1
|
Menghoum N, Badii MC, Leroy M, Parra M, Roy C, Lejeune S, Vancraeynest D, Pasquet A, Brito D, Casadei B, Depoix C, Filippatos G, Gruson D, Edelmann F, Ferreira VM, Lhommel R, Mahmod M, Neubauer S, Persu A, Piechnik S, Hellenkamp K, Ikonomidis I, Krakowiak B, Pieske B, Pieske-Kraigher E, Pinto F, Ponikowski P, Senni M, Trochu JN, Van Overstraeten N, Wachter R, Gerber BL, Balligand JL, Beauloye C, Pouleur AC. Exploring the impact of metabolic comorbidities on epicardial adipose tissue in heart failure with preserved ejection fraction. Cardiovasc Diabetol 2025; 24:134. [PMID: 40121452 PMCID: PMC11929347 DOI: 10.1186/s12933-025-02688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Heart failure (HF) with preserved ejection fraction (HFpEF) is increasingly prevalent worldwide due to aging and comorbidities. Epicardial adipose tissue (EAT), favored by diabetes and obesity, was shown to contribute to HFpEF pathophysiology and is an emerging therapeutic target. This study explored the relationship between ventricular EAT measured by cardiovascular magnetic resonance (CMR), metabolic factors, and imaging characteristics in controls, pre-HF patients, and HFpEF patients. METHODS Patients from a Belgian cohort enrolled from December 2015 to June 2017 were categorized by HF stage: pre-HF (n = 16), HFpEF (n = 104) and compared to matched controls (n = 26) and to pre-HF (n = 191) from the Beta3-LVH cohort. Biventricular EAT volume was measured in end-diastolic short-axis cine stacks. In the Belgian cohort, associations between EAT, HF stage, and various biological and imaging markers were explored. The clinical endpoint was a composite of mortality or first HF hospitalization in the HFpEF group. RESULTS EAT significantly differed between groups, with higher values in HFpEF patients compared to pre-HF and controls (72.4 ± 20.8ml/m2vs. 55.0 ± 11.8ml/m2 and 48 ± 8.9ml/m2, p < 0.001) from the Belgian cohort and to pre-HF (52.0 ± 15.0 ml/m2, p < 0.001) from the Beta3-LVH cohort. Subsequent analyses focused on the Belgian cohort. In contrast to atrial fibrillation, diabetes prevalence and body mass index (BMI) did not differ between pre-HF and HFpEF patients. Multivariable logistic regression and random forest classification identified EAT, N-terminal pro-B-type natriuretic peptide (NT-proBNP), and H2FPEF score as strong markers of HFpEF status. EAT was significantly correlated with H2FPEF score (r = 0.41, p = 0.003), BMI (r = 0.30, p < 0.001), high-sensitive troponin T (r = 0.41, p < 0.001), NT-proBNP (r = 0.37, p < 0.001), soluble suppression of tumorigenicity-2 (sST2) (r = 0.30, p < 0.001), E/e' ratio (r = 0.33, p < 0.001), and left ventricular global longitudinal strain (r = 0.35, p < 0.001). In HFpEF patients, diabetes, ischemic cardiomyopathy, and elevated sST2 were independently associated with elevated EAT. In contrast with diabetes and BMI, increased EAT was not associated with prognosis. CONCLUSIONS EAT assessed by CMR was significantly higher in HFpEF patients compared to controls and pre-HF patients, irrespective of diabetes and BMI. EAT was moderately associated with HFpEF status. HFpEF patients with elevated EAT exhibited a marked diabetic, ischemic, and inflammatory profile, highlighting the potential role of drugs targeting EAT. TRIAL REGISTRATION Characterization of Heart Failure With Preserved Ejection Fraction; Assessment of Efficacy of Mirabegron, a New beta3-adrenergic Receptor in the Prevention of Heart Failure (Beta3_LVH). TRIAL REGISTRATION NUMBER ClinicalTrials.gov. Identifier: NCT03197350; NCT02599480.
Collapse
Affiliation(s)
- Nassiba Menghoum
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Maria Chiara Badii
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Martin Leroy
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Marie Parra
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Clotilde Roy
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Sibille Lejeune
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - David Vancraeynest
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Agnes Pasquet
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Dulce Brito
- Department of Cardiology, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- Centro Académico de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Barbara Casadei
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, United Kingdom
| | - Christophe Depoix
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Gerasimos Filippatos
- Department of Cardiology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Damien Gruson
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Frank Edelmann
- Department of Cardiology, German Centre for Cardiovascular Research, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Vanessa M Ferreira
- Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, United Kingdom
| | - Renaud Lhommel
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Masliza Mahmod
- Department of Cardiology, German Centre for Cardiovascular Research, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Stefan Neubauer
- Department of Cardiology, German Centre for Cardiovascular Research, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Alexandre Persu
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Stefan Piechnik
- Department of Cardiology, German Centre for Cardiovascular Research, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Kristian Hellenkamp
- Department of Cardiology and Pneumology, German Centre for Cardiovascular Research, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Ignatios Ikonomidis
- Department of Cardiology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Bartosz Krakowiak
- Department of Cardiology, Centre for Heart Diseases, Clinical Military Hospital, Wrocław Medical University, Wrocław, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Burkert Pieske
- Division of Cardiology, Department of Internal Medicine, University Medicine Rostock, Rostock, Germany
| | - Elisabeth Pieske-Kraigher
- Department of Internal Medicine, Cardiology, and Intensive Care Medicine, Vivantes Klinikum Am Urban, Berlin, Germany
| | - Fausto Pinto
- Department of Cardiology, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- Centro Académico de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Piotr Ponikowski
- Department of Cardiology, Centre for Heart Diseases, Clinical Military Hospital, Wrocław Medical University, Wrocław, Poland
| | - Michele Senni
- Department of Cardiology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, University of Milano-Bicocca, Bergamo, Italy
| | - Jean-Noël Trochu
- Institut du Thorax, Centre National de la Recherche Scientifique, Nantes Université, Nantes, France
| | - Nancy Van Overstraeten
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Rolf Wachter
- Department of Cardiology, University Hospital Leipzig, Leipzig, Germany
| | - Bernhard L Gerber
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-Luc Balligand
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Christophe Beauloye
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Anne-Catherine Pouleur
- Cardiovascular Department, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200, Brussels, Belgium.
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
2
|
Ding Y, Lin F, Liu Z, Zhou X, Liang X. Targeting Epicardial/Pericardial Adipose Tissue in Cardiovascular Diseases: A Novel Therapeutic Strategy. Rev Cardiovasc Med 2025; 26:26128. [PMID: 40160564 PMCID: PMC11951288 DOI: 10.31083/rcm26128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 04/02/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain a global health concern, prompting ongoing research into novel contributors to their pathogenesis. Due to the proximity of the coronary arteries and the myocardium in epicardial adipose tissue (EAT) and pericardial adipose tissue (PAT), these tissues have emerged as key areas of interest for their potential influence on cardiac function and vascular health. This review synthesizes current research on the physiological and biological characteristics of EAT and PAT, exploring their composition and clinical measurement approaches. The roles of EAT and PAT in coronary artery disease (CAD), atrial fibrillation, and heart failure are discussed, and the contributions of EAT and PAT to these cardiovascular conditions are highlighted alongside their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yue Ding
- Department of Organ Transplantation, Changzheng Hospital, Second Military Medical University, 200003 Shanghai, China
| | - Fang Lin
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Zhongmin Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Xiaohui Zhou
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Xiaoting Liang
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| |
Collapse
|
3
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Liu X, Yuan M, Zhao D, Zeng Q, Li W, Li T, Li Q, Zhuo Y, Luo M, Chen P, Wang L, Feng W, Zhou Z. Single-Nucleus Transcriptomic Atlas of Human Pericoronary Epicardial Adipose Tissue in Normal and Pathological Conditions. Arterioscler Thromb Vasc Biol 2024; 44:1628-1645. [PMID: 38813696 PMCID: PMC11208064 DOI: 10.1161/atvbaha.124.320923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Pericoronary epicardial adipose tissue (EAT) is a unique visceral fat depot that surrounds the adventitia of the coronary arteries without any anatomic barrier. Clinical studies have demonstrated the association between EAT volume and increased risks for coronary artery disease (CAD). However, the cellular and molecular mechanisms underlying the association remain elusive. METHODS We performed single-nucleus RNA sequencing on pericoronary EAT samples collected from 3 groups of subjects: patients undergoing coronary bypass surgery for severe CAD (n=8), patients with CAD with concomitant type 2 diabetes (n=8), and patients with valvular diseases but without concomitant CAD and type 2 diabetes as the control group (n=8). Comparative analyses were performed among groups, including cellular compositional analysis, cell type-resolved transcriptomic changes, gene coexpression network analysis, and intercellular communication analysis. Immunofluorescence staining was performed to confirm the presence of CAD-associated subclusters. RESULTS Unsupervised clustering of 73 386 nuclei identified 15 clusters, encompassing all known cell types in the adipose tissue. Distinct subpopulations were identified within primary cell types, including adipocytes, adipose stem and progenitor cells, and macrophages. CD83high macrophages and FOSBhigh adipocytes were significantly expanded in CAD. In comparison to normal controls, both disease groups exhibited dysregulated pathways and altered secretome in the primary cell types. Nevertheless, minimal differences were noted between the disease groups in terms of cellular composition and transcriptome. In addition, our data highlight a potential interplay between dysregulated circadian clock and altered physiological functions in adipocytes of pericoronary EAT. ANXA1 (annexin A1) and SEMA3B (semaphorin 3B) were identified as important adipokines potentially involved in functional changes of pericoronary EAT and CAD pathogenesis. CONCLUSIONS We built a complete single-nucleus transcriptomic atlas of human pericoronary EAT in normal and diseased conditions of CAD. Our study lays the foundation for developing novel therapeutic strategies for treating CAD by targeting and modifying pericoronary EAT functions.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Meng Yuan
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Danni Zhao
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Qingyi Zeng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Tianjiao Li
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Qi Li
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Yue Zhuo
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Center of Vascular Surgery (Y.Z., M.L.), Fuwai Hospital, Beijing, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Center of Vascular Surgery (Y.Z., M.L.), Fuwai Hospital, Beijing, China
- Department of Vascular Surgery, Central-China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, China (M.L.)
