1
|
Wang H, Fan X, Zhang Y, Ma N, Li L, Lu Q, Wang Q, Yu B, Li X, Gao J. The Application of MicroRNAs in Traumatic Brain Injury: Mechanism Elucidation and Clinical Translation. Mol Neurobiol 2025; 62:7846-7863. [PMID: 39946001 DOI: 10.1007/s12035-025-04737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 01/31/2025] [Indexed: 05/15/2025]
Abstract
Traumatic brain injury (TBI) is a complex neurological disease caused by external forces impacting the head and is one of the leading causes of mortality and disability worldwide, exerting a significant impact on public health and socioeconomic conditions. Current research on TBI has focused primarily on assessing injury severity, determining clinical treatment, and improving patient prognosis. The timely and accurate diagnosis of TBI in clinical settings and the implementation of effective therapeutic strategies remain challenging. However, a deeper understanding of changes in gene expression and underlying molecular regulatory processes may alleviate this pressing issue. MicroRNAs (miRNAs), a class of short noncoding RNA molecules, play crucial roles in cellular physiology and pathology by regulating gene expression. With advancements in research, miRNAs have garnered increasing attention in TBI studies. This review summarizes the progress of miRNA research in TBI and explores the potential of miRNAs as diagnostic and prognostic markers and therapeutic targets for TBI.
Collapse
Affiliation(s)
- Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China.
| | - Xiaolin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Yuhao Zhang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Ning Ma
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Qing Lu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Qi Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Boya Yu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Xiao Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Junhong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China.
| |
Collapse
|
2
|
Alcazar-Felix RJ, Jhaveri A, Iqbal J, Srinath A, Bennett C, Bindal A, Vera Cruz D, Romanos S, Hage S, Stadnik A, Lee J, Lightle R, Shenkar R, Koskimäki J, Polster SP, Girard R, Awad IA. A Systematic Review of MicroRNAs in Hemorrhagic Neurovascular Disease: Cerebral Cavernous Malformations as a Paradigm. Int J Mol Sci 2025; 26:3794. [PMID: 40332397 PMCID: PMC12028044 DOI: 10.3390/ijms26083794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Hemorrhagic neurovascular diseases, with high mortality and poor outcomes, urge novel biomarker discovery and therapeutic targets. Micro-ribonucleic acids (miRNAs) are potent post-transcriptional regulators of gene expression. They have been studied in association with disease states and implicated in mechanistic gene interactions in various pathologies. Their presence and stability in circulating fluids also suggest a role as biomarkers. This review summarizes the current state of knowledge about miRNAs in the context of cerebral cavernous malformations (CCMs), a disease involving cerebrovascular dysmorphism and hemorrhage, with known genetic underpinnings. We also review common and distinct miRNAs of CCM compared to other diseases with brain vascular dysmorphism and hemorrhage. A systematic search, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline, queried all peer-reviewed articles published in English as of January 2025 and reported miRNAs associated with four hemorrhagic neurovascular diseases: CCM, arteriovenous malformations, moyamoya disease, and intracerebral hemorrhage. The PubMed systematic search retrieved 154 articles that met the inclusion criteria, reporting a total of 267 unique miRNAs identified in the literature on these four hemorrhagic neurovascular diseases. Of these 267 miRNAs, 164 were identified in preclinical studies, while 159 were identified in human subjects. Seventeen miRNAs were common to CCM and other hemorrhagic diseases. Common and unique disease-associated miRNAs in this systematic review motivate novel mechanistic hypotheses and have potential applications in diagnostic, predictive, prognostic, and therapeutic contexts of use. Much of current research can be considered hypothesis-generating, reflecting association rather than causation. Future areas of mechanistic investigation are proposed alongside approaches to analytic and clinical validations of contexts of use for biomarkers.
Collapse
Affiliation(s)
- Roberto J. Alcazar-Felix
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Aditya Jhaveri
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Javed Iqbal
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Carolyn Bennett
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Akash Bindal
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Diana Vera Cruz
- Center for Research Informatics, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Stephanie Hage
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Justine Lee
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Janne Koskimäki
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Sean P. Polster
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| |
Collapse
|
3
|
Zou B, Zhang Q, Gan H, Qin Y, Zhou Y, Zhai X, Liang P. Long Noncoding RNA GAS5-Involved Progression of Neonatal Hydrocephalus and Inflammatory Responses. Mol Biotechnol 2025; 67:661-672. [PMID: 38429624 DOI: 10.1007/s12033-024-01077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/15/2024] [Indexed: 03/03/2024]
Abstract
Intraventricular hemorrhage results in posthemorrhagic hydrocephalus (PHH). Neonatal hydrocephalus remains a challenging disease due to the high failure rate of all management strategies. We evaluated long noncoding RNA growth arrest-specific 5 (GAS5)-mediated network in neonatal hydrocephalus, providing a new direction for the treatment of hydrocephalus. The PHH model was constructed in neonatal rats after intracerebroventricular injection with GAS5, miR-325-3p, and chaperonin containing T-complex protein 1, subunit 8 (CCT8) plasmids, or oligonucleotides. Next, behavioral tests, measurement of serum inflammation, observation of brain tissue pathology, and calculation of hemoglobin and brain water contents were implemented. GAS5, miR-325-3p, and CCT8 expression, in combination with their interactions, was checked. As the results reported, collagenase infusion induced hydrocephalus, impairing neurological function, enhancing inflammation and neuronal apoptosis, and increasing hemoglobin and brain water contents. GAS5 and CCT8 were up-regulated, while miR-325-3p was down-regulated in hydrocephalic rats. Downregulating GAS5/CCT8 or upregulating miR-325-3p could inhibit inflammatory response and improve neurological function in young hydrocephalic rats. GAS5 promotes CCT8 expression through sponge adsorption of miR-325-3p. GAS5 silencing-mediated protections against hydrocephalus were counteracted by CCT8 overexpression. In summary, GAS5 aggravates neonatal hydrocephalus and inflammatory responses in a way of leasing miR-325-3p-involved regulation of CCT8.
Collapse
Affiliation(s)
- Bin Zou
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, No. 20, Jinyu Avenue, Yubei District, Chongqing City, 401122, China
| | - Qin Zhang
- Department of Cardiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing City, 401122, China
| | - Hui Gan
- Chongqing Medical University, Chongqing City, 400016, China
| | - Yue Qin
- Chongqing Medical University, Chongqing City, 400016, China
| | - Yudong Zhou
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, No. 20, Jinyu Avenue, Yubei District, Chongqing City, 401122, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, No. 20, Jinyu Avenue, Yubei District, Chongqing City, 401122, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, No. 20, Jinyu Avenue, Yubei District, Chongqing City, 401122, China.
| |
Collapse
|
4
|
Qiu D, Wang L, Wang L, Dong Y. Human platelet lysate: a potential therapeutic for intracerebral hemorrhage. Front Neurosci 2025; 18:1517601. [PMID: 39881806 PMCID: PMC11774881 DOI: 10.3389/fnins.2024.1517601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health challenge worldwide, and is associated with elevated rates of mortality, disability, and morbidity, especially in low- and middle-income nations. However, our knowledge of the detailed molecular processes involved in ICH remains insufficient, particularly those involved in the secondary injury stage, resulting in a lack of effective treatments for ICH. Human platelet lysates (HPL) are abundant in bioactive factors, and numerous studies have demonstrated their beneficial effects on neurological diseases, including their anti-neuroinflammatory ability, anti-oxidant effects, maintenance of blood-brain barrier integrity, and promotion of neurogenesis. In this review, we thoroughly explore the potential of HPL for treating ICH from three critical perspectives: the rationale for selecting HPL as a treatment for ICH, the mechanisms through which HPL contributes to ICH management, and the additional measures necessary for HPL as a treatment for ICH. We elucidate the role of platelets in ICH pathophysiology and highlight the limitations of the current treatment options and advancements in preclinical research on the application of HPL in neurological disorders. Furthermore, historical developments and preparation methods of HPL in the field of biomedicine are discussed. Additionally, we summarize the bioactive molecules present in HPL and their potential therapeutic effects in ICH. Finally, we outline the issues that must be addressed regarding utilizing HPL as a treatment modality for ICH.
Collapse
Affiliation(s)
- Dachang Qiu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lin Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lanlan Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongfei Dong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Al-Ward H, Chen W, Gao W, Zhang C, Yang X, Xiong Y, Wang X, Agila R, Xu H, Sun YE. Can miRNAs in MSCs-EVs Offer a Potential Treatment for Hypoxic-ischemic Encephalopathy? Stem Cell Rev Rep 2025; 21:236-253. [PMID: 39503828 DOI: 10.1007/s12015-024-10803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 01/26/2025]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition resulting from impaired oxygen and blood flow to the brain during birth, leading to neuroinflammation, neuronal apoptosis, and long-term neurological deficits. Despite the use of therapeutic hypothermia, current treatments remain inadequate in fully preventing brain damage. Recent advances in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer a novel, cell-free therapeutic approach, as these EVs can cross the blood-brain barrier (BBB) and deliver functional microRNAs (miRNAs) to modulate key pathways involved in inflammation and neuroprotection. This review examines how specific miRNAs encapsulated in MSC-EVs-including miR-21, miR-124, miR-146, and the miR-17-92 cluster-target the complex inflammatory responses that drive HIE pathology. By modulating pathways such as NF-κB, STAT3, and PI3K/Akt, these miRNAs influence neuroinflammatory processes, reduce neuronal apoptosis, and promote tissue repair. The aim is to assess the therapeutic potential of miRNA-loaded MSC-EVs in mitigating inflammation and neuronal damage, thus addressing the limitations of current therapies like therapeutic hypothermia.
