram staining of the target organism (persistence is more common in Gram positives). Some antibiotics bear strong structural similarity to fluorophores known to be taken up by E. coli, potentially allowing competitive assays. Some antibiotics also, paradoxically, seem to allow more persisters at higher antibiotic concentrations. Conclusions: We consolidated an actionable knowledge base to support a rational development of antipersister antimicrobials. Persistence is seen as a step on the pathway to antimicrobial resistance, and we found no organisms that failed to exhibit it. Novel antibiotics need to have antipersister activity. Discovery strategies should include persister-specific approaches that could find antibiotics that preferably target the membrane structure and permeability of slow-growing cells.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Salem SS, Fouda MMG, Fouda A, Awad MA, Al-Olayan EM, Allam AA, Shaheen TI. Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium corylophilum. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01794-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Tyagi N, Kumar A. Understanding effect of interaction of nanoparticles and antibiotics on bacteria survival under aquatic conditions: Knowns and unknowns. ENVIRONMENTAL RESEARCH 2020; 181:108945. [PMID: 31806288 DOI: 10.1016/j.envres.2019.108945] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
The review provides a comprehensive overview of the available state-of-the-art of nanoparticles (NPs) and antibiotics (ABs) occurrence and their fate in the natural aquatic settings by addressing different research questions and the challenges faced while addressing those questions. Firstly, understand the interaction of NPs and ABs with themselves in addition to other matrix components (presence of natural organic matter, bacteria, biofilms, other anthropogenic pollutants and metals from natural sources). Secondly, summarize the bactericidal activity of NP and AB due to reactive oxygen species (ROS) production. The complete information was gathered from database and analysed as per the conjectured questions under laboratory versus environmental-relevant conditions (1. Fate of NPs and ABs, and 2. Will the presence of NPs and ABs alone and their mixtures influence the ROS concentration and antibacterial activity), and proposed six reactions to describe the fate of NP and AB in natural aquatic settings. However, laboratory-based studies revealed that NP and AB fate largely depend on the ionic strength, organic matter content and pH of the matrix whereas field based information is missing about this. The former was performed at sterile conditions using sophisticated instruments and standard protocol as compared to latter and can't be replicated under natural aquatic settings due to lack of: (i) accurate environmental concentration of NPs and ABs, (ii) knowledge of bacterial type and their concentration, (iii) optimized protocol and tracking systems. The author's recommendation is to verify the proposed reactions experimentally by using the frequently found pairs of NPs and ABs in the natural aquatic settings. Further, ranked them on their decreasing order of toxicity and informed regulatory bodies for further action. Overall research is needed in the suggested directions to reduce uncertainty behind the impacts of NPs and ABs on the aquatic settings and their role in bactericidal activity.
Collapse
Affiliation(s)
- Neha Tyagi
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
11
|
Windels EM, Ben Meriem Z, Zahir T, Verstrepen KJ, Hersen P, Van den Bergh B, Michiels J. Enrichment of persisters enabled by a ß-lactam-induced filamentation method reveals their stochastic single-cell awakening. Commun Biol 2019; 2:426. [PMID: 31815194 PMCID: PMC6884588 DOI: 10.1038/s42003-019-0672-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
When exposed to lethal doses of antibiotics, bacterial populations are most often not completely eradicated. A small number of phenotypic variants, defined as 'persisters', are refractory to antibiotics and survive treatment. Despite their involvement in relapsing infections, processes determining phenotypic switches from and to the persister state largely remain elusive. This is mainly due to the low frequency of persisters and the lack of reliable persistence markers, both hampering studies of persistence at the single-cell level. Here we present a highly effective persister enrichment method involving cephalexin, an antibiotic that induces extensive filamentation of susceptible cells. We used our enrichment method to monitor outgrowth of Escherichia coli persisters at the single-cell level, thereby conclusively demonstrating that persister awakening is a stochastic phenomenon. We anticipate that our approach can have far-reaching consequences in the persistence field, by allowing single-cell studies at a much higher throughput than previously reported.
Collapse
Affiliation(s)
- Etthel M. Windels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Kasteelpark Arenberg 20 box 2460, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Leuven, Belgium
| | - Zacchari Ben Meriem
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot & CNRS UMR7057, Rue Alice Domon et Léonie Duquet 10, Paris, France
| | - Taiyeb Zahir
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Kasteelpark Arenberg 20 box 2460, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Leuven, Belgium
| | - Kevin J. Verstrepen
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Kasteelpark Arenberg 20 box 2460, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Leuven, Belgium
| | - Pascal Hersen
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot & CNRS UMR7057, Rue Alice Domon et Léonie Duquet 10, Paris, France
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Kasteelpark Arenberg 20 box 2460, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Kasteelpark Arenberg 20 box 2460, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Leuven, Belgium
| |
Collapse
|
12
|
General Mechanisms Leading to Persister Formation and Awakening. Trends Genet 2019; 35:401-411. [DOI: 10.1016/j.tig.2019.03.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 11/18/2022]
|
13
|
Synthesis and Characterization of Nano Selenium Using Plant Biomolecules and Their Potential Applications. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0569-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Sukhorukova IV, Sheveyko AN, Manakhov A, Zhitnyak IY, Gloushankova NA, Denisenko EA, Filippovich SY, Ignatov SG, Shtansky DV. Synergistic and long-lasting antibacterial effect of antibiotic-loaded TiCaPCON-Ag films against pathogenic bacteria and fungi. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:289-299. [PMID: 29853094 DOI: 10.1016/j.msec.2018.04.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/20/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022]
Abstract
Implant-related bacterial infections remain a serious problem that is not solved yet. Herein we combined several antibacterial agents to achieve synergistic effects and broader protection of widely used metallic implants. Titanium samples with microcontainers for drug, produced by selective laser sintering, were coated with Ag-doped biocompatible and bioactive TiCaPCON film and loaded with an antibiotic (gentamicin or a mixture of gentamicin and amphotericin B). Bactericide release tests demonstrated that the release rate of one bactericide agent (Ag+ ions or gentamicin) depended on the presence of the other antibacterial component. The antibacterial activity of the biocide-doped samples was evaluated against clinically isolated Escherichia coli O78 (E. coli), Staphylococcus aureus (S. aureus) bacteria, and Neurospora crassa wt-987 (N. crassa) spores. It was found that samples loaded with low gentamicin concentration (0.2 and 0.02 mg/cm2), i.e. 10 and 100 times less than the standard gentamicin concentration (2 mg/cm2), demonstrated a superb antibacterial activity against E. coli bacteria. We showed that a crosslinking reaction between gentamicin and TiCaPCON film proceeded either through the formation of amide bonds or via the electrostatic interaction between amine groups of gentamicin and COOH groups of TiCaPCON and led to the formation of relatively stable drug/film conjugates that prevented a rapid dissolution of gentamicin and ensured its long-term (for 72 h) antibacterial protection. Leaching of silver ions provided an effective antibacterial protection after the depletion of the drug reservoirs. The obtained results clearly show a synergistic antibacterial action of Ag+ ions and gentamicin against S. aureus bacteria. In addition, in the presence of Ag+ ions, the antifungal activity of samples loaded with a mixture of gentamicin and amphotericin B against N. crassa fungus was observed to increase. Thus, it is demonstrated that silver can be successfully coupled with different types of antibiotics to provide innovative hybrid metal-ceramic bioconstructions that are able to deliver precise doses of bactericide agents within a certain period of time and are equally effective against Gram-negative E. coli bacteria, Gram-positive S. aureus, and N. crassa fungus.
