1
|
Upadhyay D, Das P, Dattagupta S, Makharia GK, Jagannathan NR, Sharma U. Can arginine, glutamate and glutamine serve as surrogates of intestinal mucosal healing in the patients with celiac disease following gluten-free diet? An NMR based metabolomics study. Magn Reson Imaging 2025; 121:110421. [PMID: 40373836 DOI: 10.1016/j.mri.2025.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/01/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
Celiac disease (CeD) is a chronic small intestinal autoimmune disease initiated by dietary gluten in genetically predisposed individuals. Till date, the only effective treatment for CeD is the gluten-free diet (GFD). However, not all patients achieve full histological recovery despite GFD. Thus, it is crucial to assess the treatment response and improvement in the villous architecture following GFD. Therefore, present study investigated the potential of NMR-based metabolomics for identifying non-invasive biomarkers for assessing treatment response. Comprehensive metabolic profiling of 120 biological samples comprising of small intestinal mucosal biopsies, blood plasmas and urines collected at two time points (before and after 6-8 months of GFD) from CeD patients (n = 20) was carried out using proton NMR spectroscopy. The levels of arginine glutamate, and glutamine were significantly reduced in both intestinal mucosa and blood plasma of CeD patients after GFD compared to their baseline values. These amino acids play an important role in intestinal energy metabolism, and alleviating inflammation, thereby contributing to healing mechanisms of small intestinal mucosa, following GFD. A logistic regression statistical model based on the combination of the above three blood plasma metabolites demonstrated AUC of 0.980, Youden index 0.900 with a sensitivity and a specificity of 90 % and 100 % for monitoring treatment response in CeD patients after GFD. The study revealed a panel of non-invasive plasma biomarkers (arginine, glutamate and glutamine) which may serve as surrogates of mucosal healing and treatment response in CeD patients, however, the findings need to be validated in a large cohort of patients.
Collapse
Affiliation(s)
- Deepti Upadhyay
- Department of NMR, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Siddhartha Dattagupta
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Govind K Makharia
- Department of Gastroenterology & Human Nutrition, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Naranamangalam R Jagannathan
- Department of NMR, All India Institute of Medical Sciences, New Delhi 110 029, India; Department of Radiology, Chettinad Academy of Research & Education, Kelambakkam, TN 603 103, India; Koita Center for Digital Health, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | - Uma Sharma
- Department of NMR, All India Institute of Medical Sciences, New Delhi 110 029, India.
| |
Collapse
|
2
|
Emwas AH, Zacharias HU, Alborghetti MR, Gowda GAN, Raftery D, McKay RT, Chang CK, Saccenti E, Gronwald W, Schuchardt S, Leiminger R, Merzaban J, Madhoun NY, Iqbal M, Alsiary RA, Shivapurkar R, Pain A, Shanmugam D, Ryan D, Roy R, Schirra HJ, Morris V, Zeri AC, Alahmari F, Kaddurah-Daouk R, Salek RM, LeVatte M, Berjanskii M, Lee B, Wishart DS. Recommendations for sample selection, collection and preparation for NMR-based metabolomics studies of blood. Metabolomics 2025; 21:66. [PMID: 40348843 PMCID: PMC12065766 DOI: 10.1007/s11306-025-02259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/04/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Metabolic profiling of blood metabolites, particularly in plasma and serum, is vital for studying human diseases, human conditions, drug interventions and toxicology. The clinical significance of blood arises from its close ties to all human cells and facile accessibility. However, patient-specific variables such as age, sex, diet, lifestyle and health status, along with pre-analytical conditions (sample handling, storage, etc.), can significantly affect metabolomic measurements in whole blood, plasma, or serum studies. These factors, referred to as confounders, must be mitigated to reveal genuine metabolic changes due to illness or intervention onset. REVIEW OBJECTIVE This review aims to aid metabolomics researchers in collecting reliable, standardized datasets for NMR-based blood (whole/serum/plasma) metabolomics. The goal is to reduce the impact of confounding factors and enhance inter-laboratory comparability, enabling more meaningful outcomes in metabolomics studies. KEY CONCEPTS This review outlines the main factors affecting blood metabolite levels and offers practical suggestions for what to measure and expect, how to mitigate confounding factors, how to properly prepare, handle and store blood, plasma and serum biosamples and how to report data in targeted NMR-based metabolomics studies of blood, plasma and serum.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Helena U Zacharias
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Hannover Medical School, 30625, Hannover, Germany
| | - Marcos Rodrigo Alborghetti
- Brazilian Biosciences National Laboratory and Brazilian Center for Research in Energy and Materials, Campinas, 13083-100, Brazil
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA, 98109, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA, 98109, USA
| | - Ryan T McKay
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Chung-Ke Chang
- Taiwan Biobank, Biomedical Translation Research Center, Academia Sinica, Taipei City, Taiwan
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Wolfram Gronwald
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Roland Leiminger
- Bruker BioSpin GmbH & Co., Rudolf-Plank-Straße 23, 76275, Ettlingen, Germany
| | - Jasmeen Merzaban
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Nour Y Madhoun
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology, Health Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Rawiah A Alsiary
- King Abdullah International Medical Research Center (KAIMRC), Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Kingdom of Saudi Arabia
| | - Rupali Shivapurkar
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Arnab Pain
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, India
| | - Danielle Ryan
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Raja Roy
- Centre of Biomedical Research, formerly, Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Rae Bareli Road, Lucknow, 226014, India
| | - Horst Joachim Schirra
- School of Environment and Sciences, Griffith University, Nathan, QLD, 4111, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Don Young Road, Nathan, QLD, 4111, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Vanessa Morris
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, 8140, Christchurch, New Zealand
| | - Ana Carolina Zeri
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Zip Code 13083-970, Brazil
| | - Fatimah Alahmari
- Department of NanoMedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioural Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Reza M Salek
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| | - Marcia LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Mark Berjanskii
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Brian Lee
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Zhou J, Zhu F, Sun L. Causal Relationship between Branched-Chain Amino Acids and Inflammatory Bowel Disease: A Bidirectional and Multivariable Mendelian Randomization Study. Br J Hosp Med (Lond) 2025; 86:1-17. [PMID: 39998153 DOI: 10.12968/hmed.2024.0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Aims/Background The relationship between dysregulated branched-chain amino acid (BCAA) and inflammatory bowel disease (IBD) is not fully understood. This study applied a bidirectional, two-sample Mendelian randomization (MR) approach to explore the potential causal relationship between circulating BCAA levels and IBD. Methods Genome-wide association studies (GWAS) data on total BCAA levels, comprising leucine, valine, and isoleucine, were utilized. Data on IBD and its subtypes were sourced from the FinnGen study. The primary analytical method was the inverse-variance weighted (IVW) MR. To determine the direct causal effect of BCAA levels on IBD risk while accounting for confounders, we employed multivariable Mendelian randomization (MVMR). Results IVW analysis revealed a positive correlation between circulating total BCAA levels, including valine, leucine, and isoleucine, and an increased risk of Crohn's disease (CD). No causal link was detected between BCAA levels and overall IBD or ulcerative colitis (UC). In the MVMR analysis, adjusting for common risk factors further validated a direct causal effect of elevated BCAA levels on CD risk. Conclusion Our findings suggest that elevated circulating BCAA levels are associated with an increased risk of CD. Further research is warranted to explore the potential implications of these findings for CD risk management.
Collapse
Affiliation(s)
- Jiaying Zhou
- Department of Gastroenterology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Fengting Zhu
- Department of Gastroenterology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Leimin Sun
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Naito T, Osaka R, Kakuta Y, Kawai Y, Khor SS, Umeno J, Tokunaga K, Nagai H, Shimoyama Y, Moroi R, Shiga H, Nagasaki M, Kinouchi Y, Masamune A. Genetically Predicted Higher Levels of Caffeic Acid Are Protective Against Ulcerative Colitis: A Comprehensive Metabolome Analysis. Inflamm Bowel Dis 2024; 30:2440-2448. [PMID: 38944808 DOI: 10.1093/ibd/izae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND It is crucial to pinpoint the metabolites that cause Crohn's disease (CD) and ulcerative colitis (UC) to comprehend their pathogenesis and identify possible targets for therapy. To achieve this goal, we performed the first metabolome-wide Mendelian randomization (MR) study of Japanese patients with CD and UC. METHODS As exposure datasets, genetic instruments with blood-circulating metabolites were obtained from the Tohoku Medical Megabank Organization, which includes 204 metabolites from the genome-wide association study data of 7843 Japanese individuals. As outcome datasets, we enrolled Japanese patients with CD (n = 1803), Japanese patients with UC (n = 1992), and healthy controls (n = 2022). The main analysis utilized the inverse variance-weighted method, while stability of the findings was evaluated through sensitivity analyses. RESULTS After single nucleotide polymorphism (SNP) filtering, 169 SNPs for 45 metabolites were available for MR. Genetically predicted elevated circulating trans-glutaconic acid and tryptophan were associated with a lower CD risk (odds ratio [OR], 0.68; P = 5.95 × 10-3; and OR, 0.64; P = 1.90 × 10-2, respectively). Genetically predicted elevated caffeic acid was associated with a lower UC risk (OR, 0.67; P = 4.2 × 10-4), which remained significant after multiple testing correction. We identified a causal link between UC and 3-hydroxybutyrate (OR, 2.21; P = 1.41 × 10-2), trans-glutaconic acid (OR, 0.72; P = 1.77 × 10-2), and 2-hydroxyvaleric acid (OR, 1.31; P = 4.23 × 10-2). There was no evidence of pleiotropy or reverse causal effects for these candidate metabolites. CONCLUSIONS In our metabolome-wide MR study, we discovered a notable protective effect of caffeic acid against UC.