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, China (M.L.)
| | - Pengfei Chen
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Liqing Wang
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Wei Feng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| |
Collapse
|
5
|
Macías-Cervantes HE, Martínez-Ramírez DB, Hinojosa-Gutiérrez LR, Córdova-Silva DA, Rios-Muñoz JA. Effect of dapagliflozin on epicardial fat volume in patients with acute coronary syndrome assessed by computed tomography. Curr Probl Cardiol 2024; 49:102213. [PMID: 38000564 DOI: 10.1016/j.cpcardiol.2023.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND AIM Sodium-glucose cotransporter 2 inhibitors (SGLT2i) reduce cardiovascular outcomes; one of the target organs is epicardial adipose tissue, achieving a 10-20% change in patients with diabetes but excluding acute coronary syndrome (ACS), Therefore, the aim was to evaluate the effect of dapagliflozin on epicardial fat in patients with ACS assessed by non-contrast cardiac tomography (CT) and its association with major adverse cardiovascular events (MACE). METHODS AND RESULTS This cohort nested case-control study included 52 patients with type 2 diabetes (T2D) and acute myocardial infarction with and without ST-segment elevation. Cases were defined as all patients assigned to dapagliflozin 10 mg, and controls were patients assigned to placebo. Treatment was initiated in-hospital and after percutaneous coronary intervention, and non-contrasted CT was performed at baseline and after 12 months of treatment. In the dapagliflozin group, 4 MACE occurred and 10 in the placebo group (p=0.027), with an odds ratio (OR) of 0.317 (95% CI 0.114-0.882) for the dapagliflozin. Basal epicardial fat volume (EFV) was 117.20 ± 42.65 cm3 in the dapagliflozin group and 123.84 ± 46.9 cm3 in the placebo group, p= 0.596, with an OR of 1.016 (95% CI 0.999-1.033) for MACE. Final EFV was 128.30 ± 37.53 cm3 in the dapagliflozin group and 137.05 ± 50.59 cm3 in the placebo group, p= 0.520. CONCLUSIONS Epicardial fat is a risk factor for MACE and increased after 12 months of follow-up in patients with ACS and there was no effect on volume change with the use of dapagliflozin. (ClinicalTrials.gov NCT05998525).
Collapse
Affiliation(s)
- Hilda Elizabeth Macías-Cervantes
- Internal Medicine Physician, PhD, Internal Medicine Department, Hospital de Alta Especialidad No. 1 Bajío, Boulevard Adolfo López Mateos esquina Insurgentes, colonia Los Paraísos, PC, 37260, León, Guanajuato, México.
| | - Diana Berenice Martínez-Ramírez
- Radiology Resident, Department of Diagnostic and Therapeutic Imaging, Hospital de Alta Especialidad No. 1 Bajío, Boulevard Adolfo López Mateos esquina Insurgentes, Colonia Los Paraísos, PC, 37260, León, Guanajuato, México
| | - Luis Ricardo Hinojosa-Gutiérrez
- Radiologist Physician, Department of Diagnostic and Therapeutic Imaging, Hospital de Alta Especialidad No. 1 Bajío, Boulevard Adolfo López Mateos esquina Insurgentes, colonia Los Paraísos, PC, 37260, León, Guanajuato, México
| | - Daniel Armando Córdova-Silva
- Radiology Technician, Department of Diagnostic and Therapeutic Imaging, Hospital de Alta Especialidad No. 1 Bajío, Boulevard Adolfo López Mateos esquina Insurgentes, Colonia Los Paraísos, PC, 37260, León, Guanajuato, México
| | - Jair Antonio Rios-Muñoz
- Radiology Resident, Department of Diagnostic and Therapeutic Imaging, Hospital de Alta Especialidad No. 1 Bajío, Boulevard Adolfo López Mateos esquina Insurgentes, Colonia Los Paraísos, PC, 37260, León, Guanajuato, México
| |
Collapse
|
6
|
Screening of Biomarkers in Liver Tissue after Bariatric Surgery Based on WGCNA and SVM-RFE Algorithms. DISEASE MARKERS 2023; 2023:2970429. [PMID: 36755803 PMCID: PMC9902125 DOI: 10.1155/2023/2970429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
As the most common chronic liver disease around the world, nonalcoholic fatty liver disease (NAFLD) has a close connection with obesity, diabetes, and metabolic syndrome. Bariatric surgery (BS) is considered to be the most effective treatment for NAFLD. However, the regulatory mechanism of hepatic lipid metabolism after BS remains poorly elucidated. By analyzing two transcriptome datasets regarding liver tissues after BS, namely, GSE83452 and GSE106737, we acquired 110 differentially expressed genes (DEGs). By further analysis of DEGs in terms of the weighted gene coexpression network analysis (WGCNA) and support vector machine-recursive feature elimination (SVM-RFE) algorithms, we identified four crucial genes participating in the regulation of hepatic lipid metabolism: SRGN, THEMIS2, SGK1, and FPR3. In addition, the results of gene set enrichment analysis (GSEA) showed that BS can activate immune-related regulatory pathways and change immune cell infiltration levels. Finally, through cellular level studies, we found that the silencing of SRGN affects the expression of SREBP-1, SIRT1, and FAS during adipogenesis in the liver and the formation of lipid droplets in the liver. In summary, the immune system in the liver is activated after BS, and SRGN participates in the regulation of hepatic lipid metabolism.
Collapse
|
7
|
Macias-Velasco JF, St Pierre CL, Wayhart JP, Yin L, Spears L, Miranda MA, Carson C, Funai K, Cheverud JM, Semenkovich CF, Lawson HA. Parent-of-origin effects propagate through networks to shape metabolic traits. eLife 2022; 11:e72989. [PMID: 35356864 PMCID: PMC9075957 DOI: 10.7554/elife.72989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Parent-of-origin effects are unexpectedly common in complex traits, including metabolic and neurological traits. Parent-of-origin effects can be modified by the environment, but the architecture of these gene-by-environmental effects on phenotypes remains to be unraveled. Previously, quantitative trait loci (QTL) showing context-specific parent-of-origin effects on metabolic traits were mapped in the F16 generation of an advanced intercross between LG/J and SM/J inbred mice. However, these QTL were not enriched for known imprinted genes, suggesting another mechanism is needed to explain these parent-of-origin effects phenomena. We propose that non-imprinted genes can generate complex parent-of-origin effects on metabolic traits through interactions with imprinted genes. Here, we employ data from mouse populations at different levels of intercrossing (F0, F1, F2, F16) of the LG/J and SM/J inbred mouse lines to test this hypothesis. Using multiple populations and incorporating genetic, genomic, and physiological data, we leverage orthogonal evidence to identify networks of genes through which parent-of-origin effects propagate. We identify a network comprised of three imprinted and six non-imprinted genes that show parent-of-origin effects. This epistatic network forms a nutritional responsive pathway and the genes comprising it jointly serve cellular functions associated with growth. We focus on two genes, Nnat and F2r, whose interaction associates with serum glucose levels across generations in high-fat-fed females. Single-cell RNAseq reveals that Nnat expression increases and F2r expression decreases in pre-adipocytes along an adipogenic trajectory, a result that is consistent with our observations in bulk white adipose tissue.
