1
|
Das P, Stallings CE, Abubakar RA, Mojahed N, Guha S, Abou-Jabal D, Ellsworth BS. The interplay between FOXO1 and glucocorticoid signaling in promoting the terminal differentiation of somatotropes. Mol Cell Endocrinol 2025:112573. [PMID: 40381980 DOI: 10.1016/j.mce.2025.112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Glucocorticoids play a pivotal role in terminal differentiation of pituitary somatotropes. However, the mechanisms for this remain poorly understood. Here we demonstrate that loss of the forkhead transcription factor, FOXO1, severely impairs glucocorticoid-induced expression of the gene encoding growth hormone (Gh1) both in vitro and in vivo. The mechanism appears to involve glucocorticoid induction of Foxo1 expression, nuclear localization, and increased binding associated with the Gh1 gene. An additional mechanism includes stabilization of the glucocorticoid receptor, NR3C1, possibly through FOXO1 induction of the chaperone protein, HSP90. Together these data suggest that glucocorticoid signaling and FOXO1 cooperate to promote Gh1 expression, an essential aspect of somatotrope terminal differentiation.
Collapse
Affiliation(s)
- Pratyusa Das
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Caitlin E Stallings
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Ridwanullah A Abubakar
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Nooshin Mojahed
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Shalini Guha
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Dania Abou-Jabal
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Buffy S Ellsworth
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, USA.
| |
Collapse
|
2
|
Qin Y, Zhao W, Jia Z, Bauman WA, Peng Y, Guo XE, Chen Z, He Z, Cardozo CP, Wang D, Qin W. Neuroprotective macromolecular methylprednisolone prodrug nanomedicine prevents glucocorticoid-induced muscle atrophy and osteoporosis in a rat model of spinal cord injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102773. [PMID: 38960364 PMCID: PMC11513243 DOI: 10.1016/j.nano.2024.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
To address the adverse side effects associated with systemic high-dose methylprednisolone (MP) therapy for acute spinal cord injury (SCI), we have developed a N-2-hydroxypropyl methacrylamide copolymer-based MP prodrug nanomedicine (Nano-MP). Intravenous Nano-MP selectively targeted to the inflamed SCI lesion and significantly improved neuroprotection and functional recovery after acute SCI. In the present study, we comprehensively assessed the potential adverse side effects associated with the treatment in the SCI rat models, including reduced body weight and food intake, impaired glucose metabolism, and reduced musculoskeletal mass and integrity. In contrast to free MP treatment, intravenous Nano-MP after acute SCI not only offered superior neuroprotection and functional recovery but also significantly mitigated or even eliminated the aforementioned adverse side effects. The superior safety features of Nano-MP observed in this study further confirmed the clinical translational potential of Nano-MP as a highly promising drug candidate for better clinical management of patients with acute SCI.
Collapse
Affiliation(s)
- Yiwen Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; GCM Grosvenor, New York, USA
| | - Wei Zhao
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - William A Bauman
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA
| | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Zihao Chen
- Departments of Biotechnology, Brown University, Providence, RI, USA
| | - Zhiming He
- College of Dentistry, New York University, NY, New York, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
3
|
Gallo MT, Dolci B, Fumagalli F, Brivio P, Calabrese F. Prenatal Fluoxetine Exposure Influences Glucocorticoid Receptor-Mediated Activity in the Prefrontal Cortex of Adolescent Rats Exposed to Acute Stress. ACS Chem Neurosci 2024; 15:1560-1569. [PMID: 38507566 DOI: 10.1021/acschemneuro.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Any deviation from the programmed processes of brain development may modify its formation and functions, thereby precipitating pathological conditions, which often become manifest in adulthood. Exposure to a challenge during crucial periods of vulnerability, such as adolescence, may reveal molecular changes preceding behavioral outcomes. Based on a previous study showing that prenatal fluoxetine (FLX) leads to the development of an anhedonic-like behavior in adult rats, we aimed to assess whether the same treatment regimen (i.e., fluoxetine during gestation; 15 mg/kg/day) influences the ability to respond to acute restraint stress (ARS) during adolescence. We subjected the rats to a battery of behavioral tests evaluating the development of various phenotypes (cognitive deficit, anhedonia, and anxiety). Furthermore, we carried out molecular analyses in the plasma and prefrontal cortex, a brain region involved in stress response, and whose functions are commonly altered in neuropsychiatric conditions. Our findings confirm that prenatal manipulation did not affect behavior in adolescent rats but impaired the capability to respond properly to ARS. Indeed, we observed changes in several molecular key players of the hypothalamic pituitary adrenal axis, particularly influencing genomic effects mediated by the glucocorticoid receptor. This study highlights that prenatal FLX exposure influences the ability of adolescent male rats to respond to an acute challenge, thereby altering the functionality of the hypothalamic-pituitary-adrenal axis, and indicates that the prenatal manipulation may prime the response to challenging events during this critical period of life.
Collapse
Affiliation(s)
- Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Beatrice Dolci
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| |
Collapse
|
4
|
Cartwright M, Louw-du Toit R, Jackson H, Janse van Vuuren M, Africander D. Progesterone receptor isoform ratios influence the transcriptional activity of progestins via the progesterone receptor. J Steroid Biochem Mol Biol 2023; 232:106348. [PMID: 37315868 DOI: 10.1016/j.jsbmb.2023.106348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Progestins (synthetic progestogens) are progesterone receptor (PR) ligands used globally by women in both hormonal contraception and menopausal hormone therapy. Although four generations of unique progestins have been developed, studies seldom distinguish between the activities of progestins via the two functionally distinct PR isoforms, PR-A and PR-B. Moreover, not much is known about the action of progestins in breast cancer tumors where PR-A is mostly overexpressed relative to PR-B. Understanding progestin action in breast cancer is crucial since the clinical use of some progestins has been associated with an increased risk of developing breast cancer. This study directly compared the agonist activities of selected progestins from all four generations for transactivation and transrepression via either PR-A or PR-B, and when PR-A and PR-B were co-expressed at ratios comparable to those detected in breast cancer tumors. Comparative dose-response analysis showed that earlier generation progestins mostly displayed similar efficacies for transactivation on a minimal progesterone response element via the PR isoforms, while most of the 4th generation progestins, similar to the natural progestogen, progesterone (P4), were more efficacious via PR-B. Most of the progestogens were however more potent via PR-A. We are the first to show that the efficacies of the selected progestogens via the individual PR isoforms were generally decreased when PR-A and PR-B were co-expressed, irrespective of the ratio of PR-A:PR-B. While the potencies of most progestogens via PR-B were enhanced when the ratio of PR-A relative to PR-B was increased, those via PR-A were minimally influenced. This study is also the first to report that all progestogens evaluated, except 1st generation medroxyprogesterone acetate and 4th generation drospirenone, displayed similar agonist activity for transrepression via PR-A and PR-B on a minimal nuclear factor kappa B containing promoter. Moreover, we showed that the progestogen activity for transrepression was significantly increased when PR-A and PR-B were co-expressed. Taken together, our results highlight that PR agonists (progestogens) do not always display the same activity via PR-A and PR-B, or when PR-A and PR-B are co-expressed at ratios mimicking those found in breast cancer tumors. These results suggest that biological responses are progestogen- and PR isoform-dependent and may differ in target tissues expressing varying PR-A:PR-B ratios.
