1
|
Zaidi SA, Fan Z, Chauhdari T, Ding Y. MicroRNA regulatory dynamic, emerging diagnostic and therapeutic frontier in atherosclerosis. Microvasc Res 2025; 160:104818. [PMID: 40368159 DOI: 10.1016/j.mvr.2025.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, are pivotal post-transcriptional regulators of gene expression with profound implications in the pathogenesis of atherosclerosis (AS). As a progressive arterial disease driven by vascular cells dysfunction, lipid dysregulation and subsequent chronic inflammation, AS remains a leading cause of global morbidity. Recent studies have demonstrated how important miRNAs are in regulating central biological processes in the vascular wall, such as endothelial function, vascular smooth muscle cell (VSMC) phenotypic switching, and macrophage polarization. This review provides comprehensive insight into the role of miRNAs in the development and complexity of atherosclerotic plaques according to their effects on endothelial cells, macrophages, and VSMCs. We also go over the growing prospects of miRNAs as therapeutic targets and diagnostic biomarkers, providing information to be used in the study of vascular diseases. Lastly, we address recent complications and potential applications of miRNA-based approaches in clinical practice.
Collapse
Affiliation(s)
- Syeda Armana Zaidi
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Zhiyu Fan
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Talha Chauhdari
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Yongsheng Ding
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| |
Collapse
|
2
|
Guo J, Chen S, Zhang Y, Liu J, Jiang L, Hu L, Yao K, Yu Y, Chen X. Cholesterol metabolism: physiological regulation and diseases. MedComm (Beijing) 2024; 5:e476. [PMID: 38405060 PMCID: PMC10893558 DOI: 10.1002/mco2.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Cholesterol homeostasis is crucial for cellular and systemic function. The disorder of cholesterol metabolism not only accelerates the onset of cardiovascular disease (CVD) but is also the fundamental cause of other ailments. The regulation of cholesterol metabolism in the human is an extremely complex process. Due to the dynamic balance between cholesterol synthesis, intake, efflux and storage, cholesterol metabolism generally remains secure. Disruption of any of these links is likely to have adverse effects on the body. At present, increasing evidence suggests that abnormal cholesterol metabolism is closely related to various systemic diseases. However, the exact mechanism by which cholesterol metabolism contributes to disease pathogenesis remains unclear, and there are still unknown factors. In this review, we outline the metabolic process of cholesterol in the human body, especially reverse cholesterol transport (RCT). Then, we discuss separately the impact of abnormal cholesterol metabolism on common diseases and potential therapeutic targets for each disease, including CVD, tumors, neurological diseases, and immune system diseases. At the end of this review, we focus on the effect of cholesterol metabolism on eye diseases. In short, we hope to provide more new ideas for the pathogenesis and treatment of diseases from the perspective of cholesterol.
Collapse
Affiliation(s)
- Jiarui Guo
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Silong Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ying Zhang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Jinxia Liu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Luyang Jiang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Lidan Hu
- National Clinical Research Center for Child HealthThe Children's HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ke Yao
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Yibo Yu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Xiangjun Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| |
Collapse
|
3
|
Zhang W, Zhao Y, He Q, Lang R. Therapeutically targeting essential metabolites to improve immunometabolism manipulation after liver transplantation for hepatocellular carcinoma. Front Immunol 2023; 14:1211126. [PMID: 37492564 PMCID: PMC10363744 DOI: 10.3389/fimmu.2023.1211126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy worldwide and is associated with a poor prognosis. Sophisticated molecular mechanisms and biological characteristics need to be explored to gain a better understanding of HCC. The role of metabolites in cancer immunometabolism has been widely recognized as a hallmark of cancer in the tumor microenvironment (TME). Recent studies have focused on metabolites that are derived from carbohydrate, lipid, and protein metabolism, because alterations in these may contribute to HCC progression, ischemia-reperfusion (IR) injury during liver transplantation (LT), and post-LT rejection. Immune cells play a central role in the HCC microenvironment and the duration of IR or rejection. They shape immune responses through metabolite modifications and by engaging in complex crosstalk with tumor cells. A growing number of publications suggest that immune cell functions in the TME are closely linked to metabolic changes. In this review, we summarize recent findings on the primary metabolites in the TME and post-LT metabolism and relate these studies to HCC development, IR injury, and post-LT rejection. Our understanding of aberrant metabolism and metabolite targeting based on regulatory metabolic pathways may provide a novel strategy to enhance immunometabolism manipulation by reprogramming cell metabolism.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yu Zhao
- Department of Urology Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Ji H, Hu N. Circular RNA 0001823 aggravates the growth and metastasis of the cervical cancer cells through modulating the microRNA-613/RAB8A axis. Bioengineered 2022; 13:10335-10349. [PMID: 35435110 PMCID: PMC9161891 DOI: 10.1080/21655979.2022.2063665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Cervical cancer (CC) is a gynecological cancer, which has become the second malignant tumor with mortality in developing countries. The purpose of current study was to explore the influence of Circular RNA 0001823 (circ_0001823) in the CC development. Thirty CC tissues and paracancerous tissues were obtained, and Hela and CaSki CC cells were purchased for this study. The cell growth was analyzed by CCK-8 and colony formation assays. The cell metastasis was determined with Transwell assay. The circ_0001823, miR-613, and RAB8A expression were analyzed with qRT-PCR analysis. The specific mechanisms of circRNA_0001823 were analyzed by Dual luciferase reporter and RNA pull-down assays. The circ_0001823 and RAB8A expressions were increased, and miR-613 were decreased in the CC cells and tissues. Knockdown of circ_0001823 inhibited the malignant behavior of the CC cells, which was antagonized by miR-613 inhibitor. Over-expressed RAB8A reversed the miR-613 effects in the CC cells. Knockdown of circ_0001823 inhibited the malignant behaviors of the CC cells via regulating the miR-613/RAB8A axis.
Collapse
Affiliation(s)
- Hong Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Naijun Hu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
5
|
Tsamou M, Carpi D, Pistollato F, Roggen EL. Sporadic Alzheimer's Disease- and Neurotoxicity-Related microRNAs Affecting Key Events of Tau-Driven Adverse Outcome Pathway Toward Memory Loss. J Alzheimers Dis 2022; 86:1427-1457. [PMID: 35213375 DOI: 10.3233/jad-215434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A complex network of aging-related homeostatic pathways that are sensitive to further deterioration in the presence of genetic, systemic, and environmental risk factors, and lifestyle, is implicated in the pathogenesis of progressive neurodegenerative diseases, such as sporadic (late-onset) Alzheimer's disease (sAD). OBJECTIVE Since sAD pathology and neurotoxicity share microRNAs (miRs) regulating common as well as overlapping pathological processes, environmental neurotoxic compounds are hypothesized to exert a risk for sAD initiation and progression. METHODS Literature search for miRs associated with human sAD and environmental neurotoxic compounds was conducted. Functional miR analysis using PathDip was performed to create miR-target interaction networks. RESULTS The identified miRs were successfully linked to the hypothetical starting point and key events of the earlier proposed tau-driven adverse outcome pathway toward memory loss. Functional miR analysis confirmed most of the findings retrieved from literature and revealed some interesting findings. The analysis identified 40 miRs involved in both sAD and neurotoxicity that dysregulated processes governing the plausible adverse outcome pathway for memory loss. CONCLUSION Creating miR-target interaction networks related to pathological processes involved in sAD initiation and progression, and environmental chemical-induced neurotoxicity, respectively, provided overlapping miR-target interaction networks. This overlap offered an opportunity to create an alternative picture of the mechanisms underlying sAD initiation and early progression. Looking at initiation and progression of sAD from this new angle may open for new biomarkers and novel drug targets for sAD before the appearance of the first clinical symptoms.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra VA, Italy
| | | | | |
Collapse
|
6
|
Liu Y, Xiao Y, Xie J, Peng Y, Li F, Chen C, Li Y, Zhang X, He J, Xiao D, Yin Y. Dietary Supplementation With Flavonoids From Mulberry Leaves Improves Growth Performance and Meat Quality, and Alters Lipid Metabolism of Skeletal Muscle in a Chinese Hybrid Pig. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
8
|
Sun L, He X, Zhang T, Han Y, Tao G. Knockdown of mesenchymal stem cell‑derived exosomal LOC100129516 suppresses the symptoms of atherosclerosis via upregulation of the PPARγ/LXRα/ABCA1 signaling pathway. Int J Mol Med 2021; 48:208. [PMID: 34608501 PMCID: PMC8510681 DOI: 10.3892/ijmm.2021.5041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy has potential applications in treating atherosclerosis and coronary heart disease (CAD). Previous studies have demonstrated that MSCs are the most preferable sources of therapeutic exosomes, which carry long non‑coding RNAs and participate in the progression of atherosclerosis. The results of our previous bioinformatics study demonstrated that the levels of LOC100129516 were significantly upregulated in peripheral blood mononuclear cells obtained from patients with CAD. However, the biological role of LOC100129516 in the development of atherosclerosis remains to be elucidated. In the present study, THP‑1 cells were treated with oxidized low‑density lipoproteins to induce foam cell formation in vitro. Reverse transcription‑quantitative PCR (RT‑qPCR) was performed to detect the levels of LOC100129516 in THP‑1 macrophage‑derived foam cells. In addition, an in vivo model of atherosclerosis was established using Apolipoprotein E (ApoE) knockout (ApoE‑/‑) mice. The results of the RT‑qPCR assays demonstrated that the levels of LOC100129516 were upregulated in THP‑1 macrophage‑derived foam cells. MSC‑derived exosomes were able to deliver small interfering (si)‑LOC100129516 to THP‑1 cells to reduce the levels of LOC100129516. Moreover, transfection of si‑LOC100129516 via exosomal delivery significantly decreased the levels of total cholesterol (TC), free cholesterol and cholesterol ester in THP‑1 macrophage‑derived foam cells. Exosomal‑mediated delivery of si‑LOC100129516 decreased TC levels and low‑density lipoprotein levels in the ApoE‑/‑ atherosclerosis mouse model. Mechanistically, exosomal‑mediated delivery of si‑LOC100129516 promoted cholesterol efflux by activating the peroxisome proliferator‑activated receptor γ (PPARγ)/liver X receptor α (LXRα)/phospholipid‑transporting ATPase ABCA1 (ABCA1) signaling pathway in vitro and in vivo. Collectively, these results suggested that exosomal‑mediated delivery of si‑LOC100129516, in which the exosomes were derived from MSCs, promoted cholesterol efflux and suppressed intracellular lipid accumulation, ultimately alleviating the progression of atherosclerosis via stimulation of the PPARγ/LXRα/ABCA1 signaling pathway.
