1
|
Ajike RA, Afolabi OA, Alabi BA, Ajayi AF, Oyekunle OS, Lawal SK, Olojede SO, Nku-Ekpang OA, Hezekiah OS, Hammed OS. Sequential administration of febuxostat and vitamin E protects against testicular ischemia/reperfusion injury via inhibition of sperm DNA damage in Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04095-x. [PMID: 40261353 DOI: 10.1007/s00210-025-04095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/22/2025] [Indexed: 04/24/2025]
Abstract
The pathway of testicular ischemia-reperfusion injury (TIRI) has been shown to involve reactive oxygen species (ROS) generation in the ischemic phase and later phase of reperfusion. This study was therefore designed to investigate the effect of blockage of ROS in the ischemic and reperfusion phases of TIRI. Thirty male Wistar rats were grouped into five groups (n = 6 rats each): sham, torsion + detorsion (TD), febuxostat (FEB)-administered (TFD) group, vitamin E (V)-administered (TDV) group, and FEB and vitamin E-administered (TFDV) group. Blood samples (for inflammatory and hormonal assay), testicular (for oxidative stress and histopathology), and epididymal (for sperm DNA damage and indices) tissues were collected after 3 days of detorsion. The TFD and TFDV groups showed a significant reduction in XO and MDA (p < 0.001; η2 > 0.7), as well as a concomitant increase in CAT, thiols, and SOD levels when compared with the TD group (p < 0.01, η2 > 0.5). The TFD group significantly reduced all inflammatory markers (p < 0.05; η2 = 0.75). The observed increase (p < 0.05; η2 = 0.92) in LH level, in response to a low level of testosterone in the TD group, was significantly raised in TFD and TFDV groups. The observed decrease (p < 0.001) in inhibin level in the TD group was raised (p < 0.05; η2 = 0.90) in the TDV group only. A significant increase (p < 0.001) in sperm DNA damage in the TD group was significantly reduced (p < 0.05; η2 = 0.88) in all the treatment groups while the reduced sperm viability (p < 0.01) in the TD group was increased (p < 0.05) in the TFDV group only. There was an improvement in the testicular cytoarchitecture in the TFD and TFDV groups. This study showed that sequential administration of febuxostat in the ischemic phase of TT and vitamin E in the later phase of reperfusion protects the testes against TIRI via inhibition of oxidative stress, inflammation, and sperm DNA damage.
Collapse
Affiliation(s)
- Richard Adedamola Ajike
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladele Ayobami Afolabi
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Babatunde Adebola Alabi
- Department of Pharmacology & Therapeutics, Bowen University, Iwo, Osun State, Nigeria
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Pharmacy, Kampala International University in Tanzania, Dar Es Salaam, United Republic of Tanzania
| | - Ayodeji Folorunsho Ajayi
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olubunmi Simeon Oyekunle
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Sodiq Kolawole Lawal
- School of Nursing, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Samuel Oluwaseun Olojede
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Okot-Asi Nku-Ekpang
- Department of Physiology, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Oluwaseun Samuel Hezekiah
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Opeyemi Sodiq Hammed
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
2
|
Karimi Z, Ghahramani P, Masjedi F, Yavari V. Klotho plays a crucial role in the renal-protective effect of allopurinol on renal ischemia-reperfusion injury. Am J Med Sci 2025; 369:398-404. [PMID: 39653275 DOI: 10.1016/j.amjms.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND Allopurinol, a xanthine oxidase inhibitor, recovers histological alterations and renal dysfunction induced during renal ischemic-reperfusion injury. This study investigated the cross-talk between the allopurinol and soluble Klotho. METHODS Rats were randomly divided into three equal groups (n = 8 per group): The sham-operated group without renal ischemia, the BIR (bilateral ischemia-reperfusion) group which underwent renal ischemia, and BIR+Allo (allopurinol) group which was pretreated with allopurinol (100 mg/kg- gavage) 30 min before the renal ischemia. After recovery from the anesthesia, all animals were placed in metabolic cages to collect their urine after 24 h, plasma was extracted from blood samples taken from the tail vein-plasma and urine samples were saved at -20 °C. Kidneys were harvested and weighed. The left kidney was dropped in the buffer of 10 % formalin for H&E staining, and the right kidney was located in liquid nitrogen and saved at -80 °C for the oxidative stress analysis. RESULTS After renal ischemia-reperfusion, serum creatinine, blood urea nitrogen, xanthine oxidase, and total oxidative stress levels significantly increased. However, plasma Klotho level and total antioxidative capacity decreased in the BIR group. There was a reverse correlation between Klotho and xanthine oxidase levels. The pre-treatment with allopurinol increased plasma Klotho, induced a protective effect on renal histopathological changes, and corrected functional biomarkers. CONCLUSION Our results showed that allopurinol enhanced the antioxidative effects by increasing Klotho activity. Therefore, Klotho may be involved in the protective effects of allopurinol on the renal injury induced by BIR.
Collapse
Affiliation(s)
- Zeinab Karimi
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooran Ghahramani
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran
| | - Fatemeh Masjedi
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahideh Yavari
- Department of Internal Medicine, Nephrology Ward, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Shuvo AUH, Alimullah M, Jahan I, Mitu KF, Rahman MJ, Akramuddaula K, Khan F, Dash PR, Subhan N, Alam MA. Evaluation of Xanthine Oxidase Inhibitors Febuxostat and Allopurinol on Kidney Dysfunction and Histological Damage in Two-Kidney, One-Clip (2K1C) Rats. SCIENTIFICA 2025; 2025:7932075. [PMID: 39886537 PMCID: PMC11779995 DOI: 10.1155/sci5/7932075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 12/14/2024] [Indexed: 02/01/2025]
Abstract
In chronic kidney disease (CKD), hyperuricemia is a common phenomenon, presumably due to reduced renal clearance of uric acid. This study investigated the effect of xanthine oxidase (XO) inhibitors allopurinol and febuxostat to prevent oxidative stress in the kidney of two-kidney, one-clip (2K1C) rats. In this investigation, 2K1C rats were used as an experimental animal model for kidney dysfunction. 2K1C rats were provided with food and drinking water and received febuxostat at a dose of 10 mg/kg or allopurinol at 100 mg/kg, respectively. After the treatment completion, all rats were sacrificed, and tissue samples were collected. 2K1C rats exhibited increased plasma creatinine, uric acid level, and glomerular injury assessed based on microscopic findings. Both allopurinol and febuxostat significantly normalized creatinine and uric acid levels. Furthermore, 2K1C rats showed increased lipid peroxidation (LPO), nitric oxide (NO), and advanced oxidation protein products (AOPP) alongside decreased superoxide dismutase (SOD) and catalase activity. Again, both drug treatments ameliorated these elevated oxidative stress parameters in 2K1C rats. The antioxidant genes such as Nrf-2, HO-1, and SOD were also restored in the kidneys of 2K1C rats by allopurinol and febuxostat treatment. 2K1C rats also showed increased IL-1β, IL-6, TNF-α, and NF-кB mRNA expression in the kidneys which were normalized by allopurinol and febuxostat treatment. Thus, the data suggest that XO inhibition protects kidney function potentially by restoring antioxidant enzyme function and suppressing inflammation.
Collapse
Affiliation(s)
- Asif Ul Haque Shuvo
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mirza Alimullah
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Ishrat Jahan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Kaniz Fatima Mitu
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Junaeid Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
4
|
Fujimoto K, Adachi H, Kita S, Sakuma M, Yamanouchi H, Kumano S, Fujii A, Yamazaki K, Okada K, Hayashi N, Furuichi K. Predictive utility of nomogram based on serum glucose-regulated protein 78 and kidney function for long-term kidney graft survival. Sci Rep 2024; 14:28858. [PMID: 39572634 PMCID: PMC11582791 DOI: 10.1038/s41598-024-80407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
The estimated glomerular filtration rate (eGFR) at 1 year post-transplantation is a well-established predictor of long-term graft survival; however, its predictive accuracy needs improvement. We retrospectively analyzed data from 51 kidney transplant recipients at Kanazawa Medical University Hospital (January 2001-February 2015). Cox regression was used to identify risk factors for death-censored graft loss and create a nomogram to predict graft survival at 15 years post-transplantation. The predictive factors ultimately included in the nomogram included eGFR and serum glucose-regulated protein 78 (GRP78) at 1 year post-transplantation. In terms of discrimination, assessed by area under the receiver operating characteristic curve (AUC-ROC), no significant difference was noted between the eGFR model (AUC 0.84 [0.67-1.00]) and nomogram (AUC 0.92 [0.82-1.00]) (p = 0.38). However, calibration, evaluated by the calibration plot, indicated superiority of the nomogram over the eGFR model, confirmed in the internal validation cohort using the Bootstrap method. Regarding clinical value evaluated by decision curve analysis, the nomogram showed a greater net benefit than the eGFR model, especially at wider diagnostic thresholds (particularly important lower thresholds). Our findings suggest the added predictive value of serum GRP78 at 1 year post-transplantation for long-term graft survival prediction.
Collapse
Affiliation(s)
- Keiji Fujimoto
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan.
| | - Hiroki Adachi
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan
- Adachi Kidney Dialysis Hypertension Clinic, 5-147 Toita, Kanazawa, 920-0068, Ishikawa, Japan
| | - Serina Kita
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan
| | - Megumi Sakuma
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan
| | - Hirotaka Yamanouchi
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan
| | - Sho Kumano
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan
| | - Ai Fujii
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan
| | - Keita Yamazaki
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan
| | - Keiichiro Okada
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan
| | - Norifumi Hayashi
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan
| | - Kengo Furuichi
- Department of Nephrology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan
| |
Collapse
|
5
|
El-Shoura EAM, Sharkawi SMZ, Abdelzaher LA, Abdel-Wahab BA, Ahmed YH, Abdel-Sattar AR. Reno-protective effect of fenofibrate and febuxostat against vancomycin-induced acute renal injury in rats: Targeting PPARγ/NF-κB/COX-II and AMPK/Nrf2/HO-1 signaling pathways. Immunopharmacol Immunotoxicol 2024; 46:509-520. [PMID: 38918173 DOI: 10.1080/08923973.2024.2373216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Vancomycin (VCM) is used clinically to treat serious infections caused by multi-resistant Gram-positive bacteria, although its use is severely constrained by nephrotoxicity. This study investigated the possible nephroprotective effect of febuxostat (FX) and/or fenofibrate (FENO) and their possible underlying mechanisms against VCM-induced nephrotoxicity in a rat model. METHODS Male Wistar rats were randomly allocated into five groups; Control, VCM, FX, FENO, and combination groups. Nephrotoxicity was evaluated histopathologically and biochemically. The oxidative stress biomarkers (SOD, MDA, GSH, total nitrite, GPx, MPO), the apoptotic marker, renal Bcl-2 associated X protein (Bax), and inflammatory and kidney injury markers (IL-1β, IL-6, TNF-α, Nrf2, OH-1, kappa-light-chain-enhancer of activated B cells (NF-κB), NADPH oxidase, Kim-1, COX-II, NGAL, Cys-C were also evaluated. RESULTS VCM resulted in significant elevation in markers of kidney damage, oxidative stress, apoptosis, and inflammatory markers. Co-administration of VCM with either/or FX and FENO significantly mitigated nephrotoxicity and associated oxidative stress, inflammatory and apoptotic markers. In comparison to either treatment alone, a more notable improvement was observed with the FX and FENO combination regimen. CONCLUSION Our findings show that FX, FENO, and their combination regimen have a nephroprotective impact on VCM-induced kidney injury by suppressing oxidative stress, apoptosis, and the inflammatory response. Renal recovery from VCM-induced injury was accomplished by activation of Nrf2/HO-1 signaling and inhibition of NF-κB expression. This study highlights the importance of FX and FENO as effective therapies for reducing nephrotoxicity in VCM-treated patients.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Horus University in Egypt, New Damietta, Egypt
| | - Souty M Z Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
6
|
Yamamoto T, Kasahara M, Ueshima K, Uemura S, Kashihara N, Kimura K, Konta T, Shoji T, Mima A, Mukoyama M, Saito Y. Multicenter randomized controlled trial of intensive uric acid lowering therapy for CKD patients with hyperuricemia: TARGET-UA. Clin Exp Nephrol 2024; 28:764-772. [PMID: 38530491 PMCID: PMC11266370 DOI: 10.1007/s10157-024-02483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND We investigate whether Intensive uric acid (UA)-lowering therapy (ULT) provides increased renal protection compared with standard therapy in chronic kidney disease (CKD) patients. METHODS This was a multicenter randomized controlled trial. Only CKD patients with hyperuricemia were included in this study. The participants were randomly assigned to either the Intensive therapy group (target serum UA level ≥ 4.0 mg/dL and < 5.0 mg/dL) or the standard therapy group (serum UA level ≥ 6.0 mg/dL and < 7.0 mg/dL). ULT was performed using topiroxostat, a non-purine-type selective xanthine oxidase inhibitor. The primary endpoint was change in the logarithmic value of urine albumin to the creatinine ratio (ACR) between baseline and week 52 of the treatment. RESULTS Three hundred fifty-two patients were included in the full analysis set. In the Standard therapy group, mean serum UA was 8.23 mg/dL at baseline and 6.13 mg/dL at 52 weeks. In the Intensive therapy group, mean serum UA was 8.15 mg/dL at baseline and 5.25 mg/dL at 52 weeks. There was no significant difference in changes in log ACR at 52 weeks between the Intensive therapy and the Standard therapy groups. CONCLUSION This study did not reveal the benefit of Intensive ULT to improve albuminuria levels. (UMIN000026741 and jRCTs051180146).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Akira Mima
- Osaka Medical and Pharmaceutical University, Osaka, Japan
| | | | | |
Collapse
|
7
|
Liu Q, Chen J, Zeng A, Song L. Pharmacological functions of salidroside in renal diseases: facts and perspectives. Front Pharmacol 2024; 14:1309598. [PMID: 38259279 PMCID: PMC10800390 DOI: 10.3389/fphar.2023.1309598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Rhodiola rosea is a valuable functional medicinal plant widely utilized in China and other Asian countries for its anti-fatigue, anti-aging, and altitude sickness prevention properties. Salidroside, a most active constituent derived from Rhodiola rosea, exhibits potent antioxidative, hypoxia-resistant, anti-inflammatory, anticancer, and anti-aging effects that have garnered significant attention. The appreciation of the pharmacological role of salidroside has burgeoned over the last decade, making it a beneficial option for the prevention and treatment of multiple diseases, including atherosclerosis, Alzheimer's disease, Parkinson's disease, cardiovascular disease, and more. With its anti-aging and renoprotective effects, in parallel with the inhibition of oxidative stress and inflammation, salidroside holds promise as a potential therapeutic agent for kidney damage. This article provides an overview of the microinflammatory state in kidney disease and discuss the current therapeutic strategies, with a particular focus on highlighting the recent advancements in utilizing salidroside for renal disease. The potential mechanisms of action of salidroside are primarily associated with the regulation of gene and protein expression in glomerular endothelial cells, podocytes, renal tubule cells, renal mesangial cells and renal cell carcinoma cell, including TNF-α, TGF-β, IL-1β, IL-17A, IL-6, MCP-1, Bcl-2, VEGF, ECM protein, caspase-3, HIF-1α, BIM, as well as the modulation of AMPK/SIRT1, Nrf2/HO-1, Sirt1/PGC-1α, ROS/Src/Cav-1, Akt/GSK-3β, TXNIP-NLRP3, ERK1/2, TGF-β1/Smad2/3, PI3K/Akt, Wnt1/Wnt3a β-catenin, TLR4/NF-κB, MAPK, JAK2/STAT3, SIRT1/Nrf2 pathways. To the best of our knowledge, this review is the first to comprehensively cover the protective effects of salidroside on diverse renal diseases, and suggests that salidroside has great potential to be developed as a drug for the prevention and treatment of metabolic syndrome, cardiovascular and cerebrovascular diseases and renal complications.