Collapse
Affiliation(s)
- Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuya Osaka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
- Central Biobank, National Center Biobank Network, Tokyo, Japan
| | - Hiroshi Nagai
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Shimoyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rintaro Moroi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Kinouchi
- Student Health Care Center, Institute for Excellence in Higher Education, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Bauset C, Carda-Diéguez M, Cejudo-Garcés A, Buetas E, Seco-Cervera M, Macias-Ceja DC, Navarro-Vicente F, Esplugues JV, Calatayud S, Mira Á, Ortiz-Masiá D, Barrachina MD, Cosín-Roger J. A disturbed metabolite-GPCR axis is associated with microbial dysbiosis in IBD patients: Potential role of GPR109A in macrophages. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167489. [PMID: 39233260 DOI: 10.1016/j.bbadis.2024.167489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/20/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract characterized by disrupted immune function. Indeed, gut microbiota dysbiosis and metabolomic profile alterations, are hallmarks of IBD. In this scenario, metabolite-sensing G-protein coupled receptors (GPCRs), involved in several biological processes, have emerged as pivotal players in the pathophysiology of IBD. The aim of this study was to characterize the axis microbiota-metabolite-GPCR in intestinal surgical resections from IBD patients. Results showed that UC patients had a lower microbiota richness and bacterial load, with a higher proportion of the genus Cellulosimicrobium and a reduced proportion of Escherichia, whereas CD patients showed a decreased abundance of Enterococcus. Furthermore, metabolomic analysis revealed alterations in carboxylic acids, fatty acids, and amino acids in UC and CD samples. These patients also exhibited upregulated expression of most metabolite-sensing GPCRs analysed, which positively correlated with pro-inflammatory and pro-fibrotic markers. The role of GPR109A was studied in depth and increased expression of this receptor was detected in epithelial cells and cells from lamina propria, including CD68+ macrophages, in IBD patients. The treatment with β-hydroxybutyrate increased gene expression of GPR109A, CD86, IL1B and NOS2 in U937-derived macrophages. Besides, when GPR109A was transiently silenced, the mRNA expression and secretion of IL-1β, IL-6 and TNF-α were impaired in M1 macrophages. Finally, the secretome from siGPR109A M1 macrophages reduced the gene and protein expression of COL1A1 and COL3A1 in intestinal fibroblasts. A better understanding of metabolite-sensing GPCRs, such as GPR109A, could establish their potential as therapeutic targets for managing IBD.
Collapse
Affiliation(s)
- Cristina Bauset
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - Andrea Cejudo-Garcés
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Elena Buetas
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | | | | | | | - Juan Vicente Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain
| | - Sara Calatayud
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain
| | - Álex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain; CIBER Center for Epidemiology and Public Health, Madrid, Spain
| | - Dolores Ortiz-Masiá
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
| | - María Dolores Barrachina
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain.
| | - Jesús Cosín-Roger
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain
| |
Collapse
|
6
|
Onwuka S, Bravo-Merodio L, Gkoutos GV, Acharjee A. Explainable AI-prioritized plasma and fecal metabolites in inflammatory bowel disease and their dietary associations. iScience 2024; 27:110298. [PMID: 39040076 PMCID: PMC11261406 DOI: 10.1016/j.isci.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
Fecal metabolites effectively discriminate inflammatory bowel disease (IBD) and show differential associations with diet. Metabolomics and AI-based models, including explainable AI (XAI), play crucial roles in understanding IBD. Using datasets from the UK Biobank and the Human Microbiome Project Phase II IBD Multi'omics Database (HMP2 IBDMDB), this study uses multiple machine learning (ML) classifiers and Shapley additive explanations (SHAP)-based XAI to prioritize plasma and fecal metabolites and analyze their diet correlations. Key findings include the identification of discriminative metabolites like glycoprotein acetyl and albumin in plasma, as well as nicotinic acid metabolites andurobilin in feces. Fecal metabolites provided a more robust disease predictor model (AUC [95%]: 0.93 [0.87-0.99]) compared to plasma metabolites (AUC [95%]: 0.74 [0.69-0.79]), with stronger and more group-differential diet-metabolite associations in feces. The study validates known metabolite associations and highlights the impact of IBD on the interplay between gut microbial metabolites and diet.
Collapse
Affiliation(s)
- Serena Onwuka
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Laura Bravo-Merodio
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Liu M, Guo S, Wang L. Systematic review of metabolomic alterations in ulcerative colitis: unveiling key metabolic signatures and pathways. Therap Adv Gastroenterol 2024; 17:17562848241239580. [PMID: 38560428 PMCID: PMC10981261 DOI: 10.1177/17562848241239580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Despite numerous metabolomic studies on ulcerative colitis (UC), the results have been highly variable, making it challenging to identify key metabolic abnormalities in UC. Objectives This study aims to uncover key metabolites and metabolic pathways in UC by analyzing existing metabolomics data. Design A systematic review. Data sources and methods We conducted a comprehensive search in databases (PubMed, Cochrane Library, Embase, and Web of Science) and relevant study references for metabolomic research on UC up to 28 December 2022. Significant metabolite differences between UC patients and controls were identified, followed by an analysis of relevant metabolic pathways. Results This review incorporated 78 studies, identifying 2868 differentially expressed metabolites between UC patients and controls. The metabolites were predominantly from 'lipids and lipid-like molecules' and 'organic acids and derivatives' superclasses. We found 101 metabolites consistently altered in multiple datasets within the same sample type and 78 metabolites common across different sample types. Of these, 62 metabolites exhibited consistent regulatory trends across various datasets or sample types. Pathway analysis revealed 22 significantly altered metabolic pathways, with 6 pathways being recurrently enriched across different sample types. Conclusion This study elucidates key metabolic characteristics in UC, offering insights into molecular mechanisms and biomarker discovery for the disease. Future research could focus on validating these findings and exploring their clinical applications.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siyi Guo
- Chongqing Medical University, Chongqing, China
| | - Liang Wang
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Vlk AM, Prantner D, Shirey KA, Perkins DJ, Buzza MS, Thumbigere-Math V, Keegan AD, Vogel SN. M2a macrophages facilitate resolution of chemically-induced colitis in TLR4-SNP mice. mBio 2023; 14:e0120823. [PMID: 37768050 PMCID: PMC10653841 DOI: 10.1128/mbio.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, impacts millions of individuals worldwide and severely impairs the quality of life for patients. Dysregulation of innate immune signaling pathways reduces barrier function and exacerbates disease progression. Macrophage (Mφ) signaling pathways are potential targets for IBD therapies. While multiple treatments are available for IBD, (i) not all patients respond, (ii) responses may diminish over time, and (iii) treatments often have undesirable side effects. Genetic studies have shown that the inheritance of two co-segregating SNPs expressed in the innate immune receptor, TLR4, is associated with human IBD. Mice expressing homologous SNPs ("TLR4-SNP" mice) exhibited more severe colitis than WT mice in a DSS-induced colonic inflammation/repair model. We identified a critical role for M2a "tissue repair" Mφ in the resolution of colitis. Our findings provide insight into potential development of novel therapies targeting Mφ signaling pathways that aim to alleviate the debilitating symptoms experienced by individuals with IBD.
Collapse
Affiliation(s)
- Alexandra M. Vlk
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Prantner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Darren J. Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Marguerite S. Buzza
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vivek Thumbigere-Math
- Division of Periodontics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Li B, Guo Y, Jia X, Cai Y, Zhang Y, Yang Q. Luteolin alleviates ulcerative colitis in rats via regulating immune response, oxidative stress, and metabolic profiling. Open Med (Wars) 2023; 18:20230785. [PMID: 37693835 PMCID: PMC10487402 DOI: 10.1515/med-2023-0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/30/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease and associated with metabolic imbalance. Luteolin (LUT) reportedly exhibits anti-inflammatory activity. However, its regulatory effects on metabolites remain indistinct. Here, the effects of LUT on immune response and oxidative stress in UC were determined. Serum metabolomics profiles of UC rats treated with LUT were obtained utilizing liquid chromatography-mass spectrometry. The results revealed that LUT treatment alleviated colon tissue injury, colon shortening, weight loss, and inflammatory response in UC rats. Additionally, the levels of superoxide dismutase and total antioxidant capacity were elevated, but malondialdehyde content was reduced in serum of UC rats, while these changes were abrogated by LUT. Metabolomics analysis unveiled that l-malic acid, creatinine, l-glutamine, and l-lactic acid levels were remarkably decreased, while dimethyl sulfone, 5-methylcytosine, cysteine-S-sulfate, and jasmonic acid levels were notably increased after LUT treatment. Furthermore, differential metabolites primarily participated in d-glutamine and d-glutamate metabolism, glutathione metabolism, and citrate cycle pathways. In summary, these results demonstrated that LUT improved immune response, alleviated oxidative stress, and altered metabolites in UC rats. This study lays the root for further exploring the mechanism of LUT in the treatment of UC.