Collapse
Affiliation(s)
- I V Sukhorukova
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - A N Sheveyko
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - A Manakhov
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - I Y Zhitnyak
- N.N. Blokhin Russian Cancer Research Centre of RAMS, Kashirskoe shosse 24, Moscow 115478, Russia
| | - N A Gloushankova
- N.N. Blokhin Russian Cancer Research Centre of RAMS, Kashirskoe shosse 24, Moscow 115478, Russia
| | - E A Denisenko
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region 142279, Russia
| | - S Yu Filippovich
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, bld. 2, Moscow 119071, Russia
| | - S G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region 142279, Russia
| | - D V Shtansky
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia.
| |
Collapse
|
15
|
Physiologically distinct subpopulations formed in Escherichia coli cultures in response to heat shock. Microbiol Res 2018; 209:33-42. [DOI: 10.1016/j.micres.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 11/21/2022]
|
16
|
Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2018; 41:276-301. [PMID: 28369412 DOI: 10.1093/femsre/fux010] [Citation(s) in RCA: 970] [Impact Index Per Article: 138.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Biofilms are surface-attached groups of microbial cells encased in an extracellular matrix that are significantly less susceptible to antimicrobial agents than non-adherent, planktonic cells. Biofilm-based infections are, as a result, extremely difficult to cure. A wide range of molecular mechanisms contribute to the high degree of recalcitrance that is characteristic of biofilm communities. These mechanisms include, among others, interaction of antimicrobials with biofilm matrix components, reduced growth rates and the various actions of specific genetic determinants of antibiotic resistance and tolerance. Alone, each of these mechanisms only partially accounts for the increased antimicrobial recalcitrance observed in biofilms. Acting in concert, however, these defences help to ensure the survival of biofilm cells in the face of even the most aggressive antimicrobial treatment regimens. This review summarises both historical and recent scientific data in support of the known biofilm resistance and tolerance mechanisms. Additionally, suggestions for future work in the field are provided.
Collapse
|
17
|
Oppezzo OJ, Forte Giacobone AF. Lethal Effect of Photodynamic Treatment on Persister Bacteria. Photochem Photobiol 2017; 94:186-189. [PMID: 28881420 DOI: 10.1111/php.12843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Persister bacteria tolerate bactericidal antibiotics due to transient and reversible phenotypic changes. As these bacteria can limit the effectiveness of antibiotics to eradicate certain infections, their elimination is a relevant issue. Photodynamic therapy seems suitable for this purpose, but phenotypic tolerance to it has also been reported for Pseudomonas aeruginosa. To test whether any phenotypic feature could confer tolerance against both antibiotics and photoinactivation, survivors from exposures to light in the presence of methylene blue were treated with ofloxacin, an antibiotic effective on nongrowing bacteria. Susceptibility to ofloxacin was normal in these bacteria in spite of their increased ability to survive photodynamic inactivation, suggesting the absence of cross-tolerance. It thus seemed possible to use one of these treatments to eliminate bacteria which had phenotypic tolerance to the other. To test this strategy, persister bacteria emerging from ofloxacin treatments were submitted to the action of light and methylene blue while the antibiotic remained in the bacterial suspension. Persisters lost their clonogenic ability under these conditions and the effects of the treatments seemed to be synergistic. These observations suggest that photodynamic antimicrobial therapy could be used as a complement to antibiotic treatments to eliminate persister bacteria from localized infections.