Collapse
Affiliation(s)
- Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianzhu Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zhang C, Tang L, Zhang Y, Wang Q, Wang X, Bai Y, Fang Z, Zhang T, Xu T, Li Y. Febuxostat, a xanthine oxidase inhibitor, regulated long noncoding RNAs and protected the brain after intracerebral hemorrhage. Neuroreport 2023; 34:703-712. [PMID: 37556585 DOI: 10.1097/wnr.0000000000001945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating cerebrovascular disease and is associated with a high global health burden. Long noncoding RNAs are involved in the pathological damage of ICH. Febuxostat, one of the xanthine oxidase inhibitors, is commonly used in the treatment of hyperuricemia and has been studied in different pathological processes, and its protective effects have been proven in different organs. This study was conducted to investigate whether febuxostat protects brain via regulating long noncoding RNAs after ICH. The modified neurological severity score, wire hanging test, Evans blue perfusion and immunofluorescence were performed to test the protective effects of febuxostat in a mouse model of ICH. Whole transcriptome sequencing was conducted to identify the lncRNAs affected by febuxostat and their functions were analyzed. Febuxostat ameliorated behavioral abnormalities and protected the blood-brain barrier after ICH. Fifteen lncRNAs regulated by febuxostat after ICH were detected. These 15 lncRNAs were associated with 83 gene ontology items. In total, 35 genes, 15 mRNAs and 202 miRNAs were regarded as potential targets for the 15 lncRNAs; 183 co-expressed genes were identified for these 15 lncRNAs and the co-expression network was constructed. Potential binding between lncRNAs and mRNAs was also studied. Enrichment analysis revealed that the functions of the 15 lncRNAs were related to maintaining the blood-brain barrier. This study demonstrated febuxostat protected brain after ICH. Fifteen lncRNAs were regulated and were associated with the effects of febuxostat on BBB integrity after ICH.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University
- West China School of Pharmacy, Sichuan University
| | - Linqiao Tang
- Research Core Facility of West China Hospital, Sichuan University
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University
| | - Yang Bai
- Department of Pharmacy, West China Hospital, Sichuan University
| | - Zhenwei Fang
- Department of Pharmacy, West China Hospital, Sichuan University
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Xu
- Department of Pharmacy, West China Hospital, Sichuan University
- West China School of Pharmacy, Sichuan University
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University
| |
Collapse
|
9
|
Abdel-Wahab BA, El-Shoura EAM, Shafiuddin Habeeb M, Zafaar D. Febuxostat alleviates Arsenic Trioxide-Induced renal injury in Rats: Insights on the crosstalk between NLRP3/TLR4, Sirt-1/NF-κB/TGF-β signaling Pathways, and miR-23b-3p, miR-181a-5b expression. Biochem Pharmacol 2023; 216:115794. [PMID: 37689273 DOI: 10.1016/j.bcp.2023.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Febuxostat (FBX), a xanthine oxidase inhibitor, is known to improve renal function and can show promise as a therapeutic agent for preventing drug-induced nephrotoxicity. This study aimed to explore the protective effect of FBX in preventing renal damage caused by arsenic trioxide (ATO) toxicity and uncover the underlying mechanisms. The researchers examined how FBX (10 mg/kg, orally) affected ATO-induced kidney injury (5 mg/kg, intraperitoneally) in rats. Kidney function and toxicity parameters in serum and oxidative stress biomarkers and inflammatory cytokine levels in renal tissue were measured. H&E staining was used to detect histopathological changes in the kidney. Network the molecular mechanisms of FBX in improving kidney injury were investigated using Western blotting and PCR techniques. The findings showed that FBX improved kidney function by inhibiting the pathological changes seen in H&E staining, decreasing levels of probed kidney function and toxicity measures in serum and tissue, and exhibiting antioxidant and anti-inflammatory effects. FBX decreased MDA, MPO, TNF-α, IL-1β, IL-6, COX-II, and NADPH oxidase levels, while increased GSH, GPx, SOD, and IL-10 levels. FBX also reduced the expression of NLRP3, ASC, TLR4, and micro-RNA 181a-5b while increased the expression of IKBα, Sirt-1, and micro-RNA 23b-3p, according to Western blotting and PCR results. In conclusion, FBX can play a vital role in reducing kidney injury in cases of ATO-induced nephrotoxicity, though more clinical research needs to be conducted.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | | - Dalia Zafaar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University of Technology, and Information, Cairo, Egypt.
| |
Collapse
|
10
|
Aizawa C, Okabe M, Takahashi D, Sagasaki M, Watanabe M, Fujimoto T, Yoshioka Y, Katsuma A, Kimura A, Miyamoto D, Sato N, Okamoto K, Ichida K, Miyazaki Y, Yokoo T. Possible Use of Non-purine Selective Xanthine Oxidoreductase Inhibitors for Prevention of Exercise-induced Acute Kidney Injury Associated with Renal Hypouricemia. Intern Med 2023; 62:2725-2730. [PMID: 36754409 PMCID: PMC10569912 DOI: 10.2169/internalmedicine.0678-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/04/2023] [Indexed: 02/10/2023] Open
Abstract
Exercise-induced acute kidney injury (EIAKI) is frequently complicated with renal hypouricemia (RHUC). In patients with RHUC, limiting anaerobic exercise can prevent EIAKI. However, it is challenging to reduce exercise intensity in athletes. We herein report a 16-year-old Japanese football player with familial RHUC with compound heterozygous mutations in urate transporter 1 (URAT1) who presented with recurrent EIAKI. As prophylaxis (hydration during exercise) could not prevent EIAKI, febuxostat was initiated. EIAKI was not observed for 16 months despite exercising intensively. Hence, non-purine-selective xanthine oxidoreductase inhibitors may decrease the incidence of EIAKI in athletes with RHUC.
Collapse
Affiliation(s)
- Chiharu Aizawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
| | - Masahiro Okabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | | | - Makoto Sagasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Department of Nephrology and Hypertension, Atsugi City Hospital, Japan
| | - Mao Watanabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Toshinari Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Yuuki Yoshioka
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Ai Katsuma
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Ai Kimura
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Daisuke Miyamoto
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Japan
| | - Nana Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Kimiyoshi Ichida
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Department of Pathophysiology, Faculty of Pharmaceutical Sciences, Tokyo University of Pharmacy and Life Sciences, Japan
| | - Yoichi Miyazaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| |
Collapse
|
11
|
Soliman E, Elshazly SM, Shewaikh SM, El-Shaarawy F. Reno- and hepato-protective effect of allopurinol after renal ischemia/reperfusion injury: Crosstalk between xanthine oxidase and peroxisome proliferator-activated receptor gamma signaling. Food Chem Toxicol 2023; 178:113868. [PMID: 37269893 DOI: 10.1016/j.fct.2023.113868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Renal ischemia/reperfusion (I/R) is a common cause of acute kidney injury and remote liver damage is an ultimate negative outcome. Current treatments for renal I/R typically involve the use of antioxidants and anti-inflammatory to protect against oxidative stress and inflammation. Xanthine oxidase (XO) and PPAR-γ contribute to renal I/R-induced oxidative stress; however, the crosstalk between the two pathways remains unexplored. In the present study, we report that XO inhibitor, allopurinol (ALP), protects kidney and liver after renal I/R by PPAR-γ activation. Rats with renal I/R showed reduced kidney and liver functions, increased XO, and decreased PPAR-γ. ALP increased PPAR-γ expression and improved liver and kidney functions. ALP also reduced inflammation and nitrosative stress indicated by reduction in TNF-α, iNOS, nitric oxide (NO), and peroxynitrite formation. Interestingly, rats co-treated with PPAR-γ inhibitor, BADGE, and ALP showed diminished beneficial effect on renal and kidney functions, inflammation, and nitrosative stress. This data suggests that downregulation of PPAR-γ contributes to nitrosative stress and inflammation in renal I/R and the use of ALP reverses this effect by increasing PPAR-γ expression. In conclusion, this study highlights the potential therapeutic value of ALP and suggests targeting XO-PPAR-γ pathway as a promising strategy for preventing renal I/R injury.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Shimaa Mustafa Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Samar M Shewaikh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Fatma El-Shaarawy
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Arish, 45511, Egypt.
| |
Collapse
|
12
|
Sedik AA, Hassan SA, Shafey HI, Khalil WKB, Mowaad NA. Febuxostat attenuates aluminum chloride-induced hepatorenal injury in rats with the impact of Nrf2, Crat, Car3, and MNK-mediated apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83356-83375. [PMID: 37340161 PMCID: PMC10359240 DOI: 10.1007/s11356-023-28182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Aluminum (Al) is a ubiquitous xenobiotic with known toxicity for both humans and animals. Our study was conducted to investigate the protective role of febuxostat (Feb) against aluminum chloride (AlCl3)-induced hepatorenal injury in rats. Hepatorenal injury was induced by oral administration of AlCl3 (40 mg/kg b.w.), for 2 months. Twenty-four male Sprague-Dawley rats were randomly allocated into four groups (six rats/group). The first group received the vehicle thought the experiment. The second group was considered as a control positive group. The third and fourth groups received oral treatment of Feb (10 mg/kg.b.w.) and (15 mg/kg.b.w.), respectively with AlCl3, concurrently for 2 months. Twenty-four hours, after the last treatment, serum biochemical, molecular, histopathology, and immunohistochemical studies were evaluated. Our findings showed that rats intoxicated with Alcl3 had disturbed biochemical picture. In addition, intoxication with AlCl3 increased oxidative stress and apoptosis, as demonstrated by an increase in malodialdeyde (MDA), carnitine o-acetyltransferase (Crat), and carbonic anhydrase (Car3) with a decrease in glutathione (GSH), MAP kinase-interacting serine/threonine kinase (MNK) and nuclear factor-erythroid 2-related factor 2 (Nrf2) mRNA expression. Furthermore, the levels of tumor necrosis factor-alpha (TNF-α) and the levels of caspase-3 were elevated with sever hepatic and renal pathological changes. Conversely, Feb (15 mg/kg.b.w.) could improve the serum biochemical indices and repressed MDA, Crat, and Car3 levels, whereas it increased GSH, MNK, and Nrf2 levels. Feb inhibited the apoptotic effect of AlCl3 in the liver and kidney by decreasing caspase-3 and TNF-α expression. The protective effect of Feb against AlCl3 toxicity was confirmed by histopathological findings. Moreover, molecular docking studies supported the anti-inflammatory effect of Feb due to its significant binding interactions with cyclooxygenase-1 (COX-1), NF-kappa-B-inducing kinase (NIK), and mitogen-activated protein kinases-p38 (MAPK-p38). The findings suggest that Feb system Feb can avert Alcl3-induced hepatotoxicity and nephrotoxicity by enhancing the antioxidant defense system, and inhibiting the inflammatory cascade and apoptosis.