Collapse
Affiliation(s)
- Meghan Cartwright
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Hayley Jackson
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Melani Janse van Vuuren
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
5
|
Hussain S, Yadav SS, Dwivedi P, Banerjee M, Usman K, Nath R, Khattri S. SNPs of FOXO1 and Their Interactions Contributes to the Enhanced Risk of Diabetes Among Elderly Individuals. DNA Cell Biol 2022; 41:381-389. [PMID: 35325578 DOI: 10.1089/dna.2021.1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have assessed the impact of three single nucleotide polymorphisms (SNPs) of Forkhead Box O1 (FOXO1) and their interaction on susceptibility of type 2 diabetes mellitus in geriatric population from northern India. We genotyped three SNPs (rs2721068, rs17446614, and rs4581585) of FOXO1 gene in 190 elderly individuals with diabetes and 182 unrelated healthy controls of similar ethnicity by using TaqMan SNP assays. SNP-SNP and SNP-environment interactions among polymorphic loci were studied by the multifactor dimensionality reduction (MDR) method. The AA genotype carriers of rs17446614 was associated with the increased susceptibility of diabetes in both adjusted and unadjusted model, whereas rs4581585 was associated with the risk in unadjusted model only. Genotype and minor allele interaction with quantitative parameters revealed that AA genotype of rs17446614 had significantly higher fasting plasma glucose (FPG) in diabetic subjects, also minor allele (A) in patients was positively associated with FPG and glycated hemoglobin. Haplotype Trs2721068Grs17446614Trs4581585 increases the risk of diabetes, whereas carrier of haplotypes Crs2721068Grs17446614Crs4581585 and Crs2721068 Grs17446614Trs4581585 were protective. The MDR analysis revealed that interaction of rs17446614 with body mass index (BMI) increased the susceptibility of diabetes. Therefore presence of rs17446614 variant and its interaction with BMI and haplotype Trs2721068Grs17446614Trs4581585 modulates the risk of diabetes and can be used as a promising tool for identifying high-risk individuals.
Collapse
Affiliation(s)
- Sartaj Hussain
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India.,ICMR-RMRC, Gorakhpur, Uttar Pradesh, India
| | - Suraj Singh Yadav
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Monisha Banerjee
- Department of Zoology, Lucknow University, Lucknow, Uttar Pradesh, India
| | - Kauser Usman
- Department of Medicine, King George's Medical University Lucknow, Lucknow, Uttar Pradesh, India
| | - Rajendra Nath
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sanjay Khattri
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Su Y, Chen X, Zhou H, Shaw S, Chen J, Isales CM, Zhao J, Shi X. Expression of long noncoding RNA Xist is induced by glucocorticoids. Front Endocrinol (Lausanne) 2022; 13:1005944. [PMID: 36187119 PMCID: PMC9516292 DOI: 10.3389/fendo.2022.1005944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive agents. However, their clinical usage is limited by severe multisystemic side effects. Glucocorticoid induced osteoporosis results in significant morbidity and mortality but the cellular and molecular mechanisms underlying GC-induced bone loss are not clear. GC use results in decreased osteoblast differentiation with increased marrow adiposity through effects on bone marrow stem cells. GC effects are transduced through its receptor (GR). To identify novel GR regulated genes, we performed RNA sequencing (RNA-Seq) analysis comparing conditional GR knockout mouse made by crossing the floxed GR animal with the Col I promoter-Cre, versus normal floxed GR without Cre, and that testing was specific for Col I promoter active cells, such as bone marrow mesenchymal stem/osteoprogenitor cells (MSCs) and osteoblasts. Results showed 15 upregulated genes (3- to 10-fold) and 70 downregulated genes (-2.7- to -10-fold), with the long noncoding RNA X-inactive specific transcript (Xist) downregulated the most. The differential expression of genes measured by RNA-Seq was validated by qRT-PCR analysis of selected genes and the GC/GR signaling-dependent expression of Xist was further demonstrated by GC (dexamethasone) treatment of GR-deficient MSCs in vitro and by GC injection of C57BL/6 mice (wild-type males and females) in vivo. Our data revealed that the long noncoding RNA Xist is a GR regulated gene and its expression is induced by GC both in vitro and in vivo. To our knowledge, this is the first evidence showing that Xist is transcriptionally regulated by GC/GR signaling.
Collapse
Affiliation(s)
- Yun Su
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Xing Chen
- Department of Mathematics, Logistical Engineering University, Chongqing, China
| | - Hongyan Zhou
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Sean Shaw
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Jie Chen
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Augusta University, Augusta, GA, United States
| | - Carlos M. Isales
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, United States
| | - Jing Zhao
- Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingming Shi
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, United States
- *Correspondence: Xingming Shi,
| |
Collapse
|
7
|
Haj-Mirzaian A, Ramezanzadeh K, Shariatzadeh S, Tajik M, Khalafi F, Tafazolimoghadam A, Radmard M, Rahbar A, Pirri F, Kazemi K, Khosravi A, Shababi N, Dehpour AR. Role of hypothalamic-pituitary adrenal-axis, toll-like receptors, and macrophage polarization in pre-atherosclerotic changes induced by social isolation stress in mice. Sci Rep 2021; 11:19091. [PMID: 34580342 PMCID: PMC8476494 DOI: 10.1038/s41598-021-98276-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
It has been well documented that chronic stress can induce atherosclerotic changes, however, the underlying mechanisms is yet to be established. In this regard, this study aimed to elucidate the relation between hypothalamic-pituitary adrenal-axis (HPA-axis), toll-like receptors (TLRs), as well as M1/M2 macrophage ratio and pre-atherosclerotic changes in social isolation stress (SIS) in mice. We used small interfering RNA against the glucocorticoid receptor (GR) to evaluate the relation between HPA-axis and TLRs. C57BL/6J mice were subjected to SIS and RT-PCR, ELISA, flow cytometry, and immunohistochemistry were used to assess the relations between pre-atherosclerotic changes and TLRs, macrophage polarization, pro-inflammatory cytokines, and cell adhesion molecules in aortic tissue. We used TAK-242 (0.3 mg/kg, intraperitoneally), a selective antagonist of TLR4, as a possible prophylactic treatment for atherosclerotic changes induced by SIS. We observed that isolated animals had higher serum concentration of corticosterone and higher body weight in comparison to normal animals. In isolated animals, results of in vitro study showed that knocking-down of the GR in bone marrow-derived monocytes significantly decreased the expression of TLR4. In vivo study suggested higher expression of TLR4 on circulating monocytes and higher M1/M2 ratio in aortic samples. Pathological study showed a mild pre-atherosclerotic change in isolated animals. Finally, we observed that treating animals with TAK-242 could significantly inhibit the pre-atherosclerotic changes. SIS can possibly increase the risk of atherosclerosis through inducing abnormal HPA-axis activity and subsequently lead to TLR4 up-regulation, vascular inflammation, high M1/M2 ratio in intima. Thus, TLR4 inhibitors might be a novel treatment to decrease the risk of atherosclerosis induced by chronic stress.