Collapse
Affiliation(s)
- Bolin Li
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Turbidity Toxin Syndrome, Shijiazhuang, Hebei, China
| | - Yuxi Guo
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xuemei Jia
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yanru Cai
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yunfeng Zhang
- Hebei Key Laboratory of Turbidity Toxin Syndrome, Shijiazhuang, Hebei, China
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, 389 Zhongshan East Road, Chang’an District, Shijiazhuang, Hebei, China
| | - Qian Yang
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Turbidity Toxin Syndrome, Shijiazhuang, Hebei, China
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, 389 Zhongshan East Road, Chang’an District, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Sun R, Jin D, Fei F, Xu Z, Cao B, Li J. Mushroom polysaccharides from Grifola frondosa (Dicks.) Gray and Inonotus obliquus (Fr.) Pilat ameliorated dextran sulfate sodium-induced colitis in mice by global modulation of systemic metabolism and the gut microbiota. Front Pharmacol 2023; 14:1172963. [PMID: 37351508 PMCID: PMC10282762 DOI: 10.3389/fphar.2023.1172963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction: Polysaccharides from Grifola frondosa (Dicks.) Gray (HSH) and Inonotus obliquus (Fr.) Pilat (BHR) showed noticeable effects on dextran sulfate sodium (DSS)-induced colitis, but their systemic modulation effects have not been fully revealed. This study aimed to investigate the regulation of the gut microbiota and systemic metabolism by HSH and BHR in DSS-induced colitis. Methods: C57BL/6J mice were given DSS (2.5%) in water and were treated with HSH and BHR (200 mg/kg/day) by gavage. Body weight and colon length were recorded, and H&E and AB-PAS staining of the colon were conducted to evaluate the model and the protective effect of the polysaccharides. Additionally, an LC-QTOF/MS-based untargeted metabolomic platform was used to identify the metabolites in the serum, colon tissue, gut contents, and faeces and investigate differential metabolites and metabolic pathways. 16S rDNA gene sequencing was used to measure the composition of bacterial communities. Results: The results showed that the mouse colitis model was established successfully, as evidenced by an increased disease activity index score [2.83 ± 0.62 vs. 0.06 ± 0.14 (p < 0.001)] and shortened colon length [5.43 ± 0.64 cm vs. 7.04 ± 0.29 cm (p < 0.001)], and HSH and BHR ameliorated DSS-induced colitis by improving the disease activity index (2.17 ± 0.28 and 1.83 ± 0.29, respectively) and restoring the colon length (6.12 ± 0.30 cm and 6.62 ± 0.35 cm, respectively). HSH and BHR significantly modulated metabolites involved in aromatic amino acid metabolism, the citrate cycle, purine metabolism, pyrimidine metabolism, etc. HSH and BHR increased the Chao1 index by 64.25% and 60.25%, respectively, and they increased the Shannon index by 13.02% and 10.23%, respectively. They both reversed the increase in the abundances of g_Odoribacter, g_Clostridium, g_AF12, g_Parabacteroides and g_Turicibacter and reversed the decrease in the abundance of g_unclassified_Bacteria induced by DSS. Specifically, HSH reversed the reductions in g_unclassified_Lactobacillales and g_Ruminococcus, and BHR reversed the decreases in g_unidentified_Coriobacteriaceae and g_unclassified_Firmicutes. Discussion: These results suggested that HSH and BHR may ameliorate DSS-induced colitis by global modulation of systemic metabolism and the gut microbiota. Targeting the gut microbiota may be a potentially effective strategy to modulate systemic metabolism and treat colitis.
Collapse
Affiliation(s)
- Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dandan Jin
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bei Cao
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Wu RY, Tandon P, Oh JS, Ambrosio L, Hotte N, Shah-Gandhi B, Madsen KL, Dieleman LA, Elahi S, Kroeker KI, Huang V. Urine and Serum Metabolomic Profiles Differ by Disease Activity in Pregnant Women With Inflammatory Bowel Diseases. GASTRO HEP ADVANCES 2022; 1:993-1005. [PMID: 39131249 PMCID: PMC11308627 DOI: 10.1016/j.gastha.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Inflammatory bowel disease (IBD), inclusive of ulcerative colitis and Crohn's disease, are chronic inflammatory conditions that impact women of childbearing age. It has been previously shown that IBD is associated with altered metabolomic profiles, but whether metabolomic changes also affect pregnant patients with IBD is completely unknown. Methods This was a prospective cohort study comprised of 48 pregnant women with IBD who were followed throughout preconception and pregnancy. IBD disease activity was measured using biochemical markers C-reactive protein or fecal calprotectin using enzyme-linked immunosorbent assay and clinical disease activity using Harvey-Bradshaw Index or partial Mayo scores. Serum and urine samples were collected from preconception, trimester 1, and trimester 2 and analyzed using nuclear magnetic resonance spectroscopy combined with metabolomics set enrichment analysis. Results We identified a total of 24 urine metabolites and 17 serum metabolites which were altered by active disease across pregnancy. First trimester (T1) active disease-associated metabolites were enriched in "amino acid metabolism" and "fatty-acid β-oxidation." The leading urine metabolites at T1 were trimethyl-N-oxide (TMAO), succinic acid, and 3-hydroxy-2-methylbutyric acid, and leading serum metabolites were TMAO, glucose, and acetic acid. Multivariate modeling using serum TMAO, glucose, and acetic acid predicts T1 disease activity and correlated with mode of delivery and infant weights at delivery. Moreover, cross-time point modeling using metabolomes predicted future disease flare-up during pregnancy. Conclusion These results suggest select host metabolites may be able to discriminate and predict disease activity and are correlated with pregnancy outcomes at delivery. This warrants further validation of metabolomics to monitor IBD in pregnancy.
Collapse
Affiliation(s)
- Richard Y. Wu
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Parul Tandon
- Division of Gastroenterology, Mount Sinai Hospital, Toronto, Canada
| | - Joyce S. Oh
- Division of Gastroenterology, Mount Sinai Hospital, Toronto, Canada
| | - Lindsy Ambrosio
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Naomi Hotte
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Binal Shah-Gandhi
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Karen L. Madsen
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | | | - Shokrollah Elahi
- Department of Dentistry, University of Alberta, Edmonton, Canada
- Department of Oncology, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Karen I. Kroeker
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Vivian Huang
- Division of Gastroenterology, Mount Sinai Hospital, Toronto, Canada
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Cortes GM, Marcialis MA, Bardanzellu F, Corrias A, Fanos V, Mussap M. Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin. Front Microbiol 2022; 13:856165. [PMID: 35391730 PMCID: PMC8981987 DOI: 10.3389/fmicb.2022.856165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
The integrity of the gastrointestinal tract structure and function is seriously compromised by two pathological conditions sharing, at least in part, several pathogenetic mechanisms: inflammatory bowel diseases (IBD) and coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. IBD and COVID-19 are marked by gut inflammation, intestinal barrier breakdown, resulting in mucosal hyperpermeability, gut bacterial overgrowth, and dysbiosis together with perturbations in microbial and human metabolic pathways originating changes in the blood and fecal metabolome. This review compared the most relevant metabolic and microbial alterations reported from the literature in patients with IBD with those in patients with COVID-19. In both diseases, gut dysbiosis is marked by the prevalence of pro-inflammatory bacterial species and the shortfall of anti-inflammatory species; most studies reported the decrease in Firmicutes, with a specific decrease in obligately anaerobic producers short-chain fatty acids (SCFAs), such as Faecalibacterium prausnitzii. In addition, Escherichia coli overgrowth has been observed in IBD and COVID-19, while Akkermansia muciniphila is depleted in IBD and overexpressed in COVID-19. In patients with COVID-19, gut dysbiosis continues after the clearance of the viral RNA from the upper respiratory tract and the resolution of clinical symptoms. Finally, we presented and discussed the impact of gut dysbiosis, inflammation, oxidative stress, and increased energy demand on metabolic pathways involving key metabolites, such as tryptophan, phenylalanine, histidine, glutamine, succinate, citrate, and lipids.
Collapse
Affiliation(s)
- Gian Mario Cortes
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Angelica Corrias
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, School of Medicine, University of Cagliari, Monserrato, Italy
| |
Collapse
|
13
|
Piestansky J, Olesova D, Matuskova M, Cizmarova I, Chalova P, Galba J, Majerova P, Mikus P, Kovac A. Amino acids in inflammatory bowel diseases: Modern diagnostic tools and methodologies. Adv Clin Chem 2022; 107:139-213. [PMID: 35337602 DOI: 10.1016/bs.acc.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amino acids are crucial building blocks of living organisms. Together with their derivatives, they participate in many intracellular processes to act as hormones, neuromodulators, and neurotransmitters. For several decades amino acids have been studied for their potential as markers of various diseases, including inflammatory bowel diseases. Subsequent improvements in sample pretreatment, separation, and detection methods have enabled the specific and very sensitive determination of these molecules in multicomponent matrices-biological fluids and tissues. The information obtained from targeted amino acid analysis (biomarker-based analytical strategy) can be further used for early diagnostics, to monitor the course of the disease or compliance of the patients. This review will provide an insight into current knowledge about inflammatory bowel diseases, the role of proteinogenic amino acids in intestinal inflammation and modern analytical techniques used in its diagnosis and disease activity monitoring. Current advances in the analysis of amino acids focused on sample pretreatment, separation strategy, or detection methods are highlighted, and their potential in clinical laboratories is discussed. In addition, the latest clinical data obtained from the metabolomic profiling of patients suffering from inflammatory bowel diseases are summarized with a focus on proteinogenic amino acids.
Collapse
Affiliation(s)
- Juraj Piestansky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Dominika Olesova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michaela Matuskova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Petra Chalova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jaroslav Galba
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
14
|
Metabolomics Insights into Inflammatory Bowel Disease: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14111190. [PMID: 34832973 PMCID: PMC8625096 DOI: 10.3390/ph14111190] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, complex relapsing disorder characterised by immune dysregulation, gut microbiota alteration, and disturbed intestinal permeability. The diagnosis and the management of IBD are challenging due to the recurrent nature and complex evolution of the disease. Furthermore, the molecular mechanism underlying the aetiology and pathogenesis of IBD is still poorly understood. There is an unmet need for novel, reliable, and noninvasive tools for diagnosing and monitoring IBD. In addition, metabolomic profiles may provide a priori determination of optimal therapeutics and reveal novel targets for therapies. This review tries to gather scientific evidence to summarise the emerging contribution of metabolomics to elucidate the mechanisms underlying IBD and changes associated with disease phenotype and therapies, as well as to identify biomarkers with metabolic imbalance in those patients. Metabolite changes during health and disease could provide insights into the disease pathogenesis and the discovery of novel indicators for the diagnosis and prognosis assessment of IBD. Metabolomic studies in IBD have shown changes in tricarboxylic acid cycle intermediates, amino-acid and fatty-acid metabolism, and oxidative pathways. Metabolomics has made progress towards identifying metabolic alterations that may provide clinically useful biomarkers and a deeper understanding of the disease. However, at present, there is insufficient evidence evaluating the predictive accuracy of these molecular signatures and their diagnostic ability, which is necessary before metabolomic data can be translated into clinical practice.