Collapse
Affiliation(s)
- Limin Sun
- Department of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Department of General Practice, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xin He
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Tao Zhang
- Department of General Practice, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yaling Han
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Guizhou Tao
- Department of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
9
|
Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166083. [PMID: 33497819 PMCID: PMC7987766 DOI: 10.1016/j.bbadis.2021.166083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The dysregulation of nuclear receptors (NRs) underlies the pathogenesis of a variety of liver disorders. Non-coding RNAs (ncRNAs) are defined as RNA molecules transcribed from DNA but not translated into proteins. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two types of ncRNAs that have been extensively studied for regulating gene expression during diverse cellular processes. NRs as therapeutic targets in liver disease have been exemplified by the successful application of their pharmacological ligands in clinics. MiRNA-based reagents or drugs are emerging as flagship products in clinical trials. Advancing our understanding of the crosstalk between NRs and ncRNAs is critical to the development of diagnostic and therapeutic strategies. This review summarizes recent findings on the reciprocal regulation between NRs and ncRNAs (mainly on miRNAs and lncRNAs) and their implication in liver pathophysiology, which might be informative to the translational medicine of targeting NRs and ncRNAs in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| |
Collapse
|
10
|
Zhang S, Li L, Wang J, Zhang T, Ye T, Wang S, Xing D, Chen W. Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs. Clin Chim Acta 2021; 516:100-110. [PMID: 33545111 DOI: 10.1016/j.cca.2021.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Coronary heart disease (CHD) with atherosclerosis is the leading cause of death worldwide. ABCA1 and ABCG1 promote cholesterol efflux to suppress foam cell generation and reduce atherosclerosis development. Long noncoding RNAs (lncRNAs) are emerging as a unique group of RNA transcripts that longer than 200 nucleotides and have no protein-coding potential. Many studies have found that lncRNAs regulate cholesterol efflux to influence atherosclerosis development. ABCA1 is regulated by different lncRNAs, including MeXis, GAS5, TUG1, MEG3, MALAT1, Lnc-HC, RP5-833A20.1, LOXL1-AS1, CHROME, DAPK1-IT1, SIRT1 AS lncRNA, DYNLRB2-2, DANCR, LeXis, LOC286367, and LncOR13C9. ABCG1 is also regulated by different lncRNAs, including TUG1, GAS5, RP5-833A20.1, DYNLRB2-2, ENST00000602558.1, and AC096664.3. Thus, various lncRNAs are associated with the roles of ABCA1 and ABCG1 on cholesterol efflux in atherosclerosis regulation. However, some lncRNAs play dual roles in ABCA1 expression and atherosclerosis, and the functions of some lncRNAs in atherosclerosis have not been investigated in vivo. In this article, we review the roles of lncRNAs in atherosclerosis and focus on new insights into lncRNAs associated with the roles of ABCA1 and ABCG1 on cholesterol efflux and the potential of these lncRNAs as novel therapeutic targets in atherosclerosis.
Collapse
Affiliation(s)
- Shun Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Lu Li
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jie Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Tingting Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Ting Ye
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shuai Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China.
| |
Collapse
|
11
|
Citrin KM, Fernández-Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Ann N Y Acad Sci 2021; 1495:55-77. [PMID: 33521946 DOI: 10.1111/nyas.14566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Since many microRNAs have multiple mRNA targets, they are uniquely positioned to regulate the expression of several molecules and pathways simultaneously. For example, the multiple stages of cholesterol metabolism are heavily influenced by microRNA activity. Understanding the scope of microRNAs that control this pathway is highly relevant to diseases of perturbed cholesterol metabolism, most notably cardiovascular disease (CVD). Atherosclerosis is a common cause of CVD that involves inflammation and the accumulation of cholesterol-laden cells in the arterial wall. However, several different cell types participate in atherosclerosis, and perturbations in cholesterol homeostasis may have unique effects on the specialized functions of these various cell types. Therefore, our review discusses the current knowledge of microRNA-mediated control of cholesterol homeostasis, followed by speculation as to how these microRNA-mRNA target interactions might have distinctive effects on different cell types that participate in atherosclerosis.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Yajaira Suárez
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Yang M, Ke H, Zhou W. LncRNA RMRP Promotes Cell Proliferation and Invasion Through miR-613/NFAT5 Axis in Non-Small Cell Lung Cancer. Onco Targets Ther 2020; 13:8941-8950. [PMID: 32982286 PMCID: PMC7494237 DOI: 10.2147/ott.s255126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/11/2020] [Indexed: 01/17/2023] Open
Abstract
Background The abnormal expression of RMRP and miR-613 was respectively associated with the pathogenesis of lung cancer, but the role of the RMRP/miR-613 axis in NSCLC has not been studied. Methods In this report, we measured the levels of RMRP in clinical NSCLC samples and cell lines. The target gene of RNA was predicted by online tools and verified by Luciferase reporter assay. Moreover, the function and regulatory mechanism of RMRP in the progression of cancer were further investigated. Results Our data showed that the expression of RMRP in NSCLC tissues and cell lines was both up-regulated. Functionally, RMRP promoted the proliferation and metastasis of A549 and H1299 cells. Luciferase reporter assay confirmed that RMRP was the sponger of miR-613, and NFAT5 is the direct target of miR-613. Functional acquisition and loss-of-function strategies further confirmed that RMRP induces the up-regulation of NFAT5 expression through competitive binding with miR-613, leading to promote the progression and metastasis potential of lung cancer cells. Conclusion Collectively, our findings emphasized the importance of RMRP in the development of NSCLC, which may provide a new therapeutic target and potential diagnostic biomarker for NSCLC therapy.