Collapse
Affiliation(s)
- Juan F Macias-Velasco
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Celine L St Pierre
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Jessica P Wayhart
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Li Yin
- Department of Medicine, Washington University School of MedicineSaint LouisUnited States
| | - Larry Spears
- Department of Medicine, Washington University School of MedicineSaint LouisUnited States
| | - Mario A Miranda
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Caryn Carson
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
| | | | - Clay F Semenkovich
- Department of Medicine, Washington University School of MedicineSaint LouisUnited States
| | - Heather A Lawson
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| |
Collapse
|
8
|
Abstract
Interest in epicardial adipose tissue (EAT) is growing rapidly, and research in this area appeals to a broad, multidisciplinary audience. EAT is unique in its anatomy and unobstructed proximity to the heart and has a transcriptome and secretome very different from that of other fat depots. EAT has physiological and pathological properties that vary depending on its location. It can be highly protective for the adjacent myocardium through dynamic brown fat-like thermogenic function and harmful via paracrine or vasocrine secretion of pro-inflammatory and profibrotic cytokines. EAT is a modifiable risk factor that can be assessed with traditional and novel imaging techniques. Coronary and left atrial EAT are involved in the pathogenesis of coronary artery disease and atrial fibrillation, respectively, and it also contributes to the development and progression of heart failure. In addition, EAT might have a role in coronavirus disease 2019 (COVID-19)-related cardiac syndrome. EAT is a reliable potential therapeutic target for drugs with cardiovascular benefits such as glucagon-like peptide 1 receptor agonists and sodium–glucose co-transporter 2 inhibitors. This Review provides a comprehensive and up-to-date overview of the role of EAT in cardiovascular disease and highlights the translational nature of EAT research and its applications in contemporary cardiology. In this Review, Iacobellis provides a comprehensive overview of the role of epicardial adipose tissue (EAT) in cardiovascular disease, including coronary artery disease, heart failure and atrial fibrillation, discusses imaging techniques for EAT assessment and highlights the therapeutic potential of targeting EAT in cardiovascular disease. Epicardial adipose tissue (EAT) has anatomical and functional interactions with the heart owing to the shared circulation and the absence of muscle fascia separating the two organs. EAT can be clinically measured with cardiac imaging techniques that can help to predict and stratify cardiovascular risk. Regional distribution of EAT is important because pericoronary EAT and left atrial EAT differently affect the risk of coronary artery diseases and atrial fibrillation, respectively. EAT has a role in the development of several cardiovascular diseases through complex mechanisms, including gene expression profile, pro-inflammatory and profibrotic proteome, neuromodulation, and glucose and lipid metabolism. EAT could be a potential therapeutic target for novel cardiometabolic medications that modulate adipose tissue such as glucagon-like peptide 1 receptor agonists and sodium–glucose co-transporter 2 inhibitors. EAT might be a reservoir of severe acute respiratory syndrome coronavirus 2 and an amplifier of coronavirus disease 2019 (COVID-19)-related cardiac syndrome.
Collapse
Affiliation(s)
- Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
9
|
Matrisome alterations in obesity – Adipose tissue transcriptome study on monozygotic weight-discordant twins. Matrix Biol 2022; 108:1-19. [DOI: 10.1016/j.matbio.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
|
10
|
Doncheva AI, Norheim FA, Hjorth M, Grujic M, Paivandy A, Dankel SN, Hertel JK, Valderhaug TG, Böttcher Y, Fernø J, Mellgren G, Dalen KT, Pejler G, Kolset SO. Serglycin Is Involved in Adipose Tissue Inflammation in Obesity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:121-132. [PMID: 34872979 DOI: 10.4049/jimmunol.2100231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Chronic local inflammation of adipose tissue is an important feature of obesity. Serglycin is a proteoglycan highly expressed by various immune cell types known to infiltrate adipose tissue under obese conditions. To investigate if serglycin expression has an impact on diet-induced adipose tissue inflammation, we subjected Srgn +/+ and Srgn -/- mice (C57BL/6J genetic background) to an 8-wk high-fat and high-sucrose diet. The total body weight was the same in Srgn +/+ and Srgn -/- mice after diet treatment. Expression of white adipose tissue genes linked to inflammatory pathways were lower in Srgn -/- mice. We also noted reduced total macrophage abundance, a reduced proportion of proinflammatory M1 macrophages, and reduced formation of crown-like structures in adipose tissue of Srgn -/- compared with Srgn +/+ mice. Further, Srgn -/- mice had more medium-sized adipocytes and fewer large adipocytes. Differentiation of preadipocytes into adipocytes (3T3-L1) was accompanied by reduced Srgn mRNA expression. In line with this, analysis of single-cell RNA sequencing data from mouse and human adipose tissue supports that Srgn mRNA is predominantly expressed by various immune cells, with low expression in adipocytes. Srgn mRNA expression was higher in obese compared with lean humans and mice, accompanied by an increased expression of immune cell gene markers. SRGN and inflammatory marker mRNA expression was reduced upon substantial weight loss in patients after bariatric surgery. Taken together, this study introduces a role for serglycin in the regulation of obesity-induced adipose inflammation.
Collapse
Affiliation(s)
- Atanaska I Doncheva
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aida Paivandy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | | | - Tone G Valderhaug
- Department of Endocrinology, Division of Medicine, Akershus University Hospital, Oslo, Norway
| | - Yvonne Böttcher
- EpiGen, Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; and.,EpiGen, Medical Division, Akershus University Hospital, Nordbyhagen, Norway
| | - Johan Fernø
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Knut T Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway;
| |
Collapse
|
11
|
Higuchi Y, Ogata T, Nakanishi N, Nishi M, Sakamoto A, Tsuji Y, Tomita S, Matoba S. Requirement of Cavin-2 for the expression and stability of IRβ in adequate adipocyte differentiation. Mol Metab 2021; 55:101416. [PMID: 34896640 PMCID: PMC8728525 DOI: 10.1016/j.molmet.2021.101416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Objective Adipogenesis plays an essential role in maintaining energy and hormonal balance. Cavin-2, one of the caveolae-related proteins, is abundant in adipocytes, the leading site of adipogenesis. However, the details of the roles of Cavin-2 in adipogenesis remain unknown. Here, we demonstrate the requirement of Cavin-2 for the expression and stability of IRβ in adequate adipocyte differentiation. Methods Cavin-2 knockout (Cavin-2 KO) and wild-type (WT) mice were fed with a high-fat diet (HFD) for 8 weeks. We evaluated body weight, food intake, and several tissues. Glucose homeostasis was assessed by glucose and insulin tolerance tests. Insulin signaling in epididymal white adipose tissue (eWAT) was determined by Akt phosphorylation. In vitro study, we evaluated adipocyte differentiation, adipogenesis-related genes, and insulin signaling to clarify the relationship between Cavin-2 and adipogenesis under the manipulation of Cavin-2 expression. Results Caveolae structure decreased in eWAT of Cavin-2 KO mice and Cavin-2 knockdown 3T3-L1 cells. Cavin-2 enhanced the stability of insulin receptor (IR) through direct association at the plasma membrane in adipocytes, resulting in accelerated insulin/IR/Akt signaling-induced adipogenic gene expression in insulin-containing solution-stimulated 3T3-L1 adipocytes. IR-mediated Akt activation also enhanced Cavin-2 and IR expression. Cavin-2 knockout mice showed insulin resistance with dyslipidemia and pathological hypertrophic adipocytes after a HFD. Conclusions Cavin-2 enhances IR stability through binding IR and regulates insulin signaling, promoting adequate adipocyte differentiation. Our findings highlight the pivotal role of Cavin-2 in adipogenesis and lipid metabolism, which may help to develop novel therapies for pathological obesity and adipogenic disorders. Cavin-2 expression is increased progressively during adipocyte differentiation. Cavin-2 knockout shows little caveolae in 3T3L-1 adipocytes and eWAT of mice. Cavin-2 positively regulates adipogenesis through IR stabilization. Cavin-2 knockout mice with a high-fat diet show insulin resistance and dyslipidemia.