Collapse
Affiliation(s)
- Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Center, El-Buhouth St., Dokki, Cairo, 12622, Egypt.
| | - Soha A Hassan
- Basic Science Department, Faculty of Dentistry, October 6 University, Giza, Egypt
| | - Heba I Shafey
- Department of Cell Biology, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Noha A Mowaad
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Center, El-Buhouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
13
|
Yahiya YI, Hadi NR, Abu Raghif A, Qassam H, AL Habooby NGS. Role of Iberin as an anti-apoptotic agent on renal ischemia-reperfusion injury in rats. J Med Life 2023; 16:915-919. [PMID: 37675177 PMCID: PMC10478648 DOI: 10.25122/jml-2022-0281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/13/2023] [Indexed: 09/08/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is a major contributor to acute and chronic kidney failure, heart failure, and ischemic stroke. This study aimed to investigate the therapeutic potential of Iberin, known for its anti-inflammatory, antioxidant, and antiapoptotic properties, in a rat model of renal IRI. Twenty-four adult male rats were randomly divided into four groups: Group I (Sham group) underwent laparotomy without IRI induction; Group II (Control group) underwent laparotomy followed by renal artery clamping for 30 minutes to induce ischemia, followed by 2 hours of reperfusion; Group III (Iberin treatment group) received a pre-injection of Iberin (15 mg/kg) and underwent 30 minutes of ischemia followed by 2 hours of reperfusion; and Group IV (Vehicle-treated group) received the vehicle (ethanol) 1 hour prior to ischemia and reperfusion induction. Iberin was diluted with ethanol. Biomarkers associated with inflammation, oxidative stress, and apoptosis were measured using enzyme-linked immunosorbent assay. Iberin treatment significantly reduced levels of inflammatory cytokines interleukin-1β (IL-1β) and IL-6, Bcl-2-associated X protein (BAX), tumor necrosis factor α (TNF-α), nuclear factor kappa p56, high mobility group B1, and neutrophil gelatinase-associated lipocalin. Moreover, Iberin increased levels of heat shock protein and Bcl2 compared to the control and vehicle groups. Iberin treatment prolonged the ischemic tolerance of renal tissue, potentially preventing or delaying irreversible injuries. These findings highlight the potential of Iberin as a promising candidate for mitigating renal injury caused by ischemia-reperfusion, due to its ability to modulate inflammatory markers.
Collapse
Affiliation(s)
- Yahiya Ibrahim Yahiya
- Deptartment of Pharmacology, Faculty of Pharmacy, University of Alkafeel, Najaf, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Ahmed Abu Raghif
- Deptartment of Pharmacology, College of Medicine, Al Nahrain University, Baghdad, Iraq
| | - Heider Qassam
- Deptartment of Pharmacology, Faculty of Pharmacy, University of Alkafeel, Najaf, Iraq
| | | |
Collapse
|
14
|
Teragawa H, Tanaka A, Fujii Y, Yoshida H, Ueda T, Nomura S, Kadokami T, Koide H, Saito M, Sano H, Bando YK, Murohara T, Node K, for the PRIZE Study Investigators. Effect of febuxostat on the level of malondialdehyde-modified low-density lipoprotein, an oxidative stress marker: A subanalysis of the PRIZE study. Clin Cardiol 2023; 46:698-706. [PMID: 36991567 PMCID: PMC10270262 DOI: 10.1002/clc.24014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Febuxostat is a selective xanthine oxidase inhibitor that reportedly exhibits antioxidant properties. We previously performed a multicentre, randomized controlled (PRIZE) study for vascular evaluation under uric acid (UA) control by febuxostat to investigate the progression of carotid lesions in asymptomatic hyperuricemic patients with carotid atherosclerosis for 2 years. HYPOTHESIS The current subanalysis of the PRIZE study aimed to assess the effect of febuxostat on the level of malondialdehyde-modified low-density lipoprotein (MDA-LDL), an oxidative stress marker. METHODS We recruited 383 patients (febuxostat group, n = 200; control group, n = 183) from the PRIZE trial for whom MDA-LDL measurements were available. The UA, MDA-LDL, low-density lipoprotein cholesterol (LDL-C) levels, and MDA-LDL/LDL-C ratio were identified, represented as the estimated difference from baseline to 24 months. We also evaluated the relationship between febuxostat dose (10, ≤20 to <40, and ≤40 to ≤60 mg) and changes in the MDA-LDL level, LDL-C level, or MDA-LDL/LDL-C ratios. RESULTS The estimated change in MDA-LDL/LDL-C ratio from baseline to 24 months was significantly lower in the febuxostat group than in the control group (p = .025), whereas the estimated changes in MDA-LDL (p = .235) and LDL-C (p = .323) levels did not differ between the two groups. No significant correlation existed between the febuxostat doses and the estimated change in the MDA-LDL level (p = .626), LDL-C level (p = .896), or MDA-LDL/LDL-C ratio (p = .747). CONCLUSIONS Our findings may indicate a possibility that febuxostat can lower the MDA-LDL/LDL-C ratio, a potential marker of atherosclerosis and oxidative stress, in asymptomatic hyperuricemic patients with carotid atherosclerosis. Further studies are required to validate our findings and elucidate the clinical antioxidant effect of febuxostat.
Collapse
Affiliation(s)
- Hiroki Teragawa
- Department of Cardiovascular MedicineJR Hiroshima HospitalHiroshimaJapan
| | - Atsushi Tanaka
- Department of Cardiovascular MedicineSaga UniversitySagaJapan
| | - Yuichi Fujii
- Department of Cardiovascular MedicineJR Hiroshima HospitalHiroshimaJapan
| | - Hisako Yoshida
- Department of Medical StatisticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Tomohiro Ueda
- Department of Cardiovascular MedicineJR Hiroshima HospitalHiroshimaJapan
| | - Shuichi Nomura
- Department of Cardiovascular MedicineJR Hiroshima HospitalHiroshimaJapan
| | - Toshiaki Kadokami
- Department of Cardiovascular MedicineSaiseikai Futsukaichi HospitalFukuokaJapan
| | - Hisashi Koide
- Department of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
| | - Makoto Saito
- Department of Internal MedicineNishio Municipal HospitalNishioAichiJapan
| | - Hiroaki Sano
- Department of CardiologyNagoya Ekisaikai HospitalNogayaAichiJapan
| | - Yasuko K. Bando
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Koichi Node
- Department of Cardiovascular MedicineSaga UniversitySagaJapan
| | | |
Collapse
|
15
|
Lee J, Islam M, Yoo Y, Kim S, Kim R, Jang Y, Lee S, Hwang H, Shin H, Hwang J, Kim K, Park B, Ahn D, Lee Y, Kim T, Kim I, Yoon J, Tae H. Changes of antioxidant enzymes in the kidney after cardiac arrest in the rat model. Braz J Med Biol Res 2023; 56:e12408. [PMID: 36790289 PMCID: PMC9925192 DOI: 10.1590/1414-431x2023e12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/03/2023] [Indexed: 02/12/2023] Open
Abstract
Globally, cardiac arrest (CA) is a leading cause of death and disability. Asphyxial CA (ACA)-induced kidney damage is a crucial factor in reducing the survival rate. The purpose of this study was to investigate the role of antioxidant enzymes in histopathological renal damage in an ACA rat model at different time points. A total of 88 rats were divided into five groups and exposed to ACA except for the sham group. To evaluate glomerular function and oxidative stress, serum levels of blood urea nitrogen (BUN) and creatinine (Crtn) and malondialdehyde (MDA) levels in renal tissues were measured. To determine histopathological damage, hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson's trichrome staining were performed. Expression levels of antioxidant enzymes including superoxide dismutase-1 (SOD-1), superoxide dismutase-2 (SOD-2), catalase (CAT), and glutathione peroxidase (GPx) were measured by immunohistochemistry (IHC). Survival rate of the experimental rats was reduced to 80% at 6 h, 55% at 12 h, 42.9% at 1 day, and 33% at 2 days after return of spontaneous circulation. Levels of BUN, Crtn, and MDA started to increase significantly in the early period of CA induction. Renal histopathological damage increased markedly from 6 h until two days post-CA. Additionally, expression levels of antioxidant enzymes were significantly decreased at 6 h, 12 h, 1 day, and 2 days after CA. CA-induced oxidative stress and decreased levels of antioxidant enzymes (SOD-1, SOD-2, CAT, GPx) from 6 h to two days could be possible mediators of severe renal tissue damage and increased mortality rate.
Collapse
Affiliation(s)
- J.H. Lee
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - M.S. Islam
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - Y.J. Yoo
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - S.E. Kim
- Department of Emergency Medicine, Research Institute of Clinical Medicine, Jeonbuk National University and Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - R.H. Kim
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - Y.J. Jang
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - S.H. Lee
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - H.P. Hwang
- Department of Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - H.Y. Shin
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, Korea
| | - J.H. Hwang
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, Korea
| | - K. Kim
- Department of Thoracic and Cardiovascular Surgery, Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - B.Y. Park
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - D. Ahn
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - Y. Lee
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - T. Kim
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - I.S. Kim
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - J.C. Yoon
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - H.J. Tae
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| |
Collapse
|
16
|
Febuxostat Protects Human Aortic Valve Endothelial Cells From Oxidized Low-density Lipoprotein-Induced Injury and Monocyte Attachment. J Cardiovasc Pharmacol 2022; 80:861-868. [PMID: 35881896 DOI: 10.1097/fjc.0000000000001326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 06/14/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT Atherosclerosis (AS) is a common cardiovascular disease with high morbidity and mortality. The pathogenesis of AS is closely related to endothelial dysfunction, which is mainly induced by oxidative stress, inflammation, and enhanced adhesion of monocytes to endothelial cells on the vessel wall. Febuxostat is a novel antigout agent recently reported to exert protective effects on endothelial dysfunction. This study aims to investigate the protective capacity of febuxostat against oxidized low-density lipoprotein (ox-LDL)-induced injury and monocyte attachment to endothelial cells. Human aortic valve endothelial cells (HAVECs) were stimulated with ox-LDL in the presence or absence of febuxostat (5 and 10 μM) for 6 hours. Mitochondrial reactive oxygen species were measured using MitoSox red staining, and the level of protein carbonyl was detected using enzyme-linked immunosorbent assay (ELISA). The expressions of IL-6, TNF-α, tissue factor (TF), VCAM-1, and ICAM-1 were evaluated with qRT-PCR assay and ELISA. Calcein-AM staining was used to determine the attachment of U937 monocytes to HAVECs. quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blot were used to measure the expression level of early growth response 1 (Egr-1) in HAVECs. First, the elevated expression of LOX-1, activated oxidative stress, excessive secreted inflammatory factors, and promoted expression of TF induced by stimulation with ox-LDL were significantly reversed by febuxostat, indicating a protective effect of febuxostat against endothelial dysfunction. Second, the upregulated VCAM-1 and ICAM-1, as well as the increased proportion of adhered monocytes to HAVECs induced by ox-LDL, were significantly alleviated by febuxostat. Finally, the promoted expression level of Egr-1 induced by ox-LDL was pronouncedly suppressed by febuxostat. We conclude that febuxostat protected HAVECs from ox-LDL-induced injury and monocyte attachment.
Collapse
|
17
|
Raeispour M, Talebpour Amiri F, Farzipour S, Ghasemi A, Hosseinimehr SJ. Febuxostat, an inhibitor of xanthine oxidase, ameliorates ionizing radiation-induced lung injury by suppressing caspase-3, oxidative stress and NF-κB. Drug Chem Toxicol 2022; 45:2586-2593. [PMID: 34538151 DOI: 10.1080/01480545.2021.1977315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Febuxostat (FBX), a selective inhibitor of xanthine oxidase, has several biological properties such as antioxidant, anti-inflammatory and anti-apoptosis activities. The purpose of this study was to evaluate the protective effect of FBX against ionizing radiation (IR)-induced lung injury through mitigation of oxidative stress, inflammation and apoptosis. Sixty-four mice were randomized into eight groups as control, FBX (5, 10, and 15 mg/kg), IR (6 Gy), and IR + FBX (IR + FBX in three doses). Mice were received FBX for 8 consecutive days and then were exposed to IR at a single dose (6 Gy) of X-ray. At 1 and 7 days after irradiation, the biochemical parameters were analyzed in lung tissue, while histological and immunohistochemical examinations were evaluated 1 week after irradiation. Irradiation led to elevate of oxidative stress parameters (an increase of MDA, PC, NO, and decrease of GSH), inflammation and apoptosis in lung of mice. Furthermore, IR resulted in histopathological changes in the lung tissues. These changes were significantly mitigated by FBX treatment. FBX also inhibited immunoreactivity of caspase-3, NF-κB, and reduced oxidative stress. This study showed that FBX is able to protect lung injury induced by IR through inhibiting apoptosis (caspase-3), oxidative stress and inflammation (NF-κB).