Collapse
Affiliation(s)
- Mingjun Yang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu Province, People's Republic of China
| | - Honggang Ke
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu Province, People's Republic of China
| | - Wen Zhou
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226021, Jiangsu Province, People's Republic of China
| |
Collapse
|
13
|
Zhou Y, Fang XL, Zhang Y, Feng YN, Wang SS. miR-20a-5p promotes pulmonary artery smooth muscle cell proliferation and migration by targeting ABCA1. J Biochem Mol Toxicol 2020; 34:e22589. [PMID: 32720422 DOI: 10.1002/jbt.22589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND The function of miR-20a-5p in pulmonary artery smooth muscle cells (PASMCs) and the underlying mechanism remains largely unknown. METHODS C57BL/6J mice and PASMCs were used for constructing pulmonary artery hypertension (PAH) animal and cell models, respectively. Reverse transcription polymerase chain reaction (RT-PCR) was employed to detect miR-20a-5p and ATP-binding cassette subfamily A member 1 (ABCA1) messenger RNA expression. CCK-8, Transwell, and TUNEL experiments were used to determine PASMCs proliferation, migration, and apoptosis. The relationship between miR-20a-5p and ABCA1 was detected by luciferase reporter experiment, Western blot analysis, and qRT-PCR. RESULTS miR-20a-5p was remarkably elevated in PASMCs of PAH mice and human PASMCs treated by hypoxia, while ABCA1 was remarkably decreased. After transfection of miR-20a-5p mimics, PASMCs proliferation and migration were promoted and PASMCs apoptosis was suppressed. ABCA1 was confirmed to be a target of miR-20a-5p and restoration of ABCA1 reversed the function of miR-20a-5p. CONCLUSION miR-20a-5p enhances the proliferation and migration of PASMCs to promote the development of PAH via targeting ABCA1.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Emergency, The Affiliated Hospital of Medical School of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Xuan-Liang Fang
- Department of Orthopedics, Ningbo City, Zhejiang Province, China
| | - Yun Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Medical School of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Yan-Ni Feng
- Department of Emergency, Ningbo Seventh Hospital, Ningbo City, Zhejiang Province, China
| | - Shan-Shan Wang
- Intensive Care Unit, The Affiliated Hospital of Medical School of Ningbo University, Ningbo City, Zhejiang Province, China
| |
Collapse
|
14
|
Huang F, Liu H, Lei Z, Li Z, Zhang T, Yang M, Zhou K, Sun C. Long noncoding RNA CCAT1 inhibits miR-613 to promote nonalcoholic fatty liver disease via increasing LXRα transcription. J Cell Physiol 2020; 235:9819-9833. [PMID: 32413192 DOI: 10.1002/jcp.29795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/08/2020] [Accepted: 04/30/2020] [Indexed: 12/30/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is regarded as a threat to public health; however, the pathologic mechanism of NAFLD is not fully understood. We attempted to identify abnormally expressed long noncoding RNA (lncRNAs) and messenger RNA that may affect the occurrence and development of NAFLD in this study. The expression of differentially expressed lncRNAs in NAFLD was determined in oleic acid (OA)-treated L02 cells, and the functions of CCAT1 in lipid droplet formation were evaluated in vitro. Differentially expressed genes (DEGs) were analyzed by microarray analysis, and DEGs related to CCTA1 were selected and verified by weighted correlation network analysis. The dynamic effects of LXRα and CCTA1 on lipid droplet formation and predicted binding was examined. The binding between miR-631 and CCAT1 and LXRα was verified. The dynamic effects of miR-613 inhibition and CCTA1 silencing on lipid droplet formation were examined. The expression and correlations of miR-631, CCAT1, and LXRα were determined in tissue samples. As the results show, CCAT1 was induced by OA and upregulated in NAFLD clinical samples. CCAT1 silencing significantly suppressed lipid droplet accumulation in vitro. LXRα was positively correlated with CCAT1. By inhibiting miR-613, CCAT1 increased the transcription of LXRα and promoted LXRα expression. The expression of LXRα was significantly increased in NAFLD tissues and was positively correlated with CCAT1. In conclusion, CCAT1 increases LXRα transcription by serving as a competing endogenous RNA for miR-613 in an LXRE-dependent manner, thereby promoting lipid droplet formation and NAFLD. CCAT1 and LXRα might be potent targets for NAFLD treatment.
Collapse
Affiliation(s)
- Feizhou Huang
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huaizheng Liu
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Lei
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenzhou Li
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Tianyi Zhang
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingshi Yang
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kefu Zhou
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuanzheng Sun
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Hu B, Lin JZ, Yang XB, Sang XT. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: A review. Cell Prolif 2020; 53:e12772. [PMID: 32003505 PMCID: PMC7106960 DOI: 10.1111/cpr.12772] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignancy of the liver with a high worldwide prevalence and poor prognosis. Researches are urgently needed on its molecular pathogenesis and biological characteristics. Metabolic reprogramming for adaptation to the tumour microenvironment (TME) has been recognized as a hallmark of cancer. Dysregulation of lipid metabolism especially fatty acid (FA) metabolism, which involved in the alternations of the expression and activity of lipid‐metabolizing enzymes, is a hotspot in recent study, and it may be involved in HCC development and progression. Meanwhile, immune cells are also known as key players in the HCC microenvironment and show complicated crosstalk with cancer cells. Emerging evidence has shown that the functions of immune cells in TME are closely related to abnormal lipid metabolism. In this review, we summarize the recent findings of lipid metabolic reprogramming in TME and relate these findings to HCC progression. Our understanding of dysregulated lipid metabolism and associated signalling pathways may suggest a novel strategy to treat HCC by reprogramming cell lipid metabolism or modulating TME.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Zhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Seiri P, Abi A, Soukhtanloo M. PPAR-γ: Its ligand and its regulation by microRNAs. J Cell Biochem 2019; 120:10893-10908. [PMID: 30770587 DOI: 10.1002/jcb.28419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. PPARs are categorized into three subtypes, PPARα, β/δ, and γ, encoded by different genes, expressed in diverse tissues and participate in various biological functions and can be activated by their metabolic derivatives in the body or dietary fatty acids. The PPAR-γ also takes parts in the regulation of energy balance, lipoprotein metabolism, insulin sensitivity, oxidative stress, and inflammatory signaling. It has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis, and cancers. Among various cellular and molecular targets that are able to regulate PPAR-γ and its underlying pathways, microRNAs (miRNAs) appeared as important regulators. Given that the deregulation of these molecules via targeting PPAR-γ could affect initiation and progression of various diseases, identification of miRNAs that affects PPAR-γ could contribute to the better understanding of roles of PPAR-γ in various biological and pathological conditions. Here, we have summarized the function and various ligands of PPAR-γ and have highlighted various miRNAs involved in the regulation of PPAR-γ.
Collapse
Affiliation(s)
- Parvaneh Seiri
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abi
- Department of Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Lin Y, Ren N, Li S, Chen M, Pu P. Novel anti-obesity effect of scutellarein and potential underlying mechanism of actions. Biomed Pharmacother 2019; 117:109042. [PMID: 31228804 DOI: 10.1016/j.biopha.2019.109042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Scutellarein (Sc), a natural compound and an active ingredient of Erigeron breviscapus (vant.), shows anti-inflammatory and antioxidant properties and has the potential for obesity treatment. However, no previous in vivo study has been conducted to assess the role of Sc in obesity. This study investigated the effects of Sc on obesity and associated hyperlipidemia and fatty liver and explores the underlying mechanisms of action in a mouse model. METHODS The study was conducted using a well-established mouse model of obesity induced by high-fat diet (HFD) feeding. Anti-obesity effects were assessed using body weight, abdominal circumference, white adipose tissue, adiposity index, and fatty liver index. Lipid lowering and liver protective effects were examined by blood sample analysis. Lipid dystopia deposition was confirmed by liver pathological sections. The signaling pathways of lipid metabolism and cytokine/inflammatory mediator were evaluated using Real-Time PCR and Western blot. RESULTS Central obesity, dyslipidemia, inflammation, and hepatic steatosis were developed in mice fed with HFD. Administration of Sc at a dose of 50 mg/kg for 16 weeks effectively attenuated all obesity indicators tested. Further studies revealed the antagonistic effect of Sc on hyperlipidemia was a result of the repression of the lipid synthesis pathway, de novo pathway, HMGCR, promoting fatty acid oxidation (PPARα, CPT-1a) and increased cholesterol output (PPARγ-LXRα-ABCA1). The anti-inflammatory effect was attributed to blocking the expression of inflammatory genes, including TNF-α, IL-6, NF-κB. CONCLUSIONS These results suggest that Sc possesses important novel anti-obesity effects accompanying lipid lowering and anti-inflammation-based liver protective effects. These favorable effects are causally associated with the suppression of gene expression of inflammatory cytokines and fine regulation of genes responsible for energy metabolism. Our results advance the understanding of the pharmacological actions of Sc, and provides a role for Sc in effective management of obesity.
Collapse
Affiliation(s)
- Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Nina Ren
- Guangdong Online Hospital, Guangdong Second Provincial People's Hospital, Guangzhou, 510317, PR China
| | - Siyu Li
- Department of Cardiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ming Chen
- Department of Cardiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Peng Pu
- Department of Cardiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
19
|
Liu H, Chen K, Wang L, Zeng X, Huang Z, Li M, Dong P, Chen X. miR-613 inhibits Warburg effect in gastric cancer by targeting PFKFB2. Biochem Biophys Res Commun 2019; 515:37-43. [PMID: 31122697 DOI: 10.1016/j.bbrc.2019.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
miR-613 has been demonstrated to play critical roles in tumorigenesis and progression of a various type of cancers. However, its role and expression significance remain unclear in gastric cancer (GC). We detected the expression of miR-613 in 176 paired GC tissues and adjacent normal tissues, and found that miR-613 was significantly downregulated in GC tissues and its downregulation was correlated with T stage, lymph node invasion and advanced AJCC stages. Moreover, miR-613 expression could be an independent prognostic factor of GC. Biological function analysis indicated that miR-613 inhibited cell proliferation and invasion. Further analysis suggested that miR-613 inhibited Warburg effect of GC cells. Mechanically, we identified that miR-613 could directly bind to the 3'UTR of PFKFB2, thereby suppressing the expression of PFKFB2, which in turn, regulating glycolysis metabolism and cell growth. In conclusion, miR-613 served as a tumor suppressor by targeting PFKFB2, indicating that detecting miR-613 and modulation of miR-613 expression could be potential marker and clinical approach in GC patients.