Collapse
Affiliation(s)
- Oscar Juan Oppezzo
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | | |
Collapse
|
18
|
Comparing the action of HT61 and chlorhexidine on natural and model Staphylococcus aureus membranes. J Antibiot (Tokyo) 2017; 70:1020-1025. [DOI: 10.1038/ja.2017.90] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/14/2017] [Accepted: 07/02/2017] [Indexed: 11/09/2022]
|
19
|
McBee ME, Chionh YH, Sharaf ML, Ho P, Cai MWL, Dedon PC. Production of Superoxide in Bacteria Is Stress- and Cell State-Dependent: A Gating-Optimized Flow Cytometry Method that Minimizes ROS Measurement Artifacts with Fluorescent Dyes. Front Microbiol 2017; 8:459. [PMID: 28377755 PMCID: PMC5359317 DOI: 10.3389/fmicb.2017.00459] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/06/2017] [Indexed: 11/13/2022] Open
Abstract
The role of reactive oxygen species (ROS) in microbial metabolism and stress response has emerged as a major theme in microbiology and infectious disease. Reactive fluorescent dyes have the potential to advance the study of ROS in the complex intracellular environment, especially for high-content and high-throughput analyses. However, current dye-based approaches to measuring intracellular ROS have the potential for significant artifacts. Here, we describe a robust platform for flow cytometric quantification of ROS in bacteria using fluorescent dyes, with ROS measurements in 10s-of-1000s of individual cells under a variety of conditions. False positives and variability among sample types (e.g., bacterial species, stress conditions) are reduced with a flexible four-step gating scheme that accounts for side- and forward-scattered light (morphological changes), background fluorescence, DNA content, and dye uptake to identify cells producing ROS. Using CellROX Green dye with Escherichia coli, Mycobacterium smegmatis, and Mycobacterium bovis BCG as diverse model bacteria, we show that (1) the generation of a quantifiable CellROX Green signal for superoxide, but not hydrogen peroxide-induced hydroxyl radicals, validates this dye as a superoxide detector; (2) the level of dye-detectable superoxide does not correlate with cytotoxicity or antibiotic sensitivity; (3) the non-replicating, antibiotic tolerant state of nutrient-deprived mycobacteria is associated with high levels of superoxide; and (4) antibiotic-induced production of superoxide is idiosyncratic with regard to both the species and the physiological state of the bacteria. We also show that the gating method is applicable to other fluorescent indicator dyes, such as the 5-carboxyfluorescein diacetate acetoxymethyl ester and 5-cyano-2,3-ditolyl tetrazolium chloride for cellular esterase and reductive respiratory activities, respectively. These results demonstrate that properly controlled flow cytometry coupled with fluorescent probes provides precise and accurate quantitative analysis of ROS generation and metabolic changes in stressed bacteria.
Collapse
Affiliation(s)
- Megan E McBee
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Singapore, Singapore
| | - Yok H Chionh
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and TechnologySingapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Mariam L Sharaf
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Singapore, Singapore
| | - Peiying Ho
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Singapore, Singapore
| | - Maggie W L Cai
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and TechnologySingapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Peter C Dedon
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and TechnologySingapore, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, CambridgeMA, USA
| |
Collapse
|
20
|
Van den Bergh B, Fauvart M, Michiels J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 2017; 41:219-251. [DOI: 10.1093/femsre/fux001] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
|
21
|
(p)ppGpp-Dependent Persisters Increase the Fitness of Escherichia coli Bacteria Deficient in Isoaspartyl Protein Repair. Appl Environ Microbiol 2016; 82:5444-54. [PMID: 27371580 DOI: 10.1128/aem.00623-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/16/2016] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED The l-isoaspartyl protein carboxyl methyltransferase (PCM) repairs protein damage resulting from spontaneous conversion of aspartyl or asparaginyl residues to isoaspartate and increases long-term stationary-phase survival of Escherichia coli under stress. In the course of studies intended to examine PCM function in metabolically inactive cells, we identified pcm as a gene whose mutation influences the formation of ofloxacin-tolerant persisters. Specifically, a Δpcm mutant produced persisters for an extended period in stationary phase, and a ΔglpD mutation drastically increased persisters in a Δpcm background, reaching 23% of viable cells. The high-persister double mutant showed much higher competitive fitness than the pcm mutant in competition with wild type during long-term stationary phase, suggesting a link between persistence and the mitigation of unrepaired protein damage. We hypothesized that reduced metabolism in the high-persister strain might retard protein damage but observed no gross differences in metabolism relative to wild-type or single-mutant strains. However, methylglyoxal, which accumulates in glpD mutants, also increased fitness, suggesting a possible mechanism. High-level persister formation in the Δpcm ΔglpD mutant was dependent on guanosine pentaphosphate [(p)ppGpp] and polyphosphate. In contrast, persister formation in the Δpcm mutant was (p)ppGpp independent and thus may occur by a distinct pathway. We also observed an increase in conformationally unstable proteins in the high-persister strain and discuss this as a possible trigger for persistence as a response to unrepaired protein damage. IMPORTANCE Protein damage is an important factor in the survival and function of cells and organisms. One specific form of protein damage, the formation of the abnormal amino acid isoaspartate, can be repaired by a nearly universally conserved enzyme, PCM. PCM-directed repair is associated with stress survival and longevity in bacteria, insects, worms, plants, mice, and humans, but much remains to be learned about the specific effects of protein damage and repair. This paper identifies an unexpected connection between isoaspartyl protein damage and persisters, subpopulations in bacterial cultures showing increased tolerance to antibiotics. In the absence of PCM, the persister population in Escherichia coli bacteria increased, especially if the metabolic gene glpD was also mutated. High levels of persisters in pcm glpD double mutants correlated with increased fitness of the bacteria in a competition assay, and the fitness was dependent on the signal molecule (p)ppGpp; this may represent an alternative pathway for responding to protein damage.