Collapse
Affiliation(s)
- Hisham Al-Ward
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenxia Gao
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunxue Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xueyan Yang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Xiong
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rafeq Agila
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Li Y, Luo W, Meng C, Shi K, Gu R, Cui S. Exosomes as promising bioactive materials in the treatment of spinal cord injury. Stem Cell Res Ther 2024; 15:335. [PMID: 39334506 PMCID: PMC11438208 DOI: 10.1186/s13287-024-03952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Patients with spinal cord injury (SCI) have permanent devastating motor and sensory disabilities. Secondary SCI is known for its complex progression and presents with sophisticated aberrant inflammation, vascular changes, and secondary cellular dysfunction, which aggravate the primary damage. Since their initial discovery, the potent neuroprotective effects and powerful delivery abilities of exosomes (Exos) have been reported in different research fields, including SCI. In this study, we summarize therapeutic advances related to the application of Exos in preclinical animal studies. Subsequently, we discuss the mechanisms of action of Exos derived from diverse cell types, including neurogenesis, angiogenesis, blood-spinal cord barrier preservation, anti-apoptosis, and anti-inflammatory potential. We also evaluate the relationship between the Exo delivery cargo and signaling pathways. Finally, we discuss the challenges and advantages of using Exos to offer innovative insights regarding the development of efficient clinical strategies for SCI.
Collapse
Affiliation(s)
- Yueying Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Wenqi Luo
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Chuikai Meng
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Kaiyuan Shi
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Rui Gu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| |
Collapse
|
7
|
Wang Y, Chen L. Identification of Senescence-Related Biomarkers and Regulatory Networks in Intracerebral Hemorrhage. Neurologist 2024; 29:225-232. [PMID: 38251721 DOI: 10.1097/nrl.0000000000000548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Intracerebral hemorrhage (ICH) is a severe neurological disorder with substantial societal implications. Cellular senescence plays a critical role in ICH pathogenesis. This study aims to identify senescence-related biomarkers in ICH for diagnostic and therapeutic purposes. METHODS Raw data from GSE24265 in Gene Expression Omnibus was downloaded. Senescence-related genes were acquired from CellAge. Differential gene analysis was done between patients with ICH and controls. The intersection of ICH differentially expressed genes and senescence-related genes for senescence-related ICH genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed. Protein-protein interaction network was constructed through the Search Tool for the Retrieval of Interacting Genes. Single sample gene set enrichment analysis was done for immune cell infiltration and function evaluation in control and ICH groups. miRWalk2.0 database was used for microRNA predictions targeting ICH biomarkers. Transcriptional regulatory relationships unraveled by sentence-based text mining database was employed to predict transcription factors regulating identified biomarkers. RESULTS Thirteen senescence-related ICH genes were identified. They were primarily enriched in the positive regulation of angiogenesis and the Advanced Glycation End Product -Receptor for AGE signaling pathway in diabetic complications. Validation in the GSE149317 data set and receiver operating characteristic analysis highlighted Caveolin 1, C-X-C Motif Chemokine Ligand 1, ETS proto-oncogene 1, transcription factor, and Serpin Family E Member 1 as potential ICH biomarkers. Single sample gene set enrichment analysis revealed increased Type 2 T helper cell 2_cells, Treg cells, and immune functions like Antigen-presenting cells_co_stimulation in patients with ICH. Fourteen microRNA, including has-miR-6728-3p, were predicted to regulate these biomarkers. transcription factors such as PPARG, RARA, HMGA1, and NFKB1 were identified as potential regulators of the ICH biomarkers. CONCLUSION Caveolin 1, C-X-C Motif Chemokine Ligand 1, ETS proto-oncogene 1, transcription factor, and Serpin Family E Member 1 may serve as valuable biomarkers in ICH. Targeting these genes could contribute to ICH prevention and treatment.
Collapse
Affiliation(s)
- Yan Wang
- Department of Basic Medicine, Cangzhou Medical College
| | - Ling Chen
- Department of Gynaecology, People's Hospital Affiliated to Cangzhou Medical College, Cangzhou, China
| |
Collapse
|
8
|
Luo B, Li L, Song XD, Chen HX, Yun DB, Wang L, Zhang Y. MicroRNA-7 attenuates secondary brain injury following experimental intracerebral hemorrhage via inhibition of NLRP3. J Stroke Cerebrovasc Dis 2024; 33:107670. [PMID: 38438086 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND AND PURPOSE The pathophysiological mechanisms underlying brain injury resulting from intracerebral hemorrhage (ICH) remain incompletely elucidated, and efficacious therapeutic interventions to enhance the prognosis of ICH patients are currently lacking. Previous research indicates that MicroRNA-7 (miR-7) can suppress the expression of Nod-like receptor protein 3 (NLRP3), thereby modulating neuroinflammation in Parkinson's disease pathogenesis. However, the potential regulatory effects miR-7 on NLRP3 inflammasome after ICH are yet to be established. This study aims to ascertain whether miR-7 mitigates secondary brain injury following experimental ICH by inhibiting NLRP3 and to investigate the underlying mechanisms. METHODS An ICH model was established by stereotaxically injecting 100 μL of autologous blood into the right basal ganglia of Sprague-Dawley (SD) rats. Subsequently, these rats were allocated into three groups: sham, ICH + Vehicle, and ICH + miR-7, each comprising 18 animals. Twelve hours post-modeling, rats received intraventricular injections of 10 μL physiological saline, 10 μL phosphate, and 10 μL phosphate-buffered saline solution containing 0.5 nmol of miR-7 mimics, respectively. Neurological function was assessed on day three post-modeling, followed by euthanasia for brain tissue collection. Brain water content was determined using the dry-wet weight method. The expression of inflammatory cytokines in cerebral tissues surrounding the hematoma was analyzed through immunohistochemistry and Western blot assays. These cytokines were re-evaluated using Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Moreover, bioinformatics tools were employed to predict miR-7's binding to NLRP3. A wild-type luciferase reporter gene vector and a corresponding mutant vector were constructed, followed by transfection of miR-7 mimics into HEK293T cells to assess luciferase activity. RESULTS Our study demonstrates that the administration of miR-7 mimics markedly reduced neurological function scores and attenuated brain edema in rats following ICH. A significant upregulation of NLRP3 expression in microglia/macrophage adjacent to the hematoma was observed, substantially reduced after the treatment with miR-7 mimics. Furthermore, this intervention ameliorated neurodegenerative changes and effectively decreased the protein and mRNA levels of pro-inflammatory cytokines, namely TNF-α, IL-1β, IL-6, and Caspase1, in the cerebral tissues proximate to the hematomas. In addition, miR-7 mimics distinctly inhibited the luciferase activity associated with the wild-type reporter gene, an effect not mirrored in its mutant variant. CONCLUSIONS The miR-7 suppressed NLRP3 expression in microglia/macrophage to reduce the production of inflammatory cytokines, leading to conducting certain neuroprotection post-ICH in rats.
Collapse
Affiliation(s)
- Bo Luo
- Department of Neurosurgery, Nanchong Central Hospital, No. 97 Renmin South Road, Shunqing District 637000, Nanchong, Sichuan Province, PR China
| | - Lin Li
- Department of Neurosurgery, Chongqing Cancer Hospital, No.181 Hanyu Road, Shapingba District 400000, Chongqing City, PR China
| | - Xu-Dong Song
- Department of Neurosurgery, Nanchong Central Hospital, No. 97 Renmin South Road, Shunqing District 637000, Nanchong, Sichuan Province, PR China
| | - Hua-Xuan Chen
- Department of Neurosurgery, Nanchong Central Hospital, No. 97 Renmin South Road, Shunqing District 637000, Nanchong, Sichuan Province, PR China
| | - De-Bo Yun
- Department of Neurosurgery, Nanchong Central Hospital, No. 97 Renmin South Road, Shunqing District 637000, Nanchong, Sichuan Province, PR China
| | - Lin Wang
- Department of Neurosurgery, Nanchong Central Hospital, No. 97 Renmin South Road, Shunqing District 637000, Nanchong, Sichuan Province, PR China
| | - Yuan Zhang
- Department of Neurosurgery, Nanchong Central Hospital, No. 97 Renmin South Road, Shunqing District 637000, Nanchong, Sichuan Province, PR China.
| |
Collapse
|
9
|
Shukla A, Bhardwaj U, Apoorva, Seth P, Singh SK. Hypoxia-Induced miR-101 Impairs Endothelial Barrier Integrity Through Altering VE-Cadherin and Claudin-5. Mol Neurobiol 2024; 61:1807-1817. [PMID: 37776496 DOI: 10.1007/s12035-023-03662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Stroke is a life-threatening medical condition across the world that adversely affects the integrity of the blood-brain barrier (BBB). The brain microvascular endothelial cells are the important constituent of the BBB. These cells line the blood vessels and form a semipermeable barrier. Disruptions in adherens junction and tight junction proteins of brain microvascular endothelial cells compromise the integrity of BBB. The Vascular Endothelial (VE)-cadherin is an integral adherens junction protein required for the establishment and maintenance of the endothelial barrier integrity. This study aims to investigate the role of miRNA in hypoxia-induced endothelial barrier disruption. In this study, brain endothelial cells were exposed to hypoxic conditions for different time points. Western blotting, overexpression and knockdown of miRNA, real-time PCR, TEER, and sodium fluorescein assay were used to examine the effect of hypoxic conditions on brain endothelial cells. Hypoxic exposure was validated using HIF-1α protein. Exposure to hypoxic conditions resulted to a significant decrease in endothelial barrier resistance and an increase in sodium fluorescein migration across the endothelial barrier. Reduction in endothelial barrier resistance demonstrated compromised barrier integrity, whereas the increase in migration of sodium fluorescein across the barrier indicated the increase in barrier permeability. The present study revealed microRNA-101 decreases the expression of VE-cadherin and claudin-5 in brain endothelial cells exposed to the hypoxic conditions.