Collapse
Affiliation(s)
- Haipeng Liu
- Department of General Surgery 3, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China.
| | - Kang Chen
- Department of General Surgery 3, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Li Wang
- Department of General Surgery 3, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Xiangting Zeng
- Department of General Surgery 3, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Zeping Huang
- Department of General Surgery 3, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Mei Li
- Department of General Surgery 3, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Peng Dong
- Department of General Surgery 3, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Xiao Chen
- Department of General Surgery 3, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| |
Collapse
|
20
|
PPAR𝛾 Gene and Atherosclerosis: Genetic Polymorphisms, Epigenetics and Therapeutic Implications. Balkan J Med Genet 2018; 21:39-46. [PMID: 30425909 PMCID: PMC6231320 DOI: 10.2478/bjmg-2018-0011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the leading cause of mortality and morbidity in the developed world. It is characterized by the formation of a plaque in the walls of middle and large arteries leading to macrovascular complications. Several risk factors are included, with diabetes being one of the most important for the onset and development of atherosclerosis. Due to an increase in the prevalence of diabetes in the world, the incidence of diabetic complications (microvascular and macrovascular) is increasing. Peroxisome proliferator-activated receptor γ (PPARγ) plays a important role in atherosclerotic processes. Peroxisome proliferator activated receptor γ belongs to the superfamily of nuclear receptors, has a great presence in fat tissue, macrophages, and regulates gene expression and most of the processes that lead to the onset and development of atherosclerosis. In this review, we discuss the basic patho-physiological mechanisms of atherosclerosis in type 2 diabetes mellitus (T2DM). Furthermore, we discuss the impact of PPARγ polymorphisms, and the epigenetic mechanisms affecting the onset of atherosclerosis, i.e, DNA methylation and demethylation, histone acetylation and deacetylation, and RNA-based mechanisms. Moreover, we add therapeutic possibilities for acting on epigenetic mechanisms in order to prevent the onset and progression of atherosclerosis.
Collapse
|
21
|
Shao D, Lian Z, Di Y, Zhang L, Rajoka MSR, Zhang Y, Kong J, Jiang C, Shi J. Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci Food 2018; 2:13. [PMID: 31304263 PMCID: PMC6550192 DOI: 10.1038/s41538-018-0022-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/12/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis (AS) is a typical example of a widespread fatal cardiovascular disease. Accumulation of cholesterol-laden macrophages in the artery wall forms the starting point of AS. Increased influx of oxidized low-density lipoprotein to macrophages and decreased efflux of free cholesterol out of macrophages constitute major factors promoting the development of AS. Inflammation further aggravates the development of AS along or via interaction with the cholesterol metabolism. Many microRNAs (miRNAs) are related to the regulation of macrophage in AS in aspects of cholesterol metabolism and inflammation signaling. Dietary compounds perform AS inhibitory effects via miRNAs in the cholesterol metabolism (miR-19b, miR-378, miR-10b, miR-33a, and miR-33b) and two miRNAs in the inflammation signaling (miR-155 and miR-146a). The targeted miRNAs in the cholesterol metabolism vary greatly among different food compounds; however, in inflammation signaling, most food compounds target miR-155. Many receptors are involved in macrophages via miRNAs, including ABCA1 and ABCG1 as major receptors in the cholesterol metabolism, while nuclear factor-κB (NF-κB) and Nrf2 signaling and PI3K/AKT signaling pathways are targeted during inflammation. This article reviews current literature to investigate possible AS therapy with dietary compounds via targeting miRNAs. Currently existing problems were also discussed to guide further studies.
Collapse
Affiliation(s)
- Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Ziyang Lian
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Yichao Di
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Lei Zhang
- Department of Microbiology and Pathogeny Biology, Xi’an Medical University, 1 Xinwang Road, Xi’an, 710072 Shaanxi China
| | - Muhammad shahid riaz Rajoka
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Yudan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| |
Collapse
|
22
|
Spotlight on the transglutaminase 2 gene: a focus on genomic and transcriptional aspects. Biochem J 2018; 475:1643-1667. [PMID: 29764956 DOI: 10.1042/bcj20170601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023]
Abstract
The type 2 isoenzyme is the most widely expressed transglutaminase in mammals displaying several intra- and extracellular activities depending on its location (protein modification, modulation of gene expression, membrane signalling and stabilization of cellular interactions with the extracellular matrix) in relation to cell death, survival and differentiation. In contrast with the appreciable knowledge about the regulation of the enzymatic activities, much less is known concerning its inducible expression, which is altered in inflammatory and neoplastic diseases. In this context, we first summarize the gene's basic features including single-nucleotide polymorphism characterization, epigenetic DNA methylation and identification of regulatory regions and of transcription factor-binding sites at the gene promoter, which could concur to direct gene expression. Further aspects related to alternative splicing events and to ncRNAs (microRNAs and lncRNAs) are involved in the modulation of its expression. Notably, this important gene displays transcriptional variants relevant for the protein's function with the occurrence of at least seven transcripts which support the synthesis of five isoforms with modified catalytic activities. The different expression of the TG2 (type 2 transglutaminase) variants might be useful for dictating the multiple biological features of the protein and their alterations in pathology, as well as from a therapeutic perspective.
Collapse
|
23
|
Zhang YY, Li XL, Li TY, Li MY, Huang RM, Li W, Yang RL. 3-(4-Hydroxyphenyl)propionic acid, a major microbial metabolite of procyanidin A2, shows similar suppression of macrophage foam cell formation as its parent molecule. RSC Adv 2018; 8:6242-6250. [PMID: 35540422 PMCID: PMC9078275 DOI: 10.1039/c7ra13729j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/01/2018] [Indexed: 12/29/2022] Open
Abstract
The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL-1 PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yu-Ying Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86-20-85280270 +86-20-85283448
| | - Xiao-Le Li
- College of Food Science and Technology, Hainan University Haikou 570228 China +86-898-66193581 +86-898-66198861
| | - Tong-Yun Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86-20-85280270 +86-20-85283448
| | - Mei-Ying Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86-20-85280270 +86-20-85283448
| | - Ri-Ming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86-20-85280270 +86-20-85283448
| | - Wu Li
- College of Food Science and Technology, Hainan University Haikou 570228 China +86-898-66193581 +86-898-66198861
| | - Rui-Li Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86-20-85280270 +86-20-85283448
| |
Collapse
|
24
|
Li Q, Zhou L, Wang M, Wang N, Li C, Wang J, Qi L. MicroRNA-613 impedes the proliferation and invasion of glioma cells by targeting cyclin-dependent kinase 14. Biomed Pharmacother 2018; 98:636-642. [PMID: 29289838 DOI: 10.1016/j.biopha.2017.12.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has suggested that microRNAs (miRNAs) are critical regulators of tumorigenesis. MicroRNA-613 (miR-613) has recently been reported as a novel tumor-related miRNA that plays an important role in multiple cancers. However, the expression and functional significance of miR-613 in glioma remains unclear. In this study, we aimed to investigate the biological function of miR-613 in glioma. We found that miR-613 expression was frequently downregulated in glioma tissues and cell lines compared with normal controls. Overexpression of miR-613 impeded proliferation and colony formation and induced cell cycle arrest in G0/G1 phase, and also inhibited the invasive ability of glioma cells. By contrast, miR-613 inhibition had the opposite effects. Bioinformatic analysis and dual-luciferase reporter assays showed that miR-613 directly targets the 3'-untranslated region of cyclin-dependent kinase 14 (CDK14). Real-time quantitative PCR and Western blot analysis showed that CDK14 expression is negatively regulated by miR-613. In addition, miR-613 expression was inversely correlated with CDK14 expression in clinical glioma tissues. Moreover, overexpression of miR-613 decreased the protein expression of β-catenin and inhibited the activation of Wnt signaling. Importantly, the antitumor effects of miR-613 were significantly reversed by CDK14 overexpression. Overall, our results show that miR-613 inhibits glioma cell proliferation and invasion by downregulating CDK14, suggesting that miR-613 and CDK14 may serve as potential therapeutic targets for the treatment of glioma.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lei Zhou
- Department of Ultrasonography, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chuankun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lei Qi
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
25
|
Li Z, Li X, Chen C, Chan MTV, Wu WKK, Shen J. Melatonin inhibits nucleus pulposus (NP) cell proliferation and extracellular matrix (ECM) remodeling via the melatonin membrane receptors mediated PI3K-Akt pathway. J Pineal Res 2017; 63. [PMID: 28719035 DOI: 10.1111/jpi.12435] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/14/2017] [Indexed: 12/29/2022]
Abstract
Pinealectomy in vertebrates accelerated intervertebral disk degeneration (IDD). However, the potential mechanisms, particularly melatonin's role, are still to be clarified. In this study, for first time, melatonin membrane receptors of MT1 and MT2 were found to be present in the human intervertebral disk tissues and nucleus pulposus (NP) cells, respectively. Melatonin treatment significantly inhibited NP cell proliferation in dose-dependent manner. Accordingly, melatonin down-regulated gene expression of cyclin D1, PCNA, matrix metallopeptidase-3, and matrix metallopeptidase-9 and upregulated gene expression of collagen type II alpha 1 chain and aggrecan in NP cells. These effects of melatonin were blocked by luzindole, a nonspecific melatonin membrane receptor antagonist. Signaling pathway analysis indicated that in the intervertebral disk tissues and NP cells, melatonin acted on MT1/2 and subsequently reduced phosphorylation of phosphoinositide 3-kinase p85 regulatory subunit, phosphoinositide-dependent kinase-1, and Akt. The results indicate that melatonin is a crucial regulator of NP cell function and plays a vital role in prevention of IDD.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chong Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Yu X, Wang W. Tumor suppressor microRNA‑613 inhibits glioma cell proliferation, invasion and angiogenesis by targeting vascular endothelial growth factor A. Mol Med Rep 2017; 16:6729-6735. [PMID: 28901424 PMCID: PMC5865827 DOI: 10.3892/mmr.2017.7422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non‑coding RNAs which can serve as oncogenes or tumor suppressors in glioma. The present study aimed to investigate the expression of miR‑613 in glioma. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to detect miR‑613 in glioma cells and tissues and the relationship between miR‑613 and vascular endothelial growth factor (VEGF) A was assessed using a luciferase reporter assay. In addition, glioma cells were transfected with miR‑613 mimics and the mRNA and protein expression of VEGFA was detected using RT‑qPCR and western blot analysis, respectively. The proliferative, invasive and tube formation capabilities of transfected cells were also assessed in vitro. Furthermore, a nude mouse tumor xenograft model was used to investigate the effects of miR‑613 on tumor growth in vivo. The results of the present study demonstrated that the expression of miR‑613 was decreased in glioma cell lines, and was associated with the grade of glioma. Ectopic expression of miR‑613 markedly suppressed glioma cell proliferation and angiogenesis. Furthermore, the upregulation of miR‑613 inhibited tumor angiogenesis and tumor growth in xenografted nude mice in vivo. VEGFA was demonstrated as a direct target of miR‑613, as detected by western blot and luciferase reporter assays, and mediated miR‑613 induced glioma cell proliferation and angiogenesis inhibition.