Collapse
Affiliation(s)
- Marziyeh Raeispour
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arash Ghasemi
- Department of Radiology and Radiation Oncology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
18
|
Afolabi OA, Akhigbe TM, Akhigbe RE, Alabi BA, Gbolagun OT, Taiwo ME, Fakeye OO, Yusuf EO. Methanolic Moringa oleifera leaf extract protects against epithelial barrier damage and enteric bacterial translocation in intestinal I/R: Possible role of caspase 3. Front Pharmacol 2022; 13:989023. [PMID: 36210817 PMCID: PMC9546449 DOI: 10.3389/fphar.2022.989023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Activation of caspase 3 has been implicated in the pathogenesis of I/R injury in various organs, but there is a paucity of data on its role in IIRI. Also, no reports were found on the beneficial role of methanolic Moringa oleifera leaf extract (MMOLE) in IIRI. This study investigated the involvement of caspase 3 in IIRI, and the impact of MMOLE in IIRI. Methods: Male Wistar rats were randomized into five groups; the sham-operated group that was sham-operated and received 0.5 ml of distilled water for 7 days prior to sham surgery, and the IIRI, febuxostat (FEB) +IIRI, low dose MMOLE (LDMO)+IIRI, and high dose MMOLE (HDMO)+IIRI groups that underwent I/R and also received 0.5 ml of distilled water, 10 mg/kg of febuxostat, 200 mg/kg of MMOLE, and 400 mg/kg of MMOLE respectively for 7 days prior to I/R. Markers of hepatic function, oxidative stress, and inflammation as well as enteric bacterial translocation and histoarchitecture integrity of intestinal and hepatic tissues were evaluated. The bioactive components of MMOLE were also determined by GC-MS. Results: As revealed by GC-MS, the active bioactive components of MMOLE were thiosemicarbazone, hydrazine, 1,3-dioxolane, octanoic acid, 1,3-benzenediamine, 9-octadecenoic acid, oleic acid, nonadecanoic acid, 3-undecanone, phosphonic acid, and cyclopentanecarboxylic acid. MMOLE alleviated IIRI-induced rise in intestinal and hepatic injury markers, malondialdehyde, TNF-α, IL-6, and myeloperoxidase activities. MMOLE improved IIRI-induced suppression of reduced glutathione, thiol and non-thiol proteins, and superoxide dismutase, catalase and glutathione peroxidase activities. These were associated with suppression of IIRI-induced caspase 3 activity and bacterial translocation. Histopathological evaluation revealed that MMOLE attenuated IIRI-induced alterations in intestinal and hepatic histoarchitecture integrity. MMOLE also militated against increased absolute and relative intestinal and hepatic weight, intestinal and hepatic injuries, epithelial mucosal barrier dysfunction, and enteric bacterial translocation associated with IIRI by downregulating oxidative stress-mediated activation of caspase 3. Conclusion: IIRI is associated with a rise in caspase 3 activity. Also, MMOLE confers protection against IIRI, possibly due to its constituent bioactive molecules, especially hydrazine, 9-octadecenoic acid, 1,3-dioxolane, oleic acid, and nonadecanoic acid.
Collapse
Affiliation(s)
- O A. Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - T M. Akhigbe
- Department of Agronomy, Osun State University, Osogbo, Osun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
| | - R E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
| | - B A. Alabi
- Department of Pharmacology, Bowen University, Ogbomoso, Nigeria
| | - O T. Gbolagun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - M E. Taiwo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - O O. Fakeye
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - E O. Yusuf
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
19
|
Febuxostat Alleviates Allergic Rhinitis by Inhibiting Inflammation and Monocyte Adhesion in Human Nasal Epithelial Cells via Regulating KLF6. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9092311. [PMID: 36118091 PMCID: PMC9477640 DOI: 10.1155/2022/9092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
Introduction Febuxostat is a novel inhibitor of xanthine oxidase that suppresses cell adhesion molecules-mediated (CAMs) inflammation by activating KLF6. In this study, we explored the therapeutic function and potential mechanisms of febuxostat against allergic rhinitis (AR). Methods We investigated the role of febuxostat through in vitro cell and in vivo animal experiments. Human nasal epithelial cells (hNECs) were cultured with histamine as an in vitro model. To establish the AR animal model, rats were exposed to ovalbumin. Rats were randomly grouped into control, model, 7.5 mg/kg febuxostat, and 15 mg/kg febuxostat groups. Results In the in vitro study, we found significantly increased release of lactate dehydrogenase, elevated production of inflammatory factors and chemokines, and upregulated CAMs in histamine-treated hNECs. However, these results were significantly reversed for the 10 and 20 μM febuxostat treatments. The enhanced adhesion between hNECs and monocytes induced by histamine was dramatically repressed by febuxostat. In the vivo experiments, we observed that febuxostat ameliorated the increased sneezing times, the number of nose scratching episodes, and elevated HE pathological scores as well as alleviated the inflammation in nasal mucous tissues of AR mice. We found that KLF6, which was downregulated in histamine-treated hNECs, was significantly upregulated by febuxostat. The inhibitory effects of febuxostat on the expression levels of CAMs and adhesion between histamine-treated hNECs and monocytes were significantly abolished by the knockdown of KLF6. Conclusion Febuxostat alleviates AR by inhibiting inflammation and monocyte adhesion in human nasal epithelial cells through the regulation of KLF6.
Collapse
|
20
|
Exercise Training Ameliorates Renal Oxidative Stress in Rats with Chronic Renal Failure. Metabolites 2022; 12:metabo12090836. [PMID: 36144240 PMCID: PMC9504114 DOI: 10.3390/metabo12090836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
In patients with chronic kidney disease, exercise training with moderate intensity protects renal function and improves mortality. However, the mechanisms of the renal protective effects of exercise training in chronic kidney disease have not been clarified. This study investigated the effects of exercise training on renal NADPH oxidative and xanthine oxidase, which are major sources of reactive oxygen species, in rats with chronic renal failure. Six-week-old, male Sprague–Dawley rats were divided into the sham operation, 5/6 nephrectomy (Nx)+ sedentary, and Nx+ exercise training groups. The Nx+ exercise training group underwent treadmill running. After 12 weeks, systolic blood pressure, renal function, malondialdehyde, renal NADPH oxidase, and xanthine oxidase were examined. Nx induced hypertension, proteinuria, and renal dysfunction, and exercise training attenuated these disorders. Although the plasma levels of malondialdehyde were not different among the group, urinary levels were increased by Nx and decreased by exercise training. Renal activity and expression of NADPH oxidase and xanthine oxidase were increased by Nx and decreased by exercise training. These results indicate that exercise training attenuates hypertension and renal dysfunction and ameliorates NADPH oxidase and xanthine oxidase in rats with chronic renal failure, suggesting that the reduction of reactive oxygen species generation may be involved in the renal protective effects of exercise training.
Collapse
|
21
|
Febuxostat Therapy for Patients with Gout and Stage 2-4 CKD: a Retrospective Study. Rheumatol Ther 2022; 9:1421-1434. [PMID: 36057763 PMCID: PMC9510076 DOI: 10.1007/s40744-022-00480-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 12/09/2022] Open
Abstract
Introduction The aim of this study is to explore the efficacy and renal safety of febuxostat in gout and stage 2–4 chronic kidney disease (CKD) and factors that correlated with target serum urate (SU). Methods A single-center retrospective study including male patients with gout and CKD was conducted. SU, the rate of SU < 360 µmol/L (RAT), and renal safety were analyzed in subjects who received febuxostat over 44 weeks. Factors that correlated with target SU were also explored. Results Between January 2017 and March 2021, 102 patients (stage 2 CKD: n = 27; stage 3 CKD: n = 70; stage 4 CKD: n = 5) were enrolled. The SU level reduced significantly over 44 weeks (600.76 ± 95.42 versus 405.52 ± 111.93 µmol/L; P < 0.05), and RAT increased to 39.20%. The overall estimated glomerular filtration rate (eGFR) level improved over 44 weeks (52.05 ± 11.68 versus 55.46 ± 14.49 mL/min/1.73 cm2, P < 0.05). An obvious improvement of eGFR was observed in stage 3 CKD, in patients with ≤ 1 risk factor (hypertension, diabetic mellitus, hyperlipidemia, or usage of non-steroidal anti-inflammatory drugs), and in patients with terminal SU < 360 µmol/L (P < 0.05). Logistic regression analysis indicated that baseline SU level and body weight were correlated with RAT. Further analysis revealed that patients with SU < 600 μmol/L and body weight ≤ 70 kg reached higher RAT (56.7%). Conclusions Febuxostat demonstrated efficacy and renal safety in patients with gout and CKD in clinical practice. Achieving the target SU could obviously improve renal function. Baseline SU level and body weight could affect the achievement of target SU. Supplementary Information The online version contains supplementary material available at 10.1007/s40744-022-00480-7.
Collapse
|
22
|
Afolabi AO, Akhigbe TM, Odetayo AF, Anyogu DC, Hamed MA, Akhigbe RE. Restoration of Hepatic and Intestinal Integrity by Phyllanthus amarus Is Dependent on Bax/Caspase 3 Modulation in Intestinal Ischemia-/Reperfusion-Induced Injury. Molecules 2022; 27:5073. [PMID: 36014309 PMCID: PMC9413108 DOI: 10.3390/molecules27165073] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Ethnopharmacological relevance: Oxidative stress is a key player in intestinal ischemia/reperfusion (I/R) injury (IIRI) with a tendency to trigger systemic inflammatory response, resulting in progressive distal organ injury. To date, the role of Bax/caspase 3 signaling in IIRI has not been reported. Furthermore, the discovery of a safe and effective drug remains pertinent in improving the outcome of IIRI. Therefore, this study investigated the role of Bax/caspase 3 signaling in intestinal I/R-induced intestinal and hepatic injury. In addition, the protective effect and possible associated mechanism of action of methanolic Phyllanthus amarus leaf extract (PA) against intestinal I/R-induced intestinal and hepatic injury were evaluated. Materials and methods: Fifty male Wistar rats were randomized into five groups (n = 10). The sham-operated group was received 0.5 mL of distilled water for seven days prior to the sham surgery, while the IIRI, febuxostat (FEB) + IIRI, low-dose PA (LDPA) + IIRI, and high-dose PA (HDPA) + IIRI groups underwent the I/R procedure. In addition to the procedure, IIRI, FEB + IIRI, LDPA + IIRI, and HDPA + IIRI received 0.5 mL of distilled water, 10 mg/kg of febuxostat, 200 mg/kg of PA, and 400 mg/kg of PA, respectively, for seven days prior to the I/R procedure. Results: Administration of methanolic Phyllanthus amarus leaf extracts attenuated the intestinal I/R-induced rise in intestinal and hepatic injury markers, malondialdehyde, nitric oxide, TNF-α, IL-6, and myeloperoxidase activities. In addition, Phyllanthus amarus ameliorated I/R-induced suppression of reduced glutathione, thiol and non-thiol proteins, and superoxide dismutase, catalase, and glutathione peroxidase activities in intestinal and hepatic tissues. These were coupled with the suppression of I/R-induced bacterial translocation, downregulation of I/R-induced activation of Bax/caspase 3 signaling, and improvement of I/R-induced distortion of intestinal and hepatic histoarchitecture by Phyllanthus amarus. Conclusion: Methanolic Phyllanthus amarus leaf extract protects against intestinal and hepatic injuries associated with intestinal I/R by suppressing oxidative-stress-mediated activation of Bax/caspase 3 signaling. The beneficial effects of Phyllanthus amarus may be ascribed to its constituent bioactive molecules, especially tannins, anthocyanin, alkaloids, and phenolics.
Collapse
Affiliation(s)
- Ayobami Oladele Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso 210214, Oyo State, Nigeria
| | - Tunmise Maryanne Akhigbe
- Department of Agronomy, Osun State University, Osogbo 210001, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo 210001, Osun State, Nigeria or
| | - Adeyemi Fatai Odetayo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo 210001, Osun State, Nigeria or
- Department of Physiology, University of Ilorin, Ilorin 240003, Kwara State, Nigeria
| | - Davinson Chuka Anyogu
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Moses Agbomhere Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo 210001, Osun State, Nigeria or
- The Brainwill Laboratory, Osogbo 210001, Osun State, Nigeria
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti 360001, Ekiti State, Nigeria
| | - Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso 210214, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo 210001, Osun State, Nigeria or
| |
Collapse
|
23
|
Wang X, Zhang C, Li Y, Xu T, Xiang J, Bai Y, Zhang Y, Wang Q, Zhang T, Liao L. High-Throughput mRNA Sequencing Reveals Potential Therapeutic Targets of Febuxostat in Secondary Injury After Intracerebral Hemorrhage. Front Pharmacol 2022; 13:833805. [PMID: 35814252 PMCID: PMC9260037 DOI: 10.3389/fphar.2022.833805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Febuxostat is a urate-lowering medication for the treatment of patients with gout. This study was performed to elucidate the effects and underlying mechanisms of febuxostat on neuronal injury induced by intracerebral hemorrhage (ICH) in mice. The results showed that the administration of febuxostat improved neurological severity scores and blood–brain barrier (BBB) permeability. Moreover, febuxostat attenuated neuronal cell death and cytokine levels compared with the ICH group. Next, we conducted a transcriptome analysis of the neuroprotective effects of febuxostat. The overlapping significant differentially expressed genes (DEGs) were identified. Gene ontology (GO) analysis revealed that the overlapping significant DEGs were most enriched in five items. The intersecting DEGs of the aforementioned five pathways were Wisp1, Wnt7b, Frzb, and Pitx2. In addition, GO terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that DEGs were mainly involved in the wnt signaling pathway. Furthermore, the expression of Wisp1 and Wnt7b in the perihematomal region at 72 h post-ICH was observed. The results showed that both Wisp1 and Wnt7b were increased in the ICH group and were decreased by the administration of febuxostat. Taken together, the study showed that febuxostat protected against secondary brain injury after ICH and the Wnt7b-Wisp1 pathway was closely related to neuroprotective effects.