Collapse
Affiliation(s)
- Astha Shukla
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Utkarsh Bhardwaj
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Apoorva
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Pankaj Seth
- Molecular and Cellular Neurosciences, National Brain Research Centre, Manesar, 122052, Haryana, India
| | - Sunit K Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, UP, India.
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi (North Campus), New Delhi, 110007, India.
| |
Collapse
|
10
|
Gareev I, Beylerli O, Zhao B. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage. Biomark Res 2024; 12:17. [PMID: 38308370 PMCID: PMC10835919 DOI: 10.1186/s40364-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Hypertension is most often the cause of ICH. Less often, atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication, vitamin deficiencies, and other reasons cause hemorrhages. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. This very dangerous disease is difficult to treat, requires surgery and can lead to disability or death. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that are involved in a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., through gene repression. A growing number of studies have demonstrated miRNAs deregulation in various cardiovascular diseases, including ICH. In addition, given that computed tomography (CT) and/or magnetic resonance imaging (MRI) are either not available or do not show clear signs of possible vessel rupture, accurate and reliable analysis of circulating miRNAs in biological fluids can help in early diagnosis for prevention of ICH and prognosis patient outcome after hemorrhage. In this review, we highlight the up-to-date findings on the deregulated miRNAs in ICH, and the potential use of miRNAs in clinical settings, such as therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, China.
- Harbin Medical University No, 157, Baojian Road, Nangang District, Harbin, 150001, China.
| |
Collapse
|
11
|
Lv W, Jiang X, Zhang Y. The role of platelets in the blood-brain barrier during brain pathology. Front Cell Neurosci 2024; 17:1298314. [PMID: 38259501 PMCID: PMC10800710 DOI: 10.3389/fncel.2023.1298314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Platelets play critical roles in maintaining hemostasis. The blood brain barrier (BBB), a significant physical and metabolic barrier, helps maintain physiological stability by limiting transportations between the blood and neural tissues. When the brain undergoes inflammation, tumor, trauma, or bleeding, the platelet responses to help with maintaining BBB homeostasis. In the traditional point of view, activated platelets aggregate to form thrombi which cover the gaps of the blood vessels to protect BBB. However, increasing evidences indicate that platelets may harm BBB by enhancing vascular permeability. Hereby, we reviewed recently published articles with a special focus on the platelet-mediated damage of BBB. Factors released by platelets can induce BBB permeability, which involve platelet-activating factors (PAF), P-selectin, ADP, platelet-derived growth factors (PDGF) superfamily proteins, especially PDGF-AA and PDGF-CC, etc. Platelets can also secrete Amyloid-β (Aβ), which triggers neuroinflammation and downregulates the expression of tight junction molecules such as claudin-5 to damage BBB. Additionally, platelets can form aggregates with neutrophils to release reactive oxygen species (ROS), which can destroy the DNA, proteins, and lipids of endothelial cells (ECs). Moreover, platelets participate in neuroinflammation to affect BBB. Conversely, some of the platelet released factors such as PDGF-BB, protects BBB. In summary, platelets play dual roles in BBB integrity and the related mechanisms are reviewed.
Collapse
Affiliation(s)
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
12
|
Liao L, Wang H, Wei D, Yi M, Gu Y, Zhang M, Wang L. Exosomal microRNAs: implications in the pathogenesis and clinical applications of subarachnoid hemorrhage. Front Mol Neurosci 2023; 16:1300864. [PMID: 38143562 PMCID: PMC10748509 DOI: 10.3389/fnmol.2023.1300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe acute neurological disorder with a high fatality rate. Early brain injury (EBI) and cerebral vasospasm are two critical complications of SAH that significantly contribute to poor prognosis. Currently, surgical intervention and interventional therapy are the main treatment options for SAH, but their effectiveness is limited. Exosomes, which are a type of extracellular vesicles, play a crucial role in intercellular communication and have been extensively studied in the past decade due to their potential influence on disease progression, diagnosis, and treatment. As one of the most important components of exosomes, miRNA plays both direct and indirect roles in affecting disease progression. Previous research has found that exosomal miRNA is involved in the development of various diseases, such as tumors, chronic hepatitis, atherosclerosis, diabetes, and SAH. This review focuses on exploring the impact of exosomal miRNA on SAH, including its influence on neuronal apoptosis, inflammatory response, and immune activation following SAH. Furthermore, this review highlights the potential clinical applications of exosomal miRNA in the treatment of SAH. Although current research on this topic is limited and the clinical application of exosomal miRNA has inherent limitations, we aim to provide a concise summary of existing research progress and offer new insights for future research directions and trends in this field.
Collapse
Affiliation(s)
- Lishang Liao
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Haoran Wang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Deli Wei
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Mingliang Yi
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Yingjiang Gu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Mingwei Zhang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Wang
- Department of Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Yu N, Tian W, Liu C, Zhang P, Zhao Y, Nan C, Jin Q, Li X, Liu Y. miR-122-5p Promotes Peripheral and Central Nervous System Inflammation in a Mouse Model of Intracerebral Hemorrhage via Disruption of the MLLT1/PI3K/AKT Signaling. Neurochem Res 2023; 48:3665-3682. [PMID: 37594575 DOI: 10.1007/s11064-023-04014-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Intracerebral hemorrhage (ICH) is a recognized central nervous system inflammation complication. Several microRNAs (miRNAs or miRs) have been documented to be vital modulators in peripheral and central nervous system inflammation. Based on whole transcriptome sequencing and bioinformatics analysis, this study aims to reveal the possible molecular mechanisms by which miR-122-5p affects the inflammatory response in the peripheral and central nervous system in a mouse model of ICH. Differentially expressed ICH-related miRNAs were screened. Adeno-associated viral vectors were used to knock down miR-122-5p in mice to evaluate the effect of miR-122-5p on peripheral and central nervous system inflammation. The downstream target gene of miR-122-5p was analyzed. Neurons were isolated from mice and treated with hemin to construct an in vitro model of ICH, followed by transduction with miR-122-5p mimic or combined with oe-MLLT1. The neurons were then co-cultured with microglia BV2 to assess their activation. It was found that miR-122-5p was highly expressed in ICH, and MLLT1 was lowly expressed. In vivo experiments showed that miR-122-5p knockdown decreased neurological deficits, BBB permeability, and inflammation in the peripheral and central nervous system in ICH mice. It involved its binding to MLLT1 and downregulation of the activity of the PI3K/AKT pathway. In vitro data exhibited that miR-122-5p stimulated the generation of inflammatory factors and microglia activation by targeting MLLT1 and inhibiting the PI3K/AKT pathway. Collectively, our work reveals a novel miR-122-5p/MLLT1-mediated regulatory network in ICH that may be a viable target for neuroinflammation alleviation.
Collapse
Affiliation(s)
- Ning Yu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Wenbin Tian
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Chao Liu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Pei Zhang
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Yinlong Zhao
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Chengrui Nan
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Qianxu Jin
- Department of Neurosurgery, Hebei Medical University, Shijiazhuang, 050000, P.R. China
| | - Xiaopeng Li
- Department of Neurosurgery, The First Hospital of Handan City, Handan, 056000, P.R. China
| | - Ya Liu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China.
| |
Collapse
|
14
|
Huang Z, Weng Y, Shen Q, Zhao Y, Luo T, Xiao Y, Yang G, Jin Y. Nano- and micro-polystyrene plastics interfered the gut barrier function mediated by exosomal miRNAs in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122275. [PMID: 37532218 DOI: 10.1016/j.envpol.2023.122275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Microplastics (MPs) are widely distributed in the global environment, entering and accumulating in organisms in various ways and posing health threats. MPs can damage intestine; however, the mechanism by which MPs cause intestinal damage in rats is unclear. Here, rats were exposed to 50 nm PS-NPs or 5 μm PS-MPs for 4 weeks to evaluate the possible effects on intestinal barrier function and exosomal miRNAs expressions. The results showed that PS-NPs or PS-MPs disrupted the gut microbiota and affected gut barrier function at the biological level. In addition, PS-NPs and PS-MPs altered the composition of exosomal miRNAs in the intestinal and serum. Both PS-NPs and PS-MPs decreased the expression of miR-126a-3p in the intestinal and serum exosomes, which is an important signalling molecule involved in MPs induced gut barrier function disorder. More importantly, both in vitro and in vivo experiments indicated that miR-126a-3p was closely related to oxidative damage of intestinal cells through the PI3K-Akt pathway and eventually promote cell apoptosis by regulating the target gene of PIK3R2. Our study suggested that PS-NPs and PS-MPs could affect rat intestinal barrier function through an exosomal miRNA mediated pathway.