Collapse
Affiliation(s)
- Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masahiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akira Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yumika Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shinya Tomita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
12
|
Ilgın BU, Kızıltunç E, Gök M, Ornek E, Topcuoglu C, Çetin M, Karayiğit O. Association between Serum Serglycin Levels and St-Segment Elevation Myocardial Infarction. Arq Bras Cardiol 2021; 116:756-762. [PMID: 33886724 PMCID: PMC8121402 DOI: 10.36660/abc.20190554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/20/2020] [Accepted: 03/16/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND It is suggested that serglycin has important functions in fibrin stabilization and inflammation but there is limited information on its clinical value for atherosclerotic heart disease. OBJECTIVE The purpose of this study is to find out serum serglycin levels in acute myocardial infarction patients and in the control group individuals; and to investigate the association between serglycin levels with inflammation markers and infarct size markers. METHODS The study population consisted of 75 patients with ST-segment elevation myocardial infarction (STEMI) and 57 patients with normal coronary arteries (NCA) (control group). Patient characteristics, serum serglycin levels, high-sensitivity C-reactive protein (hs-CRP) levels, peak troponin T levels and other biochemical parameters were recorded. A p value <0.05 was considered statistically significant. RESULTS The control group consisted of individuals who are younger and smoke less than those of the STEMI group. The number of females in the control group was higher than in the STEMI group. Serum serglycin levels were significantly higher in the STEMI group than in control group (102.81±39.42 vs. 57.13±32.25, p<0.001). Correlation analyses revealed a significant positive correlation between serglycin and troponin (Spearman's Rho: 0.419; p<0.001) and between serglycin and hs CRP (Spearman's Rho: 0.336; p<0.001). Multivariate logistic regression analysis demonstrated that serum serglycin levels were independently associated with STEMI. Using a cutoff level of 80,47 μg/L, the serglycin level predicted the presence of STEMI with a sensitivity of 75.7% and specificity of 68.4%. CONCLUSION Serum serglycin levels were significantly higher in the STEMI group than in the control group. Serum serglycin levels were positively correlated with both hs CRP levels and troponin levels.
Collapse
Affiliation(s)
- Burcu Ugurlu Ilgın
- TC Saglık Bakanlıgı Gazi Mustafa Kemal Devlet HastanesiAnkaraTurquiaTC Saglık Bakanlıgı Gazi Mustafa Kemal Devlet Hastanesi – Cardiology, Ankara - Turquia
| | - Emrullah Kızıltunç
- TC Saglık Bakanlıgı Gazi Mustafa Kemal Devlet HastanesiAnkaraTurquiaTC Saglık Bakanlıgı Gazi Mustafa Kemal Devlet Hastanesi – Cardiology, Ankara - Turquia
| | - Murat Gök
- Edirne Provincial Health Directorate Edirne Sultan 1st Murat State HospitalCardiology DepartmentEdirneTurquiaCardiology Department, Edirne Provincial Health Directorate Edirne Sultan 1st Murat State Hospital, Edirne - Turquia
| | - Ender Ornek
- TC Saglık Bakanlıgı Gazi Mustafa Kemal Devlet HastanesiAnkaraTurquiaTC Saglık Bakanlıgı Gazi Mustafa Kemal Devlet Hastanesi – Cardiology, Ankara - Turquia
| | - Canan Topcuoglu
- Numune Education and Research HospitalMedical Biochemistry DepartmentAnkaraTurquiaMedical Biochemistry Department, Numune Education and Research Hospital, Ankara - Turquia
| | - Mustafa Çetin
- TC Saglık Bakanlıgı Gazi Mustafa Kemal Devlet HastanesiAnkaraTurquiaTC Saglık Bakanlıgı Gazi Mustafa Kemal Devlet Hastanesi – Cardiology, Ankara - Turquia
| | - Orhan Karayiğit
- Numune Education and Research HospitalCardiology DepartmentAnkaraTurquiaCardiology Department, Numune Education and Research Hospital, Ankara –Turquia
| |
Collapse
|
13
|
Manou D, Bouris P, Kletsas D, Götte M, Greve B, Moustakas A, Karamanos NK, Theocharis AD. Serglycin activates pro-tumorigenic signaling and controls glioblastoma cell stemness, differentiation and invasive potential. Matrix Biol Plus 2020; 6-7:100033. [PMID: 33543029 PMCID: PMC7852318 DOI: 10.1016/j.mbplus.2020.100033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the functional role of serglycin as an intracellular proteoglycan, a variety of malignant cells depends on its expression and constitutive secretion to advance their aggressive behavior. Serglycin arose to be a biomarker for glioblastoma, which is the deadliest and most treatment-resistant form of brain tumor, but its role in this disease is not fully elucidated. In our study we suppressed the endogenous levels of serglycin in LN-18 glioblastoma cells to decipher its involvement in their malignant phenotype. Serglycin suppressed LN-18 (LN-18shSRGN) glioblastoma cells underwent astrocytic differentiation characterized by induced expression of GFAP, SPARCL-1 and SNAIL, with simultaneous loss of their stemness capacity. In particular, LN-18shSRGN cells presented decreased expression of glioma stem cell-related genes and ALDH1 activity, accompanied by reduced colony formation ability. Moreover, the suppression of serglycin in LN-18shSRGN cells retarded the proliferative and migratory rate, the invasive potential in vitro and the tumor burden in vivo. The lack of serglycin in LN-18shSRGN cells was followed by G2 arrest, with subsequent reduction of the expression of cell-cycle regulators. LN-18shSRGN cells also exhibited impaired expression and activity of proteolytic enzymes such as MMPs, TIMPs and uPA, both in vitro and in vivo. Moreover, suppression of serglycin in LN-18shSRGN cells eliminated the activation of pro-tumorigenic signal transduction. Of note, LN-18shSRGN cells displayed lower expression and secretion levels of IL-6, IL-8 and CXCR-2. Concomitant, serglycin suppressed LN-18shSRGN cells demonstrated repressed phosphorylation of ERK1/2, p38, SRC and STAT-3, which together with PI3K/AKT and IL-8/CXCR-2 signaling control LN-18 glioblastoma cell aggressiveness. Collectively, the absence of serglycin favors an astrocytic fate switch and a less aggressive phenotype, characterized by loss of pluripotency, block of the cell cycle, reduced ability for ECM proteolysis and pro-tumorigenic signaling attenuation.
Collapse
Key Words
- ALDH1, aldehyde dehydrogenase 1
- Astrocytic differentiation
- CXCR, C-X-C chemokine receptor
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- ERK, extracellular-signal-regulated kinase
- GFAP, glial fibrillary acid protein
- Glioblastoma
- IL, interleukin
- Interleukins
- MAPK, mitogen-activated protein kinase
- MMPs, metalloproteinases
- PGs, proteoglycans
- PI3K, phosphoinositide 3-kinase
- Proteoglycans
- Proteolytic enzymes
- SRGN, serglycin
- STAT-3, signal transducer and activator of transcription 3
- Serglycin
- Signaling
- Stemness
- TIMPs, tissue inhibitors of metalloproteinases
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Panagiotis Bouris
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation & Ageing, Institute of Biosciences & Applications, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital, Muenster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital, Muenster, Germany
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
14
|
Christensen RH, von Scholten BJ, Lehrskov LL, Rossing P, Jørgensen PG. Epicardial adipose tissue: an emerging biomarker of cardiovascular complications in type 2 diabetes? Ther Adv Endocrinol Metab 2020; 11:2042018820928824. [PMID: 32518616 PMCID: PMC7252363 DOI: 10.1177/2042018820928824] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with an increased risk of cardiovascular disease and heart failure, which highlights the need for improved understanding of factors contributing to the pathophysiology of these complications as they are the leading cause of mortality in T2D. Patients with T2D have high levels of epicardial adipose tissue (EAT). EAT is known to secrete inflammatory factors, lipid metabolites, and has been proposed to apply mechanical stress on the cardiac muscle that may accelerate atherosclerosis, cardiac remodeling, and heart failure. High levels of EAT in patients with T2D have been associated with atherosclerosis, diastolic dysfunction, and incident cardiovascular events, and this fat depot has been suggested as an important link coupling diabetes, obesity, and cardiovascular disease. Despite this, the predictive potential of EAT in general, and in patients with diabetes, is yet to be established, and, up until now, the clinical relevance of EAT is therefore limited. Should this link be established, importantly, studies show that this fat depot can be modified both by pharmacological and lifestyle interventions. In this review, we first introduce the role of adipose tissue in T2D and present mechanisms involved in the pathophysiology of EAT and pericardial adipose tissue (PAT) in general, and in patients with T2D. Next, we summarize the evidence that these fat depots are elevated in patients with T2D, and discuss whether they might drive the high cardiometabolic risk in patients with T2D. Finally, we discuss the clinical potential of cardiac adipose tissues, address means to target this depot, and briefly touch upon underlying mechanisms and future research questions.
