1
|
Koch J, Elbæk CR, Priesmann D, Damgaard RB. The Molecular Toolbox for Linkage Type-Specific Analysis of Ubiquitin Signaling. Chembiochem 2025; 26:e202500114. [PMID: 40192223 PMCID: PMC12118340 DOI: 10.1002/cbic.202500114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Modification of proteins and other biomolecules with ubiquitin regulates virtually all aspects of eukaryotic cell biology. Ubiquitin can be attached to substrates as a monomer or as an array of polyubiquitin chains with defined linkages between the ubiquitin moieties. Each ubiquitin linkage type adopts a distinct structure, enabling the individual linkage types to mediate specific functions or outcomes in the cell. The dynamics, heterogeneity, and in some cases low abundance, make analysis of linkage type-specific ubiquitin signaling a challenging and complex task. Herein, the strategies and molecular tools available for enrichment, detection, and characterization of linkage type-specific ubiquitin signaling, are reviewed. The molecular "toolbox" consists of a range of molecularly different affinity reagents, including antibodies and antibody-like molecules, affimers, engineered ubiquitin-binding domains, catalytically inactive deubiquitinases, and macrocyclic peptides, each with their unique characteristics and binding modes. The molecular engineering of these ubiquitin-binding molecules makes them useful tools and reagents that can be coupled to a range of analytical methods, such as immunoblotting, fluorescence microscopy, mass spectrometry-based proteomics, or enzymatic analyses to aid in deciphering the ever-expanding complexity of ubiquitin modifications.
Collapse
Affiliation(s)
- Julian Koch
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| | - Camilla Reiter Elbæk
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| | - Dominik Priesmann
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| | - Rune Busk Damgaard
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts PladsDK‐2800Kongens LyngbyDenmark
| |
Collapse
|
2
|
Chunthorng-Orn J, Noureddine M, Dawson PWJ, Lord SO, Ng J, Boyton L, Gehmlich K, Mohammed F, Lai YC. HCM-Associated MuRF1 Variants Compromise Ubiquitylation and Are Predicted to Alter Protein Structure. Int J Mol Sci 2025; 26:3921. [PMID: 40332812 PMCID: PMC12027535 DOI: 10.3390/ijms26083921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
MuRF1 [muscle RING (Really Interesting New Gene)-finger protein-1] is an ubiquitin-protein ligase (E3), which encode by TRIM63 (tripartite motif containing 63) gene, playing a crucial role in regulating cardiac muscle size and function through ubiquitylation. Among hypertrophic cardiomyopathy (HCM) patients, 24 TRIM63 variants have been identified, with 1 additional variant linked to restrictive cardiomyopathy. However, only three variants have been previously investigated for their functional effects. The structural impacts of the 25 variants remain unexplored. This study investigated the effects of 25 MuRF1 variants on ubiquitylation activity using in vitro ubiquitylation assays and structural predictions using computational approaches. The variants were generated using site-directed PCR (Polymerase Chain Reaction) mutagenesis and subsequently purified with amylose affinity chromatography. In vitro ubiquitylation assays demonstrated that all 25 variants compromised the ability of MuRF1 to monoubiquitylate a titin fragment (A168-A170), while 17 variants significantly impaired or completely abolished auto-monoubiquitylation. Structural modelling predicted that 10 MuRF1 variants disrupted zinc binding or key stabilising interactions, compromising structural integrity. In contrast, three variants were predicted to enhance the structural stability of MuRF1, while six others were predicted to have no discernible impact on the structure. This study underscores the importance of functional assays and structural predictions in evaluating MuRF1 variant pathogenicity and provides novel insights into mechanisms by which these variants contribute to HCM and related cardiomyopathies.
Collapse
Affiliation(s)
- Jitpisute Chunthorng-Orn
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK or (J.C.-O.); (P.W.J.D.); (L.B.)
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, University of Thammasat, Pathumthani 12120, Thailand
| | - Maya Noureddine
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; (M.N.); or (K.G.)
| | - Peter W. J. Dawson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK or (J.C.-O.); (P.W.J.D.); (L.B.)
| | - Samuel O. Lord
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK;
| | - Jimi Ng
- Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Luke Boyton
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK or (J.C.-O.); (P.W.J.D.); (L.B.)
| | - Katja Gehmlich
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; (M.N.); or (K.G.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Fiyaz Mohammed
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Yu-Chiang Lai
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK or (J.C.-O.); (P.W.J.D.); (L.B.)
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Omar EA, R R, Das PK, Pal R, Purawarga Matada GS, Maji L. Next-generation cancer therapeutics: PROTACs and the role of heterocyclic warheads in targeting resistance. Eur J Med Chem 2025; 281:117034. [PMID: 39527893 DOI: 10.1016/j.ejmech.2024.117034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
One of the major obstacles to sustained cancer treatment effectiveness is the development of medication resistance. Current therapies that block proteins associated with cancer progression often lose their efficacy due to acquired drug resistance, which is frequently driven by mutated or overexpressed protein targets. Proteolysis-targeting chimeras (PROTACs) offer an alternative therapeutic strategy by hijacking the cell's ubiquitin-proteasome system to degrade disease-causing proteins, presenting several potential advantages. Over the past few years, PROTACs have been developed to target various cancer-related proteins, offering new treatment options for patients with previously untreatable malignancies and serving as a foundation for next-generation therapeutics. One of the notable benefits of PROTACs is their ability to overcome certain resistance mechanisms that limit the effectiveness of conventional targeted therapies, as shown in several recent studies. Additionally, research teams are investigating how PROTACs can selectively degrade mutant proteins responsible for resistance to first-line cancer therapies. In the pursuit of novel and effective treatments, this review highlights recent advancements in the development of PROTACs aimed at overcoming cancer resistance. When it comes to drug design, heterocyclic scaffolds often serve as a foundational framework, offering opportunities for modification and optimization of novel molecules. Researchers are similarly exploring various heterocyclic derivatives as "warheads" in the design of PROTACs has been instrumental in pushing the boundaries of targeted protein degradation. As warheads, these heterocyclic compounds are responsible for recognizing and binding to the target protein, which ultimately leads to its degradation via the ubiquitin-proteasome system. This study aims to provide a comprehensive overview of cutting-edge strategies in PROTAC design, offering detailed insights into key concepts and methodologies for creating effective PROTACs. Special emphasis is placed on structure-based rational design, the development of novel warheads, and their critical in influencing biological activity.
Collapse
Affiliation(s)
- Ebna Azizal Omar
- Centre for Excellence in Drug Analysis, Department of Pharmaceutical Analysis, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rajesh R
- Centre for Excellence in Drug Analysis, Department of Pharmaceutical Analysis, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Lalmohan Maji
- Tarifa Memorial Institute of Pharmacy, Department of Pharmaceutical Chemistry, Murshidabad, 742166, West Bengal, India
| |
Collapse
|
4
|
Mishra S, Krawic C, Luczak MW, Zhitkovich A. Monoubiquitinated H2B, a Main Chromatin Target of Formaldehyde, Is Important for S-Phase Checkpoint Signaling and Genome Stability. Mol Carcinog 2024; 63:2414-2424. [PMID: 39254477 PMCID: PMC11567799 DOI: 10.1002/mc.23819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Formaldehyde (FA) is a human carcinogen with ubiquitous environmental exposures and significant endogenous formation. Genotoxic activity of FA stems from its reactivity with DNA-NH2 groups. Histone lysines are another source of aldehyde-reactive amino groups in chromatin, however, chromatin/histone damage responses to FA and their biological significance are poorly understood. We examined histone posttranslational modifications in FA-treated human lung cells and found that the majority of the most prominent small lysine modifications associated with active or inactive chromatin were unchanged. FA moderately decreased H3K9 and H3K27 acetylation and H2A-K119 monoubiquitination but caused surprisingly severe losses of H2B-K120 monoubiquitination, especially in primary and stem-like cells. H2Aub1 decreases reflected its slower ubiquitination linked to a lower ubiquitin availability due to K48-polyubiquitination of FA-damaged proteins. Depletion of H2Bub1 resulted from its rapid deubiquitination in part by ATXN7L3-associated deubiquitinases and was independent on DNA damage signaling, indicating a direct chromatin damage response. Manipulations of H2Bub1 abundance showed that it was important for robust ATM and ATR signaling, efficient S-phase checkpoint, and suppression of mitotic transmission of unreplicated DNA and formation of micronuclei. Our findings identified H2B deubiquitination as a major FA-induced chromatin damage response that regulates S-phase checkpoint signaling and genome stability.
Collapse
Affiliation(s)
- Sasmita Mishra
- Brown University, Department Pathology and Laboratory Medicine, Providence, RI, 02903, USA
| | - Casey Krawic
- Brown University, Department Pathology and Laboratory Medicine, Providence, RI, 02903, USA
| | | | - Anatoly Zhitkovich
- Brown University, Department Pathology and Laboratory Medicine, Providence, RI, 02903, USA
| |
Collapse
|
5
|
Lord S, Johnston H, Samant R, Lai Y. Ubiquitylomics: An Emerging Approach for Profiling Protein Ubiquitylation in Skeletal Muscle. J Cachexia Sarcopenia Muscle 2024; 15:2281-2294. [PMID: 39279720 PMCID: PMC11634490 DOI: 10.1002/jcsm.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Skeletal muscle is a highly adaptable tissue, finely tuned by various physiological and pathological factors. Whilst the pivotal role of skeletal muscle in overall health is widely acknowledged, unravelling the underlying molecular mechanisms poses ongoing challenges. Protein ubiquitylation, a crucial post-translational modification, is involved in regulating most biological processes. This widespread impact is achieved through a diverse set of enzymes capable of generating structurally and functionally distinct ubiquitin modifications on proteins. The complexity of protein ubiquitylation has presented significant challenges in not only identifying ubiquitylated proteins but also characterising their functional significance. Mass spectrometry enables in-depth analysis of proteins and their post-translational modification status, offering a powerful tool for studying protein ubiquitylation and its biological diversity: an approach termed ubiquitylomics. Ubiquitylomics has been employed to tackle different perspectives of ubiquitylation, including but not limited to global quantification of substrates and ubiquitin linkages, ubiquitin site recognition and crosstalk with other post-translational modifications. As the field of mass spectrometry continues to evolve, the usage of ubiquitylomics has unravelled novel insights into the regulatory mechanisms of protein ubiquitylation governing biology. However, ubiquitylomics research has predominantly been conducted in cellular models, limiting our understanding of ubiquitin signalling events driving skeletal muscle biology. By integrating the intricate landscape of protein ubiquitylation with dynamic shifts in muscle physiology, ubiquitylomics promises to not only deepen our understanding of skeletal muscle biology but also lay the foundation for developing transformative muscle-related therapeutics. This review aims to articulate how ubiquitylomics can be utilised by researchers to address different aspects of ubiquitylation signalling in skeletal muscle. We explore methods used in ubiquitylomics experiments, highlight relevant literature employing ubiquitylomics in the context of skeletal muscle and outline considerations for experimental design.