Collapse
Affiliation(s)
- Zhuizui Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qichen Shen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yao Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ting Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
15
|
Hu D, Mo X, Luo J, Wang F, Huang C, Xie H, Jin L. 17-DMAG ameliorates neuroinflammation and BBB disruption via SOX5 mediated PI3K/Akt pathway after intracerebral hemorrhage in rats. Int Immunopharmacol 2023; 123:110698. [PMID: 37517381 DOI: 10.1016/j.intimp.2023.110698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Intracerebral hemorrhage (ICH) can result in secondary brain injury due to inflammation and breakdown of the blood-brain barrier (BBB), which are closely associated with patient prognosis. The potential of the heat shock protein 90 (Hsp90) inhibitor 17-DMAG in promoting neuroprotection has been observed in certain vascular diseases. However, the precise role of 17-DMAG treatment in ICH is not yet fully understood. In this study, we found that treatment with 17-DMAG (5 mg/kg) effectively reduced hematoma expansion and resulted in improved neurological outcomes. Meanwhile, the injection of 17-DMAG had a positive effect on reducing BBB disruption in rats with ICH. This effect was achieved by increasing the levels of BBB tight junction proteins (TJPs) such as zo-1, claudin-5, and occludin. As a result, the leakage of EB extravasation, brain edema and IgG in the peri-hematoma tissue were reduced. Furthermore, the injection of 17-DMAG decreased the infiltration of neutrophils into the brain tissues surrounding the hematoma in ICH rats and also reduced the production of proinflammatory cytokines IL-6 and TNF-α. Next, we used integrative mass spectrometry (MS) and molecular docking analysis to confirm that sex determining region Y-box protein 5 (SOX5) is a potential direct target of 17-DMAG in ICH. SOX5 encodes a positive regulator of the PI3K/Akt axis, and treatment with 17-DMAG resulted in a noticeable increase in SOX5 accumulation. To further investigate the role of SOX5, we employed virus-regulated SOX5 silencing and found that suppressing SOX5 blocked the ability of 17-DMAG to suppress neutrophil trafficking. Additionally, silencing SOX5 blocked the protective effects of 17-DMAG on the BBB by inhibiting PI3K, p-Akt, and BBB TJPs levels, which led to an increase in EB and IgG leakage in the peri-hematoma tissue after ICH. Similarly, when SOX5 was knocked down, the protective effects of 17-DMAG were lost. Overall, the results of our study indicate that the injection of 17-DMAG has the potential to mitigate neuroinflammation and prevent the disruption of the BBB caused by ICH, resulting in improved neurological outcomes in rats. These positive effects are attributed to the regulation of SOX5 and activation of the PI3K/Akt pathway. These findings highlight the possibility of targeting SOX5 and the PI3K/Akt pathway as a novel therapeutic approach for ICH.
Collapse
Affiliation(s)
- Di Hu
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaocong Mo
- Department of Oncology, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jihang Luo
- Department of Oncology, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fang Wang
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cheng Huang
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hesong Xie
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ling Jin
- Department of Oncology, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
| |
Collapse
|
16
|
Xu C, Pan Y, Zhang H, Sun Y, Cao Y, Qi P, Li M, Akakuru OU, He L, Xiao C, Sun B, Bian L, Li J, Wu A. Platelet-Membrane-Coated Polydopamine Nanoparticles for Neuroprotection by Reducing Oxidative Stress and Repairing Damaged Vessels in Intracerebral Hemorrhage. Adv Healthc Mater 2023; 12:e2300797. [PMID: 37310885 DOI: 10.1002/adhm.202300797] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Indexed: 06/15/2023]
Abstract
Intracerebral hemorrhage (ICH) has a high morbidity and mortality rate. Excessive reactive oxygen species (ROS) caused by primary and second brain injury can induce neuron death and inhibit neurological functional recovery after ICH. Therefore, exploring an effective way to noninvasively target hemorrhage sites to scavenge ROS is urgently needed. Inspired by the biological function of platelets to target injury vessel and repair injury blood vessels, platelet-membrane-modified polydopamine (Menp@PLT) nanoparticles are developed with targeting to hemorrhage sites of ICH. Results demonstrate that Menp@PLT nanoparticles can effectively achieve targeting to the location of intracranial hematoma. Furthermore, Menp@PLT with excellent anti-ROS properties can scavenge ROS and improve neuroinflammation microenvironment of ICH. In addition, Menp@PLT may play a role in decreasing hemorrhage volume by repairing injury blood vessels. Combining platelet membrane and anti-ROS nanoparticles for targeting brain hemorrhage sites provide a promising strategy for efficiently treating ICH.
Collapse
Affiliation(s)
- Canxin Xu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Yuanbo Pan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Hongchi Zhang
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yuhao Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yi Cao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Pengfei Qi
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Mingli Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Lulu He
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Chen Xiao
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Bomin Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Liuguan Bian
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| |
Collapse
|
17
|
Targeting Non-Coding RNA for CNS Injuries: Regulation of Blood-Brain Barrier Functions. Neurochem Res 2023; 48:1997-2016. [PMID: 36786944 DOI: 10.1007/s11064-023-03892-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Central nervous system (CNS) injuries are the most common cause of death and disability around the world. The blood-brain barrier (BBB) is located at the interface between the CNS and the surrounding environment, which protects the CNS from exogenous molecules, harmful agents or microorganisms in the blood. The disruption of BBB is a common feature of CNS injuries and participates in the pathological processes of secondary brain damage. Recently, a growing number of studies have indicated that non-coding RNAs (ncRNAs) play an important role in brain development and are involved in CNS injuries. In this review, we summarize the mechanisms of BBB breakdown after CNS injuries. We also discuss the effects of ncRNAs including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) on BBB damage in CNS injuries such as ischemic stroke, traumatic brain injury (TBI), intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). In addition, we clarify the pharmacotherapies that could regulate BBB function via ncRNAs in CNS injuries, as well as the challenges and perspectives of ncRNAs on modulation of BBB function. Hence, on the basis of these effects, ncRNAs may be developed as therapeutic agents to protect the BBB for CNS injury patients.
Collapse
|
18
|
Allegra A, Murdaca G, Gammeri L, Ettari R, Gangemi S. Alarmins and MicroRNAs, a New Axis in the Genesis of Respiratory Diseases: Possible Therapeutic Implications. Int J Mol Sci 2023; 24:1783. [PMID: 36675299 PMCID: PMC9861898 DOI: 10.3390/ijms24021783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
It is well ascertained that airway inflammation has a key role in the genesis of numerous respiratory pathologies, including asthma, chronic obstructive pulmonary disease, and acute respiratory distress syndrome. Pulmonary tissue inflammation and anti-inflammatory responses implicate an intricate relationship between local and infiltrating immune cells and structural pulmonary cells. Alarmins are endogenic proteins discharged after cell injury in the extracellular microenvironment. The purpose of our review is to highlight the alterations in respiratory diseases involving some alarmins, such as high mobility group box 1 (HMGB1) and interleukin (IL)-33, and their inter-relationships and relationships with genetic non-coding material, such as microRNAs. The role played by these alarmins in some pathophysiological processes confirms the existence of an axis composed of HMGB1 and IL-33. These alarmins have been implicated in ferroptosis, the onset of type 2 inflammation and airway alterations. Moreover, both factors can act on non-coding genetic material capable of modifying respiratory function. Finally, we present an outline of alarmins and RNA-based therapeutics that have been proposed to treat respiratory pathologies.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
19
|
Ma Y, Liu H, Wang Y, Xuan J, Gao X, Ding H, Ma C, Chen Y, Yang Y. Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabetes. Diabetol Metab Syndr 2022; 14:169. [PMID: 36376958 PMCID: PMC9661802 DOI: 10.1186/s13098-022-00942-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Although physical activity is widely recommended for preventing and treating cardiovascular complications of type 2 diabetes mellitus (T2DM), the underlying mechanisms remain unknown. MicroRNA-126 (miR-126) is an angiogenetic regulator abundant in endothelial cells (ECs) and endothelial progenitor cells (EPCs). It is primarily involved in angiogenesis, inflammation and apoptosis for cardiovascular protection. According to recent studies, the levels of miR-126 in the myocardium and circulation are affected by exercise protocol. High-intensity interval training (HIIT) or moderate-and high-intensity aerobic exercise, whether acute or chronic, can increase circulating miR-126 in healthy adults. Chronic aerobic exercise can effectively rescue the reduction of myocardial and circulating miR-126 and vascular endothelial growth factor (VEGF) in diabetic mice against diabetic vascular injury. Resistance exercise can raise circulating VEGF levels, but it may have a little influence on circulating miR-126. The Several targets of miR-126 have been suggested for cardiovascular fitness, such as sprouty-related EVH1 domain-containing protein 1 (SPRED1), phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2), vascular cell adhesion molecule 1 (VCAM1), high-mobility group box 1 (HMGB1), and tumor necrosis factor receptor-associated factor 7 (TRAF7). Here, we present a comprehensive review of the roles of miR-126 and its downstream proteins as exercise mechanisms, and propose that miR-126 can be applied as an exercise indicator for cardiovascular prescriptions and as a preventive or therapeutic target for cardiovascular complications in T2DM.