Collapse
|
15
|
Bjerrum JT, Wang YL, Seidelin JB, Nielsen OH. IBD metabonomics predicts phenotype, disease course, and treatment response. EBioMedicine 2021; 71:103551. [PMID: 34419930 PMCID: PMC8379620 DOI: 10.1016/j.ebiom.2021.103551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Metabonomics in inflammatory bowel disease (IBD) characterizes the effector molecules of biological systems and thus aims to describe the molecular phenotype, generate insight into the pathology, and predict disease course and response to treatment. Nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and integrated NMR and MS platforms coupled with multivariate analyses have been applied to create such metabolic profiles. Recent advances have identified quiescent ulcerative colitis as a distinct molecular phenotype and demonstrated metabonomics as a promising clinical tool for predicting relapse and response to treatment with biologics as well as fecal microbiome transplantation, thus facilitating much needed precision medicine. However, understanding this complex research field and how it translates into clinical settings is a challenge. This review aims to describe the current workflow, analytical strategies, and associated bioinformatics, and translate current IBD metabonomic knowledge into new potential clinically applicable treatment strategies, and outline future key translational perspectives.
Collapse
Affiliation(s)
- Jacob T Bjerrum
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Borgmester Ib Juuls Vej 1 DK-2730, Denmark.
| | - Yulan L Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jakob B Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Borgmester Ib Juuls Vej 1 DK-2730, Denmark
| | - Ole H Nielsen
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
16
|
Gallagher K, Catesson A, Griffin JL, Holmes E, Williams HRT. Metabolomic Analysis in Inflammatory Bowel Disease: A Systematic Review. J Crohns Colitis 2021; 15:813-826. [PMID: 33175138 DOI: 10.1093/ecco-jcc/jjaa227] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The inflammatory bowel diseases [IBD], Crohn's disease and ulcerative colitis, are chronic, idiopathic gastrointestinal diseases. Although their precise aetiology is unknown, it is thought to involve a complex interaction between genetic predisposition and an abnormal host immune response to environmental exposures, probably microbial. Microbial dysbiosis has frequently been documented in IBD. Metabolomics [the study of small molecular intermediates and end products of metabolism in biological samples] provides a unique opportunity to characterize disease-associated metabolic changes and may be of particular use in quantifying gut microbial metabolism. Numerous metabolomic studies have been undertaken in IBD populations, identifying consistent alterations in a range of molecules across several biological matrices. This systematic review aims to summarize these findings. METHODS A comprehensive, systematic search was carried out using Medline and Embase. All studies were reviewed by two authors independently using predefined exclusion criteria. Sixty-four relevant papers were assessed for quality and included in the review. RESULTS Consistent metabolic perturbations were identified, including increases in levels of branched chain amino acids and lipid classes across stool, serum, plasma and tissue biopsy samples, and reduced levels of microbially modified metabolites in both urine [such as hippurate] and stool [such as secondary bile acids] samples. CONCLUSIONS This review provides a summary of metabolomic research in IBD to date, highlighting underlying themes of perturbed gut microbial metabolism and mammalian-microbial co-metabolism associated with disease status.
Collapse
Affiliation(s)
- Kate Gallagher
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Alexandra Catesson
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Julian L Griffin
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Elaine Holmes
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK.,Institute of Health Futures, Murdoch University, Perth, WA, Australia
| | - Horace R T Williams
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK.,Department of Gastroenterology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
17
|
Microbial Metabolomics: From Methods to Translational Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33791977 DOI: 10.1007/978-3-030-51652-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Most microbe-associated infectious diseases severely affect human health. However, clinical diagnosis of pathogenic diseases remains challenging due to the lack of specific and highly reliable methods. To better understand the diagnosis, pathogenesis, and treatment of these diseases, systems biology-driven metabolomics goes beyond the annotated phenotype and better targets the functions than conventional approaches. As a novel strategy for analysis of metabolomes in microbes, microbial metabolomics has been recently used to study many diseases, such as obesity, urinary tract infection (UTI), and hepatitis C. In this chapter, we attempt to introduce various microbial metabolomics methods to better interpret the microbial metabolism underlying a diversity of infectious diseases and inspire scientists to pay more attention to microbial metabolomics, enabling broadly and efficiently its translational applications to infectious diseases, from molecular diagnosis to therapeutic discovery.
Collapse
|
18
|
Han Z, Wang H, Guo D, Zhang J. Integrative transcriptomic and metabonomic profiling analyses reveal the molecular mechanism of Chinese traditional medicine huankuile suspension on TNBS-induced ulcerative colitis. Aging (Albany NY) 2021; 13:5087-5103. [PMID: 33535180 PMCID: PMC7950284 DOI: 10.18632/aging.202427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the therapeutic mechanism of Huankuile suspension (HKL), a typical traditional Chinese medicine, on ulcerative colitis (UC) in a rat model. UC model was established by 2,4,6-trinitrobenzene sulfonic acid (TNBS) enema. Then, the rats were randomly divided into three groups: water treated group, HKL treated group and 5- amino salicylic acid (5-ASA) treated group. After 7 days treatment, the histological score in the HKL treated group was comparable with those in the control group. qRT-PCR and western blot demonstrated that HKL could significantly decreased pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6, while having less effect on anti-inflammatory cytokines, including IL-4 and IL-10. Transcriptomic analysis identified 670 differentially expressed genes (DEGs) between HKL treated UC rats and water treated UC rats. These DEGs were mostly related with immune response. Besides, metabonomic profile revealed 136 differential metabolites which were significantly enriched in “pyrimidine metabolism”, “glutathione metabolism”, “purine metabolism” and “citrate cycle”. Finally, integrated analysis revealed that metabonomic pathways including “steroid hormone biosynthesis”, “pyrimidine metabolism”, “purine metabolism”, and “glutathione metabolism” were altered by HKL at both transcriptomic and metabonomic levels. HKL could inhibit inflammation and regulate bile metabolism, pyrimidine metabolism, purine metabolism, glutathione metabolism and citrate cycle.
Collapse
Affiliation(s)
- Zhenglan Han
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637100, Sichuan Province, China
| | - Hanyan Wang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637100, Sichuan Province, China
| | - Dongmei Guo
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637100, Sichuan Province, China
| | - Jingping Zhang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637100, Sichuan Province, China
| |
Collapse
|
19
|
Wang MX, Lin L, Chen YD, Zhong YP, Lin YX, Li P, Tian X, Han B, Xie ZY, Liao QF. Evodiamine has therapeutic efficacy in ulcerative colitis by increasing Lactobacillus acidophilus levels and acetate production. Pharmacol Res 2020; 159:104978. [PMID: 32485282 DOI: 10.1016/j.phrs.2020.104978] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
Emerging evidence implicates gut microbiota have an important role in ulcerative colitis (UC). Previous study indicated that Evodiamine (EVO) can alleviate colitis through downregulating inflammatory pathways. However, specific relationship between EVO-treated colitis relief and regulation of gut microbiota is still unclear. Here, our goal was to determine the potential role of gut microbiota in the relief of UC by EVO. By using pathology-related indicators, 16S rRNA sequencing and metabolomics profiling, we assessed the pharmacological effect of EVO on dextran sulfate sodium (DSS)-induced colitis rats as well as on the change of gut microbiota and metabolism. Fecal derived from EVO-treated rats was transplanted into colitis rats to verify the effect of EVO on gut microbiota, and 'driver bacteria' was found and validated by 16S rRNA sequencing, metagenome and qRT-PCR. The effect of Lactobacillus acidophilus (L. acidophilus) was investigated by vivo experiment, microbiota analysis, Short-chain fatty acids (SCFAs) quantification and colon transcriptomics. EVO reduced the susceptibility to DSS-induced destruction of epithelial integrity and severe inflammatory response, and regulated the gut microbiota and metabolites. Fecal Microbiota Transplantation (FMT) alleviated DSS-induced colitis, increased the abundance of L. acidophilus and the level of acetate. Furthermore, gavaged with L. acidophilus reduced pro-inflammatory cytokines, promoted the increase of goblet cells and the secretion of antimicrobial peptides, regulated the ratio of Firmicutes/Bacteroidetes and increased the level of acetate. Our results indicated that EVO mitigation of DSS-induced colitis is associated with increased in L. acidophilus and protective acetate production, which may be a promising strategy for treating UC.
Collapse
Affiliation(s)
- Meng-Xia Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong-Da Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Ping Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Xuan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Tian
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Bo Han
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Zhi-Yong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Qiong-Feng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
20
|
Translational Potential of Metabolomics on Animal Models of Inflammatory Bowel Disease-A Systematic Critical Review. Int J Mol Sci 2020; 21:ijms21113856. [PMID: 32485793 PMCID: PMC7312423 DOI: 10.3390/ijms21113856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022] Open
Abstract
In the development of inflammatory bowel disease (IBD), the gut microbiota has been established as a key factor. Recently, metabolomics has become important for understanding the functional relevance of gut microbial changes in disease. Animal models for IBD enable the study of factors involved in disease development. However, results from animal studies may not represent the human situation. The aim of this study was to investigate whether results from metabolomics studies on animal models for IBD were similar to those from studies on IBD patients. Medline and Embase were searched for relevant studies up to May 2017. The Covidence systematic review software was used for study screening, and quality assessment was conducted for all included studies. Data showed a convergence of ~17% for metabolites differentiated between IBD and controls in human and animal studies with amino acids being the most differentiated metabolite subclass. The acute dextran sodium sulfate model appeared as a good model for analysis of systemic metabolites in IBD, but analytical platform, age, and biological sample type did not show clear correlations with any significant metabolites. In conclusion, this systematic review highlights the variation in metabolomics results, and emphasizes the importance of expanding the applied detection methods to ensure greater coverage and convergence between the various different patient phenotypes and animal models of inflammatory bowel disease.