Collapse
Affiliation(s)
- Xiongwu Yu
- Department of Pediatric Surgery, Maternal and Child Health‑Care Hospital of Qujing, Qujing, Yunnan 650032, P.R. China
| | - Weimin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
27
|
Jia SJ, Gao KQ, Zhao M. Epigenetic regulation in monocyte/macrophage: A key player during atherosclerosis. Cardiovasc Ther 2017; 35. [PMID: 28371472 DOI: 10.1111/1755-5922.12262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/23/2017] [Accepted: 03/26/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Su-Jie Jia
- Hunan Key Laboratory of Medical Epigenomics; The Second Xiangya Hospital, Central South University; Changsha China
- Department of Pharmaceutics; The Third Xiangya Hospital, Central South University; Changsha China
| | - Ke-Qin Gao
- Department of Pharmaceutics; The Third Xiangya Hospital, Central South University; Changsha China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics; The Second Xiangya Hospital, Central South University; Changsha China
| |
Collapse
|
28
|
Desgagné V, Bouchard L, Guérin R. microRNAs in lipoprotein and lipid metabolism: from biological function to clinical application. Clin Chem Lab Med 2017; 55:667-686. [PMID: 27987357 DOI: 10.1515/cclm-2016-0575] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are short (~22 nucleotides), non-coding, single-stranded RNA molecules that regulate the expression of target genes by partial sequence-specific base-pairing to the targeted mRNA 3'UTR, blocking its translation, and promoting its degradation or its sequestration into processing bodies. miRNAs are important regulators of several physiological processes including developmental and metabolic functions, but their concentration in circulation has also been reported to be altered in many pathological conditions such as familial hypercholesterolemia, cardiovascular diseases, obesity, type 2 diabetes, and cancers. In this review, we focus on the role of miRNAs in lipoprotein and lipid metabolism, with special attention to the well-characterized miR-33a/b, and on the huge potential of miRNAs for clinical application as biomarkers and therapeutics in the context of cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Luigi Bouchard
- Département de biochimie, Université de Sherbrooke, Sherbrooke, Québec
| | - Renée Guérin
- Département de biochimie, Université de Sherbrooke, Sherbrooke, Québec
| |
Collapse
|
29
|
Peng Z, Xu T, Liao X, He H, Xu W. Effects of radiotherapy on nasopharyngeal carcinoma cell invasiveness. Tumour Biol 2016; 37:15559–15566. [PMID: 26318302 DOI: 10.1007/s13277-015-3960-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy is widely used in the treatment of nasopharyngeal carcinoma (NPC), whereas its effects on the NPC growth, survival, and metastases have not been completely evaluated. Here, we compared the detected metastatic NPC tissues after radiotherapy (m-NPC) to the resected primary NPC tissues prior to radiotherapy (p-NPC). We detected higher levels of Snail2 protein, but not mRNA in m-NPC, compared to p-NPC. In vitro, a modest irradiation on NPC cells resulted in significant cell death, but increased Snail2 protein, but mRNA levels in the surviving NPC cells. Bioinformatics analyses showed that miR-613, which was significantly decreased in NPC cells after irradiation, targeted the 3'-UTR of Snail2 mRNA to inhibit its translation. Moreover, miR-613 overexpression inhibited Snail2-mediated cell invasiveness, while miR-613 depletion increased Snail2-mediated cell invasiveness in NPC cells. Finally, we detected significantly lower levels of miR-613 in m-NPC, compared to p-NPC. Together our data suggest that although radiotherapy induced NPC cell death, it may increase Snail2-mediated NPC cell invasiveness through downregulating miR-613.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Radiation Oncology, Quzhou People Hospital, Zhongloudi Road, Quzhou, 324000, China,
| | | | | | | | | |
Collapse
|
30
|
Yu R, Lv Y, Wang J, Pan N, Zhang R, Wang X, Yu H, Tan L, Zhao Y, Li B. Baicalin promotes cholesterol efflux by regulating the expression of SR-BI in macrophages. Exp Ther Med 2016; 12:4113-4120. [PMID: 28105139 DOI: 10.3892/etm.2016.3884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/05/2016] [Indexed: 01/22/2023] Open
Abstract
Intake of a high dosage of baicalin has previously been shown to attenuate hyperlipidemia induced by a high-fat diet. Baicalin functions as an activator of peroxisome proliferator-activated receptor-γ (PPAR-γ), which is the key regulator of reverse cholesterol transport (RCT). The present study aimed to test the hypothesis that baicalin could promote cholesterol efflux in macrophages through activating PPAR-γ. Phorbol 12-myristate 13-acetate-stimulated THP-1 cells were treated with oxidized low-density lipoprotein and (3H)-cholesterol for 24 h, and the effects of baicalin on cholesterol efflux were evaluated in the presence of apolipoprotein A-1 (ApoA-1), or high-density lipoprotein subfraction 2 (HDL2) or subfraction 3 (HDL3). The expression levels of scavenger receptor class B type I (SR-BI), PPAR-γ and liver X receptor-α (LXRα) were detected and specific inhibitors or activators of SR-BI, PPAR-γ and LXRα were applied to investigate the mechanism. Treatment of THP-1 macrophages with baicalin significantly accelerated HDL-mediated, but not ApoA-1-mediated cholesterol efflux. However, baicalin treatment increased the expression of SR-BI at the mRNA and protein levels in a dose- and time-dependent manner, and pre-treatment with the SR-BI inhibitor BLT-1 and SR-BI small interfering RNA significantly inhibited baicalin-induced cholesterol efflux. Furthermore, baicalin increased the expression of PPAR-γ and LXRα, and the application of specific agonists and inhibitors of PPAR-γ and LXRα changed the expression of SR-BI, as well as cholesterol efflux. It may be concluded that baicalin induced cholesterol efflux from THP-1 macrophages via the PPAR-γ/LXRα/SR-BI pathway.
Collapse
Affiliation(s)
- Renchao Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Yuexia Lv
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Juanling Wang
- Clinical Skill Training Center, People's Hospital of Weifang, Weifang, Shandong 261041, P.R. China
| | - Nana Pan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Xiaxia Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Haichu Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Lijuan Tan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Yunhe Zhao
- Department of Cardiology, Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| | - Bo Li
- Department of Cardiology, Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| |
Collapse
|
31
|
Park SH, Kim J, Yu M, Park JH, Kim YS, Moon Y. Epithelial Cholesterol Deficiency Attenuates Human Antigen R-linked Pro-inflammatory Stimulation via an SREBP2-linked Circuit. J Biol Chem 2016; 291:24641-24656. [PMID: 27703009 DOI: 10.1074/jbc.m116.723973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/16/2016] [Indexed: 01/03/2023] Open
Abstract
Patients with chronic intestinal ulcerative diseases, such as inflammatory bowel disease, tend to exhibit abnormal lipid profiles, which may affect the gut epithelial integrity. We hypothesized that epithelial cholesterol depletion may trigger inflammation-checking machinery via cholesterol sentinel signaling molecules whose disruption in patients may aggravate inflammation and disease progression. In the present study, sterol regulatory element-binding protein 2 (SREBP2) as the cholesterol sentinel was assessed for its involvement in the epithelial inflammatory responses in cholesterol-depleted enterocytes. Patients and experimental animals with intestinal ulcerative injuries showed suppression in epithelial SREBP2. Moreover, SREBP2-deficient enterocytes showed enhanced pro-inflammatory signals in response to inflammatory insults, indicating regulatory roles of SREBP2 in gut epithelial inflammation. However, epithelial cholesterol depletion transiently induced pro-inflammatory chemokine expression regardless of the well known pro-inflammatory nuclear factor-κB signals. In contrast, cholesterol depletion also exerts regulatory actions to maintain epithelial homeostasis against excessive inflammation via SREBP2-associated signals in a negative feedback loop. Mechanistically, SREBP2 and its induced target EGR-1 were positively involved in induction of peroxisome proliferator-activated receptor γ (PPARγ), a representative anti-inflammatory transcription factor. As a crucial target of the SREBP2-EGR-1-PPARγ-associated signaling pathways, the mRNA stabilizer, human antigen R (HuR) was retained in nuclei, leading to reduced stability of pro-inflammatory chemokine transcripts. This mechanistic investigation provides clinical insights into protective roles of the epithelial cholesterol deficiency against excessive inflammatory responses via the SREBP2-HuR circuit, although the deficiency triggers transient pro-inflammatory signals.