Collapse
|
22
|
Springer MT, Singh VK, Cheung AL, Donegan NP, Chamberlain NR. Effect of clpP and clpC deletion on persister cell number in Staphylococcus aureus. J Med Microbiol 2016; 65:848-857. [PMID: 27375177 DOI: 10.1099/jmm.0.000304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Staphylococcus aureus is responsible for a wide variety of infections that include superficial skin and soft tissue infections, septicaemia, central nervous system infections, endocarditis, osteomyelitis and pneumonia. Others have demonstrated the importance of toxin-antitoxin (TA) modules in the formation of persisters and the role of the Clp proteolytic system in the regulation of these TA modules. This study was conducted to determine the effect of clpP and clpC deletion on S. aureus persister cell numbers following antibiotic treatment. Deletion of clpP resulted in a significant decrease in persister cells following treatment with oxacillin and erythromycin but not with levofloxacin and daptomycin. Deletion of clpC resulted in a decrease in persister cells following treatment with oxacillin. These differences were dependent on the antibiotic class and the CFU ml-1 in which the cells were treated. Persister revival assays for all the bacterial strains in these studies demonstrated a significant delay in resumption of growth characteristic of persister cells, indicating that the surviving organisms in this study were not likely due to spontaneous antibiotic resistance. Based on our results, ClpP and possibly ClpC play a role in persister cell formation or maintenance, and this effect is dependent on antibiotic class and the CFU ml-1 or the growth phase of the cells.
Collapse
Affiliation(s)
- Matthew T Springer
- Department of Microbiology/Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| | - Vineet K Singh
- Department of Microbiology/Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| | - Ambrose L Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Niles P Donegan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Neal R Chamberlain
- Department of Microbiology/Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| |
Collapse
|
23
|
Sub-Optimal Treatment of Bacterial Biofilms. Antibiotics (Basel) 2016; 5:antibiotics5020023. [PMID: 27338489 PMCID: PMC4929437 DOI: 10.3390/antibiotics5020023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/08/2016] [Accepted: 06/13/2016] [Indexed: 01/22/2023] Open
Abstract
Bacterial biofilm is an emerging clinical problem recognized in the treatment of infectious diseases within the last two decades. The appearance of microbial biofilm in clinical settings is steadily increasing due to several reasons including the increased use of quality of life-improving artificial devices. In contrast to infections caused by planktonic bacteria that respond relatively well to standard antibiotic therapy, biofilm-forming bacteria tend to cause chronic infections whereby infections persist despite seemingly adequate antibiotic therapy. This review briefly describes the responses of biofilm matrix components and biofilm-associated bacteria towards sub-lethal concentrations of antimicrobial agents, which may include the generation of genetic and phenotypic variabilities. Clinical implications of bacterial biofilms in relation to antibiotic treatments are also discussed.
Collapse
|
24
|
Stationary-Phase Persisters to Ofloxacin Sustain DNA Damage and Require Repair Systems Only during Recovery. mBio 2015; 6:e00731-15. [PMID: 26330511 PMCID: PMC4556807 DOI: 10.1128/mbio.00731-15] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chronic infections are a serious health care problem, and bacterial persisters have been implicated in infection reoccurrence. Progress toward finding antipersister therapies has been slow, in part because of knowledge gaps regarding the physiology of these rare phenotypic variants. Evidence shows that growth status is important for survival, as nongrowing cultures can have 100-fold more persisters than growing populations. However, additional factors are clearly important, as persisters remain rare even in nongrowing populations. What features, beyond growth inhibition, allow persisters to survive antibiotic stress while the majority of their kin succumb to it remains an open question. To investigate this, we used stationary phase as a model nongrowing environment to study Escherichia coli persistence to ofloxacin. Given that the prevailing model of persistence attributes survival to transient dormancy and antibiotic target inactivity, we anticipated that persisters would suffer less damage than their dying kin. However, using genetic mutants, flow cytometry, fluorescence-activated cell sorting, and persistence assays, we discovered that nongrowing ofloxacin persisters experience antibiotic-induced damage that is indistinguishable from that of nonpersisters. Consistent with this, we found that these persisters required DNA repair for survival and that repair machinery was unnecessary until the posttreatment recovery period (after ofloxacin removal). These findings suggest that persistence to ofloxacin is not engendered solely by reduced antibiotic target corruption, demonstrate that what happens following antibiotic stress can be critical to the persistence phenotype, and support the notion that inhibition of DNA damage repair systems could be an effective strategy to eliminate fluoroquinolone persisters. In the absence of resistant mutants, infection reoccurrences can still occur because of persisters, rare bacterial cells that survive antibiotic treatments to repopulate infection sites. Persister survival is attributed to a transient state of dormancy in which a cell’s growth and metabolism are significantly reduced and many essential processes are thought to be inactive. Thus, dormancy is believed to protect persisters from antibiotic-induced damage and death. In this work, we show that in nongrowing populations, persisters to ofloxacin experience the same level of antibiotic-induced damage as cells that succumb to the treatment and that their survival critically depends on repair of this damage after the conclusion of treatment. These findings reveal that persistence to ofloxacin is not engendered solely by reduced antibiotic target corruption and highlight that processes following antibiotic stress are important to survival. We hypothesize that effective antipersister therapies may be developed on the basis of this knowledge.
Collapse
|
25
|
Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 2015; 78:510-43. [PMID: 25184564 DOI: 10.1128/mmbr.00013-14] [Citation(s) in RCA: 836] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Surface-associated microbial communities, called biofilms, are present in all environments. Although biofilms play an important positive role in a variety of ecosystems, they also have many negative effects, including biofilm-related infections in medical settings. The ability of pathogenic biofilms to survive in the presence of high concentrations of antibiotics is called "recalcitrance" and is a characteristic property of the biofilm lifestyle, leading to treatment failure and infection recurrence. This review presents our current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved our capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections.