Collapse
Affiliation(s)
- Yixiao Ma
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Hua Liu
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Yong Wang
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Junjie Xuan
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Xing Gao
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Huixian Ding
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Chunlian Ma
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Yi Yang
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
20
|
Hao Y, Xu X, Wang Y, Jin F, Tang L, Zheng W, Zhang H, He Z. Comprehensive analysis of immune-related biomarkers and pathways in intracerebral hemorrhage using weighted gene co-expression network analysis and competing endogenous ribonucleic acid. Front Mol Neurosci 2022; 15:955818. [PMID: 36226317 PMCID: PMC9549172 DOI: 10.3389/fnmol.2022.955818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
The immune response is an important part of secondary brain injury following intracerebral hemorrhage (ICH), and is related to neurological deficits and prognosis. The mechanisms underlying the immune response and inflammation are of great significance for brain injury and potential functional restoration; however, the immune-related biomarkers and competing endogenous ribonucleic acid (RNA) (ceRNA) networks in the peripheral blood of ICH patients have not yet been constructed. We collected the peripheral blood from ICH patients and controls to assess their ceRNA profiles using LCHuman ceRNA microarray, and to verify their expression with qRT-PCR. Two-hundred-eleven DElncRNAs and one-hundred-one DEmRNAs were detected in the ceRNA microarray of ICH patients. The results of functional enrichment analysis showed that the immune response was an important part of the pathological process of ICH. Twelve lncRNAs, ten miRNAs, and seven mRNAs were present in our constructed immune-related ceRNA network, combining weighted gene co-expression network analysis (WGCNA). Our study was the first to establish the network of the immune-related ceRNAs derived from WGCNA, and to identify leukemia inhibitory factor (LIF) and B cell lymphoma 2-like 13 (BCL2L13) as pivotal immune-related biomarkers in the peripheral blood of ICH patients, which are likely associated with PI3K-Akt, the MAPK signaling pathway, and oxidative phosphorylation. The MOXD2P-miR-211-3p -LIF and LINC00299-miR-198-BCL2L13 axes were indicated to participate in the immune regulatory mechanism of ICH. The goal of our study was to offer innovative insights into the underlying immune regulatory mechanism and to identify possible immune intervention targets for ICH.
Collapse
Affiliation(s)
- Yuehan Hao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuye Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Tang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenxu Zheng
- Department of Geriatric, Dalian Friendship Hospital, Dalian, China
| | - Heyu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- *Correspondence: Heyu Zhang,
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Zhiyi He,
| |
Collapse
|
21
|
Arruri V, Vemuganti R. Role of autophagy and transcriptome regulation in acute brain injury. Exp Neurol 2022; 352:114032. [PMID: 35259350 PMCID: PMC9187300 DOI: 10.1016/j.expneurol.2022.114032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular system that routes distinct cytoplasmic cargo to lysosomes for degradation and recycling. Accumulating evidence highlight the mechanisms of autophagy, such as clearance of proteins, carbohydrates, lipids and damaged organelles. The critical role of autophagy in selective degradation of the transcriptome is still emerging and could shape the total proteome of the cell, and thus can regulate the homeostasis under stressful conditions. Unregulated autophagy that potentiates secondary brain damage is a key pathological features of acute CNS injuries such as stroke and traumatic brain injury. This review discussed the mutual modulation of autophagy and RNA and its significance in mediating the functional consequences of acute CNS injuries.
Collapse
Affiliation(s)
- Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
22
|
Duan T, Li L, Yu Y, Li T, Han R, Sun X, Cui Y, Liu T, Wang X, Wang Y, Fan X, Liu Y, Zhang H. Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacol Res 2022; 179:106200. [PMID: 35367344 DOI: 10.1016/j.phrs.2022.106200] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) refers to hemorrhage caused by non-traumatic vascular rupture in the brain parenchyma, which is characterized by acute onset, severe illness, and high mortality and disability. The influx of blood into the brain tissue after cerebrovascular rupture causes severe brain damage, including primary injury caused by persistent hemorrhage and secondary brain injury (SBI) induced by hematoma. The mechanism of brain injury is complicated and is a significant cause of disability after ICH. Therefore, it is essential to understand the mechanism of brain injury after ICH to develop drugs to prevent and treat ICH. Studies have confirmed that many traditional Chinese medicines (TCM) can reduce brain injury by improving neurotoxicity, inflammation, oxidative stress (OS), blood-brain barrier (BBB), apoptosis, and neurological dysfunction after ICH. Starting from the pathophysiological process of brain injury after ICH, this paper summarizes the mechanisms by which TCM improves cerebral injury after ICH and its comparison with conventional western medicine, so as to provide clues and a reference for the clinical application of TCM in the prevention and treatment of hemorrhagic stroke and further research and development of new drugs.
Collapse
Affiliation(s)
- Tian Duan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajun Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiantian Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyi Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
23
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
24
|
Li H, Han G, He D, Wang Y, Lin Y, Zhang T, Wang J, Du Y, Li G, Wang Y, Zhou J, Liu B. miR-539 Targeting SNAI2 Regulates MMP9 Signaling Pathway and Affects Blood-Brain Barrier Permeability in Cerebrovascular Occlusive Diseases: A Study Based on Head and Neck Ultrasound and CTA. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5699025. [PMID: 34873439 PMCID: PMC8643252 DOI: 10.1155/2021/5699025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the expression level of miR-539 in the blood-brain barrier permeability induced by cerebrovascular occlusion and its mediated mechanism. Altogether, 48 patients with cerebral vascular occlusion lesions from March 2018 to June 2020 were collected. The expression level of miR-539 in the peripheral blood serum of the subjects was analyzed by qRT-PCR, and the participants were divided into two groups according to the results of head and neck ultrasound and CTA hemodynamics. The MCAO model of cerebral ischemia was established in rats, and the expression level of miR-539 was detected by qRT-PCR in brain tissues of different groups of rats. The effects of miR-539 on the permeability of blood-brain barrier were investigated by intraventricular injection of agomiR-539 and antagomir-539. The model of blood-brain barrier was established by culturing brain microvascular endothelial cells and pericytes in vitro, and the changes of miR-539 expression level and permeability after glucose and oxygen deprivation were detected. The expression level of SNAI2/MMP9 signaling pathway protein in cells was detected by Western blot. Compared with the healthy control group, the expression level of miR-539 in peripheral blood of patients with cerebrovascular occlusive disease decreased significantly, and the expression level of miR-539 in the MCAO rat model decreased and affected the permeability of blood-brain barrier. Glucose and oxygen deprivation treatment in brain microvascular endothelial cells can lead to downregulation of miR-539 expression and affect cell permeability. miR-539 in brain microvascular endothelial cells can target and bind to SNAI2 and participate in the regulation of endothelial cell permeability by affecting the SNAI2/MMP9 signaling pathway. The results of this study suggested that circulating miR-539 in peripheral blood may be a potential marker for predicting blood-brain barrier permeability after ischemic stroke. More detailed studies are needed to determine its diagnostic value.
Collapse
Affiliation(s)
- Hui Li
- Neuroelectrophysiology Department, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Guochao Han
- Neuroelectrophysiology Department, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Dongruo He
- Neuroelectrophysiology Department, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Ying Wang
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Yuan Lin
- Neuroelectrophysiology Department, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Tianyu Zhang
- CT Department, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Jiandong Wang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Youli Du
- Department of Interventional Therapy, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Gang Li
- Department of Fundamentals, Qiqihar Medical College, Qiqihar 161000, China
| | - Yuguang Wang
- CT Department, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Jiexin Zhou
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Bo Liu
- Neuroelectrophysiology Department, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| |
Collapse
|
25
|
Abstract
Elderly individuals with chronic disorders tend to develop inflammaging, a condition associated with elevated levels of blood inflammatory markers, and increased susceptibility to chronic disease progression. Native and adaptive immunity are both involved in immune system senescence, kidney fibrosis and aging. The innate immune system is characterized by a limited number of receptors, constantly challenged by self and non-self stimuli. Circulating and kidney resident myeloid and lymphoid cells are all equipped with pattern recognition receptors (PRRs). Recent reports on PRRs show kidney overexpression of toll-like receptors (TLRs) in inflammaging autoimmune renal diseases, vasculitis, acute kidney injury and kidney transplant rejection. TLR upregulation leads to proinflammatory cytokine induction, fibrosis, and chronic kidney disease progression. TLR2 blockade in a murine model of renal ischemia reperfusion injury prevented the escape of natural killer cells and neutrophils by inflammaging kidney injury. Tumor necrosis factor-α blockade in endothelial cells with senescence-associated secretory phenotype significantly reduced interleukin-6 release. These findings should encourage experimental and translational clinical trials aimed at modulating renal inflammaging by native immunity blockade.
Collapse
|
26
|
Ma J, Zhang Z, Wang Y, Shen H. Investigation of miR-126-3p loaded on adipose stem cell-derived exosomes for wound healing of full-thickness skin defects. Exp Dermatol 2021; 31:362-374. [PMID: 34694648 DOI: 10.1111/exd.14480] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 09/01/2021] [Accepted: 10/16/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the function of miR-126-3p loaded on adipose stem cell (ADSC)-derived exosomes (ADSC-Exos) in wound healing of full-thickness skin defects. METHODS ADSCs transfected with miR-126-3p mimic, miR-126-3p inhibitor or pcDNA3.1-PIK3R2, or PKH26-marked ADSC-Exos were cultured with fibroblasts or human umbilical vein endothelial cells (HUVECs). The proliferation and migration rates of fibroblasts and angiogenesis of HUVECs were measured. Rats with full-thickness skin defects were injected with ADSC-Exos or exosomes extracted from ADSCs transfected with miR-126-3p inhibitor and the wound healing rates were measured. The wound bed, collagen deposition and angiogenesis in injured rats were assessed. RESULTS ADSC-Exos could be ingested by fibroblasts and HUVECs. Co-incubation with ADSCs or ADSC-Exos promoted the proliferation and migration of fibroblasts and angiogenesis of HUVECs, which was further enhanced by miR-126-3p overexpression. Inhibition of ADSC-Exos or miR-126-3p or PIK3R2 overexpression suppressed the proliferation and migration of fibroblasts and angiogenesis of HUVECs. ADSC-derived exosomal miR-126-3p increased wound healing rate, collagen deposition and newly formed vessels in injured rats. CONCLUSION ADSC-derived exosomal miR-126-3p promotes wound healing of full-thickness skin defects by targeting PIK3R2.