Collapse
Affiliation(s)
| | | | - Louise Lang Lehrskov
- Center for Inflammation and Metabolism/Center for Physical Activity Research, Rigshospitalet, Denmark
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
15
|
|
16
|
Validation of reference genes in human epicardial adipose tissue and left ventricular myocardium in heart failure. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Scuruchi M, D'Ascola A, Avenoso A, Mandraffino G G, Campo S S, Campo GM. Serglycin as part of IL-1β induced inflammation in human chondrocytes. Arch Biochem Biophys 2019; 669:80-86. [PMID: 31145901 DOI: 10.1016/j.abb.2019.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 02/07/2023]
Abstract
Serglycin (SRGN) is an intracellular proteoglycan produced and secreted by several cell types. The increased expression of SRGN was associated with greater aggressiveness in cancer and inflammation. In this study, we demonstrated that SRGN is increased in human chondrocytes after IL-β stimulation. Furthermore, we found that secreted SRGN was able to bind the CD44 receptor thus participating in the extension of the inflammatory response. Using SRGN knockdown cells we observed a significantly decrease in specific inflammatory markers and NF-kB activation. Similar results were observed by blocking the CD44 receptor. These data provide further evidences for a direct involvement of SRGN in the mechanisms regulating the non-infectious chondrocytes damage, and the consequent joint inflammation and cartilage destruction in arthritis.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Italy.
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Italy
| | | | - Salvatore Campo S
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| |
Collapse
|
18
|
Manou D, Karamanos NK, Theocharis AD. Tumorigenic functions of serglycin: Regulatory roles in epithelial to mesenchymal transition and oncogenic signaling. Semin Cancer Biol 2019; 62:108-115. [PMID: 31279836 DOI: 10.1016/j.semcancer.2019.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Numerous studies point out serglycin as an important regulator of tumorigenesis in a variety of malignancies. Serglycin expression correlates with the aggressive phenotype of tumor cells and serves as a poor prognostic indicator for disease progression. Although serglycin is considered as an intracellular proteoglycan, it is also secreted in the extracellular matrix by tumor cells affecting cell properties, oncogenic signaling and exosomes cargo. Serglycin directly interacts with CD44 and possibly other cell surface receptors including integrins, evoking cell adhesion and signaling. Serglycin also creates a pro-inflammatory and pro-angiogenic tumor microenvironment by regulating the secretion of proteolytic enzymes, IL-8, TGFβ2, CCL2, VEGF and HGF. Hence, serglycin activates multiple signaling cascades that drive angiogenesis, tumor cell growth, epithelial to mesenchymal transition, cancer cell stemness and metastasis. The interference with the tumorigenic functions of serglycin emerges as an attractive prospect to target malignancies.
Collapse
Affiliation(s)
- Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
19
|
Savedoroudi P, Bennike TB, Kastaniegaard K, Talebpour M, Ghassempour A, Stensballe A. Serum proteome changes and accelerated reduction of fat mass after laparoscopic gastric plication in morbidly obese patients. J Proteomics 2019; 203:103373. [PMID: 31054967 DOI: 10.1016/j.jprot.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Laparoscopic Gastric Plication (LGP) is a relatively new bariatric surgical procedure which no part of the stomach is removed. It is not clearly understood how LGP leads to fatty tissue reduction. We aimed to investigate the impact of LGP on serum proteome and understand molecular mechanisms of LGP-induced weight loss post-surgery. A Prospective observational study of 16 obese individuals who underwent LGP was performed. A Label-free quantitative shotgun proteomics approach was used to compare serum proteome of subjects before surgery with serum of the same individuals 1 to 2 months post-surgery (T1) and 4 to 5 months post-surgery (T2). The proteome analysis revealed that 48 proteins were differentially regulated between pre-surgery and T1, and seven proteins between pre-surgery and T2 of which six proteins were shared between the two timepoints. Among differentially regulated proteins, four proteins (SRGN, FETUB, LCP1 and CFP) have not previously been described in the context of BMI/weight loss. Despite few differences following LGP, most regulated serum proteins are in accordance with alternative weight loss procedures. Pathway analysis revealed changes to lipid- and inflammatory pathways, including PPARα/RXRα, LXR/RXR and FXR/RXR activation, especially at T1. At T2, the pathways related to inflammation and immune system are most affected. SIGNIFICANCE: Among the available clinical therapies for morbid obesity, bariatric surgery is considered as the most effective approach to achieve long-term weight loss, alongside a significant improvement in metabolic syndrome. However, very little is known about the underlying mechanism associated with significant weight loss post-surgery. Understanding such mechanisms could lead to development of safer non-surgical weight loss approaches. We here present the first analysis of the impact of LGP on the serum proteome, to bring new insights into the underlying molecular mechanism. Our findings indicate that LGP has a comprehensive systemic effect based on the blood serum proteome profile which might account for accelerated reduction of fat mass after surgery, thus, food restriction is not the only reason for weight loss following this unique surgical approach. As secretory regions of the stomach are preserved in LGP and it is associated with minimal physiological and anatomical changes, the findings are of high importance in the field of bariatric surgery and weight loss.
Collapse
Affiliation(s)
- Parisa Savedoroudi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran; Department of Health Science and Technology, Aalborg University, Denmark.
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Denmark.
| | | | - Mohammad Talebpour
- Laparoscopic Surgery Ward, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
20
|
Madonna R, Massaro M, Scoditti E, Pescetelli I, De Caterina R. The epicardial adipose tissue and the coronary arteries: dangerous liaisons. Cardiovasc Res 2019; 115:1013-1025. [PMID: 30903194 DOI: 10.1093/cvr/cvz062] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 01/03/2025] Open
Abstract
The adipose tissue (AT) is an endocrine organ that produces adipocytokines (adipokines), able to influence metabolic homeostasis. In the conventional classification, there are two large AT depots, characterized by different paracrine activities: the subcutaneous AT, which would mostly produce cytokines with protective properties against cardiovascular disease; and the visceral AT, responsible for the secretion of cytokines with proinflammatory, prothrombotic, and proatherogenic effects. A third component, the epicardial AT (EAT) is now receiving increasing attention due to its unique anatomical and functional proximity to the myocardium and the coronary arteries. In rodents, the EAT protects the heart from exposure to high levels of free fatty acids, and provides energy to the myocardium under high metabolic demands. The observation that atherosclerotic plaques are more prevalent in regions of coronary arteries surrounded by the EAT, while they tend to be less present in segments penetrating the myocardium (the septal branches and segments under myocardial bridges), has led to the hypothesis of a possible role of the EAT in promoting the development of atherosclerosis through endocrine and paracrine effects, in addition to the role of biomechanical forces affecting transendothelial lipid permeability into the intima. In this article, we review the clinical and molecular evidence linking the EAT and coronary artery disease through a systematic review of the literature. We, here, discuss current diagnostic techniques in evaluating the interaction between EAT and the onset of coronary artery disease and ischaemic heart disease. Finally, we review current knowledge on the underlying mechanisms by which the EAT may affect coronary atherosclerosis, and potential clinical implications of this interaction, making the EAT an attractive target for new therapeutics in cardiovascular disease.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Excellence on Aging (CeSI-Met), Institute of Cardiology, 'G. d'Annunzio' University, Via L. Polacchi, Chieti Scalo (Chieti), Italy
| | - Marika Massaro
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, Lecce, Italy
| | - Irene Pescetelli
- Center of Excellence on Aging (CeSI-Met), Institute of Cardiology, 'G. d'Annunzio' University, Via L. Polacchi, Chieti Scalo (Chieti), Italy
| | - Raffaele De Caterina
- Institute of Cardiology, University of Pisa, C/o Ospedale di Cisanello, Via Paradisa, 2, Pisa, Italy
| |
Collapse
|
21
|
Chechi K, Vijay J, Voisine P, Mathieu P, Bossé Y, Tchernof A, Grundberg E, Richard D. UCP1 expression-associated gene signatures of human epicardial adipose tissue. JCI Insight 2019; 4:123618. [PMID: 30996144 DOI: 10.1172/jci.insight.123618] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple reports of uncoupling protein 1 (UCP1) expression have established its presence in human epicardial adipose tissue (eAT). Its functional relevance to eAT, however, remains largely unknown. In a recent study, we reported that adrenergic stimulation of eAT was associated with downregulation of secreted proteins involved in oxidative stress-related and immune-related pathways. Here, we explored the UCP1-associated features of human eAT using next-generation deep sequencing. Paired biopsies of eAT, mediastinal adipose tissue (mAT), and subcutaneous adipose tissue (sAT) obtained from cardiac surgery patients, with specific criteria of high and low expression of UCP1 in eAT, were subjected to RNA sequencing. Although eAT exhibited a depot-specific upregulation in the immune-related pathways relative to mAT and sAT, high UCP1 expression in eAT was specifically associated with differential gene expression that functionally corresponded with downregulation in the production of reactive oxygen species and immune responses, including T cell homeostasis. Our data indicate that UCP1 and adaptive immunity share a reciprocal relationship at the whole-transcriptome level, thereby supporting a plausible role for UCP1 in maintaining tissue homeostasis in human eAT.