Collapse
Affiliation(s)
- Xueyan Wang
- Department of Pharmacy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ting Xu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jin Xiang
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Bai
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Tiejun Zhang, ; Linchuan Liao,
| | - Linchuan Liao
- Department of Forensic Analytical Toxicology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Tiejun Zhang, ; Linchuan Liao,
| |
Collapse
|
24
|
Alqahtani A, Chidambara K, Asseri K, Venkatesan K, Ahmed Qure A, Aldahish A, Alqahtani T, Alghazwani Y, Bin Emran T, Hassan HM, Asiri SA, Abdulla Kh N, Balakumar P. Renoprotective and in silico Modeling Studies of Febuxostat in Gentamicin Induced Nephrotoxic Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.994.1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Purushothaman A, Teena Rose KS, Jacob JM, Varatharaj R, Shashikala K, Janardanan D. Curcumin analogues with improved antioxidant properties: A theoretical exploration. Food Chem 2022; 373:131499. [PMID: 34763936 DOI: 10.1016/j.foodchem.2021.131499] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/04/2023]
Abstract
Curcumin, a ubiquitous dietary molecule, is a versatile antioxidant that fights against free radicals. The antioxidant activity of curcumin and its structural analogues such as hispolon, halfcurcumin and polyhydroxycurcumin is analyzed using density functional theory (DFT). The thermochemical parameter, bond dissociation enthalpy (BDE) is used to analyse the propensity of radical attack. The hydrogen atom transfer (HAT) energetics for the hydroxyl groups of the antioxidant molecules with •OH and •OOH in both gas and solvent media are explored. Based on ourresults, hispolon and polyhydroxycurcumin characterized by multiple hydroxyl groups arranged in ortho dihydroxy fashion are good radical scavengers. Halfcurcumin exhibited comparatively similar activity as that of curcumin. The absorption properties of these molecules are in good agreement with the reported experimental findings. The molecular docking studies revealed that these antioxidants can indirectly control the oxidative stress by favourably interacting with the pro-oxidant enzyme like xanthine oxidase.
Collapse
Affiliation(s)
- Aiswarya Purushothaman
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - K S Teena Rose
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Jesni M Jacob
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu, India
| | - Rajapandian Varatharaj
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu, India.
| | - K Shashikala
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Deepa Janardanan
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India.
| |
Collapse
|
26
|
Miura T, Sakuyama A, Xu L, Qiu J, Namai-Takahashi A, Ogawa Y, Kohzuki M, Ito O. Febuxostat ameliorates high salt intake-induced hypertension and renal damage in Dahl salt-sensitive rats. J Hypertens 2022; 40:327-337. [PMID: 34495901 DOI: 10.1097/hjh.0000000000003012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Several clinical studies have reported that xanthine oxidoreductase inhibitors have antihypertensive and renal protective effects but their mechanisms have not been fully determined. This study aims to clarify these mechanisms by examining the effects of febuxostat, which is a novel selective xanthine oxidoreductase inhibitor, in Dahl salt-sensitive rats. METHODS Eight-week-old male Dahl salt-sensitive rats were fed a normal salt (0.6% NaCl) or high salt (8% NaCl) diet for 8 weeks. A portion of the rats that were fed high salt diet were treated with febuxostat (3 mg/kg per day) simultaneously. Additionally, acute effects of febuxostat (3 mg/kg per day) were examined after high salt diet feeding for 4 or 8 weeks. RESULTS Treatment with febuxostat for 8 weeks attenuated high salt diet-induced hypertension, renal dysfunction, glomerular injury, and renal interstitial fibrosis. Febuxostat treatment reduced urinary excretion of H2O2 and malondialdehyde and renal thiobarbituric acid reactive substances content. High salt diet increased xanthine oxidoreductase activity and expression in the proximal tubules and medullary interstitium. Febuxostat completely inhibited xanthine oxidoreductase activity and attenuated the high salt diet-increased xanthine oxidoreductase expression. Febuxostat transiently increased urine volume and Na+ excretion without change in blood pressure or urinary creatinine excretion after high salt diet feeding for 4 or 8 weeks. CONCLUSION Febuxostat ameliorates high salt diet-induced hypertension and renal damage with a reduction of renal oxidative stress in Dahl salt-sensitive rats. The antihypertensive effect of febuxostat may be mediated in part by diuretic and natriuretic action.
Collapse
Affiliation(s)
- Takahiro Miura
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai
| | - Akihiro Sakuyama
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo
| | - Lusi Xu
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai
| | - Jiahe Qiu
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai
| | - Asako Namai-Takahashi
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai
| | - Yoshiko Ogawa
- Department of Sport and Medical Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Masahiro Kohzuki
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai
| | - Osamu Ito
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai
| |
Collapse
|
27
|
Odake K, Tsujii M, Iino T, Chiba K, Kataoka T, Sudo A. Febuxostat treatment attenuates oxidative stress and inflammation due to ischemia-reperfusion injury through the necrotic pathway in skin flap of animal model. Free Radic Biol Med 2021; 177:238-246. [PMID: 34737143 DOI: 10.1016/j.freeradbiomed.2021.10.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which is a serious complication of reconstructive surgery. The purpose of this study was to evaluate the protective effect of treatment with febuxostat, a selective xanthine oxidase inhibitor, on I/R injury in the skin flap of an animal (rat) model. METHODS Superficial epigastric flaps were raised in Sprague-Dawley rats and subjected to ischemia for 3 h. Febuxostat at a dose of 10 mg/kg/day was administered to rats in drinking water from 1 week before the surgery (Feb group). Control animals received no drugs (Con group). The mean ratio of flap survival and contraction was evaluated and compared between animals with and without administration of febuxostat on day 5 after the surgery. In addition, infiltration by polymorphonuclear leukocytes and muscles of the panniculus carnosus in the flap were histologically evaluated using hematoxylin-eosin staining. Furthermore, xanthine oxidase activity, ATP levels, superoxide dismutase activity, and expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-α, and interleukin-1β were quantitatively assessed in the skin flap 24 h after the surgery. RESULTS In the Feb group, the survival and contraction rates at the 5 d timepoint post-surgery were significantly higher and lower than those in the Con group, respectively. Histological analysis showed significant reduction in polymorphonuclear leukocyte infiltration and muscle injury scores due to I/R injury in the Feb group. The expression of 8-OHdG was also significantly inhibited in animals administered febuxostat. Biochemical analysis showed a significant reduction in xanthine oxidase activity and significant increases in ATP levels and superoxide dismutase activity in the Feb group. Furthermore, the expression of interleukin-1β was significantly lower in the Feb group than in the Con group. CONCLUSION Febuxostat, which is clinically used for the treatment of hyperuricemia, was effective against necrosis of the skin flap via inhibition of oxidative stress and inflammation caused by I/R injury.
Collapse
Affiliation(s)
- Kazuya Odake
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Japan
| | - Masaya Tsujii
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Japan.
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Japan
| | - Katsura Chiba
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Japan
| | - Takeshi Kataoka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Japan
| |
Collapse
|
28
|
Jawad A, Yoo YJ, Yoon JC, Tian W, Islam MS, Lee EY, Shin HY, Kim SE, Ahn D, Park BY, Tae HJ, Kim IS. Changes of renal histopathology and the role of Nrf2/HO-1 in asphyxial cardiac arrest model in rats. Acta Cir Bras 2021; 36:e360607. [PMID: 34287609 PMCID: PMC8291904 DOI: 10.1590/acb360607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/12/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To investigate the role of Nrf2/HO-1 in renal histopathological ailments time-dependently in asphyxial cardiac arrest (CA) rat model. METHODS Eighty-eight Sprague Dawley male rats were divided into five groups of eight rats each. Asphyxial CA was induced in all the experimental rats except for the sham group. The rats were sacrificed at 6 hours, 12 hours, one day and two days post-CA. Serum blood urea nitrogen (BUN), creatinine (Crtn) and malondialdehyde from the renal tissues were evaluated. Hematoxylin and eosin and periodic acid-Schiff staining were done to evaluate the renal histopathological changes in the renal cortex. Furthermore, Nrf2/HO-1 immunohistochemistry (ihc) and western blot analysis were performed after CA. RESULTS The survival rate of rats decreased in a time-dependent manner: 66.6% at 6 hours, 50% at 12 hours, 38.1% in one day, and 25.8% in two days. BUN and serum Crtn markedly increased in CA-operated groups. Histopathological ailments of the renal cortical tissues increased significantly from 6 hours until two days post-CA. Furthermore, Nrf2/HO-1 expression level significantly increased at 6 hours, 12 hours, and one day. CONCLUSIONS The survival rate decreased time-dependently, and Nrf/HO-1 expression increased from 6 hours with the peak times at 12 hours, and one day post-CA.
Collapse
Affiliation(s)
- Ali Jawad
- Jeonbuk National University, South Korea
| | | | | | | | | | | | | | - So Eun Kim
- Jeonbuk National University Hospital, South Korea
| | | | | | | | | |
Collapse
|
29
|
Tsukamoto T, Tsujii M, Odake K, Iino T, Nakamura T, Matsumine A, Sudo A. Febuxostat reduces muscle wasting in tumor-bearing mice with LM8 osteosarcoma cells via inhibition of reactive oxygen species generation. Free Radic Res 2021; 55:810-820. [PMID: 34278932 DOI: 10.1080/10715762.2021.1947502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cachexic condition due to malignant tumors has been a challenging problem. The aim of this study is to analyze effects of febuxostat on both in vitro and in vivo models of the wasting of skeletal muscles, due to LM8 osteosarcoma cells. C2C12 myotubes were incubated in the conditioned medium of LM8. Febuxostat was added at a concentration of 3 µM and 30 µM, and ROS, diameter of myotubes, and expression of atrogin-1 were analyzed. Furthermore, an in vivo study was performed by subcutaneous injection of LM8 on C3H mice. Febuxostat was administered in the drinking water at 5 µg/ml, and 25 µg/ml. In addition, tumor-bearing mice without febuxostat (group TB) and control mice (group C) were established. At 4 weeks, body weight, wet weights of the gastrocnemius muscles, XO activity, 8-OHdG, and expression of TNF-α and IL-6 were evaluated. ROS generation, atrophy of myotubes, and upregulation of atrogin-1 were clearly observed in C2C12 myotubes following incubation in the conditioned medium. These pathological conditions were significantly inhibited by febuxostat administration. Furthermore, mice in group TB showed significant loss of body weight and muscle weight in which XO activity, 8-OHdG, and expression of IL-6 were significantly increased compared to those in group C. Febuxostat administration not only significantly improved the body weight and muscleweight, but also reduced markers of oxidative stress and pro-inflammatory cytokines. Febuxostat did not show anti-tumor effects. Febuxostat, which is clinically used for treatment of hyperuricemia, is effective against the wasting of the skeletal muscles induced by LM8 osteosarcoma cells.
Collapse
Affiliation(s)
- Tadashi Tsukamoto
- Department of Orthopaedic Surgery, Mie university Graduate School of Medicine, Tsu, Japan
| | - Masaya Tsujii
- Department of Orthopaedic Surgery, Mie university Graduate School of Medicine, Tsu, Japan
| | - Kazuya Odake
- Department of Orthopaedic Surgery, Mie university Graduate School of Medicine, Tsu, Japan
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie university Graduate School of Medicine, Tsu, Japan
| | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie university Graduate School of Medicine, Tsu, Japan
| | - Akihiko Matsumine
- Department of Orthopaedic Surgery, Fukui University Faculty of Medical Science, Eiheiji-Cho, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie university Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
30
|
Jawad A, Yoo YJ, Cho JH, Yoon JC, Tian W, Islam MS, Lee EY, Shin HY, Kim SE, Kim K, Ahn D, Park BY, Kim IS, Lee JH, Tae HJ. Therapeutic hypothermia effect on asphyxial cardiac arrest-induced renal ischemia/reperfusion injury via change of Nrf2/HO-1 levels. Exp Ther Med 2021; 22:1031. [PMID: 34373717 PMCID: PMC8343472 DOI: 10.3892/etm.2021.10463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate the renoprotective effect of therapeutic hypothermia (TH) on renal ischemia-reperfusion injury (RI/RI) induced by asphyxial cardiac arrest (CA) in rats. A total of 48 male rats were randomly divided into five groups: i) Sham (n=6); ii) Normothermia + CA (Normo.) (n=14); iii) Normo. and 2 h of TH after return of spontaneous circulation (ROSC) (n=12); iv) Normo. and 4 h of TH after ROSC (n=9); and v) Normo. and 6 h of TH after ROSC (n=7). All rats except the Sham group underwent asphyxia CA and were sacrificed 1 day after ROSC. The survival rate increased from 42.8% in the Normo. group to 50, 66.6 and 85.7% in the groups with 2, 4 and 6 h of TH after CA, respectively. TH attenuated the histopathological changes of the renal tissues following ROSC and the levels of blood urea nitrogen, serum creatinine and malondialdehyde in renal tissues. On immunohistochemistry, the relative optical density of nuclear erythroid-related factor-2 (Nrf2) and heme oxygenase (HO-1) expression in renal tissues increased in the Normo. group compared with that in the Sham group and exhibited further significant increases at 6 h of TH after ROSC. In conclusion, TH attenuated renal injury and increased the expression of Nrf2 and HO-1 in a TH treatment time-dependent manner.