Collapse
Affiliation(s)
- Jie Ma
- Department of Plastic Surgery, Shanghai General Hospital, Shanghai, 201620, P.R. China
| | - Zhaofeng Zhang
- Department of Plastic Surgery, Shanghai General Hospital, Shanghai, 201620, P.R. China
| | - Yinmin Wang
- Department of Plastic Surgery, Shanghai General Hospital, Shanghai, 201620, P.R. China
| | - Hua Shen
- Department of Plastic Surgery, Shanghai General Hospital, Shanghai, 201620, P.R. China
| |
Collapse
|
27
|
Tang B, Song M, Xie X, Le D, Tu Q, Wu X, Chen M. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Secreted by BMSCs Regulates Activated Astrocytes by Inhibiting NF-κB Signaling Pathway to Ameliorate Blood Brain Barrier Damage After Intracerebral Hemorrhage. Neurochem Res 2021; 46:2387-2402. [PMID: 34145502 DOI: 10.1007/s11064-021-03375-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
To investigate the influence of tumor necrosis factor-stimulated gene-6 (TSG-6) secreted by bone mesenchymal stem cells (BMSCs) on blood brain barrier (BBB) after intracerebral hemorrhage (ICH) and its related mechanisms. BMSCs and astrocytes were isolated and induced by TNF-α and LPS respectively. The effect of TSG-6 secreted by BMSCs on the proliferation and apoptosis of astrocytes and inflammatory response were assessed by CCK8, flow cytometry, and ELISA respectively. Then we studied the effects of TSG-6 secreted by BMSCs through the paracrine mechanism on the integrity of BBB after ICH via NF-κB signaling pathway in vitro and in vivo. We successfully isolated BMSCs and astrocytes. After LPS treatment of astrocytes, IL-1β, IL-6, and TNF-α showed an upward trend. TSG-6 secreted by TNF-α-activated BMSCs could antagonize the inflammatory response in activated astrocytes. Through the co-culture of astrocytes and BMSCs and the ICH animal model, we found that TSG-6 regulates activated astrocytes by inhibiting the NF-κB signaling pathway and ameliorates BBB damage. Furthermore, we found that TNF-α-activated BMSCs secreted exosomes containing TSG-6 and played an anti-inflammatory effect. TSG-6 secreted by BMSCs regulates activated astrocytes by inhibiting the NF-κB signaling pathway, thereby ameliorating BBB damage.
Collapse
Affiliation(s)
- Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Min Song
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xun Xie
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Dongsheng Le
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Qiulin Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Xiang Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Min Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China.
| |
Collapse
|
28
|
Wang J, Chen Y, Liang J, Cao M, Shen J, Ke K. Study of the pathology and the underlying molecular mechanism of tissue injury around hematoma following intracerebral hemorrhage. Mol Med Rep 2021; 24:702. [PMID: 34368865 PMCID: PMC8365418 DOI: 10.3892/mmr.2021.12341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Intracerebral hemorrhage (ICH) refers to hemorrhage caused by spontaneous rupture of blood vessels in the brain. Brain injury due to ICH leads to catastrophic effects resulting from the formation of hematoma and oxidative stress caused by components of lysed erythrocytes. However, not all neurons in the area surrounding the hematoma die immediately: A number of neurons remain in a critical, but reversible, state; however, the genes involved in this critical state remain poorly understood. Gene chip technology was used identify changes in the area surrounding the hematoma associated with the upregulation of 210 and downregulation of 173 genes. Gene Ontology functional annotation revealed changes in the gene expression profile in the peripheral region of hematoma following ICH, which were primarily associated with the external stimulation received by the organism, the transmission of harmful information to the cell through the transport of cell membrane proteins, and the regulation of a series of biological processes. Protein interaction network analysis revealed that 11 up-[secreted phosphoprotein 1, dual specificity phosphatase 9, catechol-O-methyltransferase, BAR/IMD domain-containing adaptor protein 2-like 1, plakophilin 2, homer scaffold protein 3, ret proto-oncogene (RET), KIT proto-oncogene, receptor tyrosine kinase, hepsin, connector enhancer of kinase suppressor of Ras 2 and kalirin RhoGEF kinase] and four downregulated genes (transcription factor AP-2β, peptidylprolyl isomerase A, SHOC2 leucine rich repeat scaffold protein and synuclein α) may serve a significant role in the area around hematoma following ICH. Reverse transcription-quantitative PCR was used to verify that these genes were differentially expressed in the ICH compared with the control group. Causal network analysis suggested that the Achaete-scute homolog 1-RET signaling axis served a key role in the repair of nerve injury in the peripheral region of hematoma following ICH. Additionally, in vivo experiments revealed that RET expression was upregulated and co-localized with neurons. Taken together, these results suggested that the changes in the gene expression profile in the area around hematoma following ICH were primarily associated with the repair of damage caused to the nervous system.
Collapse
Affiliation(s)
- Jinglei Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ying Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jingjing Liang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Maosheng Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
29
|
Kashif H, Shah D, Sukumari-Ramesh S. Dysregulation of microRNA and Intracerebral Hemorrhage: Roles in Neuroinflammation. Int J Mol Sci 2021; 22:8115. [PMID: 34360881 PMCID: PMC8347974 DOI: 10.3390/ijms22158115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health problem and devastating subtype of stroke with high morbidity and mortality. Notably, there is no effective treatment for ICH. Neuroinflammation, a pathological hallmark of ICH, contributes to both brain injury and repair and hence, it is regarded as a potential target for therapeutic intervention. Recent studies document that microRNAs, small non-coding RNA molecules, can regulate inflammatory brain response after ICH and are viable molecular targets to alter brain function. Therefore, there is an escalating interest in studying the role of microRNAs in the pathophysiology of ICH. Herein, we provide, for the first time, an overview of the microRNAs that play roles in ICH-induced neuroinflammation and identify the critical knowledge gap in the field, as it would help design future studies.
Collapse
Affiliation(s)
| | | | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (D.S.)
| |
Collapse
|
30
|
Yang R, Xu B, Yang B, Fu J, Chen H, Wang X. Non-coding RNAs: the extensive and interactive regulators of the blood-brain barrier permeability. RNA Biol 2021; 18:108-116. [PMID: 34241576 PMCID: PMC8677028 DOI: 10.1080/15476286.2021.1950465] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB), which controls permeability into and out of the nervous system, is a tightly connected, structural, and functional separation between the central nervous system (CNS) and circulating blood. CNS diseases, such as Alzheimer’s disease, multiple sclerosis, traumatic brain injury, stroke, meningitis, and brain cancers, often develop with the increased BBB permeability and further leads to irreversible CNS injury. Non-coding RNAs (ncRNAs) are functional RNA molecules that generally lack the coding abilities but can actively regulate the mRNA expression and function through different mechanisms. Various types of ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are highly expressed in brain microvascular endothelial cells and are potential mediators of BBB permeability. Here, we summarized the recent research progress on miRNA, lncRNA, and circRNA roles regulating the BBB permeability in different CNS diseases. Understanding how these ncRNAs affect the BBB permeability shall provide important therapeutic insights into the prevention and control of the BBB dysfunction.
Collapse
Affiliation(s)
- Ruicheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Bojie Xu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Bo Yang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Jiyang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Huanchun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Xiangru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| |
Collapse
|
31
|
miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers. Mol Metab 2021; 53:101306. [PMID: 34298200 PMCID: PMC8363881 DOI: 10.1016/j.molmet.2021.101306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives Restenosis after vessel angioplasty due to dedifferentiation of the vascular smooth muscle cells (VSMCs) limits the success of surgical treatment of vascular occlusions. Type 2 diabetes (T2DM) has a major impact on restenosis, with patients exhibiting more aggressive forms of vascular disease and poorer outcomes after surgery. Kv1.3 channels are critical players in VSMC proliferation. Kv1.3 blockers inhibit VSMCs MEK/ERK signalling and prevent vessel restenosis. We hypothesize that dysregulation of microRNAs (miR) play critical roles in adverse remodelling, contributing to Kv1.3 blockers efficacy in T2DM VSMCs. Methods and results We used clinically relevant in vivo models of vascular risk factors (VRF) and vessels and VSMCs from T2DM patients. Resukts Human T2DM vessels showed increased remodelling, and changes persisted in culture, with augmented VSMCs migration and proliferation. Moreover, there were downregulation of PI3K/AKT/mTOR and upregulation of MEK/ERK pathways, with increased miR-126 expression. The inhibitory effects of Kv1.3 blockers on remodelling were significantly enhanced in T2DM VSMCs and in VRF model. Finally, miR-126 overexpression confered “diabetic” phenotype to non-T2DM VSMCs by downregulating PI3K/AKT axis. Conclusions miR-126 plays crucial roles in T2DM VSMC metabolic memory through activation of MEK/ERK pathway, enhancing the efficacy of Kv1.3 blockers in the prevention of restenosis in T2DM patients. Type 2 diabetes (T2DM) vessels show exacerbated remodeling in organ culture and increased Kv1.3 expression. The inhibition of vessel remodeling with Kv1.3 blockers is increased in T2DM vessels. VSMCs from T2DM patients retain epigenetic changes in primary cultures. Upregulation of miR-126 contributes to the metabolic memory of T2DM VSMCs. Upregulation of miR-126 potentiates Kv1.3-dependent mechanisms in T2DM VSMCs.