Collapse
Affiliation(s)
- Samuel O. Lord
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | | | | | - Yu‐Chiang Lai
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
- NIHR Birmingham Biomedical Research Centre Sarcopenia and MultimorbidityUniversity of BirminghamBirminghamUK
| |
Collapse
|
6
|
Chen S, Chen K, Lin Y, Wang S, Yu H, Chang C, Cheng T, Hsieh C, Li J, Lai H, Chen D, Huang C. Ganoderic acid T, a Ganoderma triterpenoid, modulates the tumor microenvironment and enhances the chemotherapy and immunotherapy efficacy through downregulating galectin-1 levels. Toxicol Appl Pharmacol 2024; 491:117069. [PMID: 39142358 DOI: 10.1016/j.taap.2024.117069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Ganoderic acid T (GAT), a triterpenoid molecule of Ganoderma lucidum, exhibits anti-cancer activity; however, the underlying mechanisms remain unclear. Therefore, in this study, we aimed to investigate the anti-cancer molecular mechanisms of GAT and explore its therapeutic applications for cancer treatment. GAT exhibited potent anti-cancer activity in an ES-2 orthotopic ovarian cancer model in a humanized mouse model, leading to significant alterations in the tumor microenvironment (TME). Specifically, GAT reduced the proportion of α-SMA+ cells and enhanced the infiltration of tumor-infiltrating lymphocytes (TILs) in tumor tissues. After conducting proteomic analysis, it was revealed that GAT downregulates galectin-1 (Gal-1), a key molecule in the TME. This downregulation has been confirmed in multiple cancer cell lines and xenograft tumors. Molecular docking suggested a theoretical direct interaction between GAT and Gal-1. Further research revealed that GAT induces ubiquitination of Gal-1. Moreover, GAT significantly augmented the anti-cancer effects of paclitaxel, thereby increasing intratumoral drug concentrations and reducing tumor size. Combined with immunotherapy, GAT enhanced the tumor-suppressive effects of the anti-programmed death-ligand 1 antibody and increased the proportion of CD8+ cells in the EMT6 syngeneic mammary cancer model. In conclusion, GAT inhibited tumor growth, downregulated Gal-1, modulated the TME, and promoted chemotherapy and immunotherapy efficacy. Our findings highlight the potential of GAT as an effective therapeutic agent for cancer.
Collapse
Affiliation(s)
- Suyu Chen
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Kuangdee Chen
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Yihsiu Lin
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Ssuchia Wang
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Huichuan Yu
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Chaohsuan Chang
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Tingchun Cheng
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Chiaoyun Hsieh
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Jiayi Li
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Hsiaohsuan Lai
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Denghai Chen
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan.
| | - Chengpo Huang
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan.
| |
Collapse
|
7
|
O'Sullivan PA, Aidarova A, Afonina IS, Manils J, Thurston TLM, Instrell R, Howell M, Boeing S, Ranawana S, Herpels MB, Chetian R, Bassa M, Flynn H, Frith D, Snijders AP, Howes A, Beyaert R, Bowcock AM, Ley SC. CARD14 signalosome formation is associated with its endosomal relocation and mTORC1-induced keratinocyte proliferation. Biochem J 2024; 481:1143-1171. [PMID: 39145956 PMCID: PMC11555713 DOI: 10.1042/bcj20240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Rare mutations in CARD14 promote psoriasis by inducing CARD14-BCL10-MALT1 complexes that activate NF-κB and MAP kinases. Here, the downstream signalling mechanism of the highly penetrant CARD14E138A alteration is described. In addition to BCL10 and MALT1, CARD14E138A associated with several proteins important in innate immune signalling. Interactions with M1-specific ubiquitin E3 ligase HOIP, and K63-specific ubiquitin E3 ligase TRAF6 promoted BCL10 ubiquitination and were essential for NF-κB and MAP kinase activation. In contrast, the ubiquitin binding proteins A20 and ABIN1, both genetically associated with psoriasis development, negatively regulated signalling by inducing CARD14E138A turnover. CARD14E138A localized to early endosomes and was associated with the AP2 adaptor complex. AP2 function was required for CARD14E138A activation of mTOR complex 1 (mTORC1), which stimulated keratinocyte metabolism, but not for NF-κB nor MAP kinase activation. Furthermore, rapamycin ameliorated CARD14E138A-induced keratinocyte proliferation and epidermal acanthosis in mice, suggesting that blocking mTORC1 may be therapeutically beneficial in CARD14-dependent psoriasis.
Collapse
Affiliation(s)
- Paul A. O'Sullivan
- The Francis Crick Institute, London NW1 1AT, U.K
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Aigerim Aidarova
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Inna S. Afonina
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joan Manils
- The Francis Crick Institute, London NW1 1AT, U.K
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Teresa L. M. Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, U.K
| | | | | | | | - Sashini Ranawana
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Melanie B. Herpels
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Riwia Chetian
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Matilda Bassa
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Helen Flynn
- The Francis Crick Institute, London NW1 1AT, U.K
| | - David Frith
- The Francis Crick Institute, London NW1 1AT, U.K
| | | | - Ashleigh Howes
- National Heart and Lung Institute, Imperial College London, London W12 0NN, U.K
| | - Rudi Beyaert
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anne M. Bowcock
- Department of Oncological Science, Dermatology, and Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Steven C. Ley
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| |
Collapse
|
8
|
Wang Y, Yang H, Li N, Wang L, Guo C, Ma W, Liu S, Peng C, Chen J, Song H, Chen H, Ma X, Yi J, Lian J, Kong W, Dong J, Tu X, Shah M, Tian X, Huang Z. A Novel Ubiquitin Ligase Adaptor PTPRN Suppresses Seizure Susceptibility through Endocytosis of Na V1.2 Sodium Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400560. [PMID: 38874331 PMCID: PMC11304301 DOI: 10.1002/advs.202400560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Intrinsic plasticity, a fundamental process enabling neurons to modify their intrinsic properties, plays a crucial role in shaping neuronal input-output function and is implicated in various neurological and psychiatric disorders. Despite its importance, the underlying molecular mechanisms of intrinsic plasticity remain poorly understood. In this study, a new ubiquitin ligase adaptor, protein tyrosine phosphatase receptor type N (PTPRN), is identified as a regulator of intrinsic neuronal excitability in the context of temporal lobe epilepsy. PTPRN recruits the NEDD4 Like E3 Ubiquitin Protein Ligase (NEDD4L) to NaV1.2 sodium channels, facilitating NEDD4L-mediated ubiquitination, and endocytosis of NaV1.2. Knockout of PTPRN in hippocampal granule cells leads to augmented NaV1.2-mediated sodium currents and higher intrinsic excitability, resulting in increased seizure susceptibility in transgenic mice. Conversely, adeno-associated virus-mediated delivery of PTPRN in the dentate gyrus region decreases intrinsic excitability and reduces seizure susceptibility. Moreover, the present findings indicate that PTPRN exerts a selective modulation effect on voltage-gated sodium channels. Collectively, PTPRN plays a significant role in regulating intrinsic excitability and seizure susceptibility, suggesting a potential strategy for precise modulation of NaV1.2 channels' function.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Hui Yang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Lili Wang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Chang Guo
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Weining Ma
- Department of NeurologyShengjing Hospital Affiliated to China Medical UniversityShenyang110022China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jiexin Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Huifang Song
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Hedan Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jingyun Yi
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jingjing Lian
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Weikaixin Kong
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xinyu Tu
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Mala Shah
- UCL School of PharmacyUniversity College LondonLondonWC1N 1AXUK
| | - Xin Tian
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| |
Collapse
|
9
|
Lieu DJ, Crowder MK, Kryza JR, Tamilselvam B, Kaminski PJ, Kim IJ, Li Y, Jeong E, Enkhbaatar M, Chen H, Son SB, Mok H, Bradley KA, Phillips H, Blanke SR. Autophagy suppression in DNA damaged cells occurs through a newly identified p53-proteasome-LC3 axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595139. [PMID: 38826216 PMCID: PMC11142043 DOI: 10.1101/2024.05.21.595139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Macroautophagy is thought to have a critical role in shaping and refining cellular proteostasis in eukaryotic cells recovering from DNA damage. Here, we report a mechanism by which autophagy is suppressed in cells exposed to bacterial toxin-, chemical-, or radiation-mediated sources of genotoxicity. Autophagy suppression is directly linked to cellular responses to DNA damage, and specifically the stabilization of the tumor suppressor p53, which is both required and sufficient for regulating the ubiquitination and proteasome-dependent reduction in cellular pools of microtubule-associated protein 1 light chain 3 (LC3A/B), a key precursor of autophagosome biogenesis and maturation, in both epithelial cells and an ex vivo organoid model. Our data indicate that suppression of autophagy, through a newly identified p53-proteasome-LC3 axis, is a conserved cellular response to multiple sources of genotoxicity. Such a mechanism could potentially be important for realigning proteostasis in cells undergoing DNA damage repair.
Collapse
|
10
|
Potapenko A, Davidson JM, Lee A, Laird AS. The deubiquitinase function of ataxin-3 and its role in the pathogenesis of Machado-Joseph disease and other diseases. Biochem J 2024; 481:461-480. [PMID: 38497605 PMCID: PMC11088879 DOI: 10.1042/bcj20240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Machado-Joseph disease (MJD) is a devastating and incurable neurodegenerative disease characterised by progressive ataxia, difficulty speaking and swallowing. Consequently, affected individuals ultimately become wheelchair dependent, require constant care, and face a shortened life expectancy. The monogenic cause of MJD is expansion of a trinucleotide (CAG) repeat region within the ATXN3 gene, which results in polyglutamine (polyQ) expansion within the resultant ataxin-3 protein. While it is well established that the ataxin-3 protein functions as a deubiquitinating (DUB) enzyme and is therefore critically involved in proteostasis, several unanswered questions remain regarding the impact of polyQ expansion in ataxin-3 on its DUB function. Here we review the current literature surrounding ataxin-3's DUB function, its DUB targets, and what is known regarding the impact of polyQ expansion on ataxin-3's DUB function. We also consider the potential neuroprotective effects of ataxin-3's DUB function, and the intersection of ataxin-3's role as a DUB enzyme and regulator of gene transcription. Ataxin-3 is the principal pathogenic protein in MJD and also appears to be involved in cancer. As aberrant deubiquitination has been linked to both neurodegeneration and cancer, a comprehensive understanding of ataxin-3's DUB function is important for elucidating potential therapeutic targets in these complex conditions. In this review, we aim to consolidate knowledge of ataxin-3 as a DUB and unveil areas for future research to aid therapeutic targeting of ataxin-3's DUB function for the treatment of MJD and other diseases.