Collapse
|
26
|
Wang Y, Bao W, Guo N, Chen H, Cheng W, Jin K, Shen F, Xu J, Zhang Q, Wang C, An Y, Zhang K, Wang F, Yu L. Antimicrobial activity of the imipenem/rifampicin combination against clinical isolates of Acinetobacter baumannii grown in planktonic and biofilm cultures. World J Microbiol Biotechnol 2014; 30:3015-3025. [PMID: 25298216 DOI: 10.1007/s11274-014-1728-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
To investigate the antimicrobial activity of imipenem and rifampicin alone and in combination against clinical isolates of Acinetobacter baumannii grown in planktonic and biofilm cultures. Minimum inhibitory concentrations were determined for each isolate grown in suspension and in biofilm using a microbroth dilution method. Chequerboard assays and the agar disk diffusion assay were used to determine synergistic, indifferent or antagonistic interactions between imipenem and rifampicin. We used the tissue culture plate method for A. baumannii biofilm formation to measure the percentage of biofilm inhibition and the amount of extracellular DNA after the treatment. To understand the synergistic mechanisms, we conducted hydroxyl radical formation assays. The results were verified by confocal laser scanning microscopy. Imipenem and rifampicin showed effective antimicrobial activity against suspensions and biofilm cultures of A. baumannii, respectively. Synergistic antimicrobial effects between imipenem and rifampicin were observed in 13 and 17 of the 20 clinical isolates when in suspension and in biofilms, respectively. Imipenem and rifampicin alone and in combination generated hydroxyl radicals, which are highly reactive oxygen forms and the major components of bactericidal agents. Furthermore, treatment with imipenem and rifampicin individually or in combination has obvious antibiofilm effects. The synergistic activity of imipenem and rifampicin against clinical isolates of A. baumannii (in suspension and in biofilms) was observed in vitro. Therefore, we conclude that imipenem combined with rifampicin has the potential to be used as a combinatorial therapy for the treatment of infectious diseases caused by A. baumannii.
Collapse
Affiliation(s)
- Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Starkey M, Lepine F, Maura D, Bandyopadhaya A, Lesic B, He J, Kitao T, Righi V, Milot S, Tzika A, Rahme L. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog 2014; 10:e1004321. [PMID: 25144274 PMCID: PMC4140854 DOI: 10.1371/journal.ppat.1004321] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023] Open
Abstract
Etiological agents of acute, persistent, or relapsing clinical infections are often refractory to antibiotics due to multidrug resistance and/or antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen that causes recalcitrant and severe acute chronic and persistent human infections. Here, we target the MvfR-regulated P. aeruginosa quorum sensing (QS) virulence pathway to isolate robust molecules that specifically inhibit infection without affecting bacterial growth or viability to mitigate selective resistance. Using a whole-cell high-throughput screen (HTS) and structure-activity relationship (SAR) analysis, we identify compounds that block the synthesis of both pro-persistence and pro-acute MvfR-dependent signaling molecules. These compounds, which share a benzamide-benzimidazole backbone and are unrelated to previous MvfR-regulon inhibitors, bind the global virulence QS transcriptional regulator, MvfR (PqsR); inhibit the MvfR regulon in multi-drug resistant isolates; are active against P. aeruginosa acute and persistent murine infections; and do not perturb bacterial growth. In addition, they are the first compounds identified to reduce the formation of antibiotic-tolerant persister cells. As such, these molecules provide for the development of next-generation clinical therapeutics to more effectively treat refractory and deleterious bacterial-human infections. Antibiotic resistant and tolerant bacterial pathogens are responsible for acute, chronic and persistent human infections recalcitrant to any current treatments. Therefore, there is an urgent need to identify new antimicrobial drugs that will help circumvent the current antibiotic resistance crisis. Bacterial pathogens often develop resistance to antibiotic drugs that target bacterial growth or viability. In contrast, strategies that specifically target virulence pathways non-essential for growth could limit selective resistance, and thus are candidates for the development of next-generation antimicrobial therapeutics. In this study we target the bacterial communication system MvfR (PqsR), which is known to control virulence of the opportunistic bacterial pathogen Pseudomonas aeruginosa. We identified and improved upon new small molecules that effectively silence the MvfR communication system, and as a result block P. aeruginosa virulence both in vitro and in vivo. Moreover, these new compounds are the first known to restrict the ability of bacteria to form antibiotic-tolerant cells and consequently proved to be very effective at preventing persistent infection in a mammalian infection model. Because of their ability to simultaneously block acute and persistent infections, these new molecules may provide a very strong basis for the development of next generation antimicrobials.
Collapse
Affiliation(s)
- Melissa Starkey
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | | | - Damien Maura
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Arunava Bandyopadhaya
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Biljana Lesic
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Jianxin He
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Tomoe Kitao
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Valeria Righi
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General and Shriners Hospitals, Harvard Medical School, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sylvain Milot
- INRS-Institut Armand Frappier, Laval, Québec, Canada
| | - Aria Tzika
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General and Shriners Hospitals, Harvard Medical School, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Laurence Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Persisters, persistent infections and the Yin-Yang model. Emerg Microbes Infect 2014; 3:e3. [PMID: 26038493 PMCID: PMC3913823 DOI: 10.1038/emi.2014.3] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/30/2013] [Accepted: 11/26/2013] [Indexed: 12/15/2022]
Abstract
Persisters are a small fraction of quiescent bacterial cells that survive lethal antibiotics or stresses but can regrow under appropriate conditions. Persisters underlie persistent and latent infections and post-treatment relapse, posing significant challenges for the treatment of many bacterial infections. The current definition of persisters has drawbacks, and a Yin–Yang model is proposed to describe the heterogeneous nature of persisters that have to be defined in highly specific conditions. Despite their discovery more than 70 years ago, the mechanisms of persisters are poorly understood. Recent studies have identified a number of genes and pathways that shed light on the mechanisms of persister formation or survival. These include toxin–antitoxin modules, stringent response, DNA repair or protection, phosphate metabolism, alternative energy production, efflux, anti-oxidative defense and macromolecule degradation. More sensitive single-cell techniques are required for a better understanding of persister mechanisms. Studies of bacterial persisters have parallels in other microbes (fungi, parasites, viruses) and cancer stem cells in terms of mechanisms and treatment approaches. New drugs and vaccines targeting persisters are critical for improved treatment of persistent infections and perhaps cancers. Novel treatment strategies for persisters and persistent infections are discussed.
Collapse
|
29
|
Hsu HC, Chiou JF, Wang YH, Chen CH, Mau SY, Ho CT, Chang PJ, Liu TZ, Chen CH. Folate deficiency triggers an oxidative-nitrosative stress-mediated apoptotic cell death and impedes insulin biosynthesis in RINm5F pancreatic islet β-cells: relevant to the pathogenesis of diabetes. PLoS One 2013; 8:e77931. [PMID: 24223745 PMCID: PMC3817167 DOI: 10.1371/journal.pone.0077931] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/06/2013] [Indexed: 12/19/2022] Open
Abstract
It has been postulated that folic acid (folate) deficiency (FD) may be a risk factor for the pathogenesis of a variety of oxidative stress-triggered chronic degenerative diseases including diabetes, however, the direct evidence to lend support to this hypothesis is scanty. For this reason, we set out to study if FD can trigger the apoptotic events in an insulin-producing pancreatic RINm5F islet β cells. When these cells were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature proceeding through a mitochondria-dependent pathway. In addition to evoke oxidative stress, FD condition could also trigger nitrosative stress through a NF-κB-dependent iNOS-mediated overproduction of nitric oxide (NO). The latter compound could then trigger depletion of endoplasmic reticulum (ER) calcium (Ca2+) store leading to cytosolic Ca2+ overload and caused ER stress as evidence by the activation of CHOP expression. Furthermore, FD-induced apoptosis of RINm5F cells was found to be correlated with a time-dependent depletion of intracellular gluthathione (GSH) and a severe down-regulation of Bcl-2 expression. Along the same vein, we also demonstrated that FD could severely impede RINm5F cells to synthesize insulin and their abilities to secret insulin in response to glucose stimulation were appreciably hampered. Even more importantly, we found that folate replenishment could not restore the ability of RINm5F cells to resynthesize insulin. Taken together, our data provide strong evidence to support the hypothesis that FD is a legitimate risk factor for the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Hung-Chih Hsu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Physical Medicine and Rehabilitation, Chia-Yi Chang Gung Memorial Hospital, Chia-Yi, Taiwan
- Department of Nursing, Chang-Gung University of Science and Technology, Chia-Yi, Taiwan
| | - Jeng-Fong Chiou
- Cancer Center and Department of Radiation Oncology, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Yu-Huei Wang
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Chia-Hui Chen
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Shin-Yi Mau
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Chun-Te Ho
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsan-Zon Liu
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
- * E-mail: (TZL); (CHC)
| | - Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, Collage of Life Sciences, National Chiayi University, Chiayi City, Taiwan
- * E-mail: (TZL); (CHC)
| |
Collapse
|
30
|
Survival of bactericidal antibiotic treatment by a persister subpopulation of Listeria monocytogenes. Appl Environ Microbiol 2013; 79:7390-7. [PMID: 24056460 DOI: 10.1128/aem.02184-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Listeria monocytogenes can cause the serious infection listeriosis, which despite antibiotic treatment has a high mortality. Understanding the response of L. monocytogenes to antibiotic exposure is therefore important to ensure treatment success. Some bacteria survive antibiotic treatment by formation of persisters, which are a dormant antibiotic-tolerant subpopulation. The purpose of this study was to determine whether L. monocytogenes can form persisters and how bacterial physiology affects the number of persisters in the population. A stationary-phase culture of L. monocytogenes was adjusted to 10(8) CFU ml(-1), and 10(3) to 10(4) CFU ml(-1) survived 72-h treatment with 100 μg of norfloxacin ml(-1), indicating a persister subpopulation. This survival was not caused by antibiotic resistance as regrown persisters were as sensitive to norfloxacin as the parental strain. Higher numbers of persisters (10(5) to 10(6)) were surviving when older stationary phase or surface-associated cells were treated with 100 μg of norfloxacin ml(-1). The number of persisters was similar when a ΔsigB mutant and the wild type were treated with norfloxacin, but the killing rate was higher in the ΔsigB mutant. Dormant norfloxacin persisters could be activated by the addition of fermentable carbohydrates and subsequently killed by gentamicin; however, a stable surviving subpopulation of 10(3) CFU ml(-1) remained. Nitrofurantoin that has a growth-independent mode of action was effective against both growing and dormant cells, suggesting that eradication of persisters is possible. Our study adds L. monocytogenes to the list of bacterial species capable of surviving bactericidal antibiotics in a dormant stage, and this persister phenomenon should be borne in mind when developing treatment regimens.
Collapse
|
31
|
How JA, Lim JZR, Goh DJW, Ng WC, Oon JSH, Lee KC, Lee CH, Ling MHT. Adaptation of Escherichia coli ATCC 8739 to 11% NaCl. ACTA ACUST UNITED AC 2013. [DOI: 10.7167/2013/219095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Escherichia coli (E. coli) is a nonhalophilic microbe and used to indicate faecal contamination. Salt (sodium chloride, NaCl) is a common food additive and is used in preservatives to encounter microbial growth. The effect of how E. coli interacts with the salt present in the human diet is unclear. Thus, it is important to investigate this relationship. In order to adapt and survive the changes in the environment, E. coli may undergo halophilization. In this study, we observed the genetic changes and growth kinetics of E. coli ATCC 8739 under 3%–11% NaCl over 80 passages. Our results suggest that E. coli adapted to 1% increase in NaCl every month with a successful adaptation to 11% NaCl. Gram staining and PCR/RFLP showed that the cultures are Gram negative and the DNA profiles of all 4 replicates to be similar, suggesting that the cultures had not been contaminated.