Collapse
|
21
|
Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:223-237. [PMID: 32076145 DOI: 10.1038/s41575-019-0258-z] [Citation(s) in RCA: 1137] [Impact Index Per Article: 227.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
A key role of the gut microbiota in the establishment and maintenance of health, as well as in the pathogenesis of disease, has been identified over the past two decades. One of the primary modes by which the gut microbiota interacts with the host is by means of metabolites, which are small molecules that are produced as intermediate or end products of microbial metabolism. These metabolites can derive from bacterial metabolism of dietary substrates, modification of host molecules, such as bile acids, or directly from bacteria. Signals from microbial metabolites influence immune maturation, immune homeostasis, host energy metabolism and maintenance of mucosal integrity. Alterations in the composition and function of the microbiota have been described in many studies on IBD. Alterations have also been described in the metabolite profiles of patients with IBD. Furthermore, specific classes of metabolites, notably bile acids, short-chain fatty acids and tryptophan metabolites, have been implicated in the pathogenesis of IBD. This Review aims to define the key classes of microbial-derived metabolites that are altered in IBD, describe the pathophysiological basis of these associations and identify future targets for precision therapeutic modulation.
Collapse
|
22
|
Silva RA, Pereira TC, Souza AR, Ribeiro PR. 1H NMR-based metabolite profiling for biomarker identification. Clin Chim Acta 2020; 502:269-279. [PMID: 31778675 DOI: 10.1016/j.cca.2019.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
|
23
|
Papada E, Amerikanou C, Torović L, Kalogeropoulos N, Tzavara C, Forbes A, Kaliora AC. Plasma free amino acid profile in quiescent Inflammatory Bowel Disease patients orally administered with Mastiha (Pistacia lentiscus); a randomised clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:40-47. [PMID: 30668352 DOI: 10.1016/j.phymed.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 08/06/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Natural products have been studied regarding their effectiveness on Inflammatory Bowel Disease (IBD). HYPOTHESIS/PURPOSE To examine the effects of Mastiha (Pistacia lentiscus var. Chia) on clinical course and amino acid (AA) profile of patients in remission. STUDY DESIGN This is a randomised, double-blind, placebo-controlled clinical trial. METHODS Patients (n = 68) were randomly allocated to Mastiha (2.8 g/day) or placebo adjunct to stable medication. Free AAs were identified applying Gas Chromatography-Mass Spectrometry in plasma. Medical-dietary history, Inflammatory Bowel Disease Questionnaire, Harvey-Bradshaw Index, Partial Mayo Score, biochemical, faecal and blood inflammatory markers were assessed. Primary endpoint was the clinical relapse rate at 6 months. Secondary endpoints included variations in free AAs, inflammatory biomarkers and quality of life. Statistical significance was set at 0.05. RESULTS Concerning AAs and biochemical data, alanine (p = 0.006), valine (p = 0.047), proline (p = 0.022), glutamine (p < 0.001) and tyrosine (p = 0.043) along with total cholesterol (p = 0.032) and LDL cholesterol (p = 0.045) increased only in placebo group compared with baseline and the change between the study groups was significantly different. Inflammatory markers had not a significantly different change between the two groups, even serum IL-6, faecal calprotectin and faecal lactoferrin increased only in the placebo group. Although Mastiha was not proven superior to placebo in remission rate (17.6% vs. 23.5%, p = 0.549), attenuation in increase of free AAs levels in verum group is reported. CONCLUSION Mastiha inhibited an increase in plasma free AAs seen in patients with quiescent IBD. Since change of AAs is considered an early prognostic marker of disease activity, this indicates a potential role of Mastiha in remission maintenance.
Collapse
Affiliation(s)
- Efstathia Papada
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Charalampia Amerikanou
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Ljilja Torović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nick Kalogeropoulos
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Chara Tzavara
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Alastair Forbes
- Norwich Medical School, University of East Anglia, Bob Champion Building, James Watson Road, Norwich NR4 7UQ, United Kingdom
| | - Andriana C Kaliora
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, Athens, Greece.
| |
Collapse
|
24
|
Papada E, Forbes A, Amerikanou C, Torović L, Kalogeropoulos N, Tzavara C, Triantafillidis JK, Kaliora AC. Antioxidative Efficacy of a Pistacia Lentiscus Supplement and Its Effect on the Plasma Amino Acid Profile in Inflammatory Bowel Disease: A Randomised, Double-Blind, Placebo-Controlled Trial. Nutrients 2018; 10:1779. [PMID: 30453494 PMCID: PMC6267573 DOI: 10.3390/nu10111779] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is present in patients with Inflammatory Bowel Disease (IBD), and natural supplements with antioxidant properties have been investigated as a non-pharmacological approach. The objective of the present study was to assess the effects of a natural Pistacia lentiscus (PL) supplement on oxidative stress biomarkers and to characterise the plasma-free amino acid (AA) profiles of patients with active IBD (Crohn's disease (CD) N = 40, ulcerative colitis (UC) N = 20). The activity was determined according to 5 ≤ Harvey Bradshaw Index ≤ 16 or 2 ≤ Partial Mayo Score ≤ 6. This is a randomised, double-blind, placebo-controlled clinical trial. IBD patients (N = 60) were randomly allocated to PL (2.8 g/day) or to placebo for 3 months being under no treatment (N = 21) or under stable medical treatment (mesalamine N = 24, azathioprine N = 14, and corticosteroids N = 23) that was either single medication (N = 22) or combined medication (N = 17). Plasma oxidised, low-density lipoprotein (oxLDL), total serum oxidisability, and serum uric acid were evaluated at baseline and follow-up. OxLDL/LDL and oxLDL/High-Density Lipoprotein (HDL) ratios were calculated. The plasma-free AA profile was determined by applying a gas chromatography/mass spectrometry analysis. oxLDL (p = 0.031), oxLDL/HDL (p = 0.020), and oxLDL/LDL (p = 0.005) decreased significantly in the intervention group. The mean change differed significantly in CD between groups for oxLDL/LDL (p = 0.01), and, in the total sample, both oxLDL/LDL (p = 0.015) and oxLDL/HDL (p = 0.044) differed significantly. Several changes were reported in AA levels. PL ameliorated a decrease in plasma-free AAs seen in patients with UC taking placebo. In conclusion, this intervention resulted in favourable changes in oxidative stress biomarkers in active IBD.
Collapse
Affiliation(s)
- Efstathia Papada
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece.
| | - Alastair Forbes
- Norwich Medical School, University of East Anglia, Bob Champion Building, James Watson Road, Norwich NR4 7UQ, UK.
| | - Charalampia Amerikanou
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece.
| | - Ljilja Torović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Nick Kalogeropoulos
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece.
| | - Chara Tzavara
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece.
| | | | - Andriana C Kaliora
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece.
| |
Collapse
|
25
|
Probert F, Walsh A, Jagielowicz M, Yeo T, Claridge TDW, Simmons A, Travis S, Anthony DC. Plasma Nuclear Magnetic Resonance Metabolomics Discriminates Between High and Low Endoscopic Activity and Predicts Progression in a Prospective Cohort of Patients With Ulcerative Colitis. J Crohns Colitis 2018; 12:1326-1337. [PMID: 30016408 PMCID: PMC6403054 DOI: 10.1093/ecco-jcc/jjy101] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Endoscopic assessment of ulcerative colitis [UC] is one of the most accurate measures of disease activity, but frequent endoscopic investigations are disliked by patients and expensive for the healthcare system. A minimally invasive test that provides a surrogate measure of endoscopic activity is required. METHODS Plasma nuclear magnetic resonance [NMR] spectra from 40 patients with UC followed prospectively over 6 months were analysed with multivariate statistics. NMR metabolite profiles were compared with endoscopic [Ulcerative Colitis Endoscopic Index of Severity: UCEIS], histological [Nancy Index] and clinical [Simple Clinical Colitis Activity Index: SCCAI] severity indices, along with routine blood measurements. RESULTS A blinded principal component analysis spontaneously separated metabolite profiles of patients with low [≤3] and high [>3] UCEIS. Orthogonal partial least squares discrimination analysis identified low and high UCEIS metabolite profiles with an accuracy of 77 ± 5%. Plasma metabolites driving discrimination included decreases in lipoproteins and increases in isoleucine, valine, glucose and myo-inositol in high compared to low UCEIS. This same metabolite profile distinguished between low [Nancy 0-1] and high histological activity [Nancy 3-4] with a modest although significant accuracy [65 ± 6%] but was independent of SCCAI and all blood parameters measured. A different metabolite profile, dominated by changes in lysine, histidine, phenylalanine and tyrosine, distinguished between improvement in UCEIS [decrease ≥1] and worsening [increase ≥1] over 6 months with an accuracy of 74 ± 4%. CONCLUSION Plasma NMR metabolite analysis has the potential to provide a low-cost, minimally invasive technique that may be a surrogate for endoscopic assessment, with predictive capacity.
Collapse
Affiliation(s)
- Fay Probert
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Alissa Walsh
- Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Marta Jagielowicz
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, and Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Tianrong Yeo
- Department of Pharmacology, University of Oxford, Oxford, UK,Department of Neurology, National Neuroscience Institute, Jalan Tan Tock Seng, Singapore
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, and Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Simon Travis
- Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK,Corresponding author: Clinical: Simon Travis, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK. ; Analysis and interpretation: Daniel Anthony, Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Oxford, UK,Corresponding author: Clinical: Simon Travis, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK. ; Analysis and interpretation: Daniel Anthony, Department of Pharmacology, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Chiba T, Suzuki K, Matsumoto T. Plasma-Free Amino Acid Profiles in Crohn's Disease: Relationship With the Crohn Disease Activity Index. CLINICAL MEDICINE INSIGHTS. GASTROENTEROLOGY 2018; 11:1179552218791173. [PMID: 30083065 PMCID: PMC6066806 DOI: 10.1177/1179552218791173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 07/06/2018] [Indexed: 02/05/2023]
Abstract
UNLABELLED We aimed to clarify the relationship between plasma-free amino acid (PFAA) profiles and the Crohn's disease (CD) activity index (CDAI) in patients with CD. METHODS We measured fasting PFAA concentrations in 29 patients with CD and their correlation with disease activity. RESULTS In all patients, significant correlations were noted between CDAI and concentrations of valine, methionine, leucine, histidine, tryptophan, alanine, tyrosine, total amino acids (TAAs), nonessential amino acids (NEAAs), essential amino acids (EAAs), and branched-chain amino acids (BCAAs). In patients with the ileo-colonic type of CD, significant correlations were noted between CDAI and valine, histidine, tryptophan, glutamine, TAA, NEAA, EAA, and BCAA. In ileal type, significant correlations were observed between CDAI and threonine, valine, histidine, serine, and glycine. In colonic type, significant correlations were noted between CDAI and valine, histidine, tryptophan, TAA, NEAA, EAA, and BCAA. CONCLUSIONS In patients with CD, plasma amino acids appear to be associated with disease activity.