Collapse
Affiliation(s)
- Kanta Chechi
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada.,Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Chemin Sainte-Foy, Québec, Canada
| | - Jinchu Vijay
- Department of Human Genetics, McGill University, and Genome Québec Innovation Centre, Montreal, Québec, Canada
| | - Pierre Voisine
- Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Chemin Sainte-Foy, Québec, Canada.,Department of Cardiovascular Surgery
| | - Patrick Mathieu
- Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Chemin Sainte-Foy, Québec, Canada.,Laboratory of Cardiovascular Pathobiology, Department of Surgery, Faculty of Medicine, and
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Chemin Sainte-Foy, Québec, Canada.,Department of Molecular Medicine, Université Laval, Québec, Québec, Canada
| | - Andre Tchernof
- Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Chemin Sainte-Foy, Québec, Canada.,School of Nutrition, Université Laval, Québec, Québec, Canada
| | - Elin Grundberg
- Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Denis Richard
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada.,Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Chemin Sainte-Foy, Québec, Canada
| |
Collapse
|
22
|
D'Ascola A, Scuruchi M, Avenoso A, Bruschetta G, Campo S, Mandraffino G, Campo GM. Serglycin is involved in inflammatory response in articular mouse chondrocytes. Biochem Biophys Res Commun 2018; 499:506-512. [PMID: 29588174 DOI: 10.1016/j.bbrc.2018.03.178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
Serglycin is expressed by a variety of cell types and mediates different functions in both normal and pathological conditions by interacting with different biological molecules, such as the CD44 receptor. Many studies suggest that serglycin has a crucial role in inflammatory response, but there are limited data on the functions of this proteoglycan in chondrocytes. In this study we investigated the effect of serglycin knockdown induced by a specific serglycin small interfering RNA (SRGN siRNA) in normal mouse chondrocytes stimulated with lipopolysaccharide (LPS). LPS administration in normal chondrocytes increased the expression of serglycin mRNA and related protein and the production of the pro-inflammatory mediators TNF-alpha, IL-1beta, IL-6, iNOS and MMP-9, through NF-kB activation. In addition, a marked increased expression of CD44 after LPS stimulation was observed. Notably, the CD44 expression and the inflammatory response were significantly reduced by SRGN siRNA treatment in LPS treated chondrocytes. Similar results were obtained in normal mouse chondrocytes exposed to LPS, using a specific blocking antibody against CD44. These results indicate that serglycin produced in LPS-induced inflammation in normal mouse chondrocytes is able to modulate inflammation by interacting with CD44 receptor, suggesting a possible key role in the cartilage inflammation.
Collapse
Affiliation(s)
- Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy.
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125 Messina, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125 Messina, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy
| |
Collapse
|
23
|
Varga I, Kyselovič J, Galfiova P, Danisovic L. The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 999:117-136. [PMID: 29022261 DOI: 10.1007/978-981-10-4307-9_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The non-cardiomyocyte cellular microenvironment of the heart includes diverse types of cells of mesenchymal origin. During development, the majority of these cells derive from the epicardium, while a subset derives from the endothelium/endocardium and neural crest derived mesenchyme. This subset includes cardiac fibroblasts and telocytes, the latter of which are a controversial type of "connecting cell" that support resident cardiac progenitors in the postnatal heart. Smooth muscle cells, pericytes, and endothelial cells are also present, in addition to adipocytes, which accumulate as epicardial adipose connective tissue. Furthermore, the heart harbors many cells of hematopoietic origin, such as mast cells, macrophages, and other immune cell populations. Most of these control immune reactions and inflammation. All of the above-mentioned non-cardiomyocyte cells of the heart contribute to this organ's well-orchestrated physiology. These cells also contribute to regeneration as a result of injury or age, in addition to tissue remodeling triggered by chronic disease or increased physical activity (exercise-induced cardiac growth). These processes in the heart, the most important vital organ in the human body, are not only fascinating from a scientific standpoint, but they are also clinically important. It is well-known that regular exercise can help prevent many cardiovascular diseases. However, the precise mechanisms underpinning myocardial remodeling triggered by physical activity are still unknown. Surprisingly, exercise-induced adaptation mechanisms are often identical or very similar to tissue remodeling caused by pathological conditions, such as hypertension, cardiac hypertrophy, and cardiac fibrosis. This review provides a summary of our current knowledge regarding the cardiac cellular microenvironment, focusing on the clinical applications this information to the study of heart remodeling during regular physical exercise.
Collapse
Affiliation(s)
- Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | - Jan Kyselovič
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Paulina Galfiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
24
|
Rietdorf K, MacQueen H. Investigating interactions between epicardial adipose tissue and cardiac myocytes: what can we learn from different approaches? Br J Pharmacol 2017; 174:3542-3560. [PMID: 27882550 PMCID: PMC5610165 DOI: 10.1111/bph.13678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023] Open
Abstract
Heart disease is a major cause of morbidity and mortality throughout the world. Some cardiovascular conditions can be modulated by lifestyle factors such as increased exercise or a healthier diet, but many require surgical or pharmacological interventions for their management. More targeted and less invasive therapies would be beneficial. Recently, it has become apparent that epicardial adipose tissue plays an important role in normal and pathological cardiac function, and it is now the focus of considerable research. Epicardial adipose tissue can be studied by imaging of various kinds, and these approaches have yielded much useful information. However, at a molecular level, it is more difficult to study as it is relatively scarce in animal models and, for practical and ethical reasons, not always available in sufficient quantities from patients. What is needed is a robust model system in which the interactions between epicardial adipocytes and cardiac myocytes can be studied, and physiologically relevant manipulations performed. There are drawbacks to conventional culture methods, not least the difficulty of culturing both cardiac myocytes and adipocytes, each of which has special requirements. We discuss the benefits of a three-dimensional co-culture model in which in vivo interactions can be replicated. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- Katja Rietdorf
- School of Life, Health and Chemical SciencesThe Open UniversityMilton KeynesUK
| | - Hilary MacQueen
- School of Life, Health and Chemical SciencesThe Open UniversityMilton KeynesUK
| |
Collapse
|
25
|
Kitagawa T, Yamamoto H, Hattori T, Sentani K, Takahashi S, Senoo A, Kubo Y, Yasui W, Sueda T, Kihara Y. Tumor Necrosis Factor-α Gene Expression in Epicardial Adipose Tissue is Related to Coronary Atherosclerosis Assessed by Computed Tomography. J Atheroscler Thromb 2017; 25:269-280. [PMID: 28931782 PMCID: PMC5868513 DOI: 10.5551/jat.41178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aims: Tumor necrosis factor (TNF)-α reportedly has key pro-inflammatory properties in both atherosclerosis and adipocytes. To further investigate the biologic impact of epicardial adipose tissue (EAT) on coronary atherosclerosis, we evaluated the relationship between TNF-α gene expression in EAT and clinically-assessed coronary atherosclerosis on computed tomography (CT). Methods: We studied 47 patients before cardiac surgery (coronary artery bypass grafting [CABG], n = 26; non-CABG, n = 21), assessing visceral adipose tissue (VAT) area, EAT volume, coronary calcium score (CCS), and the presence of non- and/or partially-calcified coronary plaque (NCP) on CT angiography. EAT and subcutaneous adipose tissue (SAT) samples were obtained during cardiac surgery. TNF-α mRNA in EAT was measured using quantitative real-time PCR, and normalized to that of SAT as control adipose tissue. Results: There was no difference in the TNF-α expression level between patients scheduled for CABG and non-CABG surgery (p = 0.23), or among the subgroups based on CCS (p = 0.68), while patients with NCP had the higher TNF-α expression level than those without NCP (median [interquartile range], 2.50 [1.01–5.53] versus. 1.03 [0.64–2.16], p = 0.022). On multivariate analysis adjusted for age, sex, coronary risk factors, statin therapy, CABG versus non-CABG, VAT area, and EAT volume, the presence of NCP had close correlation with the elevated TNF-α expression level (β= 0.79, p = 0.003). Conclusions: TNF-α expressed regionally in EAT may exert potent effects on the progression of coronary atherosclerosis, suggesting a contribution of EAT to coronary artery disease through behavior of molecule.
Collapse
Affiliation(s)
- Toshiro Kitagawa
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Hideya Yamamoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Takuya Hattori
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences
| | - Shinya Takahashi
- Department of Cardiovascular Surgery, Hiroshima University Hospital
| | - Atsuhiro Senoo
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Yumiko Kubo
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences
| | - Taijiro Sueda
- Department of Cardiovascular Surgery, Hiroshima University Hospital
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| |
Collapse
|
26
|
Reine TM, Vuong TT, Rutkovskiy A, Meen AJ, Vaage J, Jenssen TG, Kolset SO. Serglycin in Quiescent and Proliferating Primary Endothelial Cells. PLoS One 2015; 10:e0145584. [PMID: 26694746 PMCID: PMC4687888 DOI: 10.1371/journal.pone.0145584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023] Open
Abstract
Proteoglycans are fundamental components of the endothelial barrier, but the functions of the proteoglycan serglycin in endothelium are less described. Our aim was to describe the roles of serglycin in processes relevant for endothelial dysfunction. Primary human umbilical vein endothelial cells (HUVEC) were cultured in vitro and the expression of proteoglycans was investigated. Dense cell cultures representing the quiescent endothelium coating the vasculature was compared to sparse activated cell cultures, relevant for diabetes, cancer and cardiovascular disease. Secretion of 35S- proteoglycans increased in sparse cultures, and we showed that serglycin is a major component of the cell-density sensitive proteoglycan population. In contrast to the other proteoglycans, serglycin expression and secretion was higher in proliferating compared to quiescent HUVEC. RNAi silencing of serglycin inhibited proliferation and wound healing, and serglycin expression and secretion was augmented by hypoxia, mechanical strain and IL-1β induced inflammation. Notably, the secretion of the angiogenic chemokine CCL2 resulting from IL-1β activation, was increased in serglycin knockdown cells, while angiopoietin was not affected. Both serglycin and CCL2 were secreted predominantly to the apical side of polarized HUVEC, and serglycin and CCL2 co-localized both in perinuclear areas and in vesicles. These results suggest functions for serglycin in endothelial cells trough interactions with partner molecules, in biological processes with relevance for diabetic complications, cardiovascular disease and cancer development.
Collapse
Affiliation(s)
- Trine M Reine
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway.,Section of Renal Diseases, Department of Organ Transplantation, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Tram T Vuong
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway
| | - Arkady Rutkovskiy
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Emergency and Intensive Care, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Astri J Meen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway
| | - Jarle Vaage
- Department of Emergency and Intensive Care, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trond G Jenssen
- Section of Renal Diseases, Department of Organ Transplantation, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway
| |
Collapse
|
27
|
Transcriptome and Molecular Endocrinology Aspects of Epicardial Adipose Tissue in Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Observational Studies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:926567. [PMID: 26636103 PMCID: PMC4655271 DOI: 10.1155/2015/926567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/20/2015] [Accepted: 10/07/2015] [Indexed: 01/17/2023]
Abstract
The objective of this study was to perform a systematic review of published literature on differentially expressed genes (DEGs) in human epicardial adipose tissue (EAT) to identify molecules associated with CVDs. A systematic literature search was conducted in PubMed, SCOPUS, and ISI Web of Science literature databases for papers published before October 2014 that addressed EAT genes and cardiovascular diseases (CVDs). We included original papers that had performed gene expressions in EAT of patients undergoing open-heart surgery. The Reporting Recommendations for Tumor Marker Prognostic Studies (PRIMARK) assessment tool was also used for methodological quality assessment. From the 180 papers identified by our initial search strategy, 40 studies met the inclusion criteria and presented DEGs in EAT samples from patients with and without CVDs. The included studies reported 42 DEGs identified through comparison of EAT-specific gene expression in patients with and without CVDs. Among the 42 DEGs, genes involved in regulating apoptosis had higher enrichment scores. Notably, interleukin-6 (IL-6) and tumor protein p53 (TP53) were the main hub genes in the network. The results suggest that regulation of apoptosis in EAT is critical for CVD development. Moreover, IL-6 and TP53 as hub genes could serve as biomarkers and therapeutic targets for CVDs.
Collapse
|
28
|
Gaborit B, Venteclef N, Ancel P, Pelloux V, Gariboldi V, Leprince P, Amour J, Hatem SN, Jouve E, Dutour A, Clément K. Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovasc Res 2015; 108:62-73. [PMID: 26239655 DOI: 10.1093/cvr/cvv208] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/23/2015] [Indexed: 11/14/2022] Open
Abstract
AIMS Human epicardial adipose tissue (EAT) is a visceral and perivascular fat that has been shown to act locally on myocardium, atria, and coronary arteries. Its abundance has been linked to coronary artery disease (CAD) and atrial fibrillation. However, its physiological function remains highly debated. The aim of this study was to determine a specific EAT transcriptomic signature, depending on its anatomical peri-atrial (PA), peri-ventricular (PV), or peri-coronary location. METHODS AND RESULTS Samples of EAT and thoracic subcutaneous fat, obtained from 41 patients paired for cardiovascular risk factors, CAD, and atrial fibrillation were analysed using a pangenomic approach. We found 2728 significantly up-regulated genes in the EAT vs. subcutaneous fat with 400 genes being common between PA, PV, and peri-coronary EAT. These common genes were related to extracellular matrix remodelling, inflammation, infection, and thrombosis pathways. Omentin (ITLN1) was the most up-regulated gene and secreted adipokine in EAT (fold-change >12, P < 0.0001). Among EAT-enriched genes, we observed different patterns depending on adipose tissue location. A beige expression phenotype was found in EAT but PV EAT highly expressed uncoupled protein 1 (P = 0.01). Genes overexpressed in peri-coronary EAT were implicated in proliferation, O-N glycan biosynthesis, and sphingolipid metabolism. PA EAT displayed an atypical pattern with genes implicated in cardiac muscle contraction and intracellular calcium signalling pathway. CONCLUSION This study opens new perspectives in understanding the physiology of human EAT and its local interaction with neighbouring structures.