Collapse
Affiliation(s)
- Seong-Hwan Park
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612
| | - Juil Kim
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612
| | - Mira Yu
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612
| | - Jae-Hong Park
- the Department of Pediatrics, Pusan National University, Yangsan 50612
| | - Yong Sik Kim
- the Department of Pharmacology, College of Medicine, Seoul National University, Seoul 03080, and
| | - Yuseok Moon
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612,; the Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Busan 46241, Korea.
| |
Collapse
|
32
|
Ikhlef S, Berrougui H, Kamtchueng Simo O, Khalil A. Paraoxonase 1-treated oxLDL promotes cholesterol efflux from macrophages by stimulating the PPARγ-LXRα-ABCA1 pathway. FEBS Lett 2016; 590:1614-29. [DOI: 10.1002/1873-3468.12198] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/17/2016] [Accepted: 04/04/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Souade Ikhlef
- Research Centre on Aging; CSSS-IUGS; Sherbrooke Canada
| | - Hicham Berrougui
- Research Centre on Aging; CSSS-IUGS; Sherbrooke Canada
- Department of Biology; University Sultan My Slimane; Beni Mellal Morocco
| | | | - Abdelouahed Khalil
- Research Centre on Aging; CSSS-IUGS; Sherbrooke Canada
- Department of Medicine; Geriatrics Service; Faculty of Medicine and Biological Sciences; University of Sherbrooke; Canada
| |
Collapse
|
33
|
Wang W, Zhang H, Wang L, Zhang S, Tang M. miR-613 inhibits the growth and invasiveness of human hepatocellular carcinoma via targeting DCLK1. Biochem Biophys Res Commun 2016; 473:987-992. [PMID: 27049311 DOI: 10.1016/j.bbrc.2016.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 02/01/2023]
Abstract
microRNAs (miRNAs) play key regulatory roles in various biological processes. In this study, we aimed to determine the expression and biological roles of miR-613 in hepatocellular carcinoma (HCC). Compared with non-cancerous liver tissues, miR-613 was significantly downregulated in HCC tissues. Ectopic expression of miR-613 significantly suppressed the proliferation and invasion of Hep3B and SMMC-7721 HCC cells. Bioinformatic and luciferase reporter analysis identified doublecortin-like kinase 1 (DCLK1) as a direct target of miR-613. Overexpression of miR-613 inhibited the expression of DCLK1 in HCC cells. There was a significant inverse correlation between miR-613 and DCLK1 protein expression in HCC samples. Small interfering RNA-mediated silencing of DCLK1 phenocopied the suppressive effects of miR-613 in HCC cells. Rescue experiments demonstrated that co-transfection of DCLK1 lacking the 3'-untranslated region partially prevented miR-613-induced suppression of HCC cell proliferation and invasion. In vivo studies confirmed that miR-613 overexpression retarded the growth of Hep3B xenograft tumors in nude mice, coupled with a reduction in the percentage of Ki67-positive tumor cells and DCLK1 protein expression. In conclusion, we provide first evidence for the suppressive activity of miR-613 in HCC, which is causally linked to targeting of DCLK1. Restoration of miR-613 may provide a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Wenyao Wang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Hongfei Zhang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lichao Wang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shaojun Zhang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Miao Tang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
34
|
MiR-613 induces cell cycle arrest by targeting CDK4 in non-small cell lung cancer. Cell Oncol (Dordr) 2016; 39:139-47. [DOI: 10.1007/s13402-015-0262-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 10/22/2022] Open
|
35
|
Abstract
Nuclear receptors sense a wide range of steroids and hormones (estrogens, progesterone, androgens, glucocorticoid, and mineralocorticoid), vitamins (A and D), lipid metabolites, carbohydrates, and xenobiotics. In response to these diverse but critically important mediators, nuclear receptors regulate the homeostatic control of lipids, carbohydrate, cholesterol, and xenobiotic drug metabolism, inflammation, cell differentiation and development, including vascular development. The nuclear receptor family is one of the most important groups of signaling molecules in the body and as such represent some of the most important established and emerging clinical and therapeutic targets. This review will highlight some of the recent trends in nuclear receptor biology related to vascular biology.
Collapse
Affiliation(s)
- David Bishop-Bailey
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK,
| |
Collapse
|
36
|
Fu X, Cui Y, Yang S, Xu Y, Zhang Z. MicroRNA-613 inhibited ovarian cancer cell proliferation and invasion by regulating KRAS. Tumour Biol 2015; 37:6477-83. [PMID: 26631045 DOI: 10.1007/s13277-015-4507-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) play several important roles in carcinogenesis, and the dysregulation of miRNAs is associated with cancer progression. Little is known about the role of miR-613 in ovarian cancer. In the present study, we demonstrate that miR-613 expression is downregulated in human ovarian cancer cell lines and tissues. Additionally, miR-613 overexpression suppressed ovarian cancer cell proliferation, colony formation, and invasion. Furthermore, KRAS was identified as a target of miR-613. Reintroducing KRAS rescued the inhibitory effects exerted by miR-613 on ovarian cancer cell proliferation and invasion. Taken together, our findings suggest that miR-613 functions as a candidate tumor suppressor miRNA in ovarian cancer by directly targeting KRAS. To the best of our knowledge, this is the first study to show that miR-613 affects the proliferation and invasion of ovarian cancer.
Collapse
Affiliation(s)
- Xin Fu
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Yanfen Cui
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Shaobin Yang
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yue Xu
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Zicheng Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.
| |
Collapse
|
37
|
Koturbash I, Tolleson WH, Guo L, Yu D, Chen S, Hong H, Mattes W, Ning B. microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med 2015; 9:1153-76. [PMID: 26501795 PMCID: PMC5712454 DOI: 10.2217/bmm.15.89] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Much evidence has documented that microRNAs (miRNAs) play an important role in the modulation of interindividual variability in the production of drug metabolizing enzymes and transporters (DMETs) and nuclear receptors (NRs) through multidirectional interactions involving environmental stimuli/stressors, the expression of miRNA molecules and genetic polymorphisms. MiRNA expression has been reported to be affected by drugs and miRNAs themselves may affect drug metabolism and toxicity. In cancer research, miRNA biomarkers have been identified to mediate intrinsic and acquired resistance to cancer therapies. In drug safety assessment, miRNAs have been found associated with cardiotoxicity, hepatotoxicity and nephrotoxicity. This review article summarizes published studies to show that miRNAs can serve as early biomarkers for the evaluation of drug efficacy and drug safety.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Environmental & Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - William H Tolleson
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Dianke Yu
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - William Mattes
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Baitang Ning
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
38
|
Koo SH, Lo YL, Yee JY, Lee EJD. Genetic and/or non-genetic causes for inter-individual and inter-cellular variability in transporter protein expression: implications for understanding drug efficacy and toxicity. Expert Opin Drug Metab Toxicol 2015; 11:1821-37. [DOI: 10.1517/17425255.2015.1104298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Zha XQ, Xue L, Zhang HL, Asghar MN, Pan LH, Liu J, Luo JP. Molecular mechanism of a new Laminaria japonica polysaccharide on the suppression of macrophage foam cell formation via regulating cellular lipid metabolism and suppressing cellular inflammation. Mol Nutr Food Res 2015; 59:2008-21. [PMID: 26153221 DOI: 10.1002/mnfr.201500113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2024]
Abstract
SCOPE Laminaria japonica is an important marine vegetable with great health benefits for preventing atherosclerosis. Since the foam cell formation is an important hallmark for the initiation of atherosclerosis, we examined the effect and underlying mechanism of a purified L. japonica polysaccharide (LJP61A) on the suppression of macrophage foam cell formation in this study. The chemical structure was further characterized. METHODS AND RESULTS Using oxidized low-density lipoprotein (ox-LDL)-induced foam cell model, we found that the cellular lipid accumulation was significantly attenuated by 25 μg/mL LJP61A. Meanwhile, LJP61A caused a remarkable decrease in mRNA expression of peroxisome proliferator-activated receptor γ that was accompanied by the reduction of CD36 and Acyl coenzyme A: cholesterol acyltransferase-1 mRNA levels, and the enhancement of ATP-binding cassette transporters A1 and scavenger receptor B1 mRNA levels. Besides these, the ox-LDL-induced cellular inflammation was also restricted by LJP61A treatment via mammalian target of rapamycin-mediated Toll-like receptor 2/4-Mitogen-activated protein kinases/nuclear factor kappa-B pathways. The structure of LJP61A was characterized as a repeating unit consisting of →3,6)-α-d-Manp-(1→, →4)-α-d-Manp-(1→, →4)-2-O-acetyl-β-d-Glcp-(1→, →4)-β-d-Glcp-(1→, →6)-4-O-SO3 -β-d-Galp-(1→, →6)-β-d-Galp-(1→, →3)-β-d-Galp-(1→, and a terminal residue of α-d-Glcp-(1→. CONCLUSION Our findings suggest that LJP61A inhibits the conversion of macrophage into foam cell via regulating cellular lipid metabolism and suppressing cellular inflammation.
Collapse
Affiliation(s)
- Xue-Qiang Zha
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Lei Xue
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Hai-Lin Zhang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Muhammad-Naeem Asghar
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Li-Hua Pan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Jian Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Jian-Ping Luo
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| |
Collapse
|
40
|
Genetic responses to seasonal variation in altitudinal stress: whole-genome resequencing of great tit in eastern Himalayas. Sci Rep 2015; 5:14256. [PMID: 26404527 PMCID: PMC4585896 DOI: 10.1038/srep14256] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/21/2015] [Indexed: 01/29/2023] Open
Abstract
Species that undertake altitudinal migrations are exposed to a considerable seasonal variation in oxygen levels and temperature. How they cope with this was studied in a population of great tit (Parus major) that breeds at high elevations and winters at lower elevations in the eastern Himalayas. Comparison of population genomics of high altitudinal great tits and those living in lowlands revealed an accelerated genetic selection for carbohydrate energy metabolism (amino sugar, nucleotide sugar metabolism and insulin signaling pathways) and hypoxia response (PI3K-akt, mTOR and MAPK signaling pathways) in the high altitudinal population. The PI3K-akt, mTOR and MAPK pathways modulate the hypoxia-inducible factors, HIF-1α and VEGF protein expression thus indirectly regulate hypoxia induced angiogenesis, erythropoiesis and vasodilatation. The strategies observed in high altitudinal great tits differ from those described in a closely related species on the Tibetan Plateau, the sedentary ground tit (Parus humilis). This species has enhanced selection in lipid-specific metabolic pathways and hypoxia-inducible factor pathway (HIF-1). Comparative population genomics also revealed selection for larger body size in high altitudinal great tits.
Collapse
|
41
|
Lang-Ouellette D, Richard TG, Morin P. Mammalian hibernation and regulation of lipid metabolism: a focus on non-coding RNAs. BIOCHEMISTRY (MOSCOW) 2015; 79:1161-71. [PMID: 25540001 DOI: 10.1134/s0006297914110030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerous species will confront severe environmental conditions by undergoing significant metabolic rate reduction. Mammalian hibernation is one such natural model of hypometabolism. Hibernators experience considerable physiological, metabolic, and molecular changes to survive the harsh challenges associated with winter. Whether as fuel source or as key signaling molecules, lipids are of primary importance for a successful bout of hibernation and their careful regulation throughout this process is essential. In recent years, a plethora of non-coding RNAs has emerged as potential regulators of targets implicated in lipid metabolism in diverse models. In this review, we introduce the general characteristics associated with mammalian hibernation, present the importance of lipid metabolism prior to and during hibernation, as well as discuss the potential relevance of non-coding RNAs such as miRNAs and lncRNAs during this process.
Collapse
Affiliation(s)
- D Lang-Ouellette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, E1A 3E9, Canada.
| | | | | |
Collapse
|
42
|
Sud N, Taher J, Su Q. MicroRNAs and Noncoding RNAs in Hepatic Lipid and Lipoprotein Metabolism: Potential Therapeutic Targets of Metabolic Disorders. Drug Dev Res 2015; 76:318-27. [PMID: 26286650 DOI: 10.1002/ddr.21269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Noncoding RNAs and microRNAs (miRNAs) represent an important class of regulatory molecules that modulate gene expression. The role of miRNAs in diverse cellular processes such as cancer, apoptosis, cell differentiation, cardiac remodeling, and inflammation has been intensively explored. Recent studies further demonstrated the important roles of miRNAs and noncoding RNAs in modulating a broad spectrum of genes involved in lipid synthesis and metabolic pathways. This overview focuses on the role of miRNAs in hepatic lipid and lipoprotein metabolism and their potential as therapeutic targets for metabolic syndrome. This includes recent advances made in the understanding of their target pathways and the clinical development of miRNAs in lipid metabolic disorders.
Collapse
Affiliation(s)
- Neetu Sud
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jennifer Taher
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Qiaozhu Su
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
43
|
Cao P, Pan H, Xiao T, Zhou T, Guo J, Su Z. Advances in the Study of the Antiatherogenic Function and Novel Therapies for HDL. Int J Mol Sci 2015. [PMID: 26225968 PMCID: PMC4581191 DOI: 10.3390/ijms160817245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hypothesis that raising high-density lipoprotein cholesterol (HDL-C) levels could improve the risk for cardiovascular disease (CVD) is facing challenges. There is multitudinous clear clinical evidence that the latest failures of HDL-C-raising drugs show no clear association with risks for CVD. At the genetic level, recent research indicates that steady-state HDL-C concentrations may provide limited information regarding the potential antiatherogenic functions of HDL. It is evident that the newer strategies may replace therapeutic approaches to simply raise plasma HDL-C levels. There is an urgent need to identify an efficient biomarker that accurately predicts the increased risk of atherosclerosis (AS) in patients and that may be used for exploring newer therapeutic targets. Studies from recent decades show that the composition, structure and function of circulating HDL are closely associated with high cardiovascular risk. A vast amount of data demonstrates that the most important mechanism through which HDL antagonizes AS involves the reverse cholesterol transport (RCT) process. Clinical trials of drugs that specifically target HDL have so far proven disappointing, so it is necessary to carry out review on the HDL therapeutics.
Collapse
Affiliation(s)
- Peiqiu Cao
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haitao Pan
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
- Guangzhou Boxabio Ltd., D-106 Guangzhou International Business Incubator, Guangzhou 510530, China.
| | - Ting Zhou
- Guangzhou Boxabio Ltd., D-106 Guangzhou International Business Incubator, Guangzhou 510530, China.
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
44
|
DiMarco DM, Fernandez ML. The Regulation of Reverse Cholesterol Transport and Cellular Cholesterol Homeostasis by MicroRNAs. BIOLOGY 2015; 4:494-511. [PMID: 26226008 PMCID: PMC4588146 DOI: 10.3390/biology4030494] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that have the ability to post-transcriptionally regulate gene expression. Hundreds of miRNAs have been identified in humans and they are involved in the regulation of almost every process, including cholesterol transport, metabolism, and maintenance of cholesterol homeostasis. Because of their small size and their ability to very specifically regulate gene expression, miRNAs are attractive targets for the regulation of dyslipidemias and other lipid-related disorders. However, the complex interactions between miRNAs, transcription factors, and gene expression raise great potential for side effects as a result of miRNA overexpression or inhibition. Many dietary components can also target specific miRNAs, altering the expression of downstream genes. Therefore, much more research is necessary to fully understand the role(s) of each miRNA in the body and how they may be impacted by diet and health. The present review aims to summarize the known roles of miRNAs in the regulation of reverse cholesterol transport and the maintenance of cholesterol homeostasis, as well as the potential clinical consequences of their manipulation.
Collapse
Affiliation(s)
- Diana M DiMarco
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
45
|
He Y, Chevillet JR, Liu G, Kim TK, Wang K. The effects of microRNA on the absorption, distribution, metabolism and excretion of drugs. Br J Pharmacol 2015; 172:2733-47. [PMID: 25296724 PMCID: PMC4439871 DOI: 10.1111/bph.12968] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 12/17/2022] Open
Abstract
The importance of genetic factors (e.g. sequence variation) in the absorption, distribution, metabolism, excretion (ADME) and overall efficacy of therapeutic agents is well established. Our ability to identify, interpret and utilize these factors is the subject of much clinical investigation and therapeutic development. However, drug ADME and efficacy are also heavily influenced by epigenetic factors such as DNA/histone methylation and non-coding RNAs [especially microRNAs (miRNAs)]. Results from studies using tools, such as in silico miRNA target prediction, in vitro functional assays, nucleic acid profiling/sequencing and high-throughput proteomics, are rapidly expanding our knowledge of these factors and their effects on drug metabolism. Although these studies reveal a complex regulation of drug ADME, an increased understanding of the molecular interplay between the genome, epigenome and transcriptome has the potential to provide practically useful strategies to facilitate drug development, optimize therapeutic efficacy, circumvent adverse effects, yield novel diagnostics and ultimately become an integral component of personalized medicine.
Collapse
Affiliation(s)
- Y He
- Institute of Medical Systems Biology, Guangdong Medical CollegeDongguan, Guangdong, China
| | | | - G Liu
- Department of Chemistry and Biochemistry, North Dakota State UniversityFargo, ND, USA
| | - T K Kim
- Institute for Systems BiologySeattle, WA, USA
| | - K Wang
- Institute for Systems BiologySeattle, WA, USA
| |
Collapse
|
46
|
Li XH, Li Y, Cheng ZY, Cai XG, Wang HM. The Effects of Phellinus linteus Polysaccharide Extracts on Cholesterol Efflux in Oxidized Low-Density Lipoprotein–Loaded THP-1 Macrophages. J Investig Med 2015; 63:752-7. [DOI: 10.1097/jim.0000000000000201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Zhang N, Lei J, Lei H, Ruan X, Liu Q, Chen Y, Huang W. MicroRNA-101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp Cell Res 2015; 336:33-42. [PMID: 26033364 DOI: 10.1016/j.yexcr.2015.05.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/24/2015] [Accepted: 05/27/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND MicroRNAs play key roles in regulating cholesterol homeostasis. Here, we investigated the role of microRNA-101 (miR-101) in regulating ATP-binding cassette transporter A1 (ABCA1) expression and cholesterol efflux under non-inflammatory and inflammatory conditions in human THP-1-derived macrophages and HepG2 hepatoblastoma cells. METHODS The cell lines were transfected with one of four lentiviral vectors: miR-101, miR-101 control, anti-miR-101, or anti-miR-101 control. A luciferase reporter assay was used to examine miR-101 binding to the 3' untranslated region (UTR) of ABCA1. Western blotting was conducted to assess ABCA1 protein expression. Cells were loaded with BODIPY-cholesterol and stained with oil red O to assess cholesterol efflux. RESULTS The luciferase activity assay revealed that wild-type miR-101 binding at site 2 significantly repressed ABCA1 3' UTR activity, suggesting that miR-101 directly targets the ABCA1 mRNA at site 2. In both cell lines, Western blotting revealed that miR-101 expression negatively regulates ABCA1 protein expression and significantly suppresses cholesterol efflux to ApoA1 under both low-density lipoprotein (LDL) and non-LDL conditions, which was confirmed by pronounced lipid inclusions visible by oil red O staining. In HepG2 cells, both IL-6 and TNF-α treatments produced significant miR-101 overexpression; however, in THP-1-derived macrophages, only IL-6 treatment produced significant miR-101 overexpression. Anti-mir-101 transfection under both IL-6 and TNF-α treatment conditions led to ABCA1 upregulation, indicating that miR-101 expression represses ABCA1 expression under inflammatory conditions. CONCLUSIONS miR-101 promotes intracellular cholesterol retention under inflammatory conditions through suppressing ABCA1 expression and suggests that the miR-101-ABCA1 axis may play an intermediary role in the development of NAFLD and vascular atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - JiaYan Lei
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Lei
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiongzhong Ruan
- Centre for Lipid Research, Key Laboratory of Metabolism on Lipid and Glucose, Chongqing Medical University, Chongqing, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Qing Liu
- Centre for Clinical Research, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Metabolism on Lipid and Glucose, Chongqing Medical University, Chongqing, China
| | - Wei Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Yue J, Li B, Jing Q, Guan Q. Salvianolic acid B accelerated ABCA1-dependent cholesterol efflux by targeting PPAR-γ and LXRα. Biochem Biophys Res Commun 2015; 462:233-8. [PMID: 25956064 DOI: 10.1016/j.bbrc.2015.04.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Cholesterol efflux has been thought to be the main and basic mechanism by which free cholesterol is transferred from extra hepatic cells to the liver or intestine for excretion. Salvianolic acid B (Sal B) has been widely used for the prevention and treatment of atherosclerotic diseases. Here, we sought to investigate the effects of Sal B on the cholesterol efflux in THP-1 macrophages. METHODS After PMA-stimulated THP-1 cells were exposed to 50 mg/L of oxLDL and [(3)H] cholesterol (1.0 μCi/mL) for another 24 h, the effect of Sal B on cholesterol efflux was evaluated in the presence of apoA-1, HDL2 or HDL3. The expression of ATP binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor-gamma (PPAR-γ), and liver X receptor-alpha (LXRα) was detected both at protein and mRNA levels in THP-1 cells after the stimulation of Sal B. Meanwhile, specific inhibition of PPAR-γ and LXRα were performed to investigate the mechanism. RESULTS The results showed that Sal B significantly accelerated apoA-I- and HDL-mediated cholesterol efflux in both dose- and time-dependent manners. Meanwhile, Sal B treatment also enhanced the expression of ABCA1 at both mRNA and protein levels. Then the data demonstrated that Sal B increased the expression of PPAR-γ and LXRα. And the application of specific agonists and inhibitors of further confirmed that Sal exert the function through PPAR-γ and LXRα. CONCLUSION These results demonstrate that Sal B promotes cholesterol efflux in THP-1 macrophages through ABCA1/PPAR-γ/LXRα pathway.
Collapse
Affiliation(s)
- Jianmei Yue
- Department of Endocrinology, Shandong Province Hospital Affiliated to Shandong University, 324# Jing 5 Road, Jinan 255021, PR China; Department of Endocrinology, The First Hospital of Zibo, 4# E Mei Shan Dong Road, Zibo 255200, PR China
| | - Bo Li
- Department of Cardiology, Central Hospital of Zibo, 54# Gong Qing Tuan Xi Road, Zibo, Shandong Province, PR China.
| | - Qingping Jing
- Department of Endocrinology, The First Hospital of Zibo, 4# E Mei Shan Dong Road, Zibo 255200, PR China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Province Hospital Affiliated to Shandong University, 324# Jing 5 Road, Jinan 255021, PR China.
| |
Collapse
|
49
|
Grimaldi V, Vietri MT, Schiano C, Picascia A, De Pascale MR, Fiorito C, Casamassimi A, Napoli C. Epigenetic reprogramming in atherosclerosis. Curr Atheroscler Rep 2015; 17:476. [PMID: 25433555 DOI: 10.1007/s11883-014-0476-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent data support the involvement of epigenetic alterations in the pathogenesis of atherosclerosis. The most widely investigated epigenetic mechanism is DNA methylation although also histone code changes occur during the diverse steps of atherosclerosis, such as endothelial cell proliferation, vascular smooth muscle cell (SMC) differentiation, and inflammatory pathway activation. In this review, we focus on the main genes that are epigenetically modified during the atherogenic process, particularly nitric oxide synthase (NOS), estrogen receptors (ERs), collagen type XV alpha 1 (COL15A1), vascular endothelial growth factor receptor (VEGFR), and ten-eleven translocation (TET), which are involved in endothelial dysfunction; gamma interferon (IFN-γ), forkhead box p3 (FOXP3), and tumor necrosis factor-α (TNF-α), associated with atherosclerotic inflammatory process; and p66shc, lectin-like oxLDL receptor (LOX1), and apolipoprotein E (APOE) genes, which are regulated by high cholesterol and homocysteine (Hcy) levels. Furthermore, we also discuss the role of non-coding RNAs (ncRNA) in atherosclerosis. NcRNAs are involved in epigenetic regulation of endothelial function, SMC proliferation, cholesterol synthesis, lipid metabolism, and inflammatory response.
Collapse
Affiliation(s)
- Vincenzo Grimaldi
- U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), Second University of Naples (SUN), Piazza L. Miraglia 2, 80138, Naples, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Novák J, Olejníčková V, Tkáčová N, Santulli G. Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:79-100. [PMID: 26662987 PMCID: PMC4871243 DOI: 10.1007/978-3-319-22380-3_5] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs, miRs) represent a group of powerful and versatile posttranscriptional regulators of gene expression being involved in the fine control of a plethora of physiological and pathological processes. Besides their well-established crucial roles in the regulation of cell cycle, embryogenesis or tumorigenesis, these tiny molecules have also been shown to participate in the regulation of lipid metabolism. In particular, miRs orchestrate cholesterol and fatty acids synthesis, transport, and degradation and low-density and high-density lipoprotein (LDL and HDL) formation. It is thus not surprising that they have also been reported to affect the development and progression of several lipid metabolism-related disorders including liver steatosis and atherosclerosis. Mounting evidence suggests that miRs might represent important "posttranscriptional hubs" of lipid metabolism, which means that one miR usually targets 3'-untranslated regions of various mRNAs that are involved in different steps of one precise metabolic/signaling pathway, e.g., one miR targets mRNAs of enzymes important for cholesterol synthesis, degradation, and transport. Therefore, changes in the levels of one key miR affect various steps of one pathway, which is thereby promoted or inhibited. This makes miRs potent future diagnostic and even therapeutic tools for personalized medicine. Within this chapter, the most prominent microRNAs involved in lipid metabolism, e.g., miR-27a/b, miR-33/33*, miR-122, miR-144, or miR-223, and their intracellular and extracellular functions will be extensively discussed, in particular focusing on their mechanistic role in the pathophysiology of atherosclerosis. Special emphasis will be given on miR-122, the first microRNA currently in clinical trials for the treatment of hepatitis C and on miR-223, the most abundant miR in lipoprotein particles.
Collapse
Affiliation(s)
- Jan Novák
- 2nd Department of Internal Medicine, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A18, Brno, 62500, Czech Republic.
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic.
| | - Veronika Olejníčková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic
| | - Nikola Tkáčová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic
| | - Gaetano Santulli
- Columbia University Medical Center, New York Presbyterian Hospital —Manhattan, New York, NY, USA; “Federico II” University Hospital, Naples, Italy
| |
Collapse
|