Collapse
Affiliation(s)
- Toshimi Chiba
- Division of Internal Medicine,
Department of Oral Medicine, School of Dentistry, Iwate Medical University, Morioka,
Japan
| | - Kazuyuki Suzuki
- Department of Nutritional Sciences,
Faculty of Nutritional Sciences, Morioka University, Takizawa, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department
of Internal Medicine, School of Medicine, Iwate Medical University, Morioka,
Japan
| |
Collapse
|
27
|
Tan H, Chen W, Liu Q, Yang G, Li K. Pectin Oligosaccharides Ameliorate Colon Cancer by Regulating Oxidative Stress- and Inflammation-Activated Signaling Pathways. Front Immunol 2018; 9:1504. [PMID: 30013563 PMCID: PMC6036268 DOI: 10.3389/fimmu.2018.01504] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Colon cancer (CC) is the third common neoplasm worldwide, and it is still a big challenge for exploring new effective medicine for treating CC. Natural product promoting human health has become a hot topic and attracted many researchers recently. Pectin, a complex polysaccharide in plant cell wall, mainly consists of four major types of polysaccharides: homogalacturonan, xylogalacturonan, rhamnogalacturonan I and II, all of which can be degraded into various pectin oligosaccharides (POS) and may provide abundant resource for exploring potential anticancer drugs. POS have been regarded as a novel class of potential functional food with multiple health-promoting properties. POS have antibacterial activities against some aggressive and recurrent bacterial infection and exert beneficial immunomodulation for controlling CC risk. However, the molecular functional role of POS in the prevention of CC risk and progression remains doubtful. The review focuses on antioxidant and anti-inflammatory roles of POS for promoting human health by regulating some potential oxidative and inflammation-activated pathways, such as ATP-activated protein kinase (AMPK), nuclear factor erythroid-2-related factor-2 (Nrf2), and nuclear factor-κB (NF-κB) pathways. The activation of these signaling pathways increases the antioxidant and antiinflammatory activities, which will result in the apoptosis of CC cells or in the prevention of CC risk and progression. Thus, POS may inhibit CC development by affecting antioxidant and antiinflammatory signaling pathways AMPK, Nrf2, and NF-κB. However, POS also can activate signal transduction and transcriptional activator 1 and 3 signaling pathway, which will reduce antioxidant and anti-inflammatory properties and promote CC progression. Specific structural and structurally modified POS may be associated with their functions and should be deeply explored in the future. The present review paper lacks the important information for the linkage between the specific structure of POS and its function. To further explore the effects of prebiotic potential of POS and their derivatives on human immunomodulation in the prevention of CC, the specific POS with a certain degree of polymerization or purified polymers are highly demanded to be performed in clinical practice.
Collapse
Affiliation(s)
- Haidong Tan
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Chen
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qishun Liu
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guojun Yang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Kuikui Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
28
|
Scoville EA, Allaman MM, Brown CT, Motley AK, Horst SN, Williams CS, Koyama T, Zhao Z, Adams DW, Beaulieu DB, Schwartz DA, Wilson KT, Coburn LA. Alterations in Lipid, Amino Acid, and Energy Metabolism Distinguish Crohn's Disease from Ulcerative Colitis and Control Subjects by Serum Metabolomic Profiling. Metabolomics 2018; 14:17. [PMID: 29681789 PMCID: PMC5907923 DOI: 10.1007/s11306-017-1311-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Biomarkers are needed in inflammatory bowel disease (IBD) to help define disease activity and identify underlying pathogenic mechanisms. We hypothesized that serum metabolomics, which produces unique metabolite profiles, can aid in this search. OBJECTIVES The aim of this study was to characterize serum metabolomic profiles in patients with IBD, and to assess for differences between patients with ulcerative colitis (UC), Crohn's disease (CD), and non- IBD subjects. METHODS Serum samples from 20 UC, 20 CD, and 20 non-IBD control subjects were obtained along with patient characteristics, including medication use and clinical disease activity. Non-targeted metabolomic profiling was performed using ultra-high performance liquid chromatography/mass spectrometry (UPLC-MS/MS) optimized for basic or acidic species and hydrophilic interaction liquid chromatography (HILIC/UPLC-MS/MS). RESULTS In total, 671 metabolites were identified. Comparing IBD and control subjects revealed 173 significantly altered metabolites (27 increased and 146 decreased). The majority of the alterations occurred in lipid-, amino acid-, and energy-related metabolites. Comparing only CD and control subjects revealed 286 significantly altered metabolites (54 increased and 232 decreased), whereas comparing UC and control subjects revealed only 5 significantly altered metabolites (all decreased). Hierarchal clustering using significant metabolites separated CD from UC and control subjects. CONCLUSIONS We demonstrate that a number of lipid-, amino acid-, and tricarboxylic acid (TCA) cycle- related metabolites were significantly altered in IBD patients, more specifically in CD. Therefore, alterations in lipid and amino acid metabolism and energy homeostasis may play a key role in the pathogenesis of CD.
Collapse
Affiliation(s)
- Elizabeth A Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232, USA
| | - Caroline T Brown
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232, USA
| | - Amy K Motley
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232, USA
| | - Sara N Horst
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232, USA
| | - Christopher S Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhiguo Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dawn W Adams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Dawn B Beaulieu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232, USA
| | - David A Schwartz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Mucosal Inflammation and Cancer, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232, USA.
- Vanderbilt Center for Mucosal Inflammation and Cancer, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
29
|
Bjerrum JT, Steenholdt C, Ainsworth M, Nielsen OH, Reed MA, Atkins K, Günther UL, Hao F, Wang Y. Metabonomics uncovers a reversible proatherogenic lipid profile during infliximab therapy of inflammatory bowel disease. BMC Med 2017; 15:184. [PMID: 29032767 PMCID: PMC5641999 DOI: 10.1186/s12916-017-0949-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND One-third of inflammatory bowel disease (IBD) patients show no response to infliximab (IFX) induction therapy, and approximately half of patients responding become unresponsive over time. Thus, identification of potential treatment response biomarkers are of great clinical significance. This study employs spectroscopy-based metabolic profiling of serum from patients with IBD treated with IFX and healthy subjects (1) to substantiate the use of spectroscopy as a semi-invasive diagnostic tool, (2) to identify potential biomarkers of treatment response and (3) to characterise the metabolic changes during management of patients with tumour necrosis factor-α inhibitors. METHODS Successive serum samples collected during IFX induction treatment (weeks 0, 2, 6 and 14) from 87 IBD patients and 37 controls were analysed by 1H nuclear magnetic resonance (NMR) spectroscopy. Data were analysed with principal components analysis and orthogonal projection to latent structures discriminant analysis using SIMCA-P+ v12 and MATLAB. RESULTS Metabolic profiles were significantly different between active ulcerative colitis and controls, active Crohn's disease and controls, and quiescent Crohn's disease and controls. Metabolites holding differential power belonged primarily to lipids and phospholipids with proatherogenic characteristics and metabolites in the pyruvate metabolism, suggestive of an intense inflammation-driven energy demand. IBD patients not responding to IFX were identified as a potentially distinct group based on their metabolic profile, although no applicable response biomarkers could be singled out in the current setting. CONCLUSION 1H NMR spectroscopy of serum samples is a powerful semi-invasive diagnostic tool in flaring IBD. With its use, we provide unique insights into the metabolic changes taking place during induction treatment with IFX. Of distinct clinical relevance is the identification of a reversible proatherogenic lipid profile in IBD patients with active disease, which partially explains the increased risk of cardiovascular disease associated with IBD.
Collapse
Affiliation(s)
- Jacob Tveiten Bjerrum
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| | - Casper Steenholdt
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| | - Mark Ainsworth
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| | - Michelle Ac Reed
- HWB-NMR, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Karen Atkins
- HWB-NMR, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Ulrich Leonhard Günther
- HWB-NMR, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Fuhua Hao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yulan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| |
Collapse
|
30
|
Keshteli AH, van den Brand FF, Madsen KL, Mandal R, Valcheva R, Kroeker KI, Han B, Bell RC, Cole J, Hoevers T, Wishart DS, Fedorak RN, Dieleman LA. Dietary and metabolomic determinants of relapse in ulcerative colitis patients: A pilot prospective cohort study. World J Gastroenterol 2017; 23:3890-3899. [PMID: 28638229 PMCID: PMC5467075 DOI: 10.3748/wjg.v23.i21.3890] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To identify demographic, clinical, metabolomic, and lifestyle related predictors of relapse in adult ulcerative colitis (UC) patients.
METHODS In this prospective pilot study, UC patients in clinical remission were recruited and followed-up at 12 mo to assess a clinical relapse, or not. At baseline information on demographic and clinical parameters was collected. Serum and urine samples were collected for analysis of metabolomic assays using a combined direct infusion/liquid chromatography tandem mass spectrometry and nuclear magnetic resolution spectroscopy. Stool samples were also collected to measure fecal calprotectin (FCP). Dietary assessment was performed using a validated self-administered food frequency questionnaire.