Collapse
Affiliation(s)
- Ali Jawad
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Yeo-Jin Yoo
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Jeong-Hwi Cho
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Jae Chol Yoon
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Weishun Tian
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Mohammad Sadikul Islam
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Eui-Yong Lee
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Ha-Young Shin
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - So Eun Kim
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Kyunghwa Kim
- Department of Thoracic and Cardiovascular Surgery, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Dongchoon Ahn
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Byung-Yong Park
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - In-Shik Kim
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Jun Ho Lee
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Hyun-Jin Tae
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| |
Collapse
|
31
|
Chewcharat A, Chen Y, Thongprayoon C, Harrison AM, Mao MA, Cheungpasitporn W. Febuxostat as a renoprotective agent for treatment of hyperuricaemia: a meta-analysis of randomised controlled trials. Intern Med J 2021; 51:752-762. [PMID: 32149437 DOI: 10.1111/imj.14814] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/15/2020] [Accepted: 03/01/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND The objective of this meta-analysis of randomised controlled clinical trials (RCT) was to evaluate the effects of febuxostat on kidney function in patients with hyperuricaemia. AIMS Febuxostat is a xanthine oxidase inhibitor that decreases uric acid production. Recent studies suggested the renoprotective effect of febuxostat among hyperuricaemia patients. The aim of this study was to evaluate the effects of febuxostat on kidney function in patients with hyperuricaemia. METHODS We conducted electronic searches in PubMed, Embase and Cochrane Central Register of Controlled Trials from January 1960 to July 2019 to identify RCT that examined the effects of febuxostat in adult patients with hyperuricaemia on serum creatinine, estimated glomerular filtration rate (eGFR), albuminuria, blood pressure parameters, major cardiovascular events, diarrhoea, joint pain, stroke and arrhythmia. RESULTS Nine RCT with 2141 participants were included in this meta-analysis. Compared to placebo, the febuxostat group showed a higher eGFR at 6 months with a weighted mean difference (WMD) of 2.86 mL/min/1.73 m2 (P < 0.001), as well as the end of studies (eGFR WMD 2.69 mL/min/1.73 m2 , P < 0.001). There was also lower serum creatinine (SrCr WMD = -0.04 mg/dL, P < 0.001), reduction in systolic blood pressure (SBP WMD = -1.18 mmHg, P < 0.001) and diastolic blood pressure (DBP WMD = -1.14 mmHg, P = 0.04). There was no statistical difference between febuxostat and placebo in major cardiovascular events, diarrhoea, joint symptoms, stroke events and arrhythmia. Subgroup analysis among chronic kidney disease showed the febuxostat group had higher eGFR than the placebo group (eGFR WMD = 2.69 mL/min/1.73 m2 , P < 0.001). CONCLUSION Treating hyperuricaemia with febuxostat may slow the progression of chronic kidney disease irrespective of baseline renal function without significantly associated increased risks of major cardiovascular events, diarrhoea, joint symptoms, arrhythmia and stroke, compared to placebo.
Collapse
Affiliation(s)
- Api Chewcharat
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Yawen Chen
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Charat Thongprayoon
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew M Harrison
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael A Mao
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Wisit Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
32
|
Carcy R, Cougnon M, Poet M, Durandy M, Sicard A, Counillon L, Blondeau N, Hauet T, Tauc M, F Pisani D. Targeting oxidative stress, a crucial challenge in renal transplantation outcome. Free Radic Biol Med 2021; 169:258-270. [PMID: 33892115 DOI: 10.1016/j.freeradbiomed.2021.04.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Disorders characterized by ischemia/reperfusion (I/R) are the most common causes of debilitating diseases and death in stroke, cardiovascular ischemia, acute kidney injury or organ transplantation. In the latter example the I/R step defines both the amplitude of the damages to the graft and the functional recovery outcome. During transplantation the kidney is subjected to blood flow arrest followed by a sudden increase in oxygen supply at the time of reperfusion. This essential clinical protocol causes massive oxidative stress which is at the basis of cell death and tissue damage. The involvement of both reactive oxygen species (ROS) and nitric oxides (NO) has been shown to be a major cause of these cellular damages. In fact, in non-physiological situations, these species escape endogenous antioxidant control and dangerously accumulate in cells. In recent years, the objective has been to find clinical and pharmacological treatments to reduce or prevent the appearance of oxidative stress in ischemic pathologies. This is very relevant because, due to the increasing success of organ transplantation, clinicians are required to use limit organs, the preservation of which against oxidative stress is crucial for a better outcome. This review highlights the key actors in oxidative stress which could represent new pharmacological targets.
Collapse
Affiliation(s)
- Romain Carcy
- Université Côte d'Azur, CNRS, LP2M, Nice, France; CHU Nice, Hôpital Pasteur 2, Service de Réanimation Polyvalente et Service de Réanimation des Urgences Vitales, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Marc Cougnon
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Mallorie Poet
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Manon Durandy
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Antoine Sicard
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France; CHU Nice, Hôpital Pasteur 2, Service de Néphrologie-Dialyse-Transplantation, Nice, France; Clinical Research Unit of Université Côte d'Azur (UMR2CA), France
| | - Laurent Counillon
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | | | - Thierry Hauet
- Université de Poitiers, INSERM, IRTOMIT, CHU de Poitiers, La Milétrie, Poitiers, France
| | - Michel Tauc
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France.
| |
Collapse
|
33
|
Martorell M, Lucas X, Alarcón-Zapata P, Capó X, Quetglas-Llabrés MM, Tejada S, Sureda A. Targeting Xanthine Oxidase by Natural Products as a Therapeutic Approach for Mental Disorders. Curr Pharm Des 2021; 27:367-382. [PMID: 32564744 DOI: 10.2174/1381612826666200621165839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
Mental disorders comprise diverse human pathologies, including depression, bipolar affective disorder, schizophrenia, and dementia that affect millions of people around the world. The causes of mental disorders are unclear, but growing evidence suggests that oxidative stress and the purine/adenosine system play a key role in their development and progression. Xanthine oxidase (XO) is a flavoprotein enzyme essential for the catalysis of the oxidative hydroxylation of purines -hypoxanthine and xanthine- to generate uric acid. As a consequence of the oxidative reaction of XO, reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are produced and, further, contribute to the pathogenesis of mental disorders. Altered XO activity has been associated with free radical-mediated neurotoxicity inducing cell damage and inflammation. Diverse studies reported a direct association between an increased activity of XO and diverse mental diseases including depression or schizophrenia. Small-molecule inhibitors, such as the well-known allopurinol, and dietary flavonoids, can modulate the XO activity and subsequent ROS production. In the present work, we review the available literature on XO inhibition by small molecules and their potential therapeutic application in mental disorders. In addition, we discuss the chemistry and molecular mechanism of XO inhibitors, as well as the use of structure-based and computational methods to design specific inhibitors with the capability of modulating XO activity.
Collapse
Affiliation(s)
- Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepcion, 4070386 Concepcion, Chile
| | - Xavier Lucas
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel CH-4070, Switzerland
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepcion, 4070386 Concepcion, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), E-07122, Palma, Balearic Islands, Spain
| | - Maria Magdalena Quetglas-Llabrés
- Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), E-07122, Palma, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), E-07122, Palma, Balearic Islands, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), E-07122, Palma, Balearic Islands, Spain
| |
Collapse
|
34
|
Nessa N, Kobara M, Toba H, Adachi T, Yamamoto T, Kanamura N, Pezzotti G, Nakata T. Febuxostat Attenuates the Progression of Periodontitis in Rats. Pharmacology 2021; 106:294-304. [PMID: 33735887 DOI: 10.1159/000513034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Periodontitis is a lifestyle-related disease that is characterized by chronic inflammation in gingival tissue. Febuxostat, a xanthine oxidase inhibitor, exerts anti-inflammatory and antioxidant effects. OBJECTIVE The present study investigated the effects of febuxostat on periodontitis in a rat model. METHODS Male Wistar rats were divided into 3 groups: control, periodontitis, and febuxostat-treated periodontitis groups. Periodontitis was induced by placing a ligature wire around the 2nd maxillary molar and the administration of febuxostat (5 mg/kg/day) was then initiated. After 4 weeks, alveolar bone loss was assessed by micro-computed tomography and methylene blue staining. The expression of osteoprotegerin (OPG), a bone resorption inhibitor, was detected by quantitative RT-PCR and immunological staining, and the number of osteoclasts in gingival tissue was assessed by tartrate-resistant acid phosphatase staining. The mRNA and protein expression levels of the proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β), in gingival tissue were measured using quantitative RT-PCR and immunological staining. Oxidative stress in gingival tissue was evaluated by the expression of 4-hydroxy-2-nonenal (4-HNE), and 8-hydroxy-2-deoxyguanosine (8-OHdG). To clarify the systemic effects of periodontitis, blood pressure and glucose tolerance were examined. RESULTS In rats with periodontitis, alveolar bone resorption was associated with reductions in OPG and increases in osteoclast numbers. The gingival expression of TNF-α, IL-1β, 4-HNE, and 8-OHdG was up-regulated in rats with periodontitis. Febuxostat significantly reduced alveolar bone loss, proinflammatory cytokine levels, and oxidative stress. It also attenuated periodontitis-induced glucose intolerance and blood pressure elevations. CONCLUSION Febuxostat prevented the progression of periodontitis and associated systemic effects by inhibiting proinflammatory mediators and oxidative stress.
Collapse
Affiliation(s)
- Naseratun Nessa
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Miyuki Kobara
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan,
| | - Hiroe Toba
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Giuseppe Pezzotti
- Department of Material Science and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Tetsuo Nakata
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
35
|
Yan W, Zhang Y, Hu L, Li Q, Zhou H. Febuxostat Inhibits MPP+-Induced Inflammatory Response Through Inhibiting the JNK/NF-κB Pathway in Astrocytes. Neurotox Res 2021; 39:566-574. [PMID: 33443645 DOI: 10.1007/s12640-020-00316-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease lacking effective clinical therapies. It is reported that astrocyte-associated neuroinflammation and oxidative stress are involved in the pathological mechanism of PD. In the present study, we aimed to investigate the protective effect of febuxostat against 1 methyl 4 phenyl pyridine (MPP+)-induced injury on primary astrocytes to highlight the potential therapeutic property of febuxostat in PD.MPP+ was used to induce an in vitro PD model in primary rat astrocytes. The levels of ROS and intracellularly reduced GSH were determined using DCFH-DA assay and a commercial GSH kit, respectively. MTT and LDH release assays were utilized to evaluate the cell viability of astrocytes. The expressions of IL-8, IL-1β, TNF-α, MMP-2, and MMP-9 in the astrocytes were detected using qRT-PCR and ELISA assays. QRT-PCR and Western blot analysis were used to determine the expression levels of GFAP in astrocytes. The expression of p-JNK and nuclear levels of NF-κB p65 were evaluated using Western blot analysis. The transcriptional activity of NF-κB was measured using the luciferase activity assay.Firstly, the elevated levels of ROS and decreased levels of intracellularly reduced GSH in primary astrocytes induced by MPP+ were significantly ameliorated by febuxostat. Secondly, treatment with febuxostat rescued MPP+-induced reduction in cell viability and increased LDH release. Thirdly, febuxostat alleviated MPP+-induced inflammatory responses in astrocytes by reducing the expressions of IL-8, IL-1β, TNF-α, GFAP, MMP-2, and MMP-9. Importantly, we found that febuxostat mitigated activation of the JNK/NF-κB signaling pathway by inhibiting the phosphorylation of JNK and nuclear translocation of NF-κB p65.Febuxostat attenuated MPP+-induced inflammatory response by suppressing the JNK/NF-κB signaling pathway in astrocytes.