Collapse
|
32
|
Liu X, Shen L, Han B, Yao H. Involvement of noncoding RNA in blood-brain barrier integrity in central nervous system disease. Noncoding RNA Res 2021; 6:130-138. [PMID: 34377876 PMCID: PMC8327137 DOI: 10.1016/j.ncrna.2021.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Given the important role of the blood-brain barrier (BBB) in the central nervous system (CNS), increasing studies have been carried out to determine how the structural and functional integrity of the BBB impacts the pathogenesis of CNS diseases such as stroke, traumatic brain injuries (TBIs), and gliomas. Emerging studies have revealed that noncoding RNAs (ncRNAs) help to maintain the integrity and permeability of the BBB, thereby mediating CNS homeostasis. This review summarizes recent studies that focus on the effects of ncRNAs on the BBB in CNS diseases, including regulating the biological processes of inflammation, necrosis, and apoptosis of cells, affecting the translational dysfunction of proteins and regulating tight junctions (TJs). A comprehensive and detailed understanding of the interaction between ncRNAs and the BBB will lay a solid foundation for the development of early diagnostic methods and effective treatments for CNS diseases.
Collapse
Affiliation(s)
- Xi Liu
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ling Shen
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bing Han
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Honghong Yao
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
33
|
Wan T, Liu X, Su Y, Zou J, Wu X, Jiang C, Cao C, Yao M, Zhou Y, Rong L, Li B, Wen L, Feng Q. Biological differentiation of traditional Chinese medicine from excessive to deficient syndromes in AIDS: Comparative microRNA microarray profiling and syndrome-specific biomarker identification. J Med Virol 2021; 93:3634-3646. [PMID: 33289096 DOI: 10.1002/jmv.26704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Traditional Chinese medicine (TCM) has been widely applied as a supplementary therapy of human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS) in China. TCM has a positive effect on improving the quality of life, prolonging life, and ameliorating the symptoms of HIV/AIDS patients. Yang deficiency of spleen and kidney (YDSK) syndrome is a typical deficient TCM syndrome in AIDS patients, and accumulation of heat-toxicity (AHT) syndrome is a common excessive syndrome in the earlier stage of AIDS. Thus, accurate diagnosis of these two syndromes can improve the targeted treatment effect, and predict the prognosis of the disease. However, the scientific basis of TCM syndromes remains lacking, greatly hindering the accuracy of diagnosis and effectiveness of treatment. In this research, microRNA (miRNA) microarray and quantitative real-time polymerase chain reaction combined with bioinformatics were used for comparative analysis between YDSK and AHT patients. Significantly differential expressed miRNAs (SDE-miRNAs) of each TCM syndrome were identified, including hsa-miR-766-3p and hsa-miR-1260a and so on, as well hsa-miR-6124, hsa-let-7g-5p and so on, for YDSK and AHT, respectively. Biological differences were found between their SDE-miRNAs based on bioinformatics analyses, for example, ErbB signaling pathway mainly linked to AHT, while focal adhesion dominated in YDSK. Syndrome-specific SDE-miRNAs were further identified as potential biomarkers, including hsa-miR-30e-5p, hsa-miR-144-5p for YDSK and hsa-let-7g-5p, hsa-miR-126-3p for AHT, respectively. All of them have laid biological and clinical bases for TCM diagnosis and treatment of AIDS syndrome at the miRNA level, offering potential diagnostic indicators of immune reconstitution.
Collapse
Affiliation(s)
- Tingjun Wan
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiyang Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiaxi Zou
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xi Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Cen Jiang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chunhui Cao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingyue Yao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuyu Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Baixue Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Wen
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Quansheng Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
34
|
New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs. Biomed Pharmacother 2021; 140:111753. [PMID: 34044272 PMCID: PMC8222190 DOI: 10.1016/j.biopha.2021.111753] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have critical role in the pathophysiology as well as recovery after ischemic stroke. ncRNAs, particularly microRNAs, and the long non-coding RNAs (lncRNAs) are critical for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. Moreover, exosomes have been considered as nanocarriers capable of transferring various cargos, such as lncRNAs and miRNAs to recipient cells, with prominent inter-cellular roles in the mediation of neuro-restorative events following strokes and neural injuries. In this review, we summarize the pathogenic role of ncRNAs and exosomal ncRNAs in the stroke.
Collapse
|
35
|
Zhang Z, Pang Y, Wang W, Zhu H, Jin S, Yu Z, Gu Y, Wu H. Neuroprotection of Heme Oxygenase-2 in Mice AfterIntracerebral Hemorrhage. J Neuropathol Exp Neurol 2021; 80:457-466. [PMID: 33870420 DOI: 10.1093/jnen/nlab025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There are few effective preventive or therapeutic strategies to mitigate the effects of catastrophic intracerebral hemorrhage (ICH) in humans. Heme oxygenase is the rate-limiting enzyme in heme metabolism; heme oxygenase-2 (HO-2) is a constitutively expressed heme oxygenase. We explored the involvement of HO-2 in a collagenase-induced mouse model of ICH in C57BL/6 wild-type and HO-2 knockout mice. We assessed oxidative stress injury, blood-brain barrier permeability, neuronal damage, late-stage angiogenesis, and hematoma clearance using immunofluorescence, Western blot, MRI, and special staining methods. Our results show that HO-2 reduces brain injury volume and brain edema, alleviates cytotoxic injury, affects vascular function in the early stage of ICH, and improves hematoma absorbance and angiogenesis in the late stage of ICH in this model. Thus, we found that HO-2 has a protective effect on brain injury after ICH.
Collapse
Affiliation(s)
- Ze Zhang
- From the Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxin Pang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Wei Wang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Sinan Jin
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Zihan Yu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - Yunhe Gu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - He Wu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Ihezie SA, Mathew IE, McBride DW, Dienel A, Blackburn SL, Thankamani Pandit PK. Epigenetics in blood-brain barrier disruption. Fluids Barriers CNS 2021; 18:17. [PMID: 33823899 PMCID: PMC8025355 DOI: 10.1186/s12987-021-00250-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
The vessels of the central nervous system (CNS) have unique barrier properties. The endothelial cells (ECs) which comprise the CNS vessels contribute to the barrier via strong tight junctions, specific transporters, and limited endocytosis which combine to protect the brain from toxins and maintains brain homeostasis. Blood-brain barrier (BBB) leakage is a serious secondary injury in various CNS disorders like stroke, brain tumors, and neurodegenerative disorders. Currently, there are no drugs or therapeutics available to treat specifically BBB damage after a brain injury. Growing knowledge in the field of epigenetics can enhance the understanding of gene level of the BBB and has great potential for the development of novel therapeutic strategies or targets to repair a disrupted BBB. In this brief review, we summarize the epigenetic mechanisms or regulators that have a protective or disruptive role for components of BBB, along with the promising approaches to regain the integrity of BBB.