Collapse
Affiliation(s)
- Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiana Ramezanzadeh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael Tajik
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Khalafi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Tafazolimoghadam
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahla Radmard
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Rahbar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fardad Pirri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ayda Khosravi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Shababi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Sharma N, Bungau S. Elucidating the Possible Role of FoxO in Depression. Neurochem Res 2021; 46:2761-2775. [PMID: 34075521 DOI: 10.1007/s11064-021-03364-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Forkhead box-O (FoxO) transcriptional factors perform essential functions in several physiological and biological processes. Recent studies have shown that FoxO is implicated in the pathophysiology of depression. Changes in the upstream mediators of FoxOs including brain-derived neurotrophic factor (BDNF) and protein kinase B have been associated with depressive disorder and the antidepressant agents are known to alter the phosphorylation of FoxOs. Moreover, FoxOs might be regulated by serotonin or noradrenaline signaling and the hypothalamic-pituitary-adrenal (HPA)-axis,both of them are associated with the development of the depressive disorder. FoxO also regulates neural morphology, synaptogenesis, and neurogenesis in the hippocampus, which accounts for the pathogenesis of the depressive disorder. The current article underlined the potential functions of FoxOs in the etiology of depressive disorder and formulate few essential proposals for further investigation. The review also proposes that FoxO and its signal pathway might establish possible therapeutic mediators for the management of depressive disorder.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.,Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt., Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
9
|
Solagna F, Tezze C, Lindenmeyer MT, Lu S, Wu G, Liu S, Zhao Y, Mitchell R, Meyer C, Omairi S, Kilic T, Paolini A, Ritvos O, Pasternack A, Matsakas A, Kylies D, zur Wiesch JS, Turner JE, Wanner N, Nair V, Eichinger F, Menon R, Martin IV, Klinkhammer BM, Hoxha E, Cohen CD, Tharaux PL, Boor P, Ostendorf T, Kretzler M, Sandri M, Kretz O, Puelles VG, Patel K, Huber TB. Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. J Clin Invest 2021; 131:135821. [PMID: 34060483 PMCID: PMC8159690 DOI: 10.1172/jci135821] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle wasting is commonly associated with chronic kidney disease (CKD), resulting in increased morbidity and mortality. However, the link between kidney and muscle function remains poorly understood. Here, we took a complementary interorgan approach to investigate skeletal muscle wasting in CKD. We identified increased production and elevated blood levels of soluble pro-cachectic factors, including activin A, directly linking experimental and human CKD to skeletal muscle wasting programs. Single-cell sequencing data identified the expression of activin A in specific kidney cell populations of fibroblasts and cells of the juxtaglomerular apparatus. We propose that persistent and increased kidney production of pro-cachectic factors, combined with a lack of kidney clearance, facilitates a vicious kidney/muscle signaling cycle, leading to exacerbated blood accumulation and, thereby, skeletal muscle wasting. Systemic pharmacological blockade of activin A using soluble activin receptor type IIB ligand trap as well as muscle-specific adeno-associated virus-mediated downregulation of its receptor ACVR2A/B prevented muscle wasting in different mouse models of experimental CKD, suggesting that activin A is a key factor in CKD-induced cachexia. In summary, we uncovered a crosstalk between kidney and muscle and propose modulation of activin signaling as a potential therapeutic strategy for skeletal muscle wasting in CKD.
Collapse
Affiliation(s)
- Francesca Solagna
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Caterina Tezze
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Maja T. Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shun Lu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guochao Wu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu Zhao
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Charlotte Meyer
- Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Saleh Omairi
- College of Medicine, University of Wasit, Kut, Iraq
| | - Temel Kilic
- Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Andrea Paolini
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, United Kingdom
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viji Nair
- Michigan Medicine, Ann Arbor, Michigan, USA
| | | | | | - Ina V. Martin
- Department of Nephrology and Clinical Immunology and
| | | | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D. Cohen
- Nephrological Center, Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Pierre-Louis Tharaux
- Paris Centre de Recherche Cardiovasculaire, INSERM, Université de Paris, Paris, France
| | - Peter Boor
- Department of Nephrology and Clinical Immunology and
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | | | | | - Marco Sandri
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G. Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- Freiburg Institute for Advanced Studies and Center for Biological System Analysis, University of Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Freiburg Institute for Advanced Studies and Center for Biological System Analysis, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Zhang D, Liu K, Hu W, Lu X, Li L, Zhang Q, Huang H, Wang H. Prenatal dexamethasone exposure caused fetal rats liver dysplasia by inhibiting autophagy-mediated cell proliferation. Toxicology 2021; 449:152664. [PMID: 33359579 DOI: 10.1016/j.tox.2020.152664] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/16/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
As a synthetic glucocorticoid, dexamethasone has been widely used in the clinical treatment of premature birth and related pregnant diseases, but its clinical use is still controversial due to developmental toxicity. This study aimed to confirm the proliferation inhibitory effect of pregnant dexamethasone exposure (PDE) on fetal liver development and elucidate its molecular mechanism. In vitro studies, we found that dexamethasone inhibited hepatocyte proliferation through autophagy activated by glucocorticoid receptor (GR)-forkhead protein O1 (FOXO1) pathway. Subsequently, in vivo, we confirmed in a PDE rat model that male fetal liver proliferation was inhibited, and the expression of the GR-FOXO1 pathway and autophagy were increased. Taken together, PDE induces autophagy by activating the GR-FOXO1 pathway, which leads to fetal liver proliferation inhibition and dysplasia in offspring rats. This study confirmed that dexamethasone activates cell autophagy in utero through the GR-FOXO1 pathway, thereby inhibiting hepatocyte proliferation and liver development, which provides theoretical basis for understanding the developmental toxicity of dexamethasone and guiding the rational clinical use.
Collapse
Affiliation(s)
- Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hegui Huang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Wuhan No.1 Hospital, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
11
|
Cao J, Zhou W, Steemers F, Trapnell C, Shendure J. Sci-fate characterizes the dynamics of gene expression in single cells. Nat Biotechnol 2020; 38:980-988. [PMID: 32284584 PMCID: PMC7416490 DOI: 10.1038/s41587-020-0480-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
Gene expression programs change over time, differentiation and development, and in response to stimuli. However, nearly all techniques for profiling gene expression in single cells do not directly capture transcriptional dynamics. In the present study, we present a method for combined single-cell combinatorial indexing and messenger RNA labeling (sci-fate), which uses combinatorial cell indexing and 4-thiouridine labeling of newly synthesized mRNA to concurrently profile the whole and newly synthesized transcriptome in each of many single cells. We used sci-fate to study the cortisol response in >6,000 single cultured cells. From these data, we quantified the dynamics of the cell cycle and glucocorticoid receptor activation, and explored their intersection. Finally, we developed software to infer and analyze cell-state transitions. We anticipate that sci-fate will be broadly applicable to quantitatively characterize transcriptional dynamics in diverse systems.
Collapse
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Wei Zhou
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
12
|
Cao Z, Jose I, Glab J, Puthalakath H, Osellame LD, Hoogenraad NJ. Generation of reporter cell lines for factors inducing muscle wasting in cancer cachexia. Anal Biochem 2020; 606:113877. [PMID: 32738212 DOI: 10.1016/j.ab.2020.113877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022]
Abstract
Rapidly identifying cachexia-inducing factors that directly induce muscle wasting is an existing challenge. We developed two reporter cell lines that allow swift detection of such factors in blood from patients. C2C12 myoblasts were used for the establishment of reporter cells. A luciferase reporter gene, driven by promoters of wasting genes, Muscle RING-finger protein-1 (MuRF1) and Muscle Atrophy F-Box Protein (MAFbx/Atrogin-1) were used for the construction of reporter constructs. Increased expression of these genes in muscle tissue under wasting conditions was shown in vivo and in vitro. We found these reporter cell lines could detect factors associated with cancer cachexia, such as myostatin (Mstn), activin A, and TNF-α. We further investigated the capacity to directly detect a cachectic state using plasma samples from cachectic mice and cancer patients. Activation of the reporter cell lines was observed by the addition of plasma from mice with cancer cachexia and serum samples from patients with pancreatic or colorectal cancer. These results indicate that the reporter cell lines are competent as a tool for screening cachexia-inducing factors and potentially distinguishing a cachectic state induced by cancer.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Irvin Jose
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Jason Glab
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Laura D Osellame
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, VIC, 3086, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
| | - Nick J Hoogenraad
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, VIC, 3086, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
| |
Collapse
|
13
|
Vainshtein A, Sandri M. Signaling Pathways That Control Muscle Mass. Int J Mol Sci 2020; 21:ijms21134759. [PMID: 32635462 PMCID: PMC7369702 DOI: 10.3390/ijms21134759] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The loss of skeletal muscle mass under a wide range of acute and chronic maladies is associated with poor prognosis, reduced quality of life, and increased mortality. Decades of research indicate the importance of skeletal muscle for whole body metabolism, glucose homeostasis, as well as overall health and wellbeing. This tissue’s remarkable ability to rapidly and effectively adapt to changing environmental cues is a double-edged sword. Physiological adaptations that are beneficial throughout life become maladaptive during atrophic conditions. The atrophic program can be activated by mechanical, oxidative, and energetic distress, and is influenced by the availability of nutrients, growth factors, and cytokines. Largely governed by a transcription-dependent mechanism, this program impinges on multiple protein networks including various organelles as well as biosynthetic and quality control systems. Although modulating muscle function to prevent and treat disease is an enticing concept that has intrigued research teams for decades, a lack of thorough understanding of the molecular mechanisms and signaling pathways that control muscle mass, in addition to poor transferability of findings from rodents to humans, has obstructed efforts to develop effective treatments. Here, we review the progress made in unraveling the molecular mechanisms responsible for the regulation of muscle mass, as this continues to be an intensive area of research.
Collapse
Affiliation(s)
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padua, Italy
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy
- Myology Center, University of Padua, via G. Colombo 3, 35100 Padova, Italy
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
14
|
Hardy RS, Raza K, Cooper MS. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat Rev Rheumatol 2020; 16:133-144. [PMID: 32034322 DOI: 10.1038/s41584-020-0371-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic glucocorticoids have been widely used in rheumatic diseases since they became available over 60 years ago. Despite the advent of more specific biologic therapies, a notable proportion of individuals with chronic rheumatic diseases continue to be treated with these drugs. Glucocorticoids are powerful, broad-spectrum anti-inflammatory agents, but their use is complicated by an equally broad range of adverse effects. The specific cellular mechanisms by which glucocorticoids have their therapeutic action have been difficult to identify, and attempts to develop more selective drugs on the basis of the action of glucocorticoids have proven difficult. The actions of glucocorticoids seem to be highly cell-type and context dependent. Despite emerging data on the effect of tissue-specific manipulation of glucocorticoid receptors in mouse models of inflammation, the cell types and intracellular targets of glucocorticoids in rheumatic diseases have not been fully identified. Although showing some signs of decline, the use of systemic glucocorticoids in rheumatology is likely to continue to be widespread, and careful consideration is required by rheumatologists to balance the beneficial effects and deleterious effects of these agents.
Collapse
Affiliation(s)
- Rowan S Hardy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Karim Raza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Mark S Cooper
- ANZAC Research Institute, University of Sydney, Sydney, Australia.
| |
Collapse
|
15
|
Kemmotsu T, Yokoyama U, Saito J, Ito S, Uozumi A, Nishimaki S, Iwasaki S, Seki K, Ito S, Ishikawa Y. Antenatal Administration of Betamethasone Contributes to Intimal Thickening of the Rat Ductus Arteriosus. Circ J 2019; 83:654-661. [PMID: 30726804 DOI: 10.1253/circj.cj-18-1033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Antenatal betamethasone (BMZ) is a standard therapy for reducing respiratory distress syndrome in preterm infants. Recently, some reports have indicated that BMZ promotes ductus arteriosus (DA) closure. DA closure requires morphological remodeling; that is, intimal thickening (IT) formation; however, the role of BMZ in IT formation has not yet been reported. METHODS AND RESULTS First, DNA microarray analysis using smooth muscle cells (SMCs) of rat preterm DA on gestational day 20 (pDASMCs) stimulated with BMZ was performed. Among 58,717 probe sets, ADP-ribosyltransferase 3 (Art3) was markedly increased by BMZ stimulation. Quantitative reverse transcription polymerase chain reaction (RT-PCR) confirmed the BMZ-induced increase of Art3 in pDASMCs, but not in aortic SMCs. Immunocytochemistry showed that BMZ stimulation increased lamellipodia formation. BMZ significantly increased total paxillin protein expression and the ratio of phosphorylated to total paxillin. A scratch assay demonstrated that BMZ stimulation promoted pDASMC migration, which was attenuated byArt3-targeted siRNAs transfection. pDASMC proliferation was not promoted by BMZ, which was analyzed by a 5'-bromo-2'-deoxyuridine (BrdU) assay. Whether BMZ increased IT formation in vivo was examined. BMZ or saline was administered intravenously to maternal rats on gestational days 18 and 19, and DA tissues were obtained on gestational day 20. The ratio of IT to tunica media was significantly higher in the BMZ-treated group. CONCLUSIONS These data suggest that antenatal BMZ administration promotes DA IT through Art3-mediated DASMC migration.