Collapse
Affiliation(s)
- Jian Ann How
- School of Chemical and Life Sciences, Singapore Polytechnic, 139651, Singapore
| | - Joshua Z. R. Lim
- School of Chemical and Life Sciences, Singapore Polytechnic, 139651, Singapore
| | - Desmond J. W. Goh
- School of Chemical and Life Sciences, Singapore Polytechnic, 139651, Singapore
| | - Wei Chuan Ng
- School of Chemical and Life Sciences, Singapore Polytechnic, 139651, Singapore
| | - Jack S. H. Oon
- School of Chemical and Life Sciences, Singapore Polytechnic, 139651, Singapore
| | - Kun Cheng Lee
- School of Chemical and Life Sciences, Singapore Polytechnic, 139651, Singapore
| | - Chin How Lee
- School of Chemical and Life Sciences, Singapore Polytechnic, 139651, Singapore
| | - Maurice H. T. Ling
- School of Chemical and Life Sciences, Singapore Polytechnic, 139651, Singapore
- Department of Zoology, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
32
|
Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother 2013; 57:3230-9. [PMID: 23629720 DOI: 10.1128/aac.00243-13] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The antibiotic tolerances of bacterial persisters have been attributed to transient dormancy. While persisters have been observed to be growth inhibited prior to antibiotic exposure, we sought to determine whether such a trait was essential to the phenotype. Furthermore, we sought to provide direct experimental evidence of the persister metabolic state so as to determine whether the common assumption of metabolic inactivity was valid. Using fluorescence-activated cell sorting (FACS), a fluorescent indicator of cell division, a fluorescent measure of metabolic activity, and persistence assays, we found that bacteria that are rapidly growing prior to antibiotic exposure can give rise to persisters and that a lack of replication or low metabolic activity prior to antibiotic treatment simply increases the likelihood that a cell is a persister. Interestingly, a lack of significant growth or metabolic activity does not guarantee persistence, as the majority of even "dormant" subpopulations (>99%) were not persisters. These data suggest that persistence is far more complex than dormancy and point to additional characteristics needed to define the persister phenotype.
Collapse
|
33
|
Grant SS, Hung DT. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 2013; 4:273-83. [PMID: 23563389 PMCID: PMC3710330 DOI: 10.4161/viru.23987] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Certain bacterial pathogens are able to evade the host immune system and persist within the human host. The consequences of persistent bacterial infections potentially include increased morbidity and mortality from the infection itself as well as an increased risk of dissemination of disease. Eradication of persistent infections is difficult, often requiring prolonged or repeated courses of antibiotics. During persistent infections, a population or subpopulation of bacteria exists that is refractory to traditional antibiotics, possibly in a non-replicating or metabolically altered state. This review highlights the clinical significance of persistent infections and discusses different in vitro models used to investigate the altered physiology of bacteria during persistent infections. We specifically focus on recent work establishing increased protection against oxidative stress as a key element of the altered physiologic state across different in vitro models and pathogens.
Collapse
|
34
|
The formation of persister cells in stationary-phase cultures of Escherichia coli is associated with the aggregation of endogenous proteins. PLoS One 2013; 8:e54737. [PMID: 23358116 PMCID: PMC3554633 DOI: 10.1371/journal.pone.0054737] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/14/2012] [Indexed: 11/23/2022] Open
Abstract
Persister cells (persisters) are transiently tolerant to antibiotics and usually constitute a small part of bacterial populations. Persisters remain dormant but are able to re-grow after antibiotic treatment. In this study we found that the frequency of persisters correlated to the level of protein aggregates accumulated in E. coli stationary-phase cultures. When 3-(N-morpholino) propanesulfonic acid or an osmolyte (trehalose, betaine, glycerol or glucose) were added to the growth medium at low concentrations, proteins were prevented from aggregation and persister formation was inhibited. On the other hand, acetate or high concentrations of osmolytes enhanced protein aggregation and the generation of persisters. We demonstrated that in the E. coli stationary-phase cultures supplemented with MOPS or a selected osmolyte, the level of protein aggregates and persister frequency were not correlated with such physiological parameters as the extent of protein oxidation, culturability, ATP level or membrane integrity. The results described here may help to understand the mechanisms underlying persister formation.
Collapse
|
35
|
Abstract
Bacterial biofilms are the basis of many persistent diseases. The persistence of these infections is primarily attributed to the increased antibiotic resistance exhibited by the cells within the biofilms. This resistance is multifactorial; there are multiple mechanisms of resistance that act together in order to provide an increased overall level of resistance to the biofilm. These mechanisms are based on the function of wild-type genes and are not the result of mutations. This article reviews the known mechanisms of resistance, including the ability of the biofilm matrix to prevent antibiotics from reaching the cells and the function of individual genes that are preferentially expressed in biofilms. Evidence suggests that these mechanisms have been developed as a general stress response of biofilms that enables the cells in the biofilm to respond to all of the changes in the environment that they may encounter.
Collapse
Affiliation(s)
- Thien-Fah Mah
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
36
|
Hwang IS, Hwang JS, Hwang JH, Choi H, Lee E, Kim Y, Lee DG. Synergistic effect and antibiofilm activity between the antimicrobial peptide coprisin and conventional antibiotics against opportunistic bacteria. Curr Microbiol 2012; 66:56-60. [PMID: 23053486 DOI: 10.1007/s00284-012-0239-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
Coprisin is a 43-mer defensin-like peptide from the dung beetle, Copris tripartitus. In this study, we tested its minimum inhibitory concentration and performed combination assays to confirm the antibacterial susceptibility of coprisin and synergistic effects with antibiotics. The synergistic effects were evaluated by testing the effects of coprisin in combination with ampicillin, vancomycin, and chloramphenicol. The results showed that coprisin possessed antibacterial properties and had synergistic activities with the antibiotics. To understand the synergistic mechanism(s), we conducted hydroxyl radical assays. Coprisin alone and in combination with antibiotics generated hydroxyl radicals, which are highly reactive oxygen forms and the major property of bactericidal agents. Furthermore, the antibiofilm effect of coprisin alone and in combination with antibiotics was investigated. Biofilm formation is the source of many relentless and chronic bacterial infections. The results indicated that coprisin alone and in combination with antibiotics also had antibiofilm activity. Therefore, we conclude that coprisin has the potential to be used as a combinatorial therapeutic agent for the treatment of infectious diseases caused by bacteria.