Collapse
Affiliation(s)
- Weiwei Yan
- Department of Anesthesiology, the Second Affiliated Hospital of Jiaxing University, Nanhu District, No. 1518, Huancheng North Road, Jiaxing, 314033, Zhejiang, China
| | - Yun Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Li Hu
- Department of Anesthesiology, the Second Affiliated Hospital of Jiaxing University, Nanhu District, No. 1518, Huancheng North Road, Jiaxing, 314033, Zhejiang, China
| | - Qi Li
- Department of Anesthesiology, the Second Affiliated Hospital of Jiaxing University, Nanhu District, No. 1518, Huancheng North Road, Jiaxing, 314033, Zhejiang, China
| | - Hongmei Zhou
- Department of Anesthesiology, the Second Affiliated Hospital of Jiaxing University, Nanhu District, No. 1518, Huancheng North Road, Jiaxing, 314033, Zhejiang, China.
| |
Collapse
|
36
|
Miyazawa K, Nakai D, Nakamura Y, Tatsuno T, Inoue S, Nakazawa Y, Ishigaki Y. Effects of the xanthine oxidase inhibitor, febuxostat, on the expression of monocyte chemoattractant protein-1 and synchronous genes in MDCK cells treated with calcium oxalate monohydrate crystals. Int J Urol 2021; 28:339-345. [PMID: 33393162 DOI: 10.1111/iju.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/03/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To examine the effects of the selective xanthine oxidase inhibitor febuxostat on the expression of inflammation-related genes involved in stone formation. METHODS Madin-Darby canine kidney cells were exposed to febuxostat, followed by calcium oxalate monohydrate crystals. Monocyte chemoattractant protein-1 messenger ribonucleic acid expression levels were determined by real-time reverse transcription polymerase chain reaction analysis. Deoxyribonucleic acid microarray analysis was utilized to evaluate gene expression. RESULTS Calcium oxalate monohydrate crystals activated monocyte chemoattractant protein-1 messenger ribonucleic acid expression in a time- and concentration-dependent manner. Febuxostat suppressed monocyte chemoattractant protein-1 expression. The expression levels of a group of inflammatory genes, including interleukin-8 and chemokine (C-X-C motif) ligand 10, which are downstream of reactive oxygen species, fluctuated similarly to the observed monocyte chemoattractant protein-1 fluctuations and were reduced by febuxostat pretreatment. CONCLUSIONS Febuxostat exerts preventive effects against reactive oxygen species production and oxidative stress, and might represent a potential treatment for calcium oxalate stones. In the present study, febuxostat downregulated the calcium oxalate monohydrate crystal-induced monocyte chemoattractant protein-1 messenger ribonucleic acid expression.
Collapse
Affiliation(s)
- Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Dan Nakai
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Takanori Tatsuno
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yusuke Nakazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
37
|
Balakumar P, Alqahtani A, Khan NA, Mahadevan N, Dhanaraj SA. Mechanistic insights into hyperuricemia-associated renal abnormalities with special emphasis on epithelial-to-mesenchymal transition: Pathologic implications and putative pharmacologic targets. Pharmacol Res 2020; 161:105209. [DOI: 10.1016/j.phrs.2020.105209] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023]
|
38
|
Identification of Modulators of HIV-1 Proviral Transcription from a Library of FDA-Approved Pharmaceuticals. Viruses 2020; 12:v12101067. [PMID: 32977702 PMCID: PMC7598649 DOI: 10.3390/v12101067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) is the most prevalent human retrovirus. Recent data show that 34 million people are living with HIV-1 worldwide. HIV-1 infections can lead to AIDS which still causes nearly 20,000 deaths annually in the USA alone. As this retrovirus leads to high morbidity and mortality conditions, more effective therapeutic regimens must be developed to treat these viral infections. A key target for intervention for which there are no current FDA-approved modulators is at the point of proviral transcription. One successful method for identifying novel therapeutics for treating infectious diseases is the repurposing of pharmaceuticals that are approved by the FDA for alternate indications. Major benefits of using FDA-approved drugs include the fact that the compounds have well established toxicity profiles, approved manufacturing processes, and immediate commercial availability to the patients. Here, we demonstrate that pharmaceuticals previously approved for other indications can be utilized to either activate or inhibit HIV-1 proviral transcription. Specifically, we found febuxostat, eltrombopag, and resveratrol to be activators of HIV-1 transcription, while mycophenolate was our lead inhibitor of HIV-1 transcription. Additionally, we observed that the infected cells of lymphoid and myeloid lineage responded differently to our lead transcriptional modulators. Finally, we demonstrated that the use of a multi-dose regimen allowed for enhanced activation with our transcriptional activators.
Collapse
|
39
|
Itano S, Kadoya H, Satoh M, Nakamura T, Murase T, Sasaki T, Kanwar YS, Kashihara N. Non-purine selective xanthine oxidase inhibitor ameliorates glomerular endothelial injury in Ins Akita diabetic mice. Am J Physiol Renal Physiol 2020; 319:F765-F772. [PMID: 32954851 DOI: 10.1152/ajprenal.00236.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial dysfunction represents a predominant early feature of diabetes, rendering patients with diabetes prone to renal complications, e.g., proteinuria. Recent studies have indicated a possible role for xanthine oxidase (XO) in the pathogenesis of vascular dysfunctions associated with diabetes. In the present study, we investigated the contribution of XO activation on the progression of diabetic nephropathy in a mouse model using selective XO inhibitors. Male Ins2Akita heterozygous mice were used with wild-type mice as controls. Akita mice were treated with topiroxostat (Topi) or vehicle for 4 wk. Serum uric acid levels were significantly reduced in Akita + Topi mice compared with Akita + vehicle mice. The Akita + Topi group had a significant reduction in urinary albumin excretion compared with the Akita + vehicle group. Mesangial expansion, glomerular collagen type IV deposition, and glomerular endothelial injury (assessed by lectin staining and transmission electron microscopy) were considerably reduced in the Akita + topi group compared with the Akita + vehicle group. Furthermore, glomerular permeability was significantly higher in the Akita + vehicle group compared with the wild-type group. These changes were reduced with the administration of Topi. We conclude that XO inhibitors preserve glomerular endothelial functions and rescue compromised glomerular permeability, suggesting that XO activation plays a vital role in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Seiji Itano
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hiroyuki Kadoya
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Minoru Satoh
- Department of General Medicine/Nephrology, Kobe Rosai Hospital, Kobe, Hyogo, Japan
| | - Takashi Nakamura
- Pharmacological Study Group, Pharmaceutical Research Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Takayo Murase
- Radioisotope and Chemical Analysis Center, Laboratory Management Department, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yashpal S Kanwar
- Department of Pathology and Medicine, Northwestern University, Chicago, Illinois, USA
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
40
|
Park EJ, Dusabimana T, Je J, Jeong K, Yun SP, Kim HJ, Kim H, Park SW. Honokiol Protects the Kidney from Renal Ischemia and Reperfusion Injury by Upregulating the Glutathione Biosynthetic Enzymes. Biomedicines 2020; 8:biomedicines8090352. [PMID: 32942603 PMCID: PMC7555803 DOI: 10.3390/biomedicines8090352] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/29/2020] [Accepted: 09/13/2020] [Indexed: 12/31/2022] Open
Abstract
Glutathione (GSH) is an endogenous antioxidant found in plants, animals, fungi, and some microorganisms that protects cells by neutralizing hydrogen peroxide. Honokiol, an active ingredient of Magnolia officinalis, is known for antioxidant, anti-inflammatory, and anti-bacterial properties. We investigated the protective mechanism of honokiol through regulating cellular GSH in renal proximal tubules against acute kidney injury (AKI). First, we measured cellular GSH levels and correlated them with the expression of GSH biosynthetic enzymes after honokiol treatment in human kidney-2 (HK-2) cells. Second, we used pharmacological inhibitors or siRNA-mediated gene silencing approach to determine the signaling pathway induced by honokiol. Third, the protective effect of honokiol via de novo GSH biosynthesis was investigated in renal ischemia-reperfusion (IR) mice. Honokiol significantly increased cellular GSH levels by upregulating the subunits of glutamate-cysteine ligase (Gcl)—Gclc and Gclm. These increases were mediated by activation of nuclear factor erythroid 2-related factor 2, via PI3K/Akt and protein kinase C signaling. Consistently, honokiol treatment reduced the plasma creatinine, tubular cell death, neutrophil infiltration and lipid peroxidation in IR mice and the effect was correlated with upregulation of Gclc and Gclm. Conclusively, honokiol may benefit to patients with AKI by increasing antioxidant GSH via transcriptional activation of the biosynthetic enzymes.
Collapse
Affiliation(s)
- Eun Jung Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| |
Collapse
|
41
|
Abstract
Xanthine oxidase inhibitors are primarily used in the clinical prevention and treatment of gout associated with hyperuricemia. The archetypal xanthine oxidase inhibitor, Allopurinol has been shown to have other beneficial effects such as a reduction in vascular reactive oxygen species and mechano-energetic uncoupling. This chapter discusses these properties and their relevance to human pathophysiology with a focus on Allopurinol as well as newer xanthine oxidase inhibitors such as Febuxostat and Topiroxostat. Xanthine oxidase (XO) and xanthine dehydrogenase (XDH) are collectively referred to as xanthine oxidoreductase (XOR). XDH is initially synthesised as a 150-kDa protein from which XO is derived, e.g. under conditions of ischemia/hypoxia either reversibly by conformational changes (calcium or SH oxidation) or irreversibly by proteolysis, the latter leading to formation of a 130-kDa form of XO. Both, XO and XDH, catalyse the conversion of hypoxanthine via xanthine to uric acid, the former by using oxygen forming superoxide and hydrogen peroxide and the latter NAD+. However, XDH is in principle also able to generate ROS.
Collapse
|
42
|
Alghamdi MA, Hussein AM, Al-Eitan LN, Elnashar E, Elgendy A, Abdalla AM, Ahmed S, Khalil WA. Possible mechanisms for the renoprotective effects of date palm fruits and seeds extracts against renal ischemia/reperfusion injury in rats. Biomed Pharmacother 2020; 130:110540. [PMID: 32763814 DOI: 10.1016/j.biopha.2020.110540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE This work investigates the possible renoprotective effects of date palm fruits and seeds extract against renal ischemia and their underlying mechanisms. METHODS 108-Sprague Dawle male rats were randomly allocated into 6 equal groups differently receiving aqueous or methanolic fruit and seed extracts. Assay of serum creatinine, BUN and TNF-α, morphological examination of the left kidney, markers of the redox state (MDA, CAT, and GSH), the expression of TNFα and Nrf2 genes at the level of mRNA, the expression of caspase-3 and TGF-β proteins by immunohistochemistry were performed. RESULTS 45-min renal I/R caused significant deterioration of kidney functions (increase in serum creatinine and BUN) and morphology (P < 0.001) and significant reduction in CAT activity and GSH levels with significant increase in serum TNF-α and MDA concentration and the expression of Nrf2, caspase-3, TNF-α, and TGF-β in kidney tissues. Pre-treatment with either date palm fruit or seed extracts significantly improved kidney functions and morphology (P ≤ 0.001) with a significant increase in the expression of Nrf2 and CAT activity, and GSH concentration and a reduction in serum TNF-α and expression of caspase-3, TNF-α, and TGF-β (P < 0.001). CONCLUSIONS Administration of date palm extracts exhibited a renoprotective effect against renal I/R injury.This renoprotective action might be due to their antioxidants, anti-apoptotic and anti-inflammatory actions. Moreover, aqueous fruit extracts offered powerful renoprotective effect than aqueous seed extracts, and aqueous fruit and seed extracts were generally more effective than methanolic extracts.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Laith N Al-Eitan
- Department of Applied Biological Science, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Eman Elnashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Ahmed Elgendy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Asim M Abdalla
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Seham Ahmed
- Department of Organic Chemistry, Faculty of Science, Zagazig University, Zagazig 35621, Egypt
| | - Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
43
|
Research Advances in the Mechanisms of Hyperuricemia-Induced Renal Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5817348. [PMID: 32685502 PMCID: PMC7336201 DOI: 10.1155/2020/5817348] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Uric acid is the end product of purine metabolism in humans, and its excessive accumulation leads to hyperuricemia and urate crystal deposition in tissues including joints and kidneys. Hyperuricemia is considered an independent risk factor for cardiovascular and renal diseases. Although the symptoms of hyperuricemia-induced renal injury have long been known, the pathophysiological molecular mechanisms are not completely understood. In this review, we focus on the research advances in the mechanisms of hyperuricemia-caused renal injury, primarily on oxidative stress, endothelial dysfunction, renal fibrosis, and inflammation. Furthermore, we discuss the progress in hyperuricemia management.
Collapse
|
44
|
Hsu YO, Wu I, Chang S, Lee C, Tsai C, Lin C, Lin W, Huang Y, Wu C, Kuo G, Hsiao C, Lin H, Yang C, Yen T, Chen Y, Hung C, Tian Y, Kuo C, Yang C, Anderson GF, Yang H. Comparative Renoprotective Effect of Febuxostat and Allopurinol in Predialysis Stage 5 Chronic Kidney Disease Patients: A Nationwide Database Analysis. Clin Pharmacol Ther 2020; 107:1159-1169. [PMID: 31628864 PMCID: PMC7232862 DOI: 10.1002/cpt.1697] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
Hyperuricemia has been associated with chronic kidney disease (CKD) progression. The antihyperuricemic febuxostat's potential renoprotective effect has been demonstrated in stage 1-3 CKD. Large-scale studies comparing the renoprotective potential of febuxostat and allopurinol in advanced CKD are lacking. We exclusively selected 6,057 eligible patients with predialysis stage 5 CKD prescribed either febuxostat or allopurinol using the National Health Insurance Research Database in Taiwan during 2012-2015. There were 69.57% of allopurinol users and 42.01% febuxostat users who required long-term dialysis (P < 0.0001). The adjusted hazard ratio (HR) of 0.65 (95% confidence interval (CI) 0.60-0.70) indicated near 35% lower hazards of long-term dialysis with febuxostat use. The renal benefit of febuxostat was consistent across most patient subgroups and/or using the propensity score-matched cohort. The adjusted HR was 0.66 (95% CI, 0.61-0.70) for long-term dialysis or death. In conclusion, lower risk of progression to dialysis was observed in predialysis stage 5 CKD febuxostat users without compromising survival.