Collapse
Affiliation(s)
- Takahiro Kemmotsu
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
- Cardiovascular Research Institute, Yokohama City University
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University
| | - Junichi Saito
- Cardiovascular Research Institute, Yokohama City University
| | - Satoko Ito
- Cardiovascular Research Institute, Yokohama City University
| | - Azusa Uozumi
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | - Shigeru Nishimaki
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | - Shiho Iwasaki
- Perinatal Center, Yokohama City University Medical Center
| | - Kazuo Seki
- Perinatal Center, Yokohama City University Medical Center
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | | |
Collapse
|
16
|
Abstract
One critical determinant of levels of gene expression is binding of transcription factors to cognate DNA sequences in promoter and enhancer regions of target genes. Transcription factors are DNA-binding proteins to which transcriptional co-regulators are bound, ultimately resulting in histone modifications that change chromatin structure to regulate transcription. Examples of transcription factors include hormone-activated transcription factors such as the glucocorticoid receptor, transcription factors regulated by cell surface receptors such as FOXO1 and Smad2/Smad3, and many others. Promoter regions typically contain multiple, diverse transcription factor-binding sites. Binding sites for cell-type-specific transcription factors involved in cell fate determination such as Runx2, MyoD, or myogenin are frequently observed. Promoter regions are located within ~2 kb upstream of the transcriptional start site, whereas enhancers may be located at some distance from promoter sequences and exert long-range effects. Here, we will discuss classical and emerging technologies by which one can understand the role of binding of specific transcription factors in regulation of transcription of FOXO genes.
Collapse
Affiliation(s)
- Christopher P Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J Peters Medical Center, Bronx, NY, USA.
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Burn injury results in resorptive bone loss, failure to make new bone, and muscle protein breakdown resulting in cachexia. The purpose of this review is to examine the relationship between bone loss and muscle atrophy in burn injury with a view to understanding the process at work and how it may apply to other conditions that have similar features. RECENT FINDINGS We present data suggesting that the use of bisphosphonates in the first 10 days following the burn prevents not only the resorptive bone loss but also the muscle wasting. While an extra-osseous effect of bisphosphonates remains possible, existing evidence points to a paracrine effect of bone on maintenance of muscle mass and strength. Proposed paracrine factors produced by bone include prostaglandin E2 and components of the Wnt signaling pathway. TGFβ may be a bone paracrine factor that causes oxidative damage to muscle. In the light of the pattern of evidence, burn patients suffer acute resorptive bone loss and muscle wasting. This is likely due to the effects of inflammatory cytokines and endogenous glucocorticoid production in exacerbating oxidative stress. Early use of bisphosphonates can maintain bone mass leading to a paracrine effect of bone in the maintenance of muscle mass, although one cannot completely discount a direct effect of bisphosphonate on muscle. Because investigators report this relationship in a variety of conditions in addition to burns, physicians should seriously consider the early use of bisphosphonates to maintain bone and muscle mass in a variety of neuromuscular and skeletal diseases.
Collapse
Affiliation(s)
- Gordon L Klein
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch and Shriners Burns Hospital, 301 University Boulevard, Galveston, TX, 77555-0165, USA.
| |
Collapse
|
18
|
Excessive glucocorticoid-induced muscle MuRF1 overexpression is independent of Akt/FoXO1 pathway. Biosci Rep 2017; 37:BSR20171056. [PMID: 29046370 PMCID: PMC5691142 DOI: 10.1042/bsr20171056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/02/2017] [Accepted: 10/10/2017] [Indexed: 12/04/2022] Open
Abstract
The ubiquitin-proteasome system (UPS)-dependent proteolysis plays a major role in the muscle catabolic action of glucocorticoids (GCs). Atrogin-1 and muscle-specific RING finger protein 1 (MuRF1), two E3 ubiquitin ligases, are uniquely expressed in muscle. It has been previously demonstrated that GC treatment induced MuRF1 and atrogin-1 overexpression. However, it is yet unclear whether the higher pharmacological dose of GCs induced muscle protein catabolism through MuRF1 and atrogin-1. In the present study, the role of atrogin-1 and MuRF1 in C2C12 cells protein metabolism during excessive dexamethasone (DEX) was studied. The involvement of Akt/forkhead box O1 (FoXO1) signaling pathway and the cross-talk between anabolic regulator mammalian target of rapamycin (mTOR) and catabolic regulator FoXO1 were investigated. High concentration of DEX increased MuRF1 protein level in a time-dependent fashion (P<0.05), while had no detectable effect on atrogin-1 protein (P>0.05). FoXO1/3a (Thr24/32) phosphorylation was enhanced (P<0.05), mTOR phosphorylation was suppressed (P<0.05), while Akt protein expression was not affected (P>0.05) by DEX. RU486 treatment inhibited the DEX-induced increase of FoXO1/3a phosphorylation (P<0.05) and MuRF1 protein; LY294002 (LY) did not restore the stimulative effect of DEX on the FoXO1/3a phosphorylation (P>0.05), but inhibited the activation of MuRF1 protein induced by DEX (P<0.05); rapamycin (RAPA) inhibited the stimulative effect of DEX on the FoXO1/3a phosphorylation and MuRF1 protein (P<0.05).
Collapse
|
19
|
The Progestin Receptor Interactome in the Female Mouse Hypothalamus: Interactions with Synaptic Proteins Are Isoform Specific and Ligand Dependent. eNeuro 2017; 4:eN-NWR-0272-17. [PMID: 28955722 PMCID: PMC5605756 DOI: 10.1523/eneuro.0272-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023] Open
Abstract
Progestins bind to the progestin receptor (PR) isoforms, PR-A and PR-B, in brain to influence development, female reproduction, anxiety, and stress. Hormone-activated PRs associate with multiple proteins to form functional complexes. In the present study, proteins from female mouse hypothalamus that associate with PR were isolated using affinity pull-down assays with glutathione S-transferase–tagged mouse PR-A and PR-B. Using complementary proteomics approaches, reverse phase protein array (RPPA) and mass spectrometry, we identified hypothalamic proteins that interact with PR in a ligand-dependent and isoform-specific manner and were confirmed by Western blot. Synaptic proteins, including synapsin-I and synapsin-II, interacted with agonist-bound PR isoforms, suggesting that both isoforms function in synaptic plasticity. In further support, synaptogyrin-III and synapsin-III associated with PR-A and PR-B, respectively. PR also interacted with kinases, including c-Src, mTOR, and MAPK1, confirming phosphorylation as an integral process in rapid effects of PR in the brain. Consistent with a role in transcriptional regulation, PR associated with transcription factors and coactivators in a ligand-specific and isoform-dependent manner. Interestingly, both PR isoforms associated with a key regulator of energy homeostasis, FoxO1, suggesting a novel role for PR in energy metabolism. Because many identified proteins in this PR interactome are synaptic proteins, we tested the hypothesis that progestins function in synaptic plasticity. Indeed, progesterone enhanced synaptic density, by increasing synapsin-I–positive synapses, in rat primary cortical neuronal cultures. This novel combination of RPPA and mass spectrometry allowed identification of PR action in synaptic remodeling and energy homeostasis and reveals unique roles for progestins in brain function and disease.