Collapse
Affiliation(s)
- In-sok Hwang
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Buk-gu, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 2012; 61:1719-1726. [PMID: 22956753 DOI: 10.1099/jmm.0.047100-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Silver nanoparticles (nano-Ags), which have well-known antimicrobial properties, are used extensively in various medical and general applications. In this study, the combination effects between nano-Ags and the conventional antibiotics ampicillin, chloramphenicol and kanamycin against various pathogenic bacteria were investigated. The MIC and fractional inhibitory concentration index (FICI) were determined to confirm antibacterial susceptibility and synergistic effects. The results showed that nano-Ags possessed antibacterial effects and synergistic activities. The antibiofilm activities of nano-Ags alone or in combination with antibiotics were also investigated. Formation of biofilm is associated with resistance to antimicrobial agents and chronic bacterial infections. The results indicated that nano-Ags also had antibiofilm activities. To understand these effects of nano-Ags, an ATPase inhibitor assay, permeability assay and hydroxyl radical assay were conducted. The antibacterial activity of nano-Ags was influenced by ATP-associated metabolism rather than by the permeability of the outer membrane. Additionally, nano-Ags generated hydroxyl radicals, a highly reactive oxygen species induced by bactericidal agents. It was concluded that nano-Ags have potential as a combination therapeutic agent for the treatment of infectious diseases by bacteria.
Collapse
Affiliation(s)
- In-Sok Hwang
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daehak-ro 80 Buk-gu Daegu, 702-701, Republic of Korea
| | - Ji Hong Hwang
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daehak-ro 80 Buk-gu Daegu, 702-701, Republic of Korea
| | - Hyemin Choi
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daehak-ro 80 Buk-gu Daegu, 702-701, Republic of Korea
| | - Keuk-Jun Kim
- Department of Clinical Pathology, Tae Kyeung College, 24, Danbuk-ri, Jain-myeon, Gyeongsan-si, Gyeongsangbuk-do, 712-719, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daehak-ro 80 Buk-gu Daegu, 702-701, Republic of Korea
| |
Collapse
|
38
|
Grant SS, Kaufmann BB, Chand NS, Haseley N, Hung DT. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc Natl Acad Sci U S A 2012; 109:12147-52. [PMID: 22778419 PMCID: PMC3409745 DOI: 10.1073/pnas.1203735109] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During Mycobacterium tuberculosis infection, a population of bacteria likely becomes refractory to antibiotic killing in the absence of genotypic resistance, making treatment challenging. We describe an in vitro model capable of yielding a phenotypically antibiotic-tolerant subpopulation of cells, often called persisters, within populations of Mycobacterium smegmatis and M. tuberculosis. We find that persisters are distinct from the larger antibiotic-susceptible population, as a small drop in dissolved oxygen (DO) saturation (20%) allows for their survival in the face of bactericidal antibiotics. In contrast, if high levels of DO are maintained, all cells succumb, sterilizing the culture. With increasing evidence that bactericidal antibiotics induce cell death through the production of reactive oxygen species (ROS), we hypothesized that the drop in DO decreases the concentration of ROS, thereby facilitating persister survival, and maintenance of high DO yields sufficient ROS to kill persisters. Consistent with this hypothesis, the hydroxyl-radical scavenger thiourea, when added to M. smegmatis cultures maintained at high DO levels, rescues the persister population. Conversely, the antibiotic clofazimine, which increases ROS via an NADH-dependent redox cycling pathway, successfully eradicates the persister population. Recent work suggests that environmentally induced antibiotic tolerance of bulk populations may result from enhanced antioxidant capabilities. We now show that the small persister subpopulation within a larger antibiotic-susceptible population also shows differential susceptibility to antibiotic-induced hydroxyl radicals. Furthermore, we show that stimulating ROS production can eradicate persisters, thus providing a potential strategy to managing persistent infections.
Collapse
Affiliation(s)
- Sarah Schmidt Grant
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02114
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Benjamin B. Kaufmann
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Nikhilesh S. Chand
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and
| | - Nathan Haseley
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Harvard–MIT Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02114
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
39
|
Lee CH, Oon JSH, Lee KC, Ling MHT. Escherichia coli ATCC 8739 Adapts to the Presence of Sodium Chloride, Monosodium Glutamate, and Benzoic Acid after Extended Culture. ISRN MICROBIOLOGY 2012; 2012:965356. [PMID: 23724334 PMCID: PMC3658543 DOI: 10.5402/2012/965356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/19/2011] [Indexed: 12/12/2022]
Abstract
Escherichia coli is commonly found in intestine of human, and any changes in their adaptation or evolution may affect the human body. The relationship between E. coli and food additives is less studied as compared to antibiotics. E. coli within our human gut are consistently interacting with the food additives; thus, it is important to investigate this relationship. In this paper, we observed the evolution of E. coli cultured in different concentration of food additives (sodium chloride, benzoic acid, and monosodium glutamate), singly or in combination, over 70 passages. Adaptability over time was estimated by generation time and cell density at stationary phase. Polymerase chain reaction (PCR)/restriction fragments length polymorphism (RFLP) using 3 primers and restriction endonucleases, each was used to characterize adaptation/evolution at genomic level. The amplification and digestion profiles were tabulated and analyzed by Nei-Li dissimilarity index. Our results demonstrate that E. coli in every treatment had adapted over 465 generations. The types of stress were discovered to be different even though different concentrations of same additives were used. However, RFLP shows a convergence of genetic distances, suggesting the presence of global stress response. In addition, monosodium glutamate may be a nutrient source and support acid resistance in E. coli.
Collapse
Affiliation(s)
- Chin How Lee
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore 139651, Singapore
| | | | | | | |
Collapse
|