Collapse
Affiliation(s)
- Anastasiya Potapenko
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jennilee M. Davidson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Angela S. Laird
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
11
|
Steinbach A, Bhadkamkar V, Jimenez-Morales D, Stevenson E, Jang GM, Krogan NJ, Swaney DL, Mukherjee S. Cross-family small GTPase ubiquitination by the intracellular pathogen Legionella pneumophila. Mol Biol Cell 2024; 35:ar27. [PMID: 38117589 PMCID: PMC10916871 DOI: 10.1091/mbc.e23-06-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila (L.p.) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p.'s ∼330 secreted effector proteins are ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p. hijacks host cell ubiquitin signaling, we generated a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection increases ubiquitination of host regulators of subcellular trafficking and membrane dynamics, most notably ∼40% of mammalian Ras superfamily small GTPases. We determine that these small GTPases undergo nondegradative ubiquitination at the Legionella-containing vacuole (LCV) membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central role in cross-family small GTPase ubiquitination, and that these effectors function upstream of SidE family ligases in the polyubiquitination and retention of GTPases in the LCV membrane. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. Our findings position L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.
Collapse
Affiliation(s)
- Adriana Steinbach
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- George Williams Hooper Foundation, University of California, San Francisco, CA 94143
| | - Varun Bhadkamkar
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- George Williams Hooper Foundation, University of California, San Francisco, CA 94143
| | - David Jimenez-Morales
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, CA 94309
| | - Erica Stevenson
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Gwendolyn M. Jang
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Nevan J. Krogan
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Danielle L. Swaney
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- George Williams Hooper Foundation, University of California, San Francisco, CA 94143
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
12
|
Lord SO, Dawson PW, Chunthorng-Orn J, Ng J, Baehr LM, Hughes DC, Sridhar P, Knowles T, Bodine SC, Lai YC. Uncovering the mechanisms of MuRF1-induced ubiquitylation and revealing similarities with MuRF2 and MuRF3. Biochem Biophys Rep 2024; 37:101636. [PMID: 38283190 PMCID: PMC10818185 DOI: 10.1016/j.bbrep.2023.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
MuRF1 (Muscle-specific RING finger protein 1; gene name TRIM63) is a ubiquitin E3 ligase, associated with the progression of muscle atrophy. As a RING (Really Interesting New Gene) type E3 ligase, its unique activity of ubiquitylation is driven by a specific interaction with a UBE2 (ubiquitin conjugating enzyme). Our understanding of MuRF1 function remains unclear as candidate UBE2s have not been fully elucidated. In the present study, we screened human ubiquitin dependent UBE2s in vitro and found that MuRF1 engages in ubiquitylation with UBE2D, UBE2E, UBE2N/V families and UBE2W. MuRF1 can cause mono-ubiquitylation, K48- and K63-linked polyubiquitin chains in a UBE2 dependent manner. Moreover, we identified a two-step UBE2 dependent mechanism whereby MuRF1 is monoubiquitylated by UBE2W which acts as an anchor for UBE2N/V to generate polyubiquitin chains. With the in vitro ubiquitylation assay, we also found that MuRF2 and MuRF3 not only share the same UBE2 partners as MuRF1 but can also directly ubiquitylate the same substrates: Titin (A168-A170), Desmin, and MYLPF (Myosin Light Chain, Phosphorylatable, Fast Skeletal Muscle; also called Myosin Light Regulatory Chain 2). In summary, our work presents new insights into the mechanisms that underpin MuRF1 activity and reveals overlap in MuRF-induced ubiquitylation which could explain their partial redundancy in vivo.
Collapse
Affiliation(s)
- Samuel O. Lord
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Peter W.J. Dawson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | | | - Jimi Ng
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Leslie M. Baehr
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - David C. Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Timothy Knowles
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Sue C. Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yu-Chiang Lai
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Renz C, Asimaki E, Meister C, Albanèse V, Petriukov K, Krapoth NC, Wegmann S, Wollscheid HP, Wong RP, Fulzele A, Chen JX, Léon S, Ulrich HD. Ubiquiton-An inducible, linkage-specific polyubiquitylation tool. Mol Cell 2024; 84:386-400.e11. [PMID: 38103558 PMCID: PMC10804999 DOI: 10.1016/j.molcel.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
The posttranslational modifier ubiquitin regulates most cellular processes. Its ability to form polymeric chains of distinct linkages is key to its diverse functionality. Yet, we still lack the experimental tools to induce linkage-specific polyubiquitylation of a protein of interest in cells. Here, we introduce a set of engineered ubiquitin protein ligases and matching ubiquitin acceptor tags for the rapid, inducible linear (M1-), K48-, or K63-linked polyubiquitylation of proteins in yeast and mammalian cells. By applying the so-called "Ubiquiton" system to proteasomal targeting and the endocytic pathway, we validate this tool for soluble cytoplasmic and nuclear as well as chromatin-associated and integral membrane proteins and demonstrate how it can be used to control the localization and stability of its targets. We expect that the Ubiquiton system will serve as a versatile, broadly applicable research tool to explore the signaling functions of polyubiquitin chains in many biological contexts.
Collapse
Affiliation(s)
- Christian Renz
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Evrydiki Asimaki
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Cindy Meister
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | | | - Kirill Petriukov
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Nils C Krapoth
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Sabrina Wegmann
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | | | - Ronald P Wong
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Sébastien Léon
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
14
|
Sun J, Zheng H. In Vivo Analysis of ER-Associated Protein Degradation and Ubiquitination in Arabidopsis thaliana. Methods Mol Biol 2024; 2772:301-309. [PMID: 38411824 DOI: 10.1007/978-1-0716-3710-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The endoplasmic reticulum (ER) is the cellular site for the biosynthesis of proteins and lipids. The ER is highly dynamic, whose homeostasis is maintained by proper ER shaping, unfolded protein response (UPR), ER-associated degradation (ERAD), and selective autophagy of the ER (ER-phagy). In ERAD and ER-phagy, unfolded/misfolded proteins are degraded in the 26S proteasome and the vacuole, respectively. Both processes are vital for normal plant development and plant responses to environmental stresses. While it is known that ubiquitination of a protein initiates EARD, recent research indicated that ubiquitination of a protein also promotes the turnover of the protein through ER-phagy. In this chapter, we describe in detail two in vivo methods for investigating (1) the degradation efficiency and (2) ubiquitination level of an ER-associated protein in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jiaqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Wang Y, Ran L, Lan Q, Liao W, Wang L, Wang Y, Xiong J, Li F, Yu W, Li Y, Huang Y, He T, Wang J, Zhao J, Yang K. Imbalanced lipid homeostasis caused by membrane αKlotho deficiency contributes to the acute kidney injury to chronic kidney disease transition. Kidney Int 2023; 104:956-974. [PMID: 37673285 DOI: 10.1016/j.kint.2023.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
After acute kidney injury (AKI), renal tubular epithelial cells (RTECs) are pathologically characterized by intracellular lipid droplet (LD) accumulation, which are involved in RTEC injury and kidney fibrosis. However, its pathogenesis remains incompletely understood. The protein, αKlotho, primarily expressed in RTECs, is well known as an anti-aging hormone wielding versatile functions, and its membrane form predominantly acts as a co-receptor for fibroblast growth factor 23. Here, we discovered a connection between membrane αKlotho and intracellular LDs in RTECs. Fluorescent fatty acid (FA) pulse-chase assays showed that membrane αKlotho deficiency in RTECs, as seen in αKlotho homozygous mutated (kl/kl) mice or in mice with ischemia-reperfusion injury (IRI)-induced AKI, inhibited FA mobilization from LDs by impairing adipose triglyceride lipase (ATGL)-mediated lipolysis and lipophagy. This resulted in LD accumulation and FA underutilization. IRI-induced alterations were more striking in αKlotho deficiency. Mechanistically, membrane αKlotho deficiency promoted E3 ligase peroxin2 binding to ubiquitin-conjugating enzyme E2 D2, resulting in ubiquitin-mediated degradation of ATGL which is a common molecular basis for lipolysis and lipophagy. Overexpression of αKlotho rescued FA mobilization by preventing ATGL ubiquitination, thereby lessening LD accumulation and fibrosis after AKI. This suggests that membrane αKlotho is indispensable for the maintenance of lipid homeostasis in RTECs. Thus, our study identified αKlotho as a critical regulator of lipid turnover and homeostasis in AKI, providing a viable strategy for preventing tubular injury and the AKI-to-chronic kidney disease transition.
Collapse
Affiliation(s)
- Yue Wang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Ran
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qigang Lan
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weinian Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaqin Wang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fugang Li
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenrui Yu
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Li
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ting He
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Ke Yang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
16
|
De Silva ARI, Shrestha S, Page RC. Real-time bio-layer interferometry ubiquitination assays as alternatives to western blotting. Anal Biochem 2023; 679:115296. [PMID: 37604387 PMCID: PMC10529061 DOI: 10.1016/j.ab.2023.115296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Ubiquitination is a crucial cellular pathway enabling normal cellular functions. Abnormalities in the ubiquitination process can lead to cellular dysfunction and cause a range of diseases. Efforts to screen and develop small molecule inhibitors targeting portions of the ubiquitination cascade require rapid and robust methods for detecting ubiquitination. Enormous efforts have been made in the field to detect ubiquitination using various techniques including fluorescence, spectrophotometry, chemiluminescence, NMR, and radioactive tracers. The most common method to detect ubiquitination is western blotting. However, western blotting is time-consuming and difficult to use when seeking fine-grained time course experiments. Here we present the use of bio-layer interferometry to rapidly assay ubiquitination in real-time. An E3 ligase auto-ubiquitination system and a substrate ubiquitination assay have been applied as tests for the newly developed assay. The developed BLI ubiquitination assay provides one-second time resolution and detects the formation of polyubiquitin chains directly on a biosensor-bound target. Results are returned instantaneously, and reagent concentrations are identical to those used by traditional western blot-based ubiquitination assays. The developed BLI ubiquitination assay is a viable alternative to traditional western blot assays to detect ubiquitination in a rapid real-time manner.
Collapse
Affiliation(s)
- Anthony Ruvindi I De Silva
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States
| | - Shreesti Shrestha
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States.
| |
Collapse
|
17
|
Steinbach AM, Bhadkamkar VL, Jimenez-Morales D, Stevenson E, Jang GM, Krogan NJ, Swaney DL, Mukherjee S. Cross-family small GTPase ubiquitination by the intracellular pathogen Legionella pneumophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551750. [PMID: 37577546 PMCID: PMC10418220 DOI: 10.1101/2023.08.03.551750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The intracellular bacterial pathogen Legionella pneumophila (L.p.) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p.'s arsenal of ~330 secreted effector proteins have been biochemically characterized as ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p hijacks ubiquitin signaling within the host cell, we undertook a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection results in increased ubiquitination of host proteins regulating subcellular trafficking and membrane dynamics, most notably 63 of ~160 mammalian Ras superfamily small GTPases. We determine that these small GTPases predominantly undergo non-degradative monoubiquitination, and link ubiquitination to recruitment to the Legionella-containing vacuole membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central, but likely indirect, role in cross-family small GTPase ubiquitination. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. This work positions L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.
Collapse
Affiliation(s)
- Adriana M. Steinbach
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- George Williams Hooper Foundation, University of California, San Francisco, San Francisco, California, United States of America
| | - Varun L. Bhadkamkar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- George Williams Hooper Foundation, University of California, San Francisco, San Francisco, California, United States of America
| | - David Jimenez-Morales
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, California, United States of America
| | - Erica Stevenson
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Gwendolyn M. Jang
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Danielle L. Swaney
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- George Williams Hooper Foundation, University of California, San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
18
|
Wang W, Hawkridge AM, Ma Y, Zhang B, Mangrum JB, Hassan ZH, He T, Blat S, Guo C, Zhou H, Liu J, Wang XY, Fang X. Ubiquitin-like protein 5 is a novel player in the UPR-PERK arm and ER stress-induced cell death. J Biol Chem 2023; 299:104915. [PMID: 37315790 PMCID: PMC10339194 DOI: 10.1016/j.jbc.2023.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Biological functions of the highly conserved ubiquitin-like protein 5 (UBL5) are not well understood. In Caenorhabditis elegans, UBL5 is induced under mitochondrial stress to mount the mitochondrial unfolded protein response (UPR). However, the role of UBL5 in the more prevalent endoplasmic reticulum (ER) stress-UPR in the mammalian system is unknown. In the present work, we demonstrated that UBL5 was an ER stress-responsive protein, undergoing rapid depletion in mammalian cells and livers of mice. The ER stress-induced UBL5 depletion was mediated by proteasome-dependent yet ubiquitin-independent proteolysis. Activation of the protein kinase R-like ER kinase arm of the UPR was essential and sufficient for inducing UBL5 degradation. RNA-Seq analysis of UBL5-regulated transcriptome revealed that multiple death pathways were activated in UBL5-silenced cells. In agreement with this, UBL5 knockdown induced severe apoptosis in culture and suppressed tumorigenicity of cancer cells in vivo. Furthermore, overexpression of UBL5 protected specifically against ER stress-induced apoptosis. These results identify UBL5 as a physiologically relevant survival regulator that is proteolytically depleted by the UPR-protein kinase R-like ER kinase pathway, linking ER stress to cell death.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Adam M Hawkridge
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yibao Ma
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bei Zhang
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John B Mangrum
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zaneera H Hassan
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Tianhai He
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sofiya Blat
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human & Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Huiping Zhou
- Department of Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA; Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA; Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
19
|
Carton B, Röth S, Macartney TJ, Sapkota GP. Harnessing nanobodies for target protein degradation through the Affinity-directed PROtein Missile (AdPROM) system. Methods Enzymol 2023; 681:61-79. [PMID: 36764764 DOI: 10.1016/bs.mie.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Targeted protein degradation (TPD) is a useful approach in dissecting protein function and therapeutics. Technologies such as RNA interference or gene knockout that are routinely used rely on protein turnover. However, RNA interference takes a long time to deplete target proteins and is not suitable for long-lived proteins, while a genetic knockout is irreversible, takes a long time to achieve and is not suitable for essential genes. TPD has the potential to overcome the limitations of RNA interference and gene editing approaches. We have established the Affinity directed PROtein Missile (AdPROM) system, which harnesses nanobodies or binders of target proteins to redirect E3 ubiquitin ligase activity to the target protein to induce TPD through the ubiquitin proteasome system. Here we provide a step-by-step protocol for using the AdPROM system for targeted proteolysis of endogenously GFP-tagged K-RAS through an anti-GFP nanobody. This protocol can be amended to target a wide range of different proteins of interest (POIs) either by replacing the anti-GFP nanobody with a nanobody recognising the POI or by endogenously tagging the POI with GFP through CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
- Bill Carton
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Sascha Röth
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Thomas J Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
20
|
Bhattacharjee D, Kaveti S, Jain N. APC/C CDH1 ubiquitinates STAT3 in mitosis. Int J Biochem Cell Biol 2023; 154:106333. [PMID: 36400381 DOI: 10.1016/j.biocel.2022.106333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
STAT3, an oncogene drives tumor growth and is associated with poor prognosis. However, small molecule-based STAT3 inhibitors were unsuccessful in clinics. Recently, STAT3 degraders that ubiquitinate STAT3 were found to elicit long-lasting anti-tumor responses. Thus, triggering STAT3 ubiquitination in cancers is a better strategy than STAT3 inhibition. However, not much is known about the identity of E3-ligases that ubiquitinate STAT3 in cancers. Therefore, to design better therapies to degrade STAT3, we sought to identify E3-ligases that ubiquitinate STAT3 in cancer cells. To answer this question, we determined the cell cycle-dependent ubiquitination of STAT3 in HEK293T cells and examined the link between STAT3 dephosphorylation and ubiquitination. We found that STAT3 is more strongly ubiquitinated in mitosis than in other phases of the cell cycle. We observed that APC/C CDH1 binds and ubiquitinates STAT3 in mitosis. Further, we also found that inhibiting phosphatases decreases STAT3 ubiquitination. We conclude that APC/C CDH1 ubiquitinates STAT3 in mitosis. We suggest that mitosis can be a potential therapeutic window for treating STAT3-activated cancers.
Collapse
Affiliation(s)
- Debanjan Bhattacharjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Sreeram Kaveti
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
21
|
Garvin AJ, Lanz AJ, Morris JR. SUMO monoclonal antibodies vary in sensitivity, specificity, and ability to detect types of SUMO conjugate. Sci Rep 2022; 12:21343. [PMID: 36494414 PMCID: PMC9734647 DOI: 10.1038/s41598-022-25665-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Monoclonal antibodies (MAb) to members of the Small Ubiquitin-like modifier (SUMO) family are essential tools in the study of cellular SUMOylation. However, many anti-SUMO MAbs are poorly validated, and antibody matching to detection format is without an evidence base. Here we test the specificity and sensitivity of twenty-four anti-SUMO MAbs towards monomeric and polymeric SUMO1-4 in dot-blots, immunoblots, immunofluorescence and immunoprecipitation. We find substantial variability between SUMO MAbs for different conjugation states, for detecting increased SUMOylation in response to thirteen different stress agents, and as enrichment reagents for SUMOylated RanGAP1 or KAP1. All four anti-SUMO4 monoclonal antibodies tested cross-reacted wit SUMO2/3, and several SUMO2/3 monoclonal antibodies cross-reacted with SUMO4. These data characterize the specificity of twenty-four anti-SUMO antibodies across commonly used assays, creating an enabling resource for the SUMO research community.
Collapse
Affiliation(s)
- Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Schools, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Alexander J Lanz
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Schools, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Schools, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
22
|
Chen C, Wen M, Jin Y. 1DE-MS Profiling for Proteoform-Correlated Proteomic Analysis, by Combining SDS-PAGE, Whole-Gel Slicing, Quantitative LC-MS/MS, and Reconstruction of Gel Distributions of Several Thousands of Proteins. J Proteome Res 2022; 21:2311-2330. [PMID: 36018058 DOI: 10.1021/acs.jproteome.2c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SDS-PAGE has often been used in proteomic analysis, but generally for sample prefractionation although the technique separates proteins by molecular masses (Mws) and the information would contribute to proteoform-level analysis. Here, we report a method that combines SDS-PAGE, whole-gel slicing, and quantitative LC-MS/MS for establishing gel distributions of several thousand proteins in a proteome. A previously obtained data set on rat cerebral cortex with cerebral ischemia-reperfusion injury1 was analyzed, and the gel distributions of 5906 proteins were reconstructed. These distributions, referred to as 1DE-MS profiles, revealed that about 30% of the proteins had more than one proteoform detected in the gels. The profiles were categorized into six types by distribution (narrow, dispersed, or broad) and relative deviations between the abundance-peak apparent Mws and calculated Mws. Only 56% of the proteins showed narrow distributions and matched Mws, while the others had rather complex profiles. Bioinformatic analysis on example profiles showed the resolved proteoforms involved alternative splicing, proteolytic processing, glycosylation and ubiquitination, fragmentation, and probably transmembrane structures. Profile-based differential analysis revealed that many of the disease-caused changes were proteoform dependent. This work provided a proteome-scale view of protein distributions in SDS-PAGE gels, and the method would be useful to obtain proteoform-correlated information for in-depth proteomics.
Collapse
Affiliation(s)
- Changming Chen
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Meiling Wen
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ya Jin
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
23
|
Segarra-Fas A, Espejo-Serrano C, Bustos F, Zhou H, Wang F, Toth R, Macartney T, Bach I, Nardocci G, Findlay GM. An RNF12-USP26 amplification loop drives germ cell specification and is disrupted by disease-associated mutations. Sci Signal 2022; 15:eabm5995. [PMID: 35857630 PMCID: PMC7613676 DOI: 10.1126/scisignal.abm5995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The E3 ubiquitin ligase RNF12 plays essential roles during development, and the gene encoding it, RLIM, is mutated in the X-linked human developmental disorder Tonne-Kalscheuer syndrome (TOKAS). Substrates of RNF12 include transcriptional regulators such as the pluripotency-associated transcriptional repressor REX1. Using global quantitative proteomics in male mouse embryonic stem cells, we identified the deubiquitylase USP26 as a putative downstream target of RNF12 activity. RNF12 relieved REX1-mediated repression of Usp26, leading to an increase in USP26 abundance and the formation of RNF12-USP26 complexes. Interaction with USP26 prevented RNF12 autoubiquitylation and proteasomal degradation, thereby establishing a transcriptional feed-forward loop that amplified RNF12-dependent derepression of REX1 targets. We showed that the RNF12-USP26 axis operated specifically in mouse testes and was required for the expression of gametogenesis genes and for germ cell differentiation in vitro. Furthermore, this RNF12-USP26 axis was disrupted by RLIM and USP26 variants found in TOKAS and infertility patients, respectively. This work reveals synergy within the ubiquitylation cycle that controls a key developmental process in gametogenesis and that is disrupted in human genetic disorders.
Collapse
Affiliation(s)
- Anna Segarra-Fas
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Carmen Espejo-Serrano
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Francisco Bustos
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Houjiang Zhou
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Feng Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rachel Toth
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Thomas Macartney
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Ingolf Bach
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gino Nardocci
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
24
|
Nanda SK, Vollmer S, Perez-Oliva AB. Posttranslational Regulation of Inflammasomes, Its Potential as Biomarkers and in the Identification of Novel Drugs Targets. Front Cell Dev Biol 2022; 10:887533. [PMID: 35800898 PMCID: PMC9253692 DOI: 10.3389/fcell.2022.887533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we have summarized classical post-translational modifications (PTMs) such as phosphorylation, ubiquitylation, and SUMOylation of the different components of one of the most studied NLRP3, and other emerging inflammasomes. We will highlight how the discovery of these modifications have provided mechanistic insight into the biology, function, and regulation of these multiprotein complexes not only in the context of the innate immune system but also in adaptive immunity, hematopoiesis, bone marrow transplantation, as well and their role in human diseases. We have also collected available information concerning less-studied modifications such as acetylation, ADP-ribosylation, nitrosylation, prenylation, citrullination, and emphasized their relevance in the regulation of inflammasome complex formation. We have described disease-associated mutations affecting PTMs of inflammasome components. Finally, we have discussed how a deeper understanding of different PTMs can help the development of biomarkers and identification of novel drug targets to treat diseases caused by the malfunctioning of inflammasomes.
Collapse
Affiliation(s)
- Sambit K. Nanda
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology (R&I), Gaithersburg, MD, United States
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Stefan Vollmer
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), Gothenburg, Sweden
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Ana B. Perez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| |
Collapse
|
25
|
Koganti P, Kadali VN, Manikoth Ayyathan D, Emanuelli A, Paolini B, Levy-Cohen G, Blank M. The E3 ubiquitin ligase SMURF2 stabilizes RNA editase ADAR1p110 and promotes its adenosine-to-inosine (A-to-I) editing function. Cell Mol Life Sci 2022; 79:237. [PMID: 35403872 PMCID: PMC11072456 DOI: 10.1007/s00018-022-04272-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Epitranscriptomic changes in RNA catalyzed by the RNA-editing enzyme ADAR1 play an essential role in the regulation of diverse molecular and cellular processes, both under physiological conditions and in disease states, including cancer. Yet, despite a growing body of evidence pointing to ADAR1 as a potential therapeutic target, the mechanisms regulating its cellular abundance and activity, particularly of its constitutively expressed and ubiquitous form, ADAR1p110, are poorly understood. Here, we report the HECT-type E3 ubiquitin ligase SMURF2 as a pivotal regulator of ADAR1p110. We show that SMURF2, which is primarily known to promote the ubiquitin-mediated degradation of its protein substrates, protects ADAR1p110 from proteolysis and promotes its A-to-I editase activity in human and mouse cells and tissues. ADAR1p110's interactome analysis performed in human cells also showed a positive influence of SMURF2 on the stability and function of ADAR1p110. Mechanistically, we found that SMURF2 directly binds, ubiquitinates and stabilizes ADAR1p110 in an E3 ubiquitin ligase-dependent manner, through ADAR1p110 ubiquitination at lysine-744 (K744). Mutation of this residue to arginine (K744R), which is also associated with several human disorders, including dyschromatosis symmetrica hereditaria (DSH) and some types of cancer, abolished SMURF2-mediated protection of ADAR1p110 from both proteasomal and lysosomal degradation and inactivated ADAR1p110-mediated RNA editing. Our findings reveal a novel mechanism underlying the regulation of ADAR1 in mammalian cells and suggest SMURF2 as a key cellular factor influencing the protein abundance, interactions and functions of ADAR1p110.
Collapse
Affiliation(s)
- Praveen Koganti
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Venkata Narasimha Kadali
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Dhanoop Manikoth Ayyathan
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Biagio Paolini
- Department of Pathology and Laboratory Medicine, IRCCS Fondazione, Istituto Nazionale dei Tumori, Milan, Italy
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel.
| |
Collapse
|
26
|
Editorial. J Proteomics 2022; 262:104593. [DOI: 10.1016/j.jprot.2022.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Lee Y, Wessel AW, Xu J, Reinke JG, Lee E, Kim SM, Hsu AP, Zilberman-Rudenko J, Cao S, Enos C, Brooks SR, Deng Z, Lin B, de Jesus AA, Hupalo DN, Piotto DG, Terreri MT, Dimitriades VR, Dalgard CL, Holland SM, Goldbach-Mansky R, Siegel RM, Hanson EP. Genetically programmed alternative splicing of NEMO mediates an autoinflammatory disease phenotype. J Clin Invest 2022; 132:128808. [PMID: 35289316 PMCID: PMC8920334 DOI: 10.1172/jci128808] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Host defense and inflammation are regulated by the NF-κB essential modulator (NEMO), a scaffolding protein with a broad immune cell and tissue expression profile. Hypomorphic mutations in inhibitor of NF-κB kinase regulatory subunit gamma (IKBKG) encoding NEMO typically present with immunodeficiency. Here, we characterized a pediatric autoinflammatory syndrome in 3 unrelated male patients with distinct X-linked IKBKG germline mutations that led to overexpression of a NEMO protein isoform lacking the domain encoded by exon 5 (NEMO-Δex5). This isoform failed to associate with TANK binding kinase 1 (TBK1), and dermal fibroblasts from affected patients activated NF-κB in response to TNF but not TLR3 or RIG-I–like receptor (RLR) stimulation when isoform levels were high. By contrast, T cells, monocytes, and macrophages that expressed NEMO-Δex5 exhibited increased NF-κB activation and IFN production, and blood cells from these patients expressed a strong IFN and NF-κB transcriptional signature. Immune cells and TNF-stimulated dermal fibroblasts upregulated the inducible IKK protein (IKKi) that was stabilized by NEMO-Δex5, promoting type I IFN induction and antiviral responses. These data revealed how IKBKG mutations that lead to alternative splicing of skipping exon 5 cause a clinical phenotype we have named NEMO deleted exon 5 autoinflammatory syndrome (NDAS), distinct from the immune deficiency syndrome resulting from loss-of-function IKBKG mutations.
Collapse
Affiliation(s)
- Younglang Lee
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Alex W Wessel
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Jiazhi Xu
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | - Julia G Reinke
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | - Eries Lee
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Somin M Kim
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Amy P Hsu
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jevgenia Zilberman-Rudenko
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Sha Cao
- Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Clinton Enos
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, NIAMS and
| | - Zuoming Deng
- Biodata Mining and Discovery Section, Office of Science and Technology, NIAMS and
| | - Bin Lin
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Daniel N Hupalo
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Daniela Gp Piotto
- Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria T Terreri
- Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Victoria R Dimitriades
- Division of Infectious Diseases, Immunology & Allergy University of California Davis Health, Sacramento, California, USA
| | - Clifton L Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA.,Novartis Institutes for BioMedical Research WSJ, Basel, Switzerland
| | - Eric P Hanson
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Wegmann S, Meister C, Renz C, Yakoub G, Wollscheid HP, Takahashi DT, Mikicic I, Beli P, Ulrich HD. Linkage reprogramming by tailor-made E3s reveals polyubiquitin chain requirements in DNA-damage bypass. Mol Cell 2022; 82:1589-1602.e5. [PMID: 35263628 PMCID: PMC9098123 DOI: 10.1016/j.molcel.2022.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
A polyubiquitin chain can adopt a variety of shapes, depending on how the ubiquitin monomers are joined. However, the relevance of linkage for the signaling functions of polyubiquitin chains is often poorly understood because of our inability to control or manipulate this parameter in vivo. Here, we present a strategy for reprogramming polyubiquitin chain linkage by means of tailor-made, linkage- and substrate-selective ubiquitin ligases. Using the polyubiquitylation of the budding yeast replication factor PCNA in response to DNA damage as a model case, we show that altering the features of a polyubiquitin chain in vivo can change the fate of the modified substrate. We also provide evidence for redundancy between distinct but structurally similar linkages, and we demonstrate by proof-of-principle experiments that the method can be generalized to targets beyond PCNA. Our study illustrates a promising approach toward the in vivo analysis of polyubiquitin signaling.
Collapse
Affiliation(s)
- Sabrina Wegmann
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Cindy Meister
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Christian Renz
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - George Yakoub
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | | | - Diane T Takahashi
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, 10413 Illkirch, Strasbourg, France
| | - Ivan Mikicic
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany; Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
29
|
Lord SO, Lai Y. Exercise mediates ubiquitin signalling in human skeletal muscle. FASEB Bioadv 2022; 4:402-407. [PMID: 35664833 PMCID: PMC9164242 DOI: 10.1096/fba.2021-00142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Physical activity or regular exercise provides many beneficial effects towards human health, helping prevent and ameliorate metabolic diseases. However, certain molecular mechanisms that mediate these health benefits remain poorly understood. Parker et al. provided the first global analysis of exercise‐regulated ubiquitin signalling in human skeletal muscle, revealing post‐translational modification cross‐talk. As a result of their analysis, NEDDylation is thought to promote ubiquitin signalling for the removal of damaged proteins following exercise. The proteomic dataset generated from their study is invaluable for researchers in this field to validate new mechanistic hypotheses. To further reveal molecular mechanisms regulated by exercise, future research could employ more sensitive mass spectrometry‐based workflows that increase the detection of both ubiquitylated sites and peptides and subsequently identify more exercise‐regulated ubiquitin signalling pathways.
Collapse
Affiliation(s)
- Samuel O. Lord
- School of Sport, Exercise and Rehabilitation Sciences University of Birmingham Birmingham United Kingdom
| | - Yu‐Chiang Lai
- School of Sport, Exercise and Rehabilitation Sciences University of Birmingham Birmingham United Kingdom
- Institute of Metabolism and Systems Research University of Birmingham Birmingham United Kingdom
- Mitochondrial Profiling Centre University of Birmingham Birmingham United Kingdom
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research University of Birmingham Birmingham United Kingdom
| |
Collapse
|
30
|
Wang D, Xu C, Yang W, Chen J, Ou Y, Guan Y, Guan J, Liu Y. E3 ligase RNF167 and deubiquitinase STAMBPL1 modulate mTOR and cancer progression. Mol Cell 2022; 82:770-784.e9. [PMID: 35114100 DOI: 10.1016/j.molcel.2022.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022]
Abstract
The mTOR complex 1 (mTORC1) is an essential metabolic hub that coordinates cellular metabolism with the availability of nutrients, including amino acids. Sestrin2 has been identified as a cytosolic leucine sensor that transmits leucine status signals to mTORC1. In this study, we identify an E3 ubiquitin ligase RING finger protein 167 (RNF167) and a deubiquitinase STAMBPL1 that function in concert to control the polyubiquitination level of Sestrin2 in response to leucine availability. Ubiquitination of Sestrin2 promotes its interaction with GATOR2 and inhibits mTORC1 signaling. Bioinformatic analysis reveals decreased RNF167 expression and increased STAMBPL1 expression in gastric and colorectal tumors. Knockout of STAMBPL1 or correction of the heterozygous STAMBPL1 mutation in a human colon cancer cell line suppresses xenograft tumor growth. Lastly, a cell-permeable peptide that blocks the STAMBPL1-Sestrin2 interaction inhibits mTORC1 and provides a potential option for cancer therapy.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Chenchen Xu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Wenyu Yang
- Yuan Pei College, Peking University, Beijing 100871, China
| | - Jie Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yuhui Ou
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yuanyuan Guan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jialiang Guan
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics, Beijing 100871, China.
| |
Collapse
|
31
|
The Deubiquitinase OTUB1 Is a Key Regulator of Energy Metabolism. Int J Mol Sci 2022; 23:ijms23031536. [PMID: 35163456 PMCID: PMC8836018 DOI: 10.3390/ijms23031536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Dysregulated energy metabolism is a major contributor to a multitude of pathologies, including obesity and diabetes. Understanding the regulation of metabolic homeostasis is of utmost importance for the identification of therapeutic targets for the treatment of metabolically driven diseases. We previously identified the deubiquitinase OTUB1 as substrate for the cellular oxygen sensor factor-inhibiting HIF (FIH) with regulatory effects on cellular energy metabolism, but the physiological relevance of OTUB1 is unclear. Here, we report that the induced global deletion of OTUB1 in adult mice (Otub1 iKO) elevated energy expenditure, reduced age-dependent body weight gain, facilitated blood glucose clearance and lowered basal plasma insulin levels. The respiratory exchange ratio was maintained, indicating an unaltered nutrient oxidation. In addition, Otub1 deletion in cells enhanced AKT activity, leading to a larger cell size, higher ATP levels and reduced AMPK phosphorylation. AKT is an integral part of insulin-mediated signaling and Otub1 iKO mice presented with increased AKT phosphorylation following acute insulin administration combined with insulin hypersensitivity. We conclude that OTUB1 is an important regulator of metabolic homeostasis.
Collapse
|
32
|
Kajikawa M, Imaizumi N, Machii S, Nakamura T, Harigane N, Kimura M, Miyano K, Ishido S, Kanamoto T. Kaposi's sarcoma-associated herpesvirus ubiquitin ligases downregulate cell surface expression of l-selectin. J Gen Virol 2021; 102. [PMID: 34726593 DOI: 10.1099/jgv.0.001678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic etiological factor for Kaposi's sarcoma and primary effusion lymphoma in immunocompromised patients. KSHV utilizes two immune evasion E3 ubiquitin ligases, namely K3 and K5, to downregulate the expression of antigen-presenting molecules and ligands of natural killer (NK) cells in the host cells through an ubiquitin-dependent endocytic mechanism. This allows the infected cells to evade surveillance and elimination by cytotoxic lymphocytes and NK cells. The number of host cell molecular substrates reported for these ubiquitin ligases is limited. The identification of novel substrates for these ligases will aid in elucidating the mechanism underlying immune evasion of KSHV. This study demonstrated that K5 downregulated the cell surface expression of l-selectin, a C-type lectin-like adhesion receptor expressed in the lymphocytes. Tryptophan residue located at the centre of the E2-binding site in the K5 RINGv domain was essential to downregulate l-selectin expression. Additionally, the lysine residues located at the cytoplasmic tail of l-selectin were required for the K5-mediated downregulation of l-selectin. K5 promoted the degradation of l-selectin through polyubiquitination. These results suggest that K5 downregulates l-selectin expression on the cell surface by promoting polyubiquitination and ubiquitin-dependent endocytosis, which indicated that l-selectin is a novel substrate for K5. Additionally, K3 downregulated l-selectin expression. The findings of this study will aid in the elucidation of a novel immune evasion mechanism in KSHV.
Collapse
Affiliation(s)
- Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nanae Imaizumi
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Shiho Machii
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Tomoka Nakamura
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nana Harigane
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Minako Kimura
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Kei Miyano
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Taisei Kanamoto
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
33
|
Deol KK, Strieter ER. The ubiquitin proteoform problem. Curr Opin Chem Biol 2021; 63:95-104. [PMID: 33813043 PMCID: PMC8384647 DOI: 10.1016/j.cbpa.2021.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
Abstract
The diversity of ubiquitin modifications is immense. A protein can be monoubiquitylated, multi-monoubiquitylated, and polyubiquitylated with chains varying in size and shape. Ubiquitin itself can be adorned with other ubiquitin-like proteins and smaller functional groups. Considering different combinations of post-translational modifications can give rise to distinct biological outcomes, characterizing ubiquitylated proteoforms of a given protein is paramount. In this Opinion, we review recent advances in detecting and quantifying various ubiquitin proteoforms using mass spectrometry.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
34
|
Coxsackievirus B3 Exploits the Ubiquitin-Proteasome System to Facilitate Viral Replication. Viruses 2021; 13:v13071360. [PMID: 34372566 PMCID: PMC8310229 DOI: 10.3390/v13071360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/18/2023] Open
Abstract
Infection by RNA viruses causes extensive cellular reorganization, including hijacking of membranes to create membranous structures termed replication organelles, which support viral RNA synthesis and virion assembly. In this study, we show that infection with coxsackievirus B3 entails a profound impairment of the protein homeostasis at virus-utilized membranes, reflected by an accumulation of ubiquitinylated proteins, including K48-linked polyubiquitin conjugates, known to direct proteins to proteasomal degradation. The enrichment of membrane-bound ubiquitin conjugates is attributed to the presence of the non-structural viral proteins 2B and 3A, which are known to perturb membrane integrity and can cause an extensive rearrangement of cellular membranes. The locally increased abundance of ubiquitinylated proteins occurs without an increase of oxidatively damaged proteins. During the exponential phase of replication, the oxidative damage of membrane proteins is even diminished, an effect we attribute to the recruitment of glutathione, which is known to be required for the formation of infectious virus particles. Furthermore, we show that the proteasome contributes to the processing of viral precursor proteins. Taken together, we demonstrate how an infection with coxsackievirus B3 affects the cellular protein and redox homeostasis locally at the site of viral replication and virus assembly.
Collapse
|
35
|
Musaus M, Farrell K, Navabpour S, Ray WK, Helm RF, Jarome TJ. Sex-Specific Linear Polyubiquitination Is a Critical Regulator of Contextual Fear Memory Formation. Front Behav Neurosci 2021; 15:709392. [PMID: 34305548 PMCID: PMC8298817 DOI: 10.3389/fnbeh.2021.709392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Strong evidence supports that protein ubiquitination is a critical regulator of fear memory formation. However, as this work has focused on protein degradation, it is currently unknown whether polyubiquitin modifications that are independent of the proteasome are involved in learning-dependent synaptic plasticity. Here, we present the first evidence that atypical linear (M1) polyubiquitination, the only ubiquitin chain that does not occur at a lysine site and is largely independent of the proteasome, is critically involved in contextual fear memory formation in the amygdala in a sex-specific manner. Using immunoblot and unbiased proteomic analyses, we found that male (49) and female (14) rats both had increased levels of linear polyubiquitinated substrates following fear conditioning, though none of these protein targets overlapped between sexes. In males, target protein functions involved cell junction and axonal guidance signaling, while in females the primary target was Adiponectin A, a critical regulator of neuroinflammation, synaptic plasticity, and memory, suggesting sex-dependent functional roles for linear polyubiquitination during fear memory formation. Consistent with these increases, in vivo siRNA-mediated knockdown of Rnf31, an essential component of the linear polyubiquitin E3 complex LUBAC, in the amygdala impaired contextual fear memory in both sexes without affecting memory retrieval. Collectively, these results provide the first evidence that proteasome-independent linear polyubiquitination is a critical regulator of fear memory formation, expanding the potential roles of ubiquitin-signaling in learning-dependent synaptic plasticity. Importantly, our data identify a novel sex difference in the functional role of, but not a requirement for, linear polyubiquitination in fear memory formation.
Collapse
Affiliation(s)
- Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kayla Farrell
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Shaghayegh Navabpour
- Department of Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - W. Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Richard F. Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Timothy J. Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Department of Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| |
Collapse
|
36
|
Yin C, Lui ESW, Jiang T, Qi RZ. Proteolysis of γ-tubulin small complex proteins is mediated by the ubiquitin-proteasome system. FEBS Lett 2021; 595:1987-1996. [PMID: 34107052 DOI: 10.1002/1873-3468.14146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 11/12/2022]
Abstract
Microtubule nucleation is mainly mediated by the γ-tubulin ring complex (γTuRC), whose core components are γ-tubulin and γ-tubulin complex proteins GCP2-6. A substantial fraction of γ-tubulin also exists with GCP2 and GCP3 in a tetramer called the γ-tubulin small complex (γTuSC). To date, the mechanisms underlying the turnover of γ-tubulin and GCPs have remained unclear. Here, we show that γ-tubulin, GCP2, and GCP3 are proteolyzed by the ubiquitin-proteasome system, and we identify cullin 1, cullin 4A, and cullin 4B as the E3 ligases that mediate the ubiquitination and, consequently, the degradation of γ-tubulin. Notably, we found that γTuSC disassembly promotes the degradation of γ-tubulin, GCP2, and GCP3, which indicates a role for γTuSCs in the stabilization of its components.
Collapse
Affiliation(s)
- Can Yin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China
| | - Edna S W Lui
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China
| | - Taolue Jiang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China
| | - Robert Z Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, China
| |
Collapse
|
37
|
Rodriguez Carvajal A, Grishkovskaya I, Gomez Diaz C, Vogel A, Sonn-Segev A, Kushwah MS, Schodl K, Deszcz L, Orban-Nemeth Z, Sakamoto S, Mechtler K, Kukura P, Clausen T, Haselbach D, Ikeda F. The linear ubiquitin chain assembly complex (LUBAC) generates heterotypic ubiquitin chains. eLife 2021; 10:e60660. [PMID: 34142657 PMCID: PMC8245127 DOI: 10.7554/elife.60660] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 06/17/2021] [Indexed: 12/21/2022] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is the only known ubiquitin ligase for linear/Met1-linked ubiquitin chain formation. One of the LUBAC components, heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1L), was recently shown to catalyse oxyester bond formation between ubiquitin and some substrates. However, oxyester bond formation in the context of LUBAC has not been directly observed. Here, we present the first 3D reconstruction of human LUBAC obtained by electron microscopy and report its generation of heterotypic ubiquitin chains containing linear linkages with oxyester-linked branches. We found that this event depends on HOIL-1L catalytic activity. By cross-linking mass spectrometry showing proximity between the catalytic RING-in-between-RING (RBR) domains, a coordinated ubiquitin relay mechanism between the HOIL-1-interacting protein (HOIP) and HOIL-1L ligases is suggested. In mouse embryonic fibroblasts, these heterotypic chains were induced by TNF, which is reduced in cells expressing an HOIL-1L catalytic inactive mutant. In conclusion, we demonstrate that LUBAC assembles heterotypic ubiquitin chains by the concerted action of HOIP and HOIL-1L.
Collapse
Affiliation(s)
- Alan Rodriguez Carvajal
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Carlos Gomez Diaz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Antonia Vogel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Adar Sonn-Segev
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Manish S Kushwah
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Katrin Schodl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Luiza Deszcz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | | | | | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Fumiyo Ikeda
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
- Medical Institute of Bioregulation (MIB), Kyushu UniversityFukuokaJapan
| |
Collapse
|
38
|
Abstract
Targeted protein degradation is a broad and expanding field aimed at the modulation of protein homeostasis. A focus of this field has been directed toward molecules that hijack the ubiquitin proteasome system with heterobifunctional ligands that recruit a target protein to an E3 ligase to facilitate polyubiquitination and subsequent degradation by the 26S proteasome. Despite the success of these chimeras toward a number of clinically relevant targets, the ultimate breadth and scope of this approach remains uncertain. Here we highlight recent advances in assays and tools available to evaluate targeted protein degradation, including and beyond the study of E3-targeted chimeric ligands. We note several challenges associated with degrader development and discuss various approaches to expanding the protein homeostasis toolbox.
Collapse
|
39
|
Orr JN, Waugh R, Colas I. Ubiquitination in Plant Meiosis: Recent Advances and High Throughput Methods. FRONTIERS IN PLANT SCIENCE 2021; 12:667314. [PMID: 33897750 PMCID: PMC8058418 DOI: 10.3389/fpls.2021.667314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Meiosis is a specialized cell division which is essential to sexual reproduction. The success of this highly ordered process involves the timely activation, interaction, movement, and removal of many proteins. Ubiquitination is an extraordinarily diverse post-translational modification with a regulatory role in almost all cellular processes. During meiosis, ubiquitin localizes to chromatin and the expression of genes related to ubiquitination appears to be enhanced. This may be due to extensive protein turnover mediated by proteasomal degradation. However, degradation is not the only substrate fate conferred by ubiquitination which may also mediate, for example, the activation of key transcription factors. In plant meiosis, the specific roles of several components of the ubiquitination cascade-particularly SCF complex proteins, the APC/C, and HEI10-have been partially characterized indicating diverse roles in chromosome segregation, recombination, and synapsis. Nonetheless, these components remain comparatively poorly understood to their counterparts in other processes and in other eukaryotes. In this review, we present an overview of our understanding of the role of ubiquitination in plant meiosis, highlighting recent advances, remaining challenges, and high throughput methods which may be used to overcome them.
Collapse
Affiliation(s)
- Jamie N. Orr
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- School of Agriculture and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
40
|
Ghidini A, Cléry A, Halloy F, Allain FHT, Hall J. RNA‐PROTACs: Degraders of RNA‐Binding Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alice Ghidini
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Antoine Cléry
- Department of Biology ETH Zurich Hönggerbergring 64 8093 Zurich Switzerland
| | - François Halloy
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
41
|
Ghidini A, Cléry A, Halloy F, Allain FHT, Hall J. RNA-PROTACs: Degraders of RNA-Binding Proteins. Angew Chem Int Ed Engl 2021; 60:3163-3169. [PMID: 33108679 PMCID: PMC7898822 DOI: 10.1002/anie.202012330] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Indexed: 12/19/2022]
Abstract
Defects in the functions of RNA binding proteins (RBPs) are at the origin of many diseases; however, targeting RBPs with conventional drugs has proven difficult. PROTACs are a new class of drugs that mediate selective degradation of a target protein through a cell's ubiquitination machinery. PROTACs comprise a moiety that binds the selected protein, conjugated to a ligand of an E3 ligase. Herein, we introduce RNA-PROTACs as a new concept in the targeting of RBPs. These chimeric structures employ small RNA mimics as targeting groups that dock the RNA-binding site of the RBP, whereupon a conjugated E3-recruiting peptide derived from the HIF-1α protein directs the RBP for proteasomal degradation. We performed a proof-of-concept demonstration with the degradation of two RBPs-a stem cell factor LIN28 and a splicing factor RBFOX1-and showed their use in cancer cell lines. The RNA-PROTAC approach opens the way to rapid, selective targeting of RBPs in a rational and general fashion.
Collapse
Affiliation(s)
- Alice Ghidini
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | - Antoine Cléry
- Department of BiologyETH ZurichHönggerbergring 648093ZurichSwitzerland
| | - François Halloy
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| |
Collapse
|
42
|
Schuren A, Boer I, Bouma E, Van de Weijer M, Costa A, Hubel P, Pichlmair A, Lebbink R, Wiertz E. The UFM1 Pathway Impacts HCMV US2-Mediated Degradation of HLA Class I. Molecules 2021; 26:molecules26020287. [PMID: 33430125 PMCID: PMC7827699 DOI: 10.3390/molecules26020287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
To prevent accumulation of misfolded proteins in the endoplasmic reticulum, chaperones perform quality control on newly translated proteins and redirect misfolded proteins to the cytosol for degradation by the ubiquitin-proteasome system. This pathway is called ER-associated protein degradation (ERAD). The human cytomegalovirus protein US2 induces accelerated ERAD of HLA class I molecules to prevent immune recognition of infected cells by CD8+ T cells. Using US2-mediated HLA-I degradation as a model for ERAD, we performed a genome-wide CRISPR/Cas9 library screen to identify novel cellular factors associated with ERAD. Besides the identification of known players such as TRC8, p97, and UBE2G2, the ubiquitin-fold modifier1 (UFM1) pathway was found to affect degradation of HLA-I. UFMylation is a post-translational modification resembling ubiquitination. Whereas we observe ubiquitination of HLA-I, no UFMylation was detected on HLA-I or several other proteins involved in degradation of HLA-I, suggesting that the UFM1 pathway impacts ERAD in a different manner than ubiquitin. Interference with the UFM1 pathway seems to specifically inhibit the ER-to-cytosol dislocation of HLA-I. In the absence of detectable UFMylation of HLA-I, UFM1 may contribute to US2-mediated HLA-I degradation by misdirecting protein sorting indirectly. Mass spectrometry analysis of US2-expressing cells showed that ribosomal proteins are a major class of proteins undergoing extensive UFMylation; the role of these changes in protein degradation may be indirect and remains to be established.
Collapse
Affiliation(s)
- A.B.C. Schuren
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
| | - I.G.J. Boer
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
| | - E.M. Bouma
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
- Department of Medical Microbiology, University Medical Center Groningen, Postbus 30001, 9700 RB Groningen, The Netherlands
| | - M.L. Van de Weijer
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - A.I. Costa
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
| | - P. Hubel
- Innate Immunity Laboratory, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, Martinsried, D-82152 Munich, Germany; (P.H.); (A.P.)
- Core Facility Hohenheim, Universität Hohenheim, Emil-Wolff-Straße 12, D-70599 Stuttgart, Germany
| | - A. Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, Martinsried, D-82152 Munich, Germany; (P.H.); (A.P.)
- School of Medicine, Institute of Virology, Technical University of Munich, Schneckenburgerstr 8, D-81675 Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, D-85764 Neuherberg, Germany
| | - R.J. Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
- Correspondence: (R.J.L.); (E.J.H.J.W.); Tel.: +31-887550627 (R.J.L.); +31-887550862 (E.J.H.J.W.)
| | - E.J.H.J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
- Correspondence: (R.J.L.); (E.J.H.J.W.); Tel.: +31-887550627 (R.J.L.); +31-887550862 (E.J.H.J.W.)
| |
Collapse
|
43
|
Anticancer Activity of Lesbicoumestan in Jurkat Cells via Inhibition of Oxidative Stress-Mediated Apoptosis and MALT1 Protease. Molecules 2021; 26:molecules26010185. [PMID: 33401649 PMCID: PMC7794876 DOI: 10.3390/molecules26010185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
This study explores the potential anticancer effects of lesbicoumestan from Lespedeza bicolor against human leukemia cancer cells. Flow cytometry and fluorescence microscopy were used to investigate antiproliferative effects. The degradation of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) was evaluated using immunoprecipitation, Western blotting, and confocal microscopy. Apoptosis was investigated using three-dimensional (3D) Jurkat cell resistance models. Lesbicoumestan induced potent mitochondrial depolarization on the Jurkat cells via upregulated expression levels of mitochondrial reactive oxygen species. Furthermore, the underlying apoptotic mechanisms of lesbicoumestan through the MALT1/NF-κB pathway were comprehensively elucidated. The analysis showed that lesbicoumestan significantly induced MALT1 degradation, which led to the inhibition of the NF-κB pathway. In addition, molecular docking results illustrate how lesbicoumestan could effectively bind with MALT1 protease at the latter's active pocket. Similar to traditional 2D cultures, apoptosis was markedly induced upon lesbicoumestan treatment in 3D Jurkat cell resistance models. Our data support the hypothesis that lesbicoumestan is a novel inhibitor of MALT1, as it exhibited potent antiapoptotic effects in Jurkat cells.
Collapse
|
44
|
Tsai C, Chang C, Lin B, Wu Y, Wu M, Lin L, Huang W, Holz JD, Sheu T, Lee J, Kitsis RN, Tai P, Lee Y. Up-regulation of cofilin-1 in cell senescence associates with morphological change and p27 kip1 -mediated growth delay. Aging Cell 2021; 20:e13288. [PMID: 33336885 PMCID: PMC7811848 DOI: 10.1111/acel.13288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/05/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Morphological change is an explicit characteristic of cell senescence, but the underlying mechanisms remains to be addressed. Here, we demonstrated, after a survey of various actin-binding proteins, that the post-translational up-regulation of cofilin-1 was essential for the reduced rate of actin depolymerization morphological enlargement in senescent cells. Additionally, up-regulated cofilin-1 mainly existed in the serine-3 phosphorylated form, according to the 2D gel immunoblotting assay. The up-regulation of cofilin-1 was also detected in aged mammalian tissues. The over-expression of wild-type cofilin-1 and constitutively phosphorylated cofilin-1 promoted cell senescence with an increased cell size. Additionally, senescent phenotypes were also reduced by knockdown of total cofilin-1, which led to a decrease in phosphorylated cofilin-1. The senescence induced by the over-expression of cofilin-1 was dependent on p27Kip1 , but not on the p53 and p16INK4 expressions. The knockdown of p27Kip1 alleviated cell senescence induced by oxidative stress or replicative stress. We also found that the over-expression of cofilin-1 induced the expression of p27Kip1 through transcriptional suppression of the transcriptional enhancer factors domain 1 (TEAD1) transcription factor. The TEAD1 transcription factor played a transrepressive role in the p27Kip1 gene promoter, as determined by the promoter deletion reporter gene assay. Interestingly, the down-regulation of TEAD1 was accompanied by the up-regulation of cofilin-1 in senescence. The knockdown and restoration of TEAD1 in young cells and old cells could induce and inhibit p27Kip1 and senescent phenotypes, respectively. Taken together, the current data suggest that cofilin-1/TEAD1/p27Kip1 signaling is involved in senescence-related morphological change and growth arrest.
Collapse
Affiliation(s)
- Cheng‐Han Tsai
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Chun‐Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Bing‐Ze Lin
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Yu‐Lou Wu
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Meng‐Hsiu Wu
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Liang‐Tin Lin
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Wen‐Chien Huang
- Department of Surgery Division of Thoracic Surgery MacKay Memorial Hospital Taipei Taiwan
| | - Jonathan D. Holz
- Department of Biology University of Rochester Rochester NY14642USA
| | - Tzong‐Jen Sheu
- Department of Orthopaedics Center for Musculoskeletal Research University of Rochester School of Medicine Rochester NY14642USA
| | - Jhih‐Shian Lee
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Richard N. Kitsis
- Departments of Medicine (Cardiology) and Cell Biology and Wilf Family Cardiovascular Research Institute Albert Einstein College of Medicine Bronx, New York NY USA
| | - Pei‐Han Tai
- Graduate Institute of Oral Biology School of Dentistry National Taiwan University Taipei Taiwan
| | - Yi‐Jang Lee
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
- Cancer Progression Research Center National Yang‐Ming University Taipei11221Taiwan
| |
Collapse
|
45
|
Shinde SR, Nager AR, Nachury MV. Ubiquitin chains earmark GPCRs for BBSome-mediated removal from cilia. J Biophys Biochem Cytol 2020; 219:211536. [PMID: 33185668 PMCID: PMC7716378 DOI: 10.1083/jcb.202003020] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
Regulated trafficking of G protein-coupled receptors (GPCRs) controls cilium-based signaling pathways. β-Arrestin, a molecular sensor of activated GPCRs, and the BBSome, a complex of Bardet-Biedl syndrome (BBS) proteins, are required for the signal-dependent exit of ciliary GPCRs, but the functional interplay between β-arrestin and the BBSome remains elusive. Here we find that, upon activation, ciliary GPCRs become tagged with ubiquitin chains comprising K63 linkages (UbK63) in a β-arrestin-dependent manner before BBSome-mediated exit. Removal of ubiquitin acceptor residues from the somatostatin receptor 3 (SSTR3) and from the orphan GPCR GPR161 demonstrates that ubiquitination of ciliary GPCRs is required for their regulated exit from cilia. Furthermore, targeting a UbK63-specific deubiquitinase to cilia blocks the exit of GPR161, SSTR3, and Smoothened (SMO) from cilia. Finally, ubiquitinated proteins accumulate in cilia of mammalian photoreceptors and Chlamydomonas cells when BBSome function is compromised. We conclude that Ub chains mark GPCRs and other unwanted ciliary proteins for recognition by the ciliary exit machinery.
Collapse
|
46
|
Ubiquitin and TFIIH-stimulated DDB2 dissociation drives DNA damage handover in nucleotide excision repair. Nat Commun 2020; 11:4868. [PMID: 32985517 PMCID: PMC7522231 DOI: 10.1038/s41467-020-18705-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
DNA damage sensors DDB2 and XPC initiate global genome nucleotide excision repair (NER) to protect DNA from mutagenesis caused by helix-distorting lesions. XPC recognizes helical distortions by binding to unpaired ssDNA opposite DNA lesions. DDB2 binds to UV-induced lesions directly and facilitates efficient recognition by XPC. We show that not only lesion-binding but also timely DDB2 dissociation is required for DNA damage handover to XPC and swift progression of the multistep repair reaction. DNA-binding-induced DDB2 ubiquitylation and ensuing degradation regulate its homeostasis to prevent excessive lesion (re)binding. Additionally, damage handover from DDB2 to XPC coincides with the arrival of the TFIIH complex, which further promotes DDB2 dissociation and formation of a stable XPC-TFIIH damage verification complex. Our results reveal a reciprocal coordination between DNA damage recognition and verification within NER and illustrate that timely repair factor dissociation is vital for correct spatiotemporal control of a multistep repair process.
Collapse
|
47
|
Ednie AR, Bennett ES. Intracellular O-linked glycosylation directly regulates cardiomyocyte L-type Ca 2+ channel activity and excitation-contraction coupling. Basic Res Cardiol 2020; 115:59. [PMID: 32910282 DOI: 10.1007/s00395-020-00820-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Cardiomyocyte L-type Ca2+ channels (Cavs) are targets of signaling pathways that modulate channel activity in response to physiologic stimuli. Cav regulation is typically transient and beneficial but chronic stimulation can become pathologic; therefore, gaining a more complete understanding of Cav regulation is of critical importance. Intracellular O-linked glycosylation (O-GlcNAcylation), which is the result of two enzymes that dynamically add and remove single N-acetylglucosamines to and from intracellular serine/threonine residues (OGT and OGA respectively), has proven to be an increasingly important post-translational modification that contributes to the regulation of many physiologic processes. However, there is currently no known role for O-GlcNAcylation in the direct regulation of Cav activity nor is its contribution to cardiac electrical signaling and EC coupling well understood. Here we aimed to delineate the role of O-GlcNAcylation in regulating cardiomyocyte L-type Cav activity and its subsequent effect on EC coupling by utilizing a mouse strain possessing an inducible cardiomyocyte-specific OGT-null-transgene. Ablation of the OGT-gene in adult cardiomyocytes (OGTKO) reduced OGT expression and O-GlcNAcylation by > 90%. Voltage clamp recordings indicated an ~ 40% reduction in OGTKO Cav current (ICa), but with increased efficacy of adrenergic stimulation, and Cav steady-state gating and window current were significantly depolarized. Consistently, OGTKO cardiomyocyte intracellular Ca2+ release and contractility were diminished and demonstrated greater beat-to-beat variability. Additionally, we show that the Cav α1 and β2 subunits are O-GlcNAcylated while α2δ1 is not. Echocardiographic analyses indicated that the reductions in OGTKO cardiomyocyte Ca2+ handling and contractility were conserved at the whole-heart level as evidenced by significantly reduced left-ventricular contractility in the absence of hypertrophy. The data indicate, for the first time, that O-GlcNAc signaling is a critical and direct regulator of cardiomyocyte ICa achieved through altered Cav expression, gating, and response to adrenergic stimulation; these mechanisms have significant implications for understanding how EC coupling is regulated in health and disease.
Collapse
Affiliation(s)
- Andrew R Ednie
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, 143 Biological Sciences II, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, 143 Biological Sciences II, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| |
Collapse
|
48
|
Musaus M, Navabpour S, Jarome TJ. The diversity of linkage-specific polyubiquitin chains and their role in synaptic plasticity and memory formation. Neurobiol Learn Mem 2020; 174:107286. [PMID: 32745599 DOI: 10.1016/j.nlm.2020.107286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Over the last 20 years, a number of studies have provided strong support for protein degradation mediated by the ubiquitin-proteasome system in synaptic plasticity and memory formation. In this system, target substrates become covalently modified by the small protein ubiquitin through a series of enzymatic reactions involving hundreds of different ligases. While some substrates will acquire only a single ubiquitin, most will be marked by multiple ubiquitin modifications, which link together at specific lysine sites or the N-terminal methionine on the previous ubiquitin to form a polyubiquitin chain. There are at least eight known linkage-specific polyubiquitin chains a target protein can acquire, many of which are independent of the proteasome, and these chains can be homogenous, mixed, or branched in nature, all of which result in different functional outcomes and fates for the target substrate. However, as the focus has remained on protein degradation, much remains unknown about the role of these diverse ubiquitin chains in the brain, particularly during activity- and learning-dependent synaptic plasticity. Here, we review the different types and functions of ubiquitin chains and summarize evidence suggesting a role for these diverse ubiquitin modifications in synaptic plasticity and memory formation. We conclude by discussing how technological limitations have limited our ability to identify and elucidate the role of different ubiquitin chains in the brain and speculate on the future directions and implications of understanding linkage-specific ubiquitin modifications in activity- and learning-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
49
|
Liang W, Moyzis AG, Lampert MA, Diao RY, Najor RH, Gustafsson ÅB. Aging is associated with a decline in Atg9b-mediated autophagosome formation and appearance of enlarged mitochondria in the heart. Aging Cell 2020; 19:e13187. [PMID: 32627317 PMCID: PMC7431832 DOI: 10.1111/acel.13187] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 01/23/2023] Open
Abstract
Advancing age is a major risk factor for developing heart disease, and the biological processes contributing to aging are currently under intense investigation. Autophagy is an important cellular quality control mechanism that is reduced in tissues with age but the molecular mechanisms underlying the age-associated defects in autophagy remain poorly characterized. Here, we have investigated how the autophagic process is altered in aged mouse hearts. We report that autophagic activity is reduced in aged hearts due to a reduction in autophagosome formation. Gene expression profile analysis to evaluate changes in autophagy regulators uncovered a reduction in Atg9b transcript and protein levels. Atg9 proteins are critical in delivering membrane to the growing autophagosome, and siRNA knockdown of Atg9b in cells confirmed a reduction in autophagosome formation. Autophagy is also the main pathway involved in eliminating dysfunctional mitochondria via a process known as mitophagy. The E3 ubiquitin ligase Parkin plays a key role in labeling mitochondria for mitophagy. We also found increased levels of Parkin-positive mitochondria in the aged hearts, an indication that they have been labeled for mitophagy. In contrast, Nrf1, a major transcriptional regulator of mitochondrial biogenesis, was significantly reduced in aged hearts. Additionally, our data showed reduced Drp1-mediated mitochondrial fission and formation of enlarged mitochondria in the aged heart. Overall, our findings suggest that cardiac aging is associated with reduced autophagosome number, decreased mitochondrial turnover, and formation of megamitochondria.
Collapse
Affiliation(s)
- Wenjing Liang
- Department of PharmacologySkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alexandra G. Moyzis
- Department of PharmacologySkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Mark A. Lampert
- Department of PharmacologySkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Rachel Y. Diao
- Department of PharmacologySkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Rita H. Najor
- Department of PharmacologySkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Åsa B. Gustafsson
- Department of PharmacologySkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
50
|
Quintana JF, Bueren-Calabuig J, Zuccotto F, de Koning HP, Horn D, Field MC. Instability of aquaglyceroporin (AQP) 2 contributes to drug resistance in Trypanosoma brucei. PLoS Negl Trop Dis 2020; 14:e0008458. [PMID: 32644992 PMCID: PMC7413563 DOI: 10.1371/journal.pntd.0008458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/07/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Defining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. Sensitivity of African trypanosomes to pentamidine and melarsoprol is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation across the plasma membrane or via binding to TbAQP2, with subsequent endocytosis and presumably transport across the endosomal/lysosomal membrane, but as trafficking and regulation of TbAQPs is uncharacterised this remains unresolved. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and is transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic-oriented lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation, as observed in pentamidine-resistant parasites, also leads to impaired oligomerisation, mislocalisation and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and that instability contributes towards the emergence of drug resistance.
Collapse
Affiliation(s)
- Juan F. Quintana
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Juan Bueren-Calabuig
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Fabio Zuccotto
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Harry P. de Koning
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|