Collapse
Affiliation(s)
- Stephanie A Ihezie
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Iny Elizebeth Mathew
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Peeyush Kumar Thankamani Pandit
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Giuliani A, Gaetani S, Sorgentoni G, Agarbati S, Laggetta M, Matacchione G, Gobbi M, Rossi T, Galeazzi R, Piccinini G, Pelliccioni G, Bonfigli AR, Procopio AD, Albertini MC, Sabbatinelli J, Olivieri F, Fazioli F. Circulating Inflamma-miRs as Potential Biomarkers of Cognitive Impairment in Patients Affected by Alzheimer's Disease. Front Aging Neurosci 2021; 13:647015. [PMID: 33776746 PMCID: PMC7990771 DOI: 10.3389/fnagi.2021.647015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease in the growing population of elderly people, is still lacking minimally-invasive circulating biomarkers that could facilitate the diagnosis and the monitoring of disease progression. MicroRNAs (miRNAs) are emerging as tissue-specific and/or circulating biomarkers of several age-related diseases, but evidence on AD is still not conclusive. Since a systemic pro-inflammatory status was associated with an increased risk of AD development and progression, we focused our investigation on a subset of miRNAs modulating the inflammatory process, namely inflamma-miRNAs. The expression of inflamma-miR-17-5p, -21-5p, -126-3p, and -146a-5p was analyzed in plasma samples from 116 patients with AD compared with 41 age-matched healthy control (HC) subjects. MiR-17-5p, miR-21-5p, and miR-126-3p plasma levels were significantly increased in AD patients compared to HC. Importantly, a strong inverse relationship was observed between miR-21-5p and miR-126-3p, and the cognitive impairment, assessed by Mini-Mental State Examination (MMSE). Notably, miR-126-3p was able to discriminate between mild and severe cognitive impairment. Overall, our results reinforce the hypothesis that circulating inflamma-miRNAs could be assessed as minimally invasive tools associated with the development and progression of cognitive impairment in AD.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Simona Gaetani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giulia Sorgentoni
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Maristella Laggetta
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Mirko Gobbi
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | | | - Roberta Galeazzi
- Clinical Laboratory and Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | - Gina Piccinini
- Clinical Laboratory and Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | | | | | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | | | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Francesca Fazioli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
38
|
Zhao B, Qian M, Zhang Y, Yin F. Retracted: Stem cells from human exfoliated deciduous teeth transmit microRNA-26a to protect rats with experimental intracerebral hemorrhage from cerebral injury via suppressing CTGF. Brain Res Bull 2021; 168:146-155. [PMID: 33333175 DOI: 10.1016/j.brainresbull.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE A large number of studies have shown that stem cells from human exfoliated deciduous teeth (SHED) has a protective effect on brain damage, but its specific mechanism is unclear. This research focused on the effect of microRNA (miR)-26a that transmitted by SHED in intracerebral hemorrhage (ICH). METHODS SHED were extracted from deciduous teeth of healthy children and miR-26a expression in SHED was altered through transfection, and then the SHED were conducted with neuron differentiated induction, expression of β3 tubulin, MAP-2 and glial fibrillary acidic protein (GFAP), number of dendritic spines and cell proliferation were detected. ICH rat models were established by stereotactic injection of collagenase VII into the left striatum and the modeled rats were injected with miR-26a mimic or inhibitor-transfected SHED suspension. Then, the brain water content, blood-brain barrier permeability, pathological changes, and injury and apoptosis in the nervous cells in brain were assessed. The expression of miR-26a and CTGF in SHED and rats' brain tissues was evaluated and the target relation between miR-26a and CTGF was detected. RESULTS In SHED after induction, upregulated miR-26a could increase number of dendritic spines, cell proliferation, and expression of β3 tubulin, MAP-2 and GFAP, and restrain CTGF expression. In rat models, SHED engineered to overexpress miR-26a could attenuate brain water content, Evans blue content, apoptosis, pathological injury and expression of CTGF and Bax, while promoted number of Nissl bodies and expression of Bcl-2 in the nervous cells in brain in ICH rats. Furthermore, miR-26a competitively bound to CTGF. CONCLUSION Our findings provided the evidence that SHED could transmit miR-26a to protect ICH rats from cerebral injury by repressing CTGF, which may contribute to ICH therapy.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Min Qian
- Department of Neonatology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Yan Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Fei Yin
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
39
|
Wang H, Chen FS, Zhang ZL, Zhou HX, Ma H, Li XQ. MiR-126-3p-Enriched Extracellular Vesicles from Hypoxia-Preconditioned VSC 4.1 Neurons Attenuate Ischaemia-Reperfusion-Induced Pain Hypersensitivity by Regulating the PIK3R2-Mediated Pathway. Mol Neurobiol 2021; 58:821-834. [PMID: 33029740 DOI: 10.1007/s12035-020-02159-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023]
Abstract
Recent evidence suggests that hypoxia preconditioning can alter the microRNA (miRNA) profile of extracellular vesicles (EVs) and has better neuroprotective effects when enriched miRs are delivered to recipients. However, the roles of exosomal miRNAs in regulating ischaemia-reperfusion (IR)-induced pain hypersensitivity are largely unknown. Thus, we isolated EVs from normoxia-conditioned neurons (Nor-VSC EVs) and Hypo-VSC EVs by ultracentrifugation. After the initial screening by a microarray analysis and quantitative RT-PCR (qRT-PCR), miR-126-3p, which was detected as the most altered miR in the Hypo-VSC EVs, was further confirmed by applying GW4869 to inhibit exosomal secretion. Moreover, transfection with a miR-126 mimic obviously increased miR-126-3p expression in Nor-VSC EVs, whereas a miR-126 inhibitor prevented the increase in miR-126-3p in Hypo-VSC EVs. A rat model of pain was established by performing 8-min occlusion of the aorta. Following IR, compared with the Nor-VSC EVs- or antagomir-126-injected rats, the Hypo-VSC EVs-injected rats displayed improved pain hypersensitivity demonstrated as higher PWT and PWL values. Mechanistically, PIK3R2 is a target of miR-126-3p and might be a modulator of the phosphoinositide 3-kinase (PI3K)/Akt pathway as the PIK3R2 and PI3K immunoreactivities in each group were changed in opposite directions. Compared with the controls, higher protein levels of PI3K and phosphorylated Akt but lower levels of phosphorylated nuclear factor-κ B (NF-κB), tumour necrosis factor (TNF)-α and interleukin (IL)-1β were detected in the spinal cords of the Hypo-VSC EVs-injected rats, and these effects were impaired by an injection of Hypo-VSC EVs combined with antagomir-126. Collectively, the miR-126-3p-enriched Hypo-VSC EVs attenuated IR-induced pain hypersensitivity by restoring miR-126-3p expression in the injured spinal cord and subsequently modulating PIK3R2-mediated PI3K/Akt and NF-κB signalling pathways.
Collapse
Affiliation(s)
- He Wang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Feng-Shou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Zai-Li Zhang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Hong-Xu Zhou
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Xiao-Qian Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
40
|
Fujimoto S, Fujita Y, Kadota T, Araya J, Kuwano K. Intercellular Communication by Vascular Endothelial Cell-Derived Extracellular Vesicles and Their MicroRNAs in Respiratory Diseases. Front Mol Biosci 2021; 7:619697. [PMID: 33614707 PMCID: PMC7890564 DOI: 10.3389/fmolb.2020.619697] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory diseases and their comorbidities, such as cardiovascular disease and muscle atrophy, have been increasing in the world. Extracellular vesicles (EVs), which include exosomes and microvesicles, are released from almost all cell types and play crucial roles in intercellular communication, both in the regulation of homeostasis and the pathogenesis of various diseases. Exosomes are of endosomal origin and range in size from 50 to 150 nm in diameter, while microvesicles are generated by the direct outward budding of the plasma membrane in size ranges of 100-2,000 nm in diameter. EVs can contain various proteins, metabolites, and nucleic acids, such as mRNA, non-coding RNA species, and DNA fragments. In addition, these nucleic acids in EVs can be functional in recipient cells through EV cargo. The endothelium is a distributed organ of considerable biological importance, and disrupted endothelial function is involved in the pathogenesis of respiratory diseases such as chronic obstructive pulmonary disease, pulmonary hypertension, and acute respiratory distress syndrome. Endothelial cell-derived EVs (EC-EVs) play crucial roles in both physiological and pathological conditions by traveling to distant sites through systemic circulation. This review summarizes the pathological roles of vascular microRNAs contained in EC-EVs in respiratory diseases, mainly focusing on chronic obstructive pulmonary disease, pulmonary hypertension, and acute respiratory distress syndrome. Furthermore, this review discusses the potential clinical usefulness of EC-EVs as therapeutic agents in respiratory diseases.
Collapse
Affiliation(s)
- Shota Fujimoto
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yu Fujita
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Department of Translational Research for Exosomes, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsukasa Kadota
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Jun Araya
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Wang X, Hong Y, Wu L, Duan X, Hu Y, Sun Y, Wei Y, Dong Z, Wu C, Yu D, Xu J. Deletion of MicroRNA-144/451 Cluster Aggravated Brain Injury in Intracerebral Hemorrhage Mice by Targeting 14-3-3ζ. Front Neurol 2021; 11:551411. [PMID: 33510702 PMCID: PMC7835478 DOI: 10.3389/fneur.2020.551411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
This study aims at evaluating the importance and its underlying mechanism of the cluster of microRNA-144/451 (miR-144/451) in the models with intracerebral hemorrhage (ICH). A model of collagenase-induced mice with ICH and a model of mice with simple miR-144/451 gene knockout (KO) were used in this study. Neurodeficits and the water content of the brain of the mice in each group were detected 3 days after collagenase injection. The secretion of proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), as well as certain biomarkers of oxidative stress, was determined in this study. The results revealed that the expression of miR-451 significantly decreased in the mice with ICH, whereas miR-144 showed no significant changes. KO of the cluster of miR-144/451 exacerbated the neurological deficits and brain edema in the mice with ICH. Further analyses demonstrated that the KO of the cluster of miR-144/451 significantly promoted the secretion of TNF-α and IL-1β and the oxidative stress in the perihematomal region of the mice with ICH. In addition, the miR-144/451's depletion inhibited the regulatory axis' activities of miR-451-14-3-3ζ-FoxO3 in the mice with ICH. In conclusion, these data demonstrated that miR-144/451 might protect the mice with ICH against neuroinflammation and oxidative stress by targeting the pathway of miR-451-14-3-3ζ-FoxO3.
Collapse
Affiliation(s)
- Xiaohong Wang
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yin Hong
- National Center for Clinical Research of Nervous System Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Wu
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, Yangzhou, China
| | - Xiaochun Duan
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yue Hu
- Department of Neurology, Zhangjiagang City First People's Hospital, Zhangjiagang, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yanqiu Wei
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Zhen Dong
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Chenghao Wu
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, Yangzhou, China
| | - Duonan Yu
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Astragaloside and/or Hydroxysafflor Yellow A Attenuates Oxygen-Glucose Deprivation-Induced Cultured Brain Microvessel Endothelial Cell Death through Downregulation of PHLPP-1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3597527. [PMID: 33381198 PMCID: PMC7755473 DOI: 10.1155/2020/3597527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
The incidence of ischemic stroke, a life-threatening condition in humans, amongst Asians is high and the prognosis is poor. In the absence of effective therapeutics, traditional Chinese medicines have been used that have shown promising results. It is crucial to identify traditional Chinese medicine formulas that protect the blood-brain barrier, which is damaged by an ischemic stroke. In this study, we aimed to elucidate such formulas. Brain microvascular endothelial cells (BMECs) were used to establish an in vitro ischemia-reperfusion model for oxygen-glucose deprivation (OGD) experiments to evaluate the function of two traditional Chinese medicines, namely, astragaloside (AS-IV) and hydroxysafflor yellow A (HSYA), in protecting against BMEC. Our results revealed that AS-IV and HSYA attenuated the cell loss caused by OGD by increasing cell proliferation and inhibiting cell apoptosis. In addition, these compounds promoted the migration and invasion of BMECs in vitro. Furthermore, we found that BMECