1
|
Regagnon T, Raynaud F, Subra G, Carnac G, Hugon G, Flatres A, Humblot V, Raymond L, Martin J, Carretero E, Clavié M, Saint N, Calas S, Echalier C, Etienne P, Matecki S. A new biofunctionalized and micropatterned PDMS is able to promote stretching induced human myotube maturation. LAB ON A CHIP 2025; 25:1586-1599. [PMID: 39945288 DOI: 10.1039/d4lc00911h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Inter-individual variability in muscle responses to mechanical stress during exercise is poorly understood. Therefore, new cell culture scaffolds are needed to gain deeper insights into the cellular mechanisms underlying the influence of mechanical stress on human myogenic progenitor cells behavior. To this end, we propose the first in vitro model involving uniaxial mechanical stress applied to aligned human primary muscle-derived cells, employing a biocompatible organic-inorganic photostructurable hybrid material (OIPHM) covalently attached to a stretchable PDMS support. Using a laser printing technique with an additive photolithographic process, we optimally micropatterned the PDMS support to create longitudinal microgrooves, achieving well-aligned muscle fibers without significantly affecting their diameter. This support was biofunctionalized with peptide sequences from the ECM, which interact with cellular adhesion receptors and prevent myotube detachment induced by stretching. X-ray photoelectron spectroscopy (XPS) of biofunctionalized PDMS with RGD-derived peptide deposition revealed a significant increase in nitrogen compared to silicon, associated with the presence of a 380 nm thick layer measured by atomic force microscopy (AFM). Upon cell culture, we observed that functionalization with an RGD peptide had a beneficial impact on cell fusion rate and myotube area compared to bare PDMS. At the initiation of the stretching protocol, we observed a three-fold rapid and transient increase in RNA expression for the mechanosensitive ion channel protein piezo and a decrease in the ratio of nuclei expressing myogenin relative to the total nuclei count (43 ± 16% vs. 6 ± 6%, p < 0.01). Compared to day 0 of differentiation, stretching the myotubes induced MHC and Titin colocalization (0.66 ± 0.13 vs. 0.93 ± 0.05, p < 0.01), favoring sarcomere organization and maturation. In this study, we propose and validate an optimized protocol for culturing human primary muscle-derived cells, allowing standardized uniaxial mechanical stress with a biocompatible OIPHM covalently linked to PDMS biofunctionalized with an ECM-derived peptide, to better characterize the behavior of myogenic progenitor cells under mechanical stress in future studies.
Collapse
Affiliation(s)
- Théo Regagnon
- Laboratoire Charles Coulomb, CNRS UMR 5221, Université de Montpellier, CC 074, Place E. Bataillon, F-34095 Montpellier, France
| | - Fabrice Raynaud
- PhyMedExp, CNRS, INSERM, University of Montpellier, F34295 Montpellier, France.
| | - Gilles Subra
- IBMM, CNRS, ENSCM, University Montpellier, Montpellier, France
| | - Gilles Carnac
- PhyMedExp, CNRS, INSERM, University of Montpellier, F34295 Montpellier, France.
| | - Gerald Hugon
- PhyMedExp, CNRS, INSERM, University of Montpellier, F34295 Montpellier, France.
| | - Aurélien Flatres
- Laboratoire Charles Coulomb, CNRS UMR 5221, Université de Montpellier, CC 074, Place E. Bataillon, F-34095 Montpellier, France
| | - Vincent Humblot
- CNRS, FEMTO-ST, Université Franche-Comté, F-25000 Besançon, France
| | - Laurine Raymond
- IBMM, CNRS, ENSCM, University Montpellier, Montpellier, France
| | - Julie Martin
- IBMM, CNRS, ENSCM, University Montpellier, Montpellier, France
| | | | - Margaux Clavié
- IBMM, CNRS, ENSCM, University Montpellier, Montpellier, France
| | - Nathalie Saint
- PhyMedExp, CNRS, INSERM, University of Montpellier, F34295 Montpellier, France.
| | - Sylvie Calas
- Laboratoire Charles Coulomb, CNRS UMR 5221, Université de Montpellier, CC 074, Place E. Bataillon, F-34095 Montpellier, France
| | - Cécile Echalier
- IBMM, CNRS, ENSCM, University Montpellier, Montpellier, France
| | - Pascal Etienne
- Laboratoire Charles Coulomb, CNRS UMR 5221, Université de Montpellier, CC 074, Place E. Bataillon, F-34095 Montpellier, France
| | - Stefan Matecki
- PhyMedExp, CNRS, INSERM, University of Montpellier, F34295 Montpellier, France.
- Service de Physiologie CHU Arnaud de Villeneuve Montpellier, France
| |
Collapse
|
2
|
Kamal KY, Othman MA, Kim JH, Lawler JM. Bioreactor development for skeletal muscle hypertrophy and atrophy by manipulating uniaxial cyclic strain: proof of concept. NPJ Microgravity 2024; 10:62. [PMID: 38862543 PMCID: PMC11167039 DOI: 10.1038/s41526-023-00320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/15/2023] [Indexed: 06/13/2024] Open
Abstract
Skeletal muscles overcome terrestrial, gravitational loading by producing tensile forces that produce movement through joint rotation. Conversely, the microgravity of spaceflight reduces tensile loads in working skeletal muscles, causing an adaptive muscle atrophy. Unfortunately, the design of stable, physiological bioreactors to model skeletal muscle tensile loading during spaceflight experiments remains challenging. Here, we tested a bioreactor that uses initiation and cessation of cyclic, tensile strain to induce hypertrophy and atrophy, respectively, in murine lineage (C2C12) skeletal muscle myotubes. Uniaxial cyclic stretch of myotubes was conducted using a StrexCell® (STB-1400) stepper motor system (0.75 Hz, 12% strain, 60 min day^-1). Myotube groups were assigned as follows: (a) quiescent over 2- or (b) 5-day (no stretch), (c) experienced 2-days (2dHY) or (d) 5-days (5dHY) of cyclic stretch, or (e) 2-days of cyclic stretch followed by a 3-day cessation of stretch (3dAT). Using ß-sarcoglycan as a sarcolemmal marker, mean myotube diameter increased significantly following 2dAT (51%) and 5dAT (94%) vs. matched controls. The hypertrophic, anabolic markers talin and Akt phosphorylation (Thr308) were elevated with 2dHY but not in 3dAT myotubes. Inflammatory, catabolic markers IL-1ß, IL6, and NF-kappaB p65 subunit were significantly higher in the 3dAT group vs. all other groups. The ratio of phosphorylated FoxO3a/total FoxO3a was significantly lower in 3dAT than in the 2dHY group, consistent with elevated catabolic signaling during unloading. In summary, we demonstrated proof-of-concept for a spaceflight research bioreactor, using uniaxial cyclic stretch to produce myotube hypertrophy with increased tensile loading, and myotube atrophy with subsequent cessation of stretch.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA.
| | - Mariam Atef Othman
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Joo-Hyun Kim
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Winter L, Staszewska-Daca I, Zittrich S, Elhamine F, Zrelski MM, Schmidt K, Fischer I, Jüngst C, Schauss A, Goldmann WH, Stehle R, Wiche G. Z-Disk-Associated Plectin (Isoform 1d): Spatial Arrangement, Interaction Partners, and Role in Filamin C Homeostasis. Cells 2023; 12:1259. [PMID: 37174658 PMCID: PMC10177080 DOI: 10.3390/cells12091259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Plectin, a highly versatile cytolinker protein, is crucial for myofiber integrity and function. Accordingly, mutations in the human gene (PLEC) cause several rare diseases, denoted as plectinopathies, with most of them associated with progressive muscle weakness. Of several plectin isoforms expressed in skeletal muscle and the heart, P1d is the only isoform expressed exclusively in these tissues. Using high-resolution stimulated emission depletion (STED) microscopy, here we show that plectin is located within the gaps between individual α-actinin-positive Z-disks, recruiting and bridging them to desmin intermediate filaments (IFs). Loss of plectin in myofibril bundles led to a complete loss of desmin IFs. Loss of Z-disk-associated plectin isoform P1d led to disorganization of muscle fibers and slower relaxation of myofibrils upon mechanical strain, in line with an observed inhomogeneity of muscle ultrastructure. In addition to binding to α-actinin and thereby providing structural support, P1d forms a scaffolding platform for the chaperone-assisted selective autophagy machinery (CASA) by directly interacting with HSC70 and synpo2. In isoform-specific knockout (P1d-KO) mouse muscle and mechanically stretched plectin-deficient myoblasts, we found high levels of undigested filamin C, a bona fide substrate of CASA. Similarly, subjecting P1d-KO mice to forced swim tests led to accumulation of filamin C aggregates in myofibers, highlighting a specific role of P1d in tension-induced proteolysis activated upon high loads of physical exercise and muscle contraction.
Collapse
Affiliation(s)
- Lilli Winter
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; (L.W.); (I.S.-D.); (I.F.)
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.Z.); (K.S.)
| | - Ilona Staszewska-Daca
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; (L.W.); (I.S.-D.); (I.F.)
| | - Stefan Zittrich
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (S.Z.); (F.E.); (R.S.)
| | - Fatiha Elhamine
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (S.Z.); (F.E.); (R.S.)
| | - Michaela M. Zrelski
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.Z.); (K.S.)
| | - Katy Schmidt
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.Z.); (K.S.)
- Core Facility for Cell Imaging & Ultrastructure Research (CIUS), University of Vienna, 1030 Vienna, Austria
| | - Irmgard Fischer
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; (L.W.); (I.S.-D.); (I.F.)
| | - Christian Jüngst
- CECAD Imaging Facility, CECAD Forschungszentrum Cologne, 50931 Cologne, Germany; (C.J.); (A.S.)
| | - Astrid Schauss
- CECAD Imaging Facility, CECAD Forschungszentrum Cologne, 50931 Cologne, Germany; (C.J.); (A.S.)
| | - Wolfgang H. Goldmann
- Department of Physics, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, 91052 Erlangen, Germany;
| | - Robert Stehle
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (S.Z.); (F.E.); (R.S.)
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; (L.W.); (I.S.-D.); (I.F.)
| |
Collapse
|
4
|
Mechanotransduction for Muscle Protein Synthesis via Mechanically Activated Ion Channels. Life (Basel) 2023; 13:life13020341. [PMID: 36836698 PMCID: PMC9962945 DOI: 10.3390/life13020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Cell mechanotransduction, the ability to detect physical forces and convert them into a series of biochemical events, is important for a wide range of physiological processes. Cells express an array of mechanosensors transducing physical forces into intracellular signaling cascades, including ion channels. Ion channels that can be directly activated by mechanical cues are known as mechanically activated (MA), or stretch-activated (SA), channels. In response to repeated exposures to mechanical stimulation in the form of resistance training, enhanced protein synthesis and fiber hypertrophy are elicited in skeletal muscle, whereas a lack of mechanical stimuli due to inactivity/mechanical unloading leads to reduced muscle protein synthesis and fiber atrophy. To date, the role of MA channels in the transduction of mechanical load to intracellular signaling pathways regulating muscle protein synthesis is poorly described. This review article will discuss MA channels in striated muscle, their regulation, and putative roles in the anabolic processes in muscle cells/fibers in response to mechanical stimuli.
Collapse
|
5
|
Moustogiannis A, Philippou A, Zevolis E, Taso OS, Giannopoulos A, Chatzigeorgiou A, Koutsilieris M. Effect of Mechanical Loading of Senescent Myoblasts on Their Myogenic Lineage Progression and Survival. Cells 2022; 11:3979. [PMID: 36552743 PMCID: PMC9776690 DOI: 10.3390/cells11243979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During aging, muscle cell apoptosis increases and myogenesis gradually declines. The impaired myogenic and survival potential of the aged skeletal muscle can be ameliorated by its mechanical loading. However, the molecular responses of aged muscle cells to mechanical loading remain unclear. This study examined the effect of mechanical loading of aged, proliferating, and differentiated myoblasts on the gene expression and signaling responses associated with their myogenic lineage progression and survival. METHODS Control and aged C2C12 cells were cultured on elastic membranes and underwent passive stretching for 12 h at a low frequency (0.25 Hz) and different elongations, varying the strain on days 0 and 10 of myoblast differentiation. Activation of ERK1/2 and Akt, and the expression of focal adhesion kinase (FAK) and key myogenic regulatory factors (MRFs), MyoD and Myogenin, were determined by immunoblotting of the cell lysates derived from stretched and non-stretched myoblasts. Changes in the expression levels of the MRFs, muscle growth, atrophy, and pro-apoptotic factors in response to mechanical loading of the aged and control cells were quantified by real-time qRT-PCR. RESULTS Mechanical stretching applied on myoblasts resulted in the upregulation of FAK both in proliferating (day 0) and differentiated (day 10) cells, as well as in increased phosphorylation of ERK1/2 in both control and aged cells. Moreover, Akt activation and the expression of early differentiation factor MyoD increased significantly after stretching only in the control myoblasts, while the late differentiation factor Myogenin was upregulated in both the control and aged myoblasts. At the transcriptional level, mechanical loading of the proliferating myoblasts led to an increased expression of IGF-1 isoforms and MRFs, and to downregulation of muscle atrophy factors mainly in control cells, as well as in the upregulation of pro-apoptotic factors both in control and aged cells. In differentiated cells, mechanical loading resulted in an increased expression of the IGF-1Ea isoform and Myogenin, and in the downregulation of atrophy and pro-apoptotic factors in both the control and aged cells. CONCLUSIONS This study revealed a diminished beneficial effect of mechanical loading on the myogenic and survival ability of the senescent muscle cells compared with the controls, with a low strain (2%) loading being most effective in upregulating myogenic/anabolic factors and downregulating atrophy and pro-apoptotic genes mainly in the aged myotubes.
Collapse
Affiliation(s)
- Athanasios Moustogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| | - Evangelos Zevolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| | - Orjona S. Taso
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
- School of Biological Sciences, Deanery of Biomedical Sciences, Centre for Discovery Brain Sciences, Edinburgh EH8 9JZ, UK
| | - Antonios Giannopoulos
- Department of Surgical and Perioperative Sciences, Faculty of Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, 115 27 Athens, Greece
| |
Collapse
|
6
|
Azhar M, Wardhani BWK, Renesteen E. The regenerative potential of Pax3/Pax7 on skeletal muscle injury. J Genet Eng Biotechnol 2022; 20:143. [PMID: 36251225 PMCID: PMC9574840 DOI: 10.1186/s43141-022-00429-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/08/2022] [Indexed: 11/30/2022]
Abstract
Background
Skeletal muscle mishaps are the most well-known incidents in society, especially among athletes and the military population. From the various urgency, this accident needs to be cured more quickly. However, the current treatment still has some shortcomings and is less effective. In this case, Paired box 3 and Paired box 7 (Pax3/Pax7) proteins that induce stem cells could potentially be an alternative treatment for skeletal muscle injuries. This paper aimed to analyse the potential treatment of Pax3/Pax7 proteins inducing the stem cell for skeletal muscle injuries. The main body of the abstract We did a narrative review by gathering several scientific journals from several leading platforms like PubMed and Scopus. As common accidents, skeletal muscle disease could be due to workplace and non-workplace causes. The highest risk occurs in the athlete and military environment. The treatment of current skeletal muscle injuries is protection, rest, ice, compression, and elevation (PRICE), non-steroidal anti-inflammatory drugs (NSAIDs), and mechanical stimulation. However, it is considered less effective, especially in NSAIDs, inhibiting myogenic cell proliferation. The current finding indicates that the stem cells have markers known as Pax3/Pax7. The role of both markers in muscle injury, Pax3/Pax7, as transcription factors will induce cell division by H3K4 methylation mechanisms and chromatin modifications that stimulate gene activation. Conclusion Regulation by Pax3/Pax7 factors that affect stem cells and stem cell proliferation is one of the alternative treatments. This regulation can accelerate the healing of injury victims, especially injuries to the skeletal muscles. Finally, after being compared, Pax3/Pax7 induces stem cells to have the potential to be one of the skeletal muscle injury treatments. Keywords Pax3 and Pax7, Pax3/Pax7, Skeletal muscle, Athlete, Stem cells, Cell proliferation, Injuries.
Collapse
Affiliation(s)
- Muhamad Azhar
- Faculty of Military Pharmacy, The Republic of Indonesia Defense University, Bogor, 16810, West Java, Indonesia
| | | | - Editha Renesteen
- Faculty of Military Pharmacy, The Republic of Indonesia Defense University, Bogor, 16810, West Java, Indonesia.
| |
Collapse
|
7
|
Germain P, Delalande A, Pichon C. Role of Muscle LIM Protein in Mechanotransduction Process. Int J Mol Sci 2022; 23:ijms23179785. [PMID: 36077180 PMCID: PMC9456170 DOI: 10.3390/ijms23179785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
The induction of protein synthesis is crucial to counteract the deconditioning of neuromuscular system and its atrophy. In the past, hormones and cytokines acting as growth factors involved in the intracellular events of these processes have been identified, while the implications of signaling pathways associated with the anabolism/catabolism ratio in reference to the molecular mechanism of skeletal muscle hypertrophy have been recently identified. Among them, the mechanotransduction resulting from a mechanical stress applied to the cell appears increasingly interesting as a potential pathway for therapeutic intervention. At present, there is an open question regarding the type of stress to apply in order to induce anabolic events or the type of mechanical strain with respect to the possible mechanosensing and mechanotransduction processes involved in muscle cells protein synthesis. This review is focused on the muscle LIM protein (MLP), a structural and mechanosensing protein with a LIM domain, which is expressed in the sarcomere and costamere of striated muscle cells. It acts as a transcriptional cofactor during cell proliferation after its nuclear translocation during the anabolic process of differentiation and rebuilding. Moreover, we discuss the possible opportunity of stimulating this mechanotransduction process to counteract the muscle atrophy induced by anabolic versus catabolic disorders coming from the environment, aging or myopathies.
Collapse
Affiliation(s)
- Philippe Germain
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Anthony Delalande
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Chantal Pichon
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, France
- Correspondence:
| |
Collapse
|
8
|
Ren D, Song J, Liu R, Zeng X, Yan X, Zhang Q, Yuan X. Molecular and Biomechanical Adaptations to Mechanical Stretch in Cultured Myotubes. Front Physiol 2021; 12:689492. [PMID: 34408658 PMCID: PMC8365838 DOI: 10.3389/fphys.2021.689492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Myotubes are mature muscle cells that form the basic structural element of skeletal muscle. When stretching skeletal muscles, myotubes are subjected to passive tension as well. This lead to alterations in myotube cytophysiology, which could be related with muscular biomechanics. During the past decades, much progresses have been made in exploring biomechanical properties of myotubes in vitro. In this review, we integrated the studies focusing on cultured myotubes being mechanically stretched, and classified these studies into several categories: amino acid and glucose uptake, protein turnover, myotube hypertrophy and atrophy, maturation, alignment, secretion of cytokines, cytoskeleton adaption, myotube damage, ion channel activation, and oxidative stress in myotubes. These biomechanical adaptions do not occur independently, but interconnect with each other as part of the systematic mechanoresponse of myotubes. The purpose of this review is to broaden our comprehensions of stretch-induced muscular alterations in cellular and molecular scales, and to point out future challenges and directions in investigating myotube biomechanical manifestations.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Jing Song
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ran Liu
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuemin Zeng
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Somers SM, Grayson WL. Protocol for the Use of a Novel Bioreactor System for Hydrated Mechanical Testing, Strained Sterile Culture, and Force of Contraction Measurement of Tissue Engineered Muscle Constructs. Front Cell Dev Biol 2021; 9:661036. [PMID: 33928087 PMCID: PMC8078104 DOI: 10.3389/fcell.2021.661036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/17/2021] [Indexed: 12/05/2022] Open
Abstract
Bioreactor systems are built as controlled environments for biological processes and utilized in the field of tissue engineering to apply mechanical, spatial, and chemical cues to developing tissue grafts. Often the systems are applied to instruct differentiation and maturation of the cells grown inside. Perhaps the most obvious targets for strain and compression-based bioreactors are mechanically active tissues, as it is hypothesized that biomimetic mechanical environments instruct immature cells to form differentiated tissues. One such tissue, skeletal muscle, has been identified as a key candidate for strain application due to the close structure-function relationship of myofibers. Here we detail the multiple uses of a custom-built bioreactor system in combination with electrospun fibrin microfibers for muscle tissue engineering. Outlined below are the methods used in the system to test the mechanical properties of hydrogel-based scaffolds in an aqueous environment, including Young’s modulus and poroelasticity. Additionally, we demonstrate the application of tensile strain to sterile cell cultures grown on electrospun scaffolds and perform end-point testing of tissue contractility with the addition of an electrode.
Collapse
Affiliation(s)
- Sarah M Somers
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Warren L Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Material Sciences and Engineering, Johns Hopkins University School of Engineering, Baltimore, MD, United States.,Department of Chemical and Biomolecular, Johns Hopkins University School of Engineering, Baltimore, MD, United States.,Institute for NanoBioTechnology (INBT), Johns Hopkins University School of Engineering, Baltimore, MD, United States
| |
Collapse
|
10
|
A Novel Bioreactor for the Mechanical Stimulation of Clinically Relevant Scaffolds for Muscle Tissue Engineering Purposes. Processes (Basel) 2021. [DOI: 10.3390/pr9030474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Muscular tissue regeneration may be enhanced in vitro by means of mechanical stimulation, inducing cellular alignment and the growth of functional fibers. In this work, a novel bioreactor is designed for the radial stimulation of porcine-derived diaphragmatic scaffolds aiming at the development of clinically relevant tissue patches. A Finite Element (FE) model of the bioreactor membrane is developed, considering two different methods for gripping muscular tissue patch during the stimulation, i.e., suturing and clamping with pliers. Tensile tests are carried out on fresh and decellularized samples of porcine diaphragmatic tissue, and a fiber-reinforced hyperelastic constitutive model is assumed to describe the mechanical behavior of tissue patches. Numerical analyses are carried out by applying pressure to the bioreactor membrane and evaluating tissue strain during the stimulation phase. The bioreactor designed in this work allows one to mechanically stimulate tissue patches in a radial direction by uniformly applying up to 30% strain. This can be achieved by adopting pliers for tissue clamping. Contrarily, the use of sutures is not advisable, since high strain levels are reached in suturing points, exceeding the physiological strain range and possibly leading to tissue laceration. FE analysis allows the optimization of the bioreactor configuration in order to ensure an efficient transduction of mechanical stimuli while preventing tissue damage.
Collapse
|
11
|
Victor EC, Goulardins J, Cardoso VO, Silva REC, Brugnera A, Bussadori SK, Fernandes KPS, Mesquita-Ferrari RA. Effect of Photobiomodulation in Lipopolysaccharide-Treated Myoblasts. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 39:30-37. [PMID: 33332202 DOI: 10.1089/photob.2019.4782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: To evaluate the effect of photobiomodulation (PBM) on cell viability, synthesis of nitric oxide (NO), and interleukin (IL)-6 inflammatory cytokine production in myoblasts cultured in the presence of lipopolysaccharides (LPSs). Methods: C2C12 myoblasts were treated with LPS and PBM using different parameters (wavelength: 780 nm; beam spot: 0.04 cm2; power output: 10 or 40 mW; energy density: 5 or 20 J/cm2; and 20-sec exposure time). Nonirradiated cells were used to the control group. Results: An increase in cell viability was found in both LPS groups in comparison with the control. PBM with the higher power output (40 mW) induced a reduction in cell viability. PBM also modulated the synthesis of NO in the myoblasts, but did not alter the expression of IL-6. Conclusions: Based on these findings, PBM is capable of modulating the cell viability and the production of NO in LPS-treated myoblasts and it is, therefore, a possible tool for the treatment of muscle injury caused by infection.
Collapse
Affiliation(s)
- Elis Cabral Victor
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Juliana Goulardins
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Vinicius Oliveira Cardoso
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Aldo Brugnera
- Biomedical Engineer Research Center (CEB), Universidade Camilo Castelo Branco, São José dos Campos, Brazil
| | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.,Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.,Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| |
Collapse
|
12
|
Shenkman BS. How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 2020; 21:E5037. [PMID: 32708817 PMCID: PMC7404025 DOI: 10.3390/ijms21145037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
A mammalian soleus muscle along with other "axial" muscles ensures the stability of the body under the Earth's gravity. In rat experiments with hindlimb suspension, zero-gravity parabolic flights as well as in human dry immersion studies, a dramatic decrease in the electromyographic (EMG) activity of the soleus muscle has been repeatedly shown. Most of the motor units of the soleus muscle convert from a state of activity to a state of rest which is longer than under natural conditions. And the state of rest gradually converts to the state of disuse. This review addresses a number of metabolic events that characterize the earliest stage of the cessation of the soleus muscle contractile activity. One to three days of mechanical unloading are accompanied by energy-dependent dephosphorylation of AMPK, accumulation of the reactive oxygen species, as well as accumulation of resting myoplasmic calcium. In this transition period, a rapid rearrangement of the various signaling pathways occurs, which, primarily, results in a decrease in the rate of protein synthesis (primarily via inhibition of ribosomal biogenesis and activation of endogenous inhibitors of mRNA translation, such as GSK3β) and an increase in proteolysis (via upregulation of muscle-specific E3-ubiquitin ligases).
Collapse
Affiliation(s)
- Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia
| |
Collapse
|
13
|
Moustogiannis A, Philippou A, Zevolis E, Taso O, Chatzigeorgiou A, Koutsilieris M. Characterization of Optimal Strain, Frequency and Duration of Mechanical Loading on Skeletal Myotubes' Biological Responses. In Vivo 2020; 34:1779-1788. [PMID: 32606147 PMCID: PMC7439881 DOI: 10.21873/invivo.11972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM Mechanical loading of differentiated myoblasts in vitro may mimic loading patterns of skeletal muscle in vivo. However, it is still uncharacterized the loading conditions that can produce the most effective muscle cells' biological responses, in vitro. This study investigated the effects of different loading protocols on the expression of myogenic regulatory factors, anabolic, atrophy and pro-apoptotic factors in skeletal myotubes. MATERIALS AND METHODS C2C12 myoblasts were differentiated and underwent various stretching protocols by altering their elongation, frequency and duration, utilizing an in vitro cell tension system. The loading-induced expression changes of MyoD, Myogenin, MRF4, IGF-1 isoforms, Murf1, Atrogin, Myostatin, Foxo and Fuca were measured by Real Time-PCR. RESULTS Stretching by 2% elongation at 0.25 Hz for 12 h was overall the most effective in inducing beneficial responses. CONCLUSION A low strain, low frequency intermediate duration stretching can most effectively up-regulate myogenic/anabolic factors and down-regulate pro-apoptotic and atrophy genes in myotubes.
Collapse
Affiliation(s)
- Athanasios Moustogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Zevolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Orjona Taso
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Carlson NS, Frediani JK, Corwin EJ, Dunlop A, Jones D. Metabolic Pathways Associated With Term Labor Induction Course in African American Women. Biol Res Nurs 2020; 22:157-168. [PMID: 31983215 PMCID: PMC7273804 DOI: 10.1177/1099800419899730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate differences in the metabolic pathways activated in late-pregnancy serum samples among African American women who went on to have term (≥37 weeks) labor induction requiring high total oxytocin doses to complete first-stage labor compared to those in similar women with low-oxytocin labor inductions. STUDY DESIGN Case-control study (N = 27 women with labor induction with successful cervical ripening: 13 requiring the highest total doses of synthetic oxytocin to progress from 4- to 10-cm cervical dilation and 14 requiring the lowest total doses) with groups balanced on parity and gestational age. Serum samples obtained between 24 and 30 weeks' gestation were analyzed using ultra-high-resolution metabolomics. Differentially expressed metabolites between high-oxytocin induction cases and low-oxytocin induction comparison subjects were evaluated using linear regression with xmsPANDA. Metabolic pathways analysis was conducted using Mummichog Version 2.0, with discriminating metabolites annotated using xMSannotator Version 1.3. RESULTS Labor processes were similar by group with the exception that cases received over 6 times more oxytocin between 4- and 10-cm cervical dilation than comparison women. Induction requiring high total doses of synthetic oxytocin was associated with late-pregnancy serum levels of metabolites from the linoleate and fatty acid activation pathways in term, African American women. CONCLUSION Serum levels of several lipid metabolites predicted more complicated labor induction involving higher doses of synthetic oxytocin to complete first-stage labor. Further investigation in larger, more diverse cohorts of women is needed to identify potential targets to prevent failed labor induction.
Collapse
Affiliation(s)
- Nicole S. Carlson
- Nell Hodgson Woodruff School of Nursing, Emory University,
Atlanta, GA, USA
| | | | - Elizabeth J. Corwin
- Nell Hodgson Woodruff School of Nursing, Emory University,
Atlanta, GA, USA
- Department of Physiology, School of Medicine, Emory
University, Atlanta, GA, USA
| | - Anne Dunlop
- Nell Hodgson Woodruff School of Nursing, Emory University,
Atlanta, GA, USA
- Department of Family and Preventive Medicine, Emory
University, Atlanta, GA, USA
- Department of Epidemiology, Emory University, Atlanta, GA,
USA
| | - Dean Jones
- Division of Pulmonary, Allergy, and Critical Care, Emory
University, Atlanta, GA, USA
| |
Collapse
|
15
|
Carlson NS, Frediani JK, Corwin EJ, Dunlop A, Jones D. Metabolomic Pathways Predicting Labor Dystocia by Maternal Body Mass Index. AJP Rep 2020; 10:e68-e77. [PMID: 32140295 PMCID: PMC7056397 DOI: 10.1055/s-0040-1702928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/20/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives The purpose of this study was to evaluate the metabolic pathways activated in the serum of African-American women during late pregnancy that predicted term labor dystocia. Study Design Matched case-control study ( n = 97; 48 cases of term labor dystocia and 49 normal labor progression controls) with selection based on body mass index (BMI) at hospital admission and maternal age. Late pregnancy serum samples were analyzed using ultra-high-resolution metabolomics. Differentially expressed metabolic features and pathways between cases experiencing term labor dystocia and normal labor controls were evaluated in the total sample, among women who were obese at the time of labor (BMI ≥ 30 kg/m2), and among women who were not obese. Results Labor dystocia was predicted by different metabolic pathways in late pregnancy serum among obese (androgen/estrogen biosynthesis) versus nonobese African-American women (fatty acid activation, steroid hormone biosynthesis, bile acid biosynthesis, glycosphingolipid metabolism). After adjusting for maternal BMI and age in the total sample, labor dystocia was predicted by tryptophan metabolic pathways in addition to C21 steroid hormone, glycosphingolipid, and androgen/estrogen metabolism. Conclusion Metabolic pathways consistent with lipotoxicity, steroid hormone production, and tryptophan metabolism in late pregnancy serum were significantly associated with term labor dystocia in African-American women.
Collapse
Affiliation(s)
- Nicole S. Carlson
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, Georgia
| | | | - Elizabeth J. Corwin
- Department of Physiology, Columbia University School of Nursing, New York, New York
| | - Anne Dunlop
- Departments of Family and Preventive Medicine, Epidemiology, and Nursing, Emory University, Atlanta, Georgia
| | - Dean Jones
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
16
|
Somers SM, Zhang NY, Morrissette-McAlmon JB, Tran K, Mao HQ, Grayson WL. Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes. Acta Biomater 2019; 94:232-242. [PMID: 31212110 DOI: 10.1016/j.actbio.2019.06.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Engineered skeletal muscle grafts may be employed in various applications including the treatment of volumetric muscle loss (VML) and pharmacological drug screening. To recapitulate the well-defined structure of native muscle, tensile strains have been applied to the grafts. In this study, we cultured C2C12 murine myoblasts on electrospun fibrin microfiber bundles for 7 days in custom-built bioreactor units and investigated the impact of strain regimen and delayed onset of tensile straining on myogenic outcomes. The substrate topography induced uniaxial alignment of cells in all (strained and unstrained) groups. The engineered grafts in strained groups were subjected to 10% strain amplitude for 6 h per day. We found that both static and cyclic uniaxial strains resulted in similar morphological and gene expression outcomes. However, relative to 0% strain groups, there were stark increases in myotube diameter, myosin heavy chain (MHC) coverage, and expression of key myogenic genes (Pax 7, Troponin, MHC I, MHC IIb, MHC IIx) only if strain was applied at Days 5-7 rather than Days 3-7. This finding suggests that a critical indicator of myogenic improvement under strain in our system is the phenotype of the cells at the onset of strain and suggests that this is a key parameter that should be considered in studies where myoblasts are subjected to biophysical stimulation to promote tissue formation. STATEMENT OF SIGNIFICANCE: This is the first report on the impact of the timing of the initial application of mechanical strain for improving the myogenic outcomes of 3D engineered skeletal muscle grafts. In this work, immature skeletal myoblasts were grown on topographically aligned, electrospun fibrin microfiber bundles and we applied 10% uniaxial static or cyclic strain. We concluded that the maturity of myoblasts prior to strain application, rather than strain waveform, was the primary predictor of improved myogenic outcomes, including myogenic gene expression and myotube morphology. Elucidating the optimal conditions for strain application is a vital step in recapitulating physiological myogenic properties in tissue engineered skeletal muscle constructs, with applications for treating volumetric muscle loss, disease modeling, and drug testing.
Collapse
|
17
|
Tominari T, Ichimaru R, Taniguchi K, Yumoto A, Shirakawa M, Matsumoto C, Watanabe K, Hirata M, Itoh Y, Shiba D, Miyaura C, Inada M. Hypergravity and microgravity exhibited reversal effects on the bone and muscle mass in mice. Sci Rep 2019; 9:6614. [PMID: 31036903 PMCID: PMC6488638 DOI: 10.1038/s41598-019-42829-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/08/2019] [Indexed: 11/15/2022] Open
Abstract
Spaceflight is known to induce severe systemic bone loss and muscle atrophy of astronauts due to the circumstances of microgravity. We examined the influence of artificially produced 2G hypergravity on mice for bone and muscle mass with newly developed centrifuge device. We also analyzed the effects of microgravity (mostly 0G) and artificial produced 1G in ISS (international space station) on mouse bone mass. Experiment on the ground, the bone mass of humerus, femur and tibia was measured using micro-computed tomography (μCT), and the all bone mass was significantly increased in 2G compared with 1G control. In tibial bone, the mRNA expression of bone formation related genes such as Osx and Bmp2 was elevated. The volume of triceps surae muscle was also increased in 2G compared with 1G control, and the mRNA expression of myogenic factors such as Myod and Myh1 was elevated by 2G. On the other hand, microgravity in ISS significantly induced the loss of bone mass on humerus and tibia, compared with artificial 1G induced by centrifugation. Here, we firstly report that bone and muscle mass are regulated by the gravity with loaded force in both of positive and negative on the ground and in the space.
Collapse
Affiliation(s)
- Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Ryota Ichimaru
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Keita Taniguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Akane Yumoto
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan
| | - Masaki Shirakawa
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Kenta Watanabe
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshifumi Itoh
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.,Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
18
|
Europa TA, Nel M, Heckmann JM. A review of the histopathological findings in myasthenia gravis: Clues to the pathogenesis of treatment-resistance in extraocular muscles. Neuromuscul Disord 2019; 29:381-387. [PMID: 31029532 DOI: 10.1016/j.nmd.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 03/20/2019] [Indexed: 12/28/2022]
Abstract
In myasthenia gravis autoantibodies target components of the neuromuscular junction causing variable degrees of weakness. In most cases, autoantibodies trigger complement-mediated endplate damage and extraocular muscles may be most susceptible. A proportion of MG cases develop treatment-resistant ophthalmoplegia. We reviewed publications spanning 65 years reporting the histopathological findings in the muscles and extraocular muscles of myasthenic patients to determine whether pathological changes in extraocular muscles differ from non-ocular muscles. As extraocular muscles represent a unique muscle allotype we also compared their histopathology in myasthenia to those in strabismus. We found that in myasthenia gravis, the non-ocular muscles frequently demonstrate neurogenic changes regardless of myasthenic serotype. Mitochondrial stress/damage was also frequent in myasthenic muscles and possibly more evident in muscle-specific kinase antibody-positive MG. Although myasthenia-associated paralysed extraocular muscles demonstrated prominent fibro-fatty replacement and mitochondrial alterations, these features appeared commonly in paralysed extraocular muscles of any cause. We postulate that extraocular muscles may be more susceptible than limb muscles to poor contractility as a consequence of myasthenia, resulting in a cascade of atrophy signaling pathways and altered mitochondrial homeostasis which contribute to the tipping point in developing treatment-resistant myasthenic ophthalmoplegia. Early strategies to improve force generation in extraocular muscles are critical.
Collapse
Affiliation(s)
- Tarin A Europa
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Melissa Nel
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jeannine M Heckmann
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Neurology Division, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
19
|
Kim H, Kim MC, Asada HH. Extracellular matrix remodelling induced by alternating electrical and mechanical stimulations increases the contraction of engineered skeletal muscle tissues. Sci Rep 2019; 9:2732. [PMID: 30804393 PMCID: PMC6389954 DOI: 10.1038/s41598-019-39522-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Engineered skeletal muscles are inferior to natural muscles in terms of contractile force, hampering their potential use in practical applications. One major limitation is that the extracellular matrix (ECM) not only impedes the contraction but also ineffectively transmits the forces generated by myotubes to the load. In the present study, ECM remodelling improves contractile force in a short time, and a coordinated, combined electrical and mechanical stimulation induces the desired ECM remodelling. Notably, the application of single and combined stimulations to the engineered muscles remodels the structure of their ECM networks, which determines the mechanical properties of the ECM. Myotubes in the tissues are connected in parallel and in series to the ECM. The stiffness of the parallel ECM must be low not to impede contraction, while the stiffness of the serial ECM must be high to transmit the forces to the load. Both the experimental results and the mechanistic model suggest that the combined stimulation through coordination reorients the ECM fibres in such a way that the parallel ECM stiffness is reduced, while the serial ECM stiffness is increased. In particular, 3 and 20 minutes of alternating electrical and mechanical stimulations increase the force by 18% and 31%, respectively.
Collapse
Affiliation(s)
- Hyeonyu Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Min-Cheol Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - H Harry Asada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- BioSystem and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
20
|
Ergene E, Yagci BS, Gokyer S, Eyidogan A, Aksoy EA, Yilgor Huri P. A novel polyurethane-based biodegradable elastomer as a promising material for skeletal muscle tissue engineering. ACTA ACUST UNITED AC 2019; 14:025014. [PMID: 30665203 DOI: 10.1088/1748-605x/ab007a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A key challenge in skeletal muscle tissue engineering is the choice of a proper scaffolding material as it should demonstrate elastic behavior to withstand and support the dynamic loading of the tissue microenvironment while being biodegradable and biocompatible. In this study, we tested the applicability of a novel biodegradable polyurethane (PU) elastomer chain extended with fibrinogen (Fib) to fulfill these requirements. Biodegradable polyurethane-fibrinogen (PU-Fib) elastomers were synthesized by step-wise condensation polymerization. Firstly, PU prepolymer was synthesized and then Fib was integrated into PU prepolymer during the second step of polymerization. The chemical, thermal, viscoelastic, mechanical and biodegradation properties of PU-Fib were characterized. FTIR-ATR spectrum showed amide bands specific to PU and Fib, DSC thermograms showed the suitable integration between the components. Dynamic mechanical analysis revealed Tg and Tα* transitions at 64.5 °C and 38.4 °C, respectively. PU and Fib had shown chemically compatible interactions and when compared to PCL, PU-Fib possessed viscoelastic properties more suitable to the native tissue. PU-Fib films were produced and seeded with C2C12 mouse myoblasts. Uniaxial cyclic stretch was applied to the cell seeded films for 21 d to mimic the native dynamic tissue microenvironment. Cell proliferation, viability and the expression of muscle-specific markers (immunofluorescent staining for myogenin and myosin heavy chain) were assessed. Myoblasts proliferated well on PU-Fib films; aligned parallel along their long edge, and express myogenic markers under biomimetic dynamic culture. It was possible to culture myoblasts with high viability on PU-Fib elastomeric films mimicking native muscle microenvironment.
Collapse
Affiliation(s)
- Emre Ergene
- Ankara University Faculty of Engineering, Department of Biomedical Engineering, Ankara, Turkey. Ankara University Biotechnology Institute, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
21
|
In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflugers Arch 2018; 471:413-429. [PMID: 30291430 DOI: 10.1007/s00424-018-2210-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Exercise provides a cornerstone in the prevention and treatment of several chronic diseases. The use of in vivo exercise models alone cannot fully establish the skeletal muscle-specific mechanisms involved in such health-promoting effects. As such, models that replicate exercise-like effects in vitro provide useful tools to allow investigations that are not otherwise possible in vivo. In this review, we provide an overview of experimental models currently used to induce exercise-like effects in skeletal muscle in vitro. In particular, the appropriateness of electrical pulse stimulation and several pharmacological compounds to resemble exercise, as well as important technical considerations, are addressed. Each model covered herein provides a useful tool to investigate different aspects of exercise with a level of abstraction not possible in vivo. That said, none of these models are perfect under all circumstances, and the choice of model (and terminology) used should be informed by the specific research question whilst accounting for the several inherent limitations of each model. Further work is required to develop and optimise the current experimental models used, such as combination with complementary techniques during treatment, and thereby improve their overall utility and impact within muscle biology research.