Collapse
Affiliation(s)
- Bénédicte Gaborit
- Institute of Cardiometabolism and Nutrition, ICAN, Heart and Nutrition Department, Assistance-Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris F-75013, France Sorbonne Universities, University Pierre et Marie Curie-Paris 6, UMRS 1166, Paris F-75006, France INSERM, Nutriomics (team6 and Team3), UMR_S U1166, Paris F-75013, France Aix-Marseille Université, Faculté de Médecine, Department 'Nutrition, Obésité et Risque Thrombotique', INSERM, UMR 1062, INRA 1260, 13385 Marseille, France
| | - Nicolas Venteclef
- Institute of Cardiometabolism and Nutrition, ICAN, Heart and Nutrition Department, Assistance-Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris F-75013, France Sorbonne Universities, University Pierre et Marie Curie-Paris 6, UMRS 1166, Paris F-75006, France INSERM, UMRS_S1138, Paris F-75006, France
| | - Patricia Ancel
- Institute of Cardiometabolism and Nutrition, ICAN, Heart and Nutrition Department, Assistance-Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris F-75013, France Sorbonne Universities, University Pierre et Marie Curie-Paris 6, UMRS 1166, Paris F-75006, France INSERM, Nutriomics (team6 and Team3), UMR_S U1166, Paris F-75013, France Aix-Marseille Université, Faculté de Médecine, Department 'Nutrition, Obésité et Risque Thrombotique', INSERM, UMR 1062, INRA 1260, 13385 Marseille, France
| | - Véronique Pelloux
- Institute of Cardiometabolism and Nutrition, ICAN, Heart and Nutrition Department, Assistance-Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris F-75013, France Sorbonne Universities, University Pierre et Marie Curie-Paris 6, UMRS 1166, Paris F-75006, France INSERM, Nutriomics (team6 and Team3), UMR_S U1166, Paris F-75013, France
| | - Vlad Gariboldi
- Assistance-Publique Hôpitaux de Marseille, Cardiac Surgery, La Timone Hospital,13005 Marseille, France
| | - Pascal Leprince
- Institute of Cardiometabolism and Nutrition, ICAN, Heart and Nutrition Department, Assistance-Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris F-75013, France Sorbonne Universities, University Pierre et Marie Curie-Paris 6, UMRS 1166, Paris F-75006, France Assistance-Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart Department, 73013 Paris, France
| | - Julien Amour
- Institute of Cardiometabolism and Nutrition, ICAN, Heart and Nutrition Department, Assistance-Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris F-75013, France Sorbonne Universities, University Pierre et Marie Curie-Paris 6, UMRS 1166, Paris F-75006, France Assistance-Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart Department, 73013 Paris, France
| | - Stéphane N Hatem
- Institute of Cardiometabolism and Nutrition, ICAN, Heart and Nutrition Department, Assistance-Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris F-75013, France Sorbonne Universities, University Pierre et Marie Curie-Paris 6, UMRS 1166, Paris F-75006, France INSERM, Nutriomics (team6 and Team3), UMR_S U1166, Paris F-75013, France Assistance-Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart Department, 73013 Paris, France
| | - Elisabeth Jouve
- Assistance-Publique Hôpitaux de Marseille, Medical Evaluation Department, CIC-CPCET, 13005 Marseille, France
| | - Anne Dutour
- Aix-Marseille Université, Faculté de Médecine, Department 'Nutrition, Obésité et Risque Thrombotique', INSERM, UMR 1062, INRA 1260, 13385 Marseille, France
| | - Karine Clément
- Institute of Cardiometabolism and Nutrition, ICAN, Heart and Nutrition Department, Assistance-Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris F-75013, France Sorbonne Universities, University Pierre et Marie Curie-Paris 6, UMRS 1166, Paris F-75006, France INSERM, Nutriomics (team6 and Team3), UMR_S U1166, Paris F-75013, France
| |
Collapse
|
29
|
Hjorth M, Norheim F, Meen AJ, Pourteymour S, Lee S, Holen T, Jensen J, Birkeland KI, Martinov VN, Langleite TM, Eckardt K, Drevon CA, Kolset SO. The effect of acute and long-term physical activity on extracellular matrix and serglycin in human skeletal muscle. Physiol Rep 2015; 3:e12473. [PMID: 26290530 PMCID: PMC4562559 DOI: 10.14814/phy2.12473] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022] Open
Abstract
Remodeling of extracellular matrix (ECM), including regulation of proteoglycans in skeletal muscle can be important for physiological adaptation to exercise. To investigate the effects of acute and long-term exercise on the expression of ECM-related genes and proteoglycans in particular, 26 middle-aged, sedentary men underwent a 12 weeks supervised endurance and strength training intervention and two acute, 45 min bicycle tests (70% VO2max), one at baseline and one after 12 weeks of training. Total gene expression in biopsies from m. vastus lateralis was measured with deep mRNA sequencing. After 45 min of bicycling approximately 550 gene transcripts were >50% upregulated. Of these, 28 genes (5%) were directly related to ECM. In response to long-term exercise of 12 weeks 289 genes exhibited enhanced expression (>50%) and 20% of them were ECM related. Further analyses of proteoglycan mRNA expression revealed that more than half of the proteoglycans expressed in muscle were significantly enhanced after 12 weeks intervention. The proteoglycan serglycin (SRGN) has not been studied in skeletal muscle and was one of few proteoglycans that showed increased expression after acute (2.2-fold, P < 0.001) as well as long-term exercise (1.4-fold, P < 0.001). Cultured, primary human skeletal muscle cells expressed and secreted SRGN. When the expression of SRGN was knocked down, the expression and secretion of serpin E1 (SERPINE1) increased. In conclusion, acute and especially long-term exercise promotes enhanced expression of several ECM components and proteoglycans. SRGN is a novel exercise-regulated proteoglycan in skeletal muscle with a potential role in exercise adaptation.
Collapse
Affiliation(s)
- Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Astri J Meen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sindre Lee
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Torgeir Holen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital and Institute of Clinical Medicine University of Oslo, Oslo, Norway
| | - Vladimir N Martinov
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Torgrim M Langleite
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital and Institute of Clinical Medicine University of Oslo, Oslo, Norway
| | - Kristin Eckardt
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Enhos A, Sahin I, Can MM, Biter I, Dinckal MH, Serebruany V. Relation of coronary collateral circulation with epicardial fat volume in patients with stable coronary artery disease. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2014; 10:344-8. [PMID: 24454327 PMCID: PMC3888916 DOI: 10.3969/j.issn.1671-5411.2013.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/09/2013] [Accepted: 09/11/2013] [Indexed: 12/03/2022]
Abstract
Objective To investigated the relationship between epicardial fat volume (EFV) and coronary collateral circulation (CCC) in patients with stable coronary artery disease (CAD). Methods The study population consisted of 152 consecutive patients with CAD who underwent coronary angiography and were found to have at least 95% significiant lesion in at least one major coronary artery. EFV was assessed utilizing 64-multislice computed tomography. The patients were classifield into impaired CCC group (Group 1, Rentrop grades 0−1, n = 58), or adequate CCC (Group 2, Rentrop grades 2−3, n = 94). Results The EFV values were significantly higher in paitients with adequate CCC than in those with impaired CCC. In multivariate logistic regression analysis, EFV (OR = 1.059; 95% CI: 1.035−1.085; P = 0.001); and presence of angina were independent predictors of adequate CCC. In receiver-operating characteristic curve analysis, the EFV value > 106.5 mL yielded an area under the curve value of 0.84, with the test sensitivity of 49.3%, and with 98.3% specifity. Conclusions High EFV, and the presence of angina independently predict adequate CCC in patients with stable coronary artery disease. This association offers new diagnostic opportinities to assess collateral flow by conventional ultrasound techniques.
Collapse
Affiliation(s)
- Asım Enhos
- Bagcılar Research and Education Hospital, Cardiology Department, Bagcılar 34800, Istanbul, Turkey
| | - Irfan Sahin
- Bagcılar Research and Education Hospital, Cardiology Department, Bagcılar 34800, Istanbul, Turkey
| | - Mehmet Mustafa Can
- Bagcılar Research and Education Hospital, Cardiology Department, Bagcılar 34800, Istanbul, Turkey
| | - Ibrahim Biter
- Bagcılar Research and Education Hospital, Cardiology Department, Bagcılar 34800, Istanbul, Turkey
| | - Mustafa Hakan Dinckal
- Bagcılar Research and Education Hospital, Cardiology Department, Bagcılar 34800, Istanbul, Turkey
| | - Victor Serebruany
- Bagcılar Research and Education Hospital, Cardiology Department, Bagcılar 34800, Istanbul, Turkey
| |
Collapse
|
31
|
Korpetinou A, Skandalis SS, Labropoulou VT, Smirlaki G, Noulas A, Karamanos NK, Theocharis AD. Serglycin: at the crossroad of inflammation and malignancy. Front Oncol 2014; 3:327. [PMID: 24455486 PMCID: PMC3888995 DOI: 10.3389/fonc.2013.00327] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022] Open
Abstract
Serglycin has been initially characterized as an intracellular proteoglycan expressed by hematopoietic cells. All inflammatory cells highly synthesize serglycin and store it in granules, where it interacts with numerous inflammatory mediators, such as proteases, chemokines, cytokines, and growth factors. Serglycin is implicated in their storage into the granules and their protection since they are secreted as complexes and delivered to their targets after secretion. During the last decade, numerous studies have demonstrated that serglycin is also synthesized by various non-hematopoietic cell types. It has been shown that serglycin is highly expressed by tumor cells and promotes their aggressive phenotype and confers resistance against drugs and complement system attack. Apart from its direct beneficial role to tumor cells, serglycin may promote the inflammatory process in the tumor cell microenvironment thus enhancing tumor development. In the present review, we discuss the role of serglycin in inflammation and tumor progression.
Collapse
Affiliation(s)
- Angeliki Korpetinou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | | | - Gianna Smirlaki
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | | | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Achilleas D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| |
Collapse
|