Collapse
|
20
|
Cheng JY, Brown TC, Murtha TD, Stenman A, Juhlin CC, Larsson C, Healy JM, Prasad ML, Knoefel WT, Krieg A, Scholl UI, Korah R, Carling T. A novel FOXO1-mediated dedifferentiation blocking role for DKK3 in adrenocortical carcinogenesis. BMC Cancer 2017; 17:164. [PMID: 28249601 PMCID: PMC5333434 DOI: 10.1186/s12885-017-3152-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 02/22/2017] [Indexed: 11/17/2022] Open
Abstract
Background Dysregulated WNT signaling dominates adrenocortical malignancies. This study investigates whether silencing of the WNT negative regulator DKK3 (Dickkopf-related protein 3), an implicated adrenocortical differentiation marker and an established tumor suppressor in multiple cancers, allows dedifferentiation of the adrenal cortex. Methods We analyzed the expression and regulation of DKK3 in human adrenocortical carcinoma (ACC) by qRT-PCR, immunofluorescence, promoter methylation assay, and copy number analysis. We also conducted functional studies on ACC cell lines, NCI-H295R and SW-13, using siRNAs and enforced DKK3 expression to test DKK3’s role in blocking dedifferentiation of adrenal cortex. Results While robust expression was observed in normal adrenal cortex, DKK3 was down-regulated in the majority (>75%) of adrenocortical carcinomas (ACC) tested. Both genetic (gene copy loss) and epigenetic (promoter methylation) events were found to play significant roles in DKK3 down-regulation in ACCs. While NCI-H295R cells harboring β-catenin activating mutations failed to respond to DKK3 silencing, SW-13 cells showed increased motility and reduced clonal growth. Conversely, exogenously added DKK3 also increased motility of SW-13 cells without influencing their growth. Enforced over-expression of DKK3 in SW-13 cells resulted in slower cell growth by an extension of G1 phase, promoted survival of microcolonies, and resulted in significant impairment of migratory and invasive behaviors, largely attributable to modified cell adhesions and adhesion kinetics. DKK3-over-expressing cells also showed increased expression of Forkhead Box Protein O1 (FOXO1) transcription factor, RNAi silencing of which partially restored the migratory proficiency of cells without interfering with their viability. Conclusions DKK3 suppression observed in ACCs and the effects of manipulation of DKK3 expression in ACC cell lines suggest a FOXO1-mediated differentiation-promoting role for DKK3 in the adrenal cortex, silencing of which may allow adrenocortical dedifferentiation and malignancy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3152-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joyce Y Cheng
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Taylor C Brown
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Timothy D Murtha
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Adam Stenman
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden
| | - James M Healy
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Manju L Prasad
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Wolfram T Knoefel
- Department of Surgery, Medical School, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas Krieg
- Department of Surgery, Medical School, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ute I Scholl
- Department of Nephrology, Medical School, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Reju Korah
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Tobias Carling
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA. .,Department of Surgery, Yale University School of Medicine, 333 Cedar Street, FMB130A, New Haven, CT, 06520, USA.
| |
Collapse
|
21
|
Ma JE, Lang QQ, Qiu FF, Zhang L, Li XG, Luo W, Wang J, Wang X, Lin XR, Liu WS, Nie QH, Zhang XQ. Negative Glucocorticoid Response-Like Element from the First Intron of the Chicken Growth Hormone Gene Represses Gene Expression in the Rat Pituitary Tumor Cell Line. Int J Mol Sci 2016; 17:ijms17111863. [PMID: 27834851 PMCID: PMC5133863 DOI: 10.3390/ijms17111863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022] Open
Abstract
The effects of introns, especially the first intron, on the regulation of gene expression remains unclear. Therefore, the objective of the present study was to investigate the transcriptional regulatory function of intron 1 on the chicken growth hormone (cGH) gene in the rat pituitary tumor cell line (GH4-C1). Transient transfection using first-intron-inserted cGH complete coding sequences (CDSs) and non-intron-inserted cGH CDS plasmids, quantitative RT-PCR (qRT-PCR) and western blot assays were used to detect the expression of cGH. The reporter gene assay was also used to investigate the effect of a series of fragments in the first intron of cGH on gene expression in GH4-C1. All of the results revealed that a 200-bp fragment located in the +485/+684 region of intron 1 was essential for repressing the expression of cGH. Further informatics analysis showed that there was a cluster of 13 transcriptional factor binding sites (TFBSs) in the +485/+684 region of the cGH intron 1. Disruption of a glucocorticoid response-like element (the 19-nucleotide sequence 5'-AGGCTTGACAGTGACCTCC-3') containing a T-box motif (TGACCT) located within this DNA fragment increased the expression of the reporter gene in GH4-C1. In addition, an electrophoretic mobility shift assay (EMSA) revealed a glucocorticoid receptor (GR) protein of rat binding to the glucocorticoid response-like element. Together, these results indicate that there is a negative glucocorticoid response-like element (nGRE) located in the +591/+609 region within the first intron of cGH, which is essential for the down-regulation of cGH expression.
Collapse
Affiliation(s)
- Jing-E Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qian-Qian Lang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Feng-Fang Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Guang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Ran Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wen-Sheng Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qing-Hua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Quan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Protein breakdown in cancer cachexia. Semin Cell Dev Biol 2016; 54:11-9. [DOI: 10.1016/j.semcdb.2015.11.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
|
23
|
Wang R, Jiao H, Zhao J, Wang X, Lin H. Glucocorticoids Enhance Muscle Proteolysis through a Myostatin-Dependent Pathway at the Early Stage. PLoS One 2016; 11:e0156225. [PMID: 27227776 PMCID: PMC4882021 DOI: 10.1371/journal.pone.0156225] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/11/2016] [Indexed: 01/12/2023] Open
Abstract
Myostatin, a member of the TGF-β superfamily of secreted proteins, is expressed primarily in skeletal muscle. It negatively regulates muscle mass and is associated with glucocorticoid-induced muscle atrophy. However, it remains unclear whether myostatin is involved in glucocorticoid-induced muscle protein turnover. The aim of the present study was to investigate the role of myostatin in protein metabolism during dexamethasone (DEX) treatment. Protein synthesis rates and the expression of the genes for myostatin, ubiquitin-proteasome atrogin-1, MuRF1, FoxO1/3a and mTOR/p70S6K were determined. The results show that DEX decreased (P<0.05) protein synthesis rates while increasing the abundance of myostatin. DEX increased (P<0.05) the level of phospho-FoxO1/3a (Thr 24/32) and the expression of MuRF1. In contrast, DEX treatment had no detectable effect on atrogin-1 protein levels (P>0.05). The phosphorylation levels of mTOR and p70S6K were decreased by DEX treatment (P<0.05). Follistatin treatment inhibited the DEX-induced increase in myostatin (P<0.05) and the activation of phosphor-FoxO1/3a (Thr 24/32) (P< 0.05) and MuRF1 (P<0.05). Follistatin treatment had no influence on the protein synthesis rate or on the phosphorylation levels of mTOR (Ser 2448) and p70S6K (Thr 389) (P> 0.05). In conclusion, the present study suggests that the myostatin signalling pathway is associated with glucocorticoid-induced muscle protein catabolism at the beginning of exposure. Myostatin is not a main pathway associated with the suppression of muscle protein synthesis by glucocorticoids.
Collapse
Affiliation(s)
- Ruxia Wang
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, P. R. China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, P. R. China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, P. R. China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, P. R. China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, P. R. China
- * E-mail:
| |
Collapse
|
24
|
Zeng Z, Wang X, Bhardwaj SK, Zhou X, Little PJ, Quirion R, Srivastava LK, Zheng W. The Atypical Antipsychotic Agent, Clozapine, Protects Against Corticosterone-Induced Death of PC12 Cells by Regulating the Akt/FoxO3a Signaling Pathway. Mol Neurobiol 2016; 54:3395-3406. [DOI: 10.1007/s12035-016-9904-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/03/2016] [Indexed: 01/28/2023]
|
25
|
Liu WS, Ma JE, Li WX, Zhang JG, Wang J, Nie QH, Qiu FF, Fang MX, Zeng F, Wang X, Lin XR, Zhang L, Chen SH, Zhang XQ. The Long Intron 1 of Growth Hormone Gene from Reeves' Turtle (Chinemys reevesii) Correlates with Negatively Regulated GH Expression in Four Cell Lines. Int J Mol Sci 2016; 17:543. [PMID: 27077853 PMCID: PMC4848999 DOI: 10.3390/ijms17040543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022] Open
Abstract
Turtles grow slowly and have a long lifespan. Ultrastructural studies of the pituitary gland in Reeves’ turtle (Chinemys reevesii) have revealed that the species possesses a higher nucleoplasmic ratio and fewer secretory granules in growth hormone (GH) cells than other animal species in summer and winter. C. reevesii GH gene was cloned and species-specific similarities and differences were investigated. The full GH gene sequence in C. reevesii contains 8517 base pairs (bp), comprising five exons and four introns. Intron 1 was found to be much longer in C. reevesii than in other species. The coding sequence (CDS) of the turtle’s GH gene, with and without the inclusion of intron 1, was transfected into four cell lines, including DF-1 chicken embryo fibroblasts, Chinese hamster ovary (CHO) cells, human embryonic kidney 293FT cells, and GH4C1 rat pituitary cells; the turtle growth hormone (tGH) gene mRNA and protein expression levels decreased significantly in the intron-containing CDS in these cell lines, compared with that of the corresponding intronless CDS. Thus, the long intron 1 of GH gene in Reeves’ turtle might correlate with downregulated gene expression.
Collapse
Affiliation(s)
- Wen-Sheng Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Jing-E Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wei-Xia Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jin-Ge Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qing-Hua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Feng-Fang Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Mei-Xia Fang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Zeng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Ran Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shao-Hao Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Quan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Hinds TD, Peck B, Shek E, Stroup S, Hinson J, Arthur S, Marino JS. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression. Int J Mol Sci 2016; 17:232. [PMID: 26875982 PMCID: PMC4783964 DOI: 10.3390/ijms17020232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022] Open
Abstract
Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.
Collapse
Affiliation(s)
- Terry D Hinds
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | - Bailey Peck
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| | - Evan Shek
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| | - Steven Stroup
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| | - Jennifer Hinson
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| | - Susan Arthur
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| | - Joseph S Marino
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
27
|
Forkhead box O transcription factors as possible mediators in the development of major depression. Neuropharmacology 2015; 99:527-37. [DOI: 10.1016/j.neuropharm.2015.08.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 01/26/2023]
|
28
|
Aedo JE, Maldonado J, Aballai V, Estrada JM, Bastias-Molina M, Meneses C, Gallardo-Escarate C, Silva H, Molina A, Valdés JA. mRNA-seq reveals skeletal muscle atrophy in response to handling stress in a marine teleost, the red cusk-eel (Genypterus chilensis). BMC Genomics 2015; 16:1024. [PMID: 26626593 PMCID: PMC4667402 DOI: 10.1186/s12864-015-2232-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023] Open
Abstract
Background Fish reared under intensive conditions are repeatedly exposed to stress, which negatively impacts growth. Although most fish follow a conserved pattern of stress response, with increased concentrations of cortisol, each species presents specificities in the cell response and stress tolerance. Therefore, culturing new species requires a detailed knowledge of these specific responses. The red cusk-eel (Genypterus chilensis) is a new economically important marine species for the Chilean aquaculture industry. However, there is no information on the stress- and cortisol-induced mechanisms that decrease skeletal muscle growth in this teleost. Results Using Illumina RNA-seq technology, skeletal muscle sequence reads for G. chilensis were generated under control and handling stress conditions. Reads were mapped onto a reference transcriptome, resulting in the in silico identification of 785 up-regulated and 167 down-regulated transcripts. Gene ontology enrichment analysis revealed a significant up-regulation of catabolic genes associated with skeletal muscle atrophy. These results were validated by RT-qPCR analysis for ten candidates genes involved in ubiquitin-mediated proteolysis, autophagy and skeletal muscle growth. Additionally, using a primary culture of fish skeletal muscle cells, the effect of cortisol was evaluated in relation to red cusk-eel skeletal muscle atrophy. Conclusions The present data demonstrated that handling stress promotes skeletal muscle atrophy in the marine teleost G. chilensis through the expression of components of the ubiquitin-proteasome and autophagy-lysosome systems. Furthermore, cortisol was a powerful inductor of skeletal muscle atrophy in fish myotubes. This study is an important step towards understanding the atrophy system in non-model teleost species and provides novel insights on the cellular and molecular mechanisms that control skeletal muscle growth in early vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2232-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge E Aedo
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Jonathan Maldonado
- Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Universidad de Chile, Facultad de Ciencias Agronómicas, Av. Santa Rosa 11315, La Pintana, 8820808, Santiago, Chile
| | - Víctor Aballai
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Juan M Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Macarena Bastias-Molina
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Gallardo-Escarate
- Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Herman Silva
- Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Universidad de Chile, Facultad de Ciencias Agronómicas, Av. Santa Rosa 11315, La Pintana, 8820808, Santiago, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Juan A Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile. .,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile. .,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile.