Collapse
|
22
|
Somers SM, Spector AA, DiGirolamo DJ, Grayson WL. Biophysical Stimulation for Engineering Functional Skeletal Muscle. TISSUE ENGINEERING PART B-REVIEWS 2018; 23:362-372. [PMID: 28401807 DOI: 10.1089/ten.teb.2016.0444] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue engineering is a promising therapeutic strategy to regenerate skeletal muscle. However, ex vivo cultivation methods typically result in a low differentiation efficiency of stem cells as well as grafts that resemble the native tissues morphologically, but lack contractile function. The application of biomimetic tensile strain provides a potent stimulus for enhancing myogenic differentiation and engineering functional skeletal muscle grafts. We reviewed integrin-dependent mechanisms that potentially link mechanotransduction pathways to the upregulation of myogenic genes. Yet, gaps in our understanding make it challenging to use these pathways to theoretically determine optimal ex vivo strain regimens. A multitude of strain protocols have been applied to in vitro cultures for the cultivation of myogenic progenitors (adipose- and bone marrow-derived stem cells and satellite cells) and transformed murine myoblasts, C2C12s. Strain regimens are characterized by orientation, amplitude, and time-dependent factors (effective frequency, duration, and the rest period between successive strain cycles). Analysis of published data has identified possible minimum/maximum values for these parameters and suggests that uniaxial strains may be more potent than biaxial strains, possibly because they more closely mimic physiologic strain profiles. The application of these biophysical stimuli for engineering 3D skeletal muscle grafts is nontrivial and typically requires custom-designed bioreactors used in combination with biomaterial scaffolds. Consideration of the physical properties of these scaffolds is critical for effective transmission of the applied strains to encapsulated cells. Taken together, these studies demonstrate that biomimetic tensile strain generally results in improved myogenic outcomes in myogenic progenitors and differentiated myoblasts. However, for 3D systems, the optimization of the strain regimen may require the entire system including cells, biomaterials, and bioreactor, to be considered in tandem.
Collapse
Affiliation(s)
- Sarah M Somers
- 1 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Translational Tissue Engineering Center, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Alexander A Spector
- 1 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Translational Tissue Engineering Center, Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Institute for Nanobiotechnology (INBT), Johns Hopkins University Whiting School of Engineering , Baltimore, Maryland
| | - Douglas J DiGirolamo
- 4 Department of Orthopedics, Johns Hopkins University School of Medicine , Baltimore Maryland
| | - Warren L Grayson
- 1 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Translational Tissue Engineering Center, Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Institute for Nanobiotechnology (INBT), Johns Hopkins University Whiting School of Engineering , Baltimore, Maryland.,5 Department of Material Sciences and Engineering, Johns Hopkins University , Whiting School of Engineering, Baltimore, Maryland
| |
Collapse
|
23
|
Falk DJ, Galatas T, Todd AG, Soto EP, Harris AB, Notterpek L. Locomotor and skeletal muscle abnormalities in trembler J neuropathic mice. Muscle Nerve 2017; 57:664-671. [PMID: 29023846 DOI: 10.1002/mus.25987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2017] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Patients with hereditary peripheral neuropathies exhibit characteristic deformities of the hands and feet and have difficulty ambulating. To examine to what extent neuropathic animals recapitulate these deficits, we studied trembler J (TrJ) mice, which model early-onset demyelinating neuropathy. METHODS A cohort of 4-month-old female wild type and neuropathic mice were evaluated for locomotor measurements, neuromuscular function, and skeletal muscle proteolysis and morphometry. RESULTS Utilizing the DigiGait imaging system, we identified pronounced alterations in forepaw and hindpaw angles and a decrease in hindpaw area on the treadmill in neuropathic rodents. Torque production by the tibialis anterior (TA) muscle was significantly weakened and was paralleled by a decrease in myofiber cross-sectional area and an increase in muscle tissue proteolysis. DISCUSSION Our findings in TrJ mice reflect the phenotypic presentation of the human neuropathy in which patients exhibit weakness of the TA muscle resulting in foot drop and locomotor abnormalities. Muscle Nerve 57: 664-671, 2018.
Collapse
Affiliation(s)
- Darin J Falk
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Box 100244 Gainesville, Florida, 32610-0244, USA.,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, 32610-0244, USA
| | - Tori Galatas
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Box 100244 Gainesville, Florida, 32610-0244, USA
| | - Adrian G Todd
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, 32610-0244, USA
| | - Elliott P Soto
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Box 100244 Gainesville, Florida, 32610-0244, USA
| | - Andrew B Harris
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Box 100244 Gainesville, Florida, 32610-0244, USA
| | - Lucia Notterpek
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Box 100244 Gainesville, Florida, 32610-0244, USA.,Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Shi D, Gu R, Song Y, Ding M, Huang T, Guo M, Xiao J, Huang W, Liao H. Calcium/Calmodulin-Dependent Protein Kinase IV (CaMKIV) Mediates Acute Skeletal Muscle Inflammatory Response. Inflammation 2017; 41:199-212. [DOI: 10.1007/s10753-017-0678-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Mennens SFB, van den Dries K, Cambi A. Role for Mechanotransduction in Macrophage and Dendritic Cell Immunobiology. Results Probl Cell Differ 2017; 62:209-242. [PMID: 28455711 DOI: 10.1007/978-3-319-54090-0_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue homeostasis is not only controlled by biochemical signals but also through mechanical forces that act on cells. Yet, while it has long been known that biochemical signals have profound effects on cell biology, the importance of mechanical forces has only been recognized much more recently. The types of mechanical stress that cells experience include stretch, compression, and shear stress, which are mainly induced by the extracellular matrix, cell-cell contacts, and fluid flow. Importantly, macroscale tissue deformation through stretch or compression also affects cellular function.Immune cells such as macrophages and dendritic cells are present in almost all peripheral tissues, and monocytes populate the vasculature throughout the body. These cells are unique in the sense that they are subject to a large variety of different mechanical environments, and it is therefore not surprising that key immune effector functions are altered by mechanical stimuli. In this chapter, we describe the different types of mechanical signals that cells encounter within the body and review the current knowledge on the role of mechanical signals in regulating macrophage, monocyte, and dendritic cell function.
Collapse
Affiliation(s)
- Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Ilaiwy A, Quintana MT, Bain JR, Muehlbauer MJ, Brown DI, Stansfield WE, Willis MS. Cessation of biomechanical stretch model of C2C12 cells models myocyte atrophy and anaplerotic changes in metabolism using non-targeted metabolomics analysis. Int J Biochem Cell Biol 2016; 79:80-92. [PMID: 27515590 DOI: 10.1016/j.biocel.2016.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/20/2016] [Accepted: 08/07/2016] [Indexed: 12/18/2022]
Abstract
Studies of skeletal muscle disuse, either in patients on bed rest or experimentally in animals (immobilization), have demonstrated that decreased protein synthesis is common, with transient parallel increases in protein degradation. Muscle disuse atrophy involves a process of transition from slow to fast myosin fiber types. A shift toward glycolysis, decreased capacity for fat oxidation, and substrate accumulation in atrophied muscles have been reported, as has accommodation of the liver with an increased gluconeogenic capacity. Recent studies have modeled skeletal muscle disuse by using cyclic stretch of differentiated myotubes (C2C12), which mimics the loading pattern of mature skeletal muscle, followed by cessation of stretch. We utilized this model to determine the metabolic changes using non-targeted metabolomics analysis of the media. We identified increases in amino acids resulting from muscle atrophy-induced protein degradation (largely sarcomere) that occurs with muscle atrophy that are involved in feeding the Kreb's cycle through anaplerosis. Specifically, we identified increased alanine/proline metabolism (significantly elevated proline, alanine, glutamine, and asparagine) and increased α-ketoglutaric acid, the proposed Kreb's cycle intermediate being fed by the alanine/proline metabolic anaplerotic mechanism. Additionally, several unique pathways not clearly delineated in previous studies of muscle unloading were seen, including: (1) elevated keto-acids derived from branched chain amino acids (i.e. 2-ketoleucine and 2-keovaline), which feed into a metabolic pathway supplying acetyl-CoA and 2-hydroxybutyrate (also significantly increased); and (2) elevated guanine, an intermediate of purine metabolism, was seen at 12h unloading. Given the interest in targeting different aspects of the ubiquitin proteasome system to inhibit protein degradation, this C2C12 system may allow the identification of direct and indirect alterations in metabolism due to anaplerosis or through other yet to be identified mechanisms using a non-targeted metabolomics approach.
Collapse
Affiliation(s)
- Amro Ilaiwy
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Megan T Quintana
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - David I Brown
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | | | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Goodman CA, Hornberger TA, Robling AG. Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms. Bone 2015; 80:24-36. [PMID: 26453495 PMCID: PMC4600534 DOI: 10.1016/j.bone.2015.04.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/18/2015] [Accepted: 04/07/2015] [Indexed: 12/16/2022]
Abstract
The development and maintenance of skeletal muscle and bone mass is critical for movement, health and issues associated with the quality of life. Skeletal muscle and bone mass are regulated by a variety of factors that include changes in mechanical loading. Moreover, bone mass is, in large part, regulated by muscle-derived mechanical forces and thus by changes in muscle mass/strength. A thorough understanding of the cellular mechanism(s) responsible for mechanotransduction in bone and skeletal muscle is essential for the development of effective exercise and pharmaceutical strategies aimed at increasing, and/or preventing the loss of, mass in these tissues. Thus, in this review we will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone. By examining the differences and similarities in mechanotransduction between these two tissues, it is hoped that this review will stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists.(1).
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Australia; Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.
| | - Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Handschin C, Mortezavi A, Plock J, Eberli D. External physical and biochemical stimulation to enhance skeletal muscle bioengineering. Adv Drug Deliv Rev 2015; 82-83:168-175. [PMID: 25453267 PMCID: PMC4444527 DOI: 10.1016/j.addr.2014.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Cell based muscle tissue engineering carries the potential to revert the functional loss of muscle tissue caused by disease and trauma. Although muscle tissue can be bioengineered using various precursor cells, major limitations still remain. RECENT FINDINGS In the last decades several cellular pathways playing a crucial role in muscle tissue regeneration have been described. These pathways can be influenced by external stimuli and they not only orchestrate the regenerative process after physiologic wear and muscle trauma, but also play an important part in aging and maintaining the stem cell niche, which is required to maintain long-term muscle function. SUMMARY In this review article we will highlight possible new avenues using external physical and biochemical stimulation in order to optimize muscle bioengineering.
Collapse
Affiliation(s)
| | | | | | - Daniel Eberli
- corresponding author: Daniel Eberli MD PhD, Division of Urology, University Hospital Zürich, University of Zürich, Frauenklinikstrasse 10, 8091 Zürich, Switzerland, Phone: +41 44 255 11 11, Fax: +41 44 255 96 20,
| |
Collapse
|
29
|
Winter L, Staszewska I, Mihailovska E, Fischer I, Goldmann WH, Schröder R, Wiche G. Chemical chaperone ameliorates pathological protein aggregation in plectin-deficient muscle. J Clin Invest 2014; 124:1144-57. [PMID: 24487589 DOI: 10.1172/jci71919] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 11/21/2013] [Indexed: 11/17/2022] Open
Abstract
The ubiquitously expressed multifunctional cytolinker protein plectin is essential for muscle fiber integrity and myofiber cytoarchitecture. Patients suffering from plectinopathy-associated epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) and mice lacking plectin in skeletal muscle display pathological desmin-positive protein aggregation and misalignment of Z-disks, which are hallmarks of myofibrillar myopathies (MFMs). Here, we developed immortalized murine myoblast cell lines to examine the pathogenesis of plectinopathies at the molecular and single cell level. Plectin-deficient myotubes, derived from myoblasts, were fully functional and mirrored the pathological features of EBS-MD myofibers, including the presence of desmin-positive protein aggregates and a concurrent disarrangement of the myofibrillar apparatus. Using this cell model, we demonstrated that plectin deficiency leads to increased intermediate filament network and sarcomere dynamics, marked upregulation of HSPs, and reduced myotube resilience following mechanical stretch. Currently, no specific therapy or treatment is available to improve plectin-related or other forms of MFMs; therefore, we assessed the therapeutic potential of chemical chaperones to relieve plectinopathies. Treatment with 4-phenylbutyrate resulted in remarkable amelioration of the pathological phenotypes in plectin-deficient myotubes as well as in plectin-deficient mice. Together, these data demonstrate the biological relevance of the MFM cell model and suggest that this model has potential use for the development of therapeutic approaches for EBS-MD.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cells, Cultured
- Desmin/metabolism
- Drug Evaluation, Preclinical
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Intermediate Filaments/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Strength/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myoblasts/physiology
- Myopathies, Structural, Congenital/drug therapy
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Phenylbutyrates/pharmacology
- Phenylbutyrates/therapeutic use
- Plectin/deficiency
- Plectin/genetics
- Protein Stability
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Up-Regulation
Collapse
|
30
|
Biophysical cues enhance myogenesis of human adipose derived stem/stromal cells. Biochem Biophys Res Commun 2013; 438:180-5. [PMID: 23876311 DOI: 10.1016/j.bbrc.2013.07.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/13/2013] [Indexed: 11/21/2022]
Abstract
Adipose-derived stem/stromal cell (ASC)-based tissue engineered muscle grafts could provide an effective alternative therapy to autografts - which are limited by their availability - for the regeneration of damaged muscle. However, the current myogenic potential of ASCs is limited by their low differentiation efficiency into myoblasts. The aim of this study was to enhance the myogenic response of human ASCs to biochemical cues by providing biophysical stimuli (11% cyclic uniaxial strain, 0.5 Hz, 1h/day) to mimic the cues present in the native muscle microenvironment. ASCs elongated and fused upon induction with myogenic induction medium alone. Yet, their myogenic characteristics were significantly enhanced with the addition of biophysical stimulation; the nuclei per cell increased approximately 4.5-fold by day 21 in dynamic compared to static conditions (23.3 ± 7.3 vs. 5.2 ± 1.6, respectively), they aligned at almost 45° to the direction of strain, and exhibited significantly higher expression of myogenic proteins (desmin, myoD and myosin heavy chain). These results demonstrate that mimicking the biophysical cues inherent to the native muscle microenvironment in monolayer ASC cultures significantly improves their differentiation along the myogenic lineage.
Collapse
|