Collapse
Affiliation(s)
- Yun‐Shiuan O. Hsu
- Kidney Research InstituteNephrology DepartmentChang Gung Memorial HospitalCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - I‐Wen Wu
- Nephrology DepartmentChang Gung Memorial HospitalKeelungTaiwan
| | - Shang‐Hung Chang
- Cardiovascular DepartmentChang Gung Memorial HospitalTaoyuanTaiwan
| | - Cheng‐Chia Lee
- Kidney Research InstituteNephrology DepartmentChang Gung Memorial HospitalCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chung‐Ying Tsai
- Kidney Research InstituteNephrology DepartmentChang Gung Memorial HospitalCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chan‐Yu Lin
- Kidney Research InstituteNephrology DepartmentChang Gung Memorial HospitalCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Wan‐Ting Lin
- Center for Big Data Analytics and StatisticsChang Gung Memorial HospitalTaoyuanTaiwan
| | - Yu‐Tung Huang
- Center for Big Data Analytics and StatisticsChang Gung Memorial HospitalTaoyuanTaiwan
| | - Chao‐Yi Wu
- Division of Allergy, Asthma, and RheumatologyDepartment of PediatricsChang Gung Memorial HospitalChang Gung University College of MedicineTaoyuanTaiwan
| | - George Kuo
- Kidney Research InstituteNephrology DepartmentChang Gung Memorial HospitalCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chih‐Yen Hsiao
- Division of NephrologyDepartment of Internal MedicineDitmanson Medical Foundation Chia‐Yi Christian HospitalChia‐Yi CountyTaiwan
| | - Hsing‐Lin Lin
- Division of Critical Care SurgeryDepartment of Critical Care MedicineVeterans General HospitalKaohsiungTaiwan
| | - Chih‐Chao Yang
- Nephrology DepartmentChang Gung Memorial HospitalKaohsiungTaiwan
| | - Tzung‐Hai Yen
- Kidney Research InstituteNephrology DepartmentChang Gung Memorial HospitalCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Yung‐Chang Chen
- Kidney Research InstituteNephrology DepartmentChang Gung Memorial HospitalCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Cheng‐Chieh Hung
- Kidney Research InstituteNephrology DepartmentChang Gung Memorial HospitalCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Ya‐Chong Tian
- Kidney Research InstituteNephrology DepartmentChang Gung Memorial HospitalCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chang‐Fu Kuo
- Division of Rheumatology, Allergy, and ImmunologyChang Gung Memorial HospitalTaoyuanTaiwan
| | - Chih‐Wei Yang
- Kidney Research InstituteNephrology DepartmentChang Gung Memorial HospitalCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Gerard F. Anderson
- Department of Health Policy and ManagementJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Huang‐Yu Yang
- Kidney Research InstituteNephrology DepartmentChang Gung Memorial HospitalCollege of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Health Policy and ManagementJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| |
Collapse
|
45
|
Hyperuricemia is associated with a lower glomerular filtration rate in pediatric sickle cell disease patients. Pediatr Nephrol 2020; 35:883-889. [PMID: 31960140 DOI: 10.1007/s00467-019-04432-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sickle cell nephropathy (SCN) is a progressive disease that contributes significant morbidity and mortality in sickle cell disease (SCD), yet it remains poorly understood. Hyperuricemia negatively impacts renal function in the non-sickle cell population but is understudied in SCD. METHODS We performed a cross-sectional analysis of the first 78 pediatric SCD patients enrolled in a cohort study. The mechanism of development of hyperuricemia (defined, serum uric acid (UA) ≥ 5.5 mg/dL) was characterized as a result of either UA overproduction or inefficient renal excretion by the Simkin index and fractional clearance of urate (FCU) equations. Associations between hyperuricemia and albuminuria or estimated glomerular filtration rate (eGFR) were determined by linear regression. RESULTS The prevalence of hyperuricemia in this young population (mean age 11.6 ± 3.77 years) was 34.2%. Only 1 hyperuricemic participant overproduced UA by Simkin index, while 62.5% were inefficient renal excretors of UA (FCU < 4%). Hyperuricemia was associated with a significant decrease in average eGFR, -27 ml/min/1.73m2 below normouricemia (mean eGFR 151.6 ± 40.32), p = 0.0122. Notably, the previously accepted association between decline of eGFR with age is significantly modified by hyperuricemia stratification, where hyperuricemia explains 44% of the variance in eGFR by age (R2 = 0.44, p = 0.0004) and is nonsignificant in normouricemia (R2 = 0.07, p = 0.0775). CONCLUSION These findings indicate that hyperuricemia may be associated with early eGFR decline in SCN. This association must be further characterized in prospective cohort studies in SCN, and hyperuricemia must be investigated as a potential therapeutic target for SCN.
Collapse
|
46
|
Jung SW, Kim SM, Kim YG, Lee SH, Moon JY. Uric acid and inflammation in kidney disease. Am J Physiol Renal Physiol 2020; 318:F1327-F1340. [PMID: 32223310 DOI: 10.1152/ajprenal.00272.2019] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Asymptomatic hyperuricemia is frequently observed in patients with kidney disease. Although a substantial number of epidemiologic studies have suggested that an elevated uric acid level plays a causative role in the development and progression of kidney disease, whether hyperuricemia is simply a result of decreased renal excretion of uric acid or is a contributor to kidney disease remains a matter of debate. Over the last two decades, multiple experimental studies have expanded the knowledge of the biological effects of uric acid beyond its role in gout. In particular, uric acid induces immune system activation and alters the characteristics of resident kidney cells, such as tubular epithelial cells, endothelial cells, and vascular smooth muscle cells, toward a proinflammatory and profibrotic state. These findings have led to an increased awareness of uric acid as a potential and modifiable risk factor in kidney disease. Here, we discuss the effects of uric acid on the immune system and subsequently review the effects of uric acid on the kidneys mainly in the context of inflammation.
Collapse
Affiliation(s)
- Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Republic of Korea
| | - Su-Mi Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Republic of Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Republic of Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Republic of Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
47
|
Exercise training delays renal disorders with decreasing oxidative stress and increasing production of 20-hydroxyeicosatetraenoic acid in Dahl salt-sensitive rats. J Hypertens 2020; 38:1336-1346. [PMID: 32205560 DOI: 10.1097/hjh.0000000000002409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Exercise training has antihypertensive and renoprotective effects in humans and rats. However, the effects of exercise training on renal disorders that occur with salt-sensitive hypertension remains unclear. The study aim was to investigate the effects and mechanisms of exercise training on renal function in a rat model of salt-sensitive hypertension. METHODS Six-week-old male Dahl salt-sensitive rats were divided into normal-salt (0.6% NaCl) diet, high-salt (8% NaCl) diet, and high-salt diet with exercise training groups. The high-salt diet with exercise training group underwent daily treadmill running for 8 weeks. RESULTS The high-salt diet induced severe hypertension and renal dysfunction. Exercise training significantly improved high-salt diet-induced urinary protein, albumin, and L-type fatty acid-binding protein excretion, and glomerulosclerosis but not renal interstitial fibrosis without changing blood pressure. Exercise training significantly attenuated high-salt diet-induced oxidative stress in the kidneys and decreased high-salt diet-stimulated xanthine oxidoreductase activity but not nicotinamide adenine dinucleotide phosphate oxidase activity. The high-salt diet did not change urinary excretion of 20-hydroxyeicosatetraenoic acid and decreased cytochrome P450 4A protein expression in the kidneys. Exercise training increased urinary 20-hydoroxyeicosatetraenoic acid excretion and renal cytochrome P450 4A protein expression. CONCLUSION Exercise training improved renal disorders without lowering blood pressure in Dahl salt-sensitive rats. Exercise training also decreased oxidative stress and increased 20-hydroxyeicosatetraenoic acid production in the kidneys. These results suggest that improvements in oxidative stress and 20-hydroxyeicosatetraenoic acid production may be potential mechanisms by which exercise training improved renal disorders in Dahl salt-sensitive rats.
Collapse
|
48
|
Kasahara M, Kuwabara Y, Moriyama T, Tanabe K, Satoh-Asahara N, Katsuya T, Hiramitsu S, Shimada H, Sato T, Saito Y, Nakagawa T. Intensive uric acid-lowering therapy in CKD patients: the protocol for a randomized controlled trial. Clin Exp Nephrol 2020; 24:235-241. [PMID: 31729647 DOI: 10.1007/s10157-019-01815-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Hyperuricemia would be a risk factor for the development/progression of CKD. However, several studies showed U-shape association between serum uric acid level and renal impairment, suggesting that hypouricemia was rather associated with renal dysfunction. Perhaps, there is the optimal target level of serum UA for renal function. METHODS The Target-UA study is a multicenter randomized controlled trial. Eligible CKD patients (eGFR ≥ 30, < 60 mL/min/1.73 m2 and urine protein < 0.5 g/gCr or urine albumin to creatinine ratio (ACR) < 300 mg/gCr) with serum UA ≥ 8.0 mg/dL (≥ 7.0 mg/dl: under the treatment) will be enrolled and be randomly assigned to the intensive therapy group (target serum UA level ≥ 4.0 mg/dL, < 5.0 mg/dL) or the standard therapy group (serum UA level ≥ 6.0 mg/dL, < 7.0 mg/dL). Topiroxostat, a new xanthine oxidase inhibitor, will be administered to treat hyperuricemia. The primary endpoint is a change in logarithmic value of urine ACR between baseline and week 52 of treatment. The secondary endpoints include changes in serum UA, eGFR, urine protein, lipid profile, and onset of composite cardiovascular events, renal events, gouty arthritis, and attack of urolithiasis. The number of subjects has been set to be 185 in each group for a total of 370. DISCUSSION This is the first study, to the best of our knowledge, to determine the optimal target level of serum UA for renal protection and is expected to lead to progress in CKD treatment. TRIAL REGISTRATION (UMIN000026741 and jRCTs051180146).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Takahiko Nakagawa
- Rakuwakai Otowa Hospital, 2 Otowachinjichō, Yamashina-ku, Kyoto, 607-8062, Japan.
| |
Collapse
|
49
|
Meira EF, Oliveira ND, Mariani NP, Porto ML, Severi JA, Siman FD, Meyrelles SS, Vasquez EC, Gava AL. Eugenia uniflora (pitanga) leaf extract prevents the progression of experimental acute kidney injury. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
50
|
Ibrahim YF, Fadl RR, Ibrahim S, Gayyed MF, Bayoumi A, Refaie M. Protective effect of febuxostat in sepsis-induced liver and kidney injuries after cecal ligation and puncture with the impact of xanthine oxidase, interleukin 1 β, and c-Jun N-terminal kinases. Hum Exp Toxicol 2020; 39:906-919. [PMID: 32054342 DOI: 10.1177/0960327120905957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sepsis is one of the most common causes of death among hospitalized patients. Activity of xanthine oxidase (XO), a reactive oxygen species-producing enzyme, is known to be elevated in septic patients. Our aim was to investigate the possible protective role of XO inhibitor, febuxostat (FEB), in a rat model of sepsis-induced liver and kidney injures. Adult male albino rats were divided into four groups (n = 12 each): sham control, sham + FEB, cecal ligation and puncture (CLP), and CLP + FEB groups. FEB (10 mg/kg per os (p.o.)) was given once daily for 2 days and 30 min prior to laparotomy with CLP. CLP was associated with a high mortality rate accompanied by significant liver and kidney injuries indicated by elevated serum alanine aminotransferase, aspartate aminotransferase, urea, and creatinine levels and confirmed by histopathological tissue injury. Moreover, there was an increase in neutrophil gelatinase-associated lipocalin, uric acid, malondialdehyde, and nitric oxide levels and with decreased superoxide dismutase activity and total antioxidant capacity. In addition, CLP caused increased expression of the inflammatory markers tumor necrosis factor alpha, interleukin 1beta protein levels, and nuclear factor kappa B immunoexpression. Finally, CLP operated rats exhibited an upregulation in the apoptotic mediators, caspase 3, and P-C-Jun N-terminal kinases (JNK) proteins. FEB treatment of CLP rats caused a significant improvement and normalization in all measured parameters. Moreover, FEB amerliorates degenerative histopathological changes and improves the overall survival rate. In conclusion, FEB exhibited a protective effect in sepsis-induced liver and kidney injuries most probably through its anti-inflammatory, antioxidant, and antiapoptotic properties and attenuating JNK signaling pathway secondary to its XO enzyme inhibitory activity.
Collapse
Affiliation(s)
- Y F Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - R R Fadl
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sae Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - M F Gayyed
- Department of Pathology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Ama Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Mmm Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|