RESULTS Twenty patients were included (mean age: 42.7 ± 14.8 years, females: 55%). Seven patients (35%) experienced a clinical relapse during the follow-up period. While 6 patients (66.7%) with normal body weight developed a clinical relapse, 1 UC patient (9.1%) who was overweight/obese relapsed during the follow-up (P = 0.02). At baseline, poultry intake was significantly higher in patients who were still in remission during follow-up (0.9 oz vs 0.2 oz, P = 0.002). Five patients (71.4%) with FCP > 150 μg/g and 2 patients (15.4%) with normal FCP (≤ 150 μg/g) at baseline relapsed during the follow-up (P = 0.02). Interestingly, baseline urinary and serum metabolomic profiling of UC patients with or without clinical relapse within 12 mo showed a significant difference. The most important metabolites that were responsible for this discrimination were trans-aconitate, cystine and acetamide in urine, and 3-hydroxybutyrate, acetoacetate and acetone in serum.
CONCLUSION A combination of baseline dietary intake, fecal calprotectin, and metabolomic factors are associated with risk of UC clinical relapse within 12 mo.
Collapse
|
31
|
Ahmed I, Fayyaz F, Nasir M, Niaz Z, Furnari M, Perry L. Extending landscape of volatile metabolites as novel diagnostic biomarkers of inflammatory bowel disease - a review. Scand J Gastroenterol 2016; 51:385-92. [PMID: 26541790 DOI: 10.3109/00365521.2015.1105286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The diagnosis of inflammatory bowel disease (IBD) remains a challenging task despite significant increase in the understanding of the disease aetiology and pathogenesis. Recent decade has seen a massive interest in the non-invasive diagnostic biomarkers of IBD, consequently a number of studies have explored a variety of potential biomarkers to diagnose the disease and monitor the disease activity. Volatile metabolites are the chemicals, which emanate from biological fluids and can reflect the status of health and disease of an individual. Recent advances in the analytical techniques have enabled the detection and interpretation of the changes in volatile metabolites in breath, urine, faeces and blood of an individual in correlation with various gastrointestinal (GI) disorders including IBD. This can provide a simple, fast and reproducible diagnosis at the point of care. This review focuses on the current and future novel approaches for detecting and the monitoring gut inflammation in IBD by using volatile organic metabolites.
Collapse
Affiliation(s)
- Iftikhar Ahmed
- a Department of Gastroenterology , University Hospital Southampton NHS Foundation Trust , Southampton , UK
| | - Faisal Fayyaz
- b Department of Gastroenterology , Taunton and Somerset Hospital NHS Trust , Parkfield Drive , Taunton, Somerset , UK
| | - Moneeb Nasir
- c Department of Medicine , Basingstoke General Hospital , Basingstoke, Hampshire , UK
| | - Zafar Niaz
- d Department of Medicine , Mayo Hospital Lahore , Lahore , Pakistan
| | - Manuele Furnari
- e Department of Gastroenterology & Internal Medicine , University of Genova , Genova , Italy
| | - Lorna Perry
- b Department of Gastroenterology , Taunton and Somerset Hospital NHS Trust , Parkfield Drive , Taunton, Somerset , UK
| |
Collapse
|
32
|
Ahmed I, Greenwood R, Costello B, Ratcliffe N, Probert CS. Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment Pharmacol Ther 2016; 43:596-611. [PMID: 26806034 DOI: 10.1111/apt.13522] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/08/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The aetiology of inflammatory bowel disease (IBD) remains poorly understood. Recent evidence suggests an important role of gut microbial dysbiosis in IBD, and this may be associated with changes in faecal volatile organic metabolites (VOMs). AIM To describe the changes in the faecal VOMs of patients with IBD and establish their diagnostic potential as non-invasive biomarkers. METHODS Faecal samples were obtained from 117 people with Crohn's disease (CD), 100 with ulcerative colitis (UC), and 109 healthy controls. Faecal VOMs were extracted using solid-phase micro-extraction and analysed by gas chromatography mass spectrometry. Data analysis was carried out using partial least squares-discriminate analysis (PLS-DA) to determine class membership based on distinct metabolomic profiles. RESULTS The PLS-DA model showed clear separation of active CD from inactive disease and healthy controls (P < 0.001). Heptanal, 1-octen-3-ol, 2-piperidinone and 6-methyl-2-heptanone were up-regulated in the active CD group [variable important in projection (VIP) score 2.8, 2.7, 2.6 and 2.4, respectively], while methanethiol, 3-methyl-phenol, short-chain fatty acids and ester derivatives were found to be less abundant (VIP score of 3.5, 2.6, 1.5 and 1.2, respectively). The PLS-DA model also separated patients with small bowel CD from healthy controls and those with colonic CD from UC (P < 0.001). In contrast, less distinct separation was observed between active UC, inactive UC and healthy controls. CONCLUSIONS Analysis of faecal volatile organic metabolites can provide an understanding of gut metabolomic changes in IBD. It has the potential to provide a non-invasive means of diagnosing IBD, and can differentiate between UC and CD.
Collapse
Affiliation(s)
- I Ahmed
- Department of Gastroenterology, University Hospital Southampton, Southampton, UK
| | - R Greenwood
- Department of Research and Development, Bristol Royal Infirmary, Bristol, UK
| | - B Costello
- Institute of Biosensing Technology, University of the West of England, Bristol, UK
| | - N Ratcliffe
- Institute of Biosensing Technology, University of the West of England, Bristol, UK
| | - C S Probert
- Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
33
|
Hisamatsu T, Ono N, Imaizumi A, Mori M, Suzuki H, Uo M, Hashimoto M, Naganuma M, Matsuoka K, Mizuno S, Kitazume MT, Yajima T, Ogata H, Iwao Y, Hibi T, Kanai T. Decreased Plasma Histidine Level Predicts Risk of Relapse in Patients with Ulcerative Colitis in Remission. PLoS One 2015; 10:e0140716. [PMID: 26474176 PMCID: PMC4608807 DOI: 10.1371/journal.pone.0140716] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic intestinal inflammation. Patients with UC have repeated remission and relapse. Clinical biomarkers that can predict relapse in UC patients in remission have not been identified. To facilitate the prediction of relapse of UC, we investigated the potential of novel multivariate indexes using statistical modeling of plasma free amino acid (PFAA) concentrations. We measured fasting PFAA concentrations in 369 UC patients in clinical remission, and 355 were observed prospectively for up to 1 year. Relapse rate within 1 year was 23% (82 of 355 patients). The age- and gender-adjusted hazard ratio for the lowest quartile compared with the highest quartile of plasma histidine concentration was 2.55 (95% confidence interval: 1.41–4.62; p = 0.0020 (log-rank), p for trend = 0.0005). We demonstrated that plasma amino acid profiles in UC patients in clinical remission can predict the risk of relapse within 1 year. Decreased histidine level in PFAAs was associated with increased risk of relapse. Metabolomics could be promising for the establishment of a non-invasive predictive marker in inflammatory bowel disease.
Collapse
Affiliation(s)
- Tadakazu Hisamatsu
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Nobukazu Ono
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki, Japan
| | - Akira Imaizumi
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki, Japan
| | - Maiko Mori
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki, Japan
| | - Hiroaki Suzuki
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd., Kawasaki, Japan
| | - Michihide Uo
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd., Kawasaki, Japan
| | - Masaki Hashimoto
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd., Kawasaki, Japan
| | - Makoto Naganuma
- Center for Diagnostic and Therapeutic Endoscopy, Keio University, Tokyo, Japan
| | - Katsuyoshi Matsuoka
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shinta Mizuno
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Mina T. Kitazume
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Tomoharu Yajima
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University, Tokyo, Japan
| | - Yasushi Iwao
- Center for Preventive Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Takanori Kanai
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
34
|
Liu CC, Wu YF, Feng GM, Gao XX, Zhou YZ, Hou WJ, Qin XM, Du GH, Tian JS. Plasma-metabolite-biomarkers for the therapeutic response in depressed patients by the traditional Chinese medicine formula Xiaoyaosan: A (1)H NMR-based metabolomics approach. J Affect Disord 2015; 185:156-63. [PMID: 26186531 DOI: 10.1016/j.jad.2015.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Depression is one of the most prevalent and serious mental disorders. Xiaoyaosan, a well-known Chinese prescription, has been widely used for the treatment of depression in China. Both clinical studies and animal experiments indicate that Xiaoyaosan has an obvious antidepressant activity. Additionally, a large number of candidate biomarkers have emerged that can be used for early disease detection and for monitoring ongoing treatment response to therapy because of their correlations with the characteristics of the disease. However, there have been few reports on biomarkers that measure the treatment response to the clinical use of Xiaoyaosan using a metabolomics approach. The current study is aimed at discovering biomarkers and biochemical pathways to facilitate the diagnosis of depression and the efficient evaluation of Xiaoyaosan using plasma metabolomics profiles based on (1)H NMR. METHODS Sixteen depressed patients diagnosed by standard methods (HAMD and CGI-SI) and sixteen healthy volunteers were recruited. (1)H NMR-based metabolomics techniques and multivariate statistical methods were used to analyze the plasma metabolites of the depressed patients before and after treatment and to compare them with healthy controls. RESULTS The plasma levels of trimethylamine oxide, glutamine and lactate in depressed patients increased significantly (p≤0.05) compared with healthy controls, whereas the levels of phenylalanine, valine, alanine, glycine, leucine, citrate, choline, lipids and glucose decreased significantly (p≤0.05). Additionally, alanine, choline, trimethylamine oxide, glutamine, lactate and glucose were returned to normal levels after Xiaoyaosan treatment. These statistically significant perturbations are involved in energy metabolism, amino acid metabolism and gut microbiota metabolism. LIMITATIONS Additional experimentation with gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS) is required to confirm our findings. CONCLUSIONS Application of these biomarkers in clinical practice may help to optimize the diagnosis of depression and to evaluate the efficacy of Xiaoyaosan. Metabolomics is promising as a biomarker discovery tool.
Collapse
Affiliation(s)
- Cai-Chun Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - Yan-Fei Wu
- Department of traditional Chinese medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Guang-Ming Feng
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - Xiao-Xia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - Wen-Jing Hou
- Department of Pharmacy, Beijing Charity Hospital of China Rehabilitation Research Center, Beijing 100068, PR China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, PR China.
| | - Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
35
|
Kurada S, Alkhouri N, Fiocchi C, Dweik R, Rieder F. Review article: breath analysis in inflammatory bowel diseases. Aliment Pharmacol Ther 2015; 41:329-41. [PMID: 25523187 DOI: 10.1111/apt.13050] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/15/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is an urgent need for cheap, reproducible, easy to perform and specific biomarkers for diagnosis, differentiation and stratification of inflammatory bowel disease (IBD) patients. Technical advances allow for the determination of volatile organic compounds in the human breath to differentiate between health and disease. AIM Review and discuss medical literature on volatile organic compounds in exhaled human breath in GI disorders, focusing on diagnosis and differentiation of IBD. METHODS A systematic search in PubMed, Ovid Medline and Scopus was completed using appropriate keywords. In addition, a bibliography search of each article was performed. RESULTS Mean breath pentane, ethane, propane, 1-octene, 3-methylhexane, 1-decene and NO levels were elevated (P < 0.05 to P < 10(-7)) and mean breath 1-nonene, (E)-2-nonene, hydrogen sulphide and methane were decreased in IBD compared to healthy controls (P = 0.003 to P < 0.001). A combined panel of 3 volatile organic compounds (octene, (E)-2-nonene and decene) showed the best discrimination between paediatric IBD and controls (AUC 0.96). Breath condensate cytokines were higher in IBD compared to healthy individuals (P < 0.008). Breath pentane, ethane, propane, isoprene and NO levels correlated with disease activity in IBD patients. Breath condensate interleukin-1β showed an inverse relation with clinical disease activity. CONCLUSIONS Breath analysis in IBD is a promising approach that is not yet ready for routine clinical use, but data from other gastrointestinal diseases suggest the feasibility for use of this technology in clinical practice. Well-designed future trials, incorporating the latest breath detection techniques, need to determine the exact breath metabolome pattern linked to diagnosis and phenotype of IBD.
Collapse
Affiliation(s)
- S Kurada
- Department of Hospital Medicine, Medicine Institute, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
36
|
Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. J Neuroimmunol 2015; 279:25-32. [DOI: 10.1016/j.jneuroim.2015.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/09/2014] [Accepted: 01/05/2015] [Indexed: 12/31/2022]
|
37
|
Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Günther U, Nielsen OH. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals. Metabolomics 2015; 11:122-133. [PMID: 25598765 PMCID: PMC4289537 DOI: 10.1007/s11306-014-0677-3] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022]
Abstract
This study employs spectroscopy-based metabolic profiling of fecal extracts from healthy subjects and patients with active or inactive ulcerative colitis (UC) and Crohn's disease (CD) to substantiate the potential use of spectroscopy as a non-invasive diagnostic tool and to characterize the fecal metabolome in inflammatory bowel disease (IBD). Stool samples from 113 individuals (UC 48, CD 44, controls 21) were analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy (Bruker 600 MHz, Bruker BioSpin, Rheinstetten, Germany). Data were analyzed with principal component analysis and orthogonal-projection to latent structure-discriminant analysis using SIMCA-P + 12 and MATLAB. Significant differences were found in the metabolic profiles making it possible to differentiate between active IBD and controls and between UC and CD. The metabolites holding differential power primarily belonged to a range of amino acids, microbiota-related short chain fatty acids, and lactate suggestive of an inflammation-driven malabsorption and dysbiosis of the normal bacterial ecology. However, removal of patients with intestinal surgery and anti-TNF-α antibody treatment eliminated the discriminative power regarding UC versus CD. This study consequently demonstrates that 1H NMR spectroscopy of fecal extracts is a potential non-invasive diagnostic tool and able to characterize the inflammation-driven changes in the metabolic profiles related to malabsorption and dysbiosis. Intestinal surgery and medication are to be accounted for in future studies, as it seems to be factors of importance in the discriminative process.
Collapse
Affiliation(s)
- Jacob Tveiten Bjerrum
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Yulan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People’s Republic of China
| | - Fuhua Hao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christian Ludwig
- HWB-NMR, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Ulrich Günther
- HWB-NMR, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Ulcerative colitis and Crohn's disease are the two predominant types of inflammatory bowel disease (IBD), affecting over 1.4 million individuals in the United States. IBD results from complex interactions between pathogenic components, including genetic and epigenetic factors, the immune response, and the microbiome, through an unknown sequence of events. The purpose of this review is to describe a systems biology approach to IBD as a novel and exciting methodology aiming at developing novel IBD therapeutics based on the integration of molecular and cellular 'omics' data. RECENT FINDINGS Recent evidence suggested the presence of genetic, epigenetic, transcriptomic, proteomic, and metabolomic alterations in IBD patients. Furthermore, several studies have shown that different cell types including fibroblasts, epithelial, immune, and endothelial cells together with the intestinal microbiota are involved in IBD pathogenesis. Novel computational methodologies have been developed aiming to integrate high-throughput molecular data. SUMMARY A systems biology approach could potentially identify the central regulators (hubs) in the IBD interactome and improve our understanding of the molecular mechanisms involved in IBD pathogenesis. The future IBD therapeutics should be developed on the basis of targeting the central hubs in the IBD network.
Collapse
|
39
|
Dawiskiba T, Deja S, Mulak A, Ząbek A, Jawień E, Pawełka D, Banasik M, Mastalerz-Migas A, Balcerzak W, Kaliszewski K, Skóra J, Barć P, Korta K, Pormańczuk K, Szyber P, Litarski A, Młynarz P. Serum and urine metabolomic fingerprinting in diagnostics of inflammatory bowel diseases. World J Gastroenterol 2014; 20:163-174. [PMID: 24415869 PMCID: PMC3886005 DOI: 10.3748/wjg.v20.i1.163] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/21/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the utility of serum and urine metabolomic analysis in diagnosing and monitoring of inflammatory bowel diseases (IBD).
METHODS: Serum and urine samples were collected from 24 patients with ulcerative colitis (UC), 19 patients with the Crohn’s disease (CD) and 17 healthy controls. The activity of UC was assessed with the Simple Clinical Colitis Activity Index, while the activity of CD was determined using the Harvey-Bradshaw Index. The analysis of serum and urine samples was performed using proton nuclear magnetic resonance (NMR) spectroscopy. All spectra were exported to Matlab for preprocessing which resulted in two data matrixes for serum and urine. Prior to the chemometric analysis, both data sets were unit variance scaled. The differences in metabolite fingerprints were assessed using partial least-squares-discriminant analysis (PLS-DA). Receiver operating characteristic curves and area under curves were used to evaluate the quality and prediction performance of the obtained PLS-DA models. Metabolites responsible for separation in models were tested using STATISTICA 10 with the Mann-Whitney-Wilcoxon test and the Student’s t test (α = 0.05).
RESULTS: The comparison between the group of patients with active IBD and the group with IBD in remission provided good PLS-DA models (P value 0.002 for serum and 0.003 for urine). The metabolites that allowed to distinguish these groups were: N-acetylated compounds and phenylalanine (up-regulated in serum), low-density lipoproteins and very low-density lipoproteins (decreased in serum) as well as glycine (increased in urine) and acetoacetate (decreased in urine). The significant differences in metabolomic profiles were also found between the group of patients with active IBD and healthy control subjects providing the PLS-DA models with a very good separation (P value < 0.001 for serum and 0.003 for urine). The metabolites that were found to be the strongest biomarkers included in this case: leucine, isoleucine, 3-hydroxybutyric acid, N-acetylated compounds, acetoacetate, glycine, phenylalanine and lactate (increased in serum), creatine, dimethyl sulfone, histidine, choline and its derivatives (decreased in serum), as well as citrate, hippurate, trigonelline, taurine, succinate and 2-hydroxyisobutyrate (decreased in urine). No clear separation in PLS-DA models was found between CD and UC patients based on the analysis of serum and urine samples, although one metabolite (formate) in univariate statistical analysis was significantly lower in serum of patients with active CD, and two metabolites (alanine and N-acetylated compounds) were significantly higher in serum of patients with CD when comparing jointly patients in the remission and active phase of the diseases. Contrary to the results obtained from the serum samples, the analysis of urine samples allowed to distinguish patients with IBD in remission from healthy control subjects. The metabolites of importance included in this case up-regulated acetoacetate and down-regulated citrate, hippurate, taurine, succinate, glycine, alanine and formate.
CONCLUSION: NMR-based metabolomic fingerprinting of serum and urine has the potential to be a useful tool in distinguishing patients with active IBD from those in remission.
Collapse
|
40
|
Li P, Cui BT, Duan YN, Zhang FM. Laboratory evaluation and metabolomics in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2014; 22:3592. [DOI: 10.11569/wcjd.v22.i24.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
41
|
Preter VD, Verbeke K. Metabolomics as a diagnostic tool in gastroenterology. World J Gastrointest Pharmacol Ther 2013; 4:97-107. [PMID: 24199025 PMCID: PMC3817290 DOI: 10.4292/wjgpt.v4.i4.97] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/12/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Metabolomics has increasingly been applied in addition to other “omic” approaches in the study of the pathophysiology of different gastrointestinal diseases. Metabolites represent molecular readouts of the cell status reflecting a physiological phenotype. In addition, changes in metabolite concentrations induced by exogenous factors such as environmental and dietary factors which do not affect the genome, are taken into account. Metabolic reactions initiated by the host or gut microbiota can lead to “marker” metabolites present in different biological fluids that allow differentiation between health and disease. Several lines of evidence implicated the involvement of intestinal microbiota in the pathogenesis of inflammatory bowel disease (IBD). Also in irritable bowel syndrome (IBS), a role of an abnormal microbiota composition, so-called dysbiosis, is supported by experimental data. These compositional alterations could play a role in the aetiology of both diseases by altering the metabolic activities of the gut bacteria. Several studies have applied a metabolomic approach to identify these metabolite signatures. However, before translating a potential metabolite biomarker into clinical use, additional validation studies are required. This review summarizes contributions that metabolomics has made in IBD and IBS and presents potential future directions within the field.
Collapse
|