| |
Collapse
|
29
|
Qin W, Li X, Peng Y, Harlow LM, Ren Y, Wu Y, Li J, Qin Y, Sun J, Zheng S, Brown T, Feng JQ, Ke HZ, Bauman WA, Cardozo CC. Sclerostin antibody preserves the morphology and structure of osteocytes and blocks the severe skeletal deterioration after motor-complete spinal cord injury in rats. J Bone Miner Res 2015; 30:1994-2004. [PMID: 25974843 DOI: 10.1002/jbmr.2549] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 01/16/2023]
Abstract
Unloading, neural lesions, and hormonal disorders after acute motor-complete spinal cord injury (SCI) cause one of the most severe forms of bone loss, a condition that has been refractory to available interventions tested to date. Thus, these features related to acute SCI provide a unique opportunity to study complex bone problems, potential efficacious interventions, and mechanisms of action that are associated with these dramatic pathological changes. This study was designed to explore the therapeutic potential of sclerostin antibody (Scl-Ab) in a rat model of bone loss after motor-complete SCI, and to investigate mechanisms underlying bone loss and Scl-Ab action. SCI rats were administered Scl-Ab (25 mg/kg/week) or vehicle beginning 7 days after injury then weekly for 7 weeks. SCI resulted in significant decreases in bone mineral density (-25%) and trabecular bone volume (-67%) at the distal femur; Scl-Ab completely prevented these deteriorations of bone in SCI rats, concurrent with markedly increased bone formation. Scanning electron microscopy revealed that SCI reduced numbers of osteocytes and dendrites concomitant with a morphology change from a spindle to round shape; Scl-Ab corrected these abnormalities in osteocytes. In ex vivo cultures of bone marrow cells, Scl-Ab inhibited osteoclastogenesis, and promoted osteoblastogenesis accompanied by increases in mRNA levels of LRP5, osteoprotegerin (OPG), and the OPG/RANKL ratio, and a decrease in DKK1 mRNA. Our findings provide the first evidence that robust bone loss after acute motor-complete SCI can be blocked by Scl-Ab, at least in part, through the preservation of osteocyte morphology and structure and related bone remodeling. Our findings support the inhibition of sclerostin as a promising approach to mitigate the striking bone loss that ensues after acute motor-complete SCI, and perhaps other conditions associated with disuse osteoporosis as a consequence of neurological disorders.
Collapse
Affiliation(s)
- Weiping Qin
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yuanzhen Peng
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Lauren M Harlow
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yinshi Ren
- Baylor College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Yingjie Wu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute of Gene Engineering Animal Models for Human Diseases, Dalian Medical University, Dalian, China
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University, Indianapolis, IN, USA
| | - Yiwen Qin
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Jie Sun
- Institute of Gene Engineering Animal Models for Human Diseases, Dalian Medical University, Dalian, China
| | - Shijia Zheng
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | | | - Jian Q Feng
- Baylor College of Dentistry, Texas A&M University, Dallas, TX, USA
| | | | - William A Bauman
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher C Cardozo
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
30
|
Bodine SC, Furlow JD. Glucocorticoids and Skeletal Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215994 DOI: 10.1007/978-1-4939-2895-8_7] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids are known to regulate protein metabolism in skeletal muscle, producing a catabolic effect that is opposite that of insulin. In many catabolic diseases, such as sepsis, starvation, and cancer cachexia, endogenous glucocorticoids are elevated contributing to the loss of muscle mass and function. Further, exogenous glucocorticoids are often given acutely and chronically to treat inflammatory conditions such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, resulting in muscle atrophy. This chapter will detail the nature of glucocorticoid-induced muscle atrophy and discuss the mechanisms thought to be responsible for the catabolic effects of glucocorticoids on muscle.
Collapse
Affiliation(s)
- Sue C Bodine
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA,
| | | |
Collapse
|
31
|
Abstract
This article examines the current knowledge of the effects of both exogenous and endogenous glucocorticoids on bone and muscle. It demonstrates the similarity of effects of supraphysiologic loads of glucocorticoids regardless of whether they enter the body in the form of medication or are manufactured by the body in response to stimuli such as inflammation. The effects of endogenous glucocorticoids and the systemic inflammatory response resulting from pediatric burn injury are compared and the difficulty in sorting out which of the two factors is responsible for the ultimate effects on bone and muscle is pointed out. The focus then switches to the body's response to the influence of both glucocorticoids and inflammatory cytokines and evidence supporting a common pathway of response to oxidative damage caused by both is discussed. Current recommended medical management of glucocorticoid-induced bone and muscle loss is discussed and the failure to reconcile current management with known mechanisms is highlighted.
Collapse
|
32
|
Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol 2015; 6:51-72. [PMID: 26184557 PMCID: PMC4511623 DOI: 10.1016/j.redox.2015.06.019] [Citation(s) in RCA: 550] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma (e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany.
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ignacio Prieto-Arroyo
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Pavel Urbánek
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain.
| |
Collapse
|
33
|
Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats. PLoS One 2015; 10:e0128805. [PMID: 26086773 PMCID: PMC4472719 DOI: 10.1371/journal.pone.0128805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Branched-chain amino acids (BCAAs) and IGF-I, the secretion of which is stimulated by growth hormone (GH), prevent muscle atrophy. mTOR plays a pivotal role in the protective actions of BCAA and IGF-1. The pathway by which BCAA activates mTOR is different from that of IGF-1, which suggests that BCAA and GH work independently. We tried to examine whether BCAA exerts a protective effect against dexamethasone (Dex)-induced muscle atrophy independently of GH using GH-deficient spontaneous dwarf rats (SDRs). Unexpectedly, Dex did not induce muscle atrophy assessed by the measurement of cross-sectional area (CSA) of the muscle fibers and did not increase atrogin-1, MuRF1 and REDD1 expressions, which are activated during protein degradation. Glucocorticoid (GR) mRNA levels were higher in SDRs compared to GH-treated SDRs, indicating that the low expression of GR is not the reason of the defect of Dex's action in SDRs. BCAA did not stimulate the phosphorylation of p70S6K or 4E-BP1, which stimulate protein synthesis. BCAA did not decrease the mRNA level of atrogin-1 or MuRF1. These findings suggested that Dex failed to modulate muscle mass and that BCAA was unable to activate mTOR in SDRs because these phosphorylations of p70S6K and 4E-BP1 and the reductions of these mRNAs are regulated by mTOR. In contrast, after GH supplementation, these responses to Dex were normalized and muscle fiber CSA was decreased by Dex. BCAA prevented the Dex-induced decrease in CSA. BCAA increased the phosphorylation of p70S6K and decreased the Dex-induced elevations of atrogin-1 and Bnip3 mRNAs. However, the amount of mTORC1 components including mTOR was not decreased in the SDRs compared to the normal rats. These findings suggest that GH increases mTORC1 activity but not its content to recover the action of BCAA in SDRs and that GH is required for actions of Dex and BCAA in muscles.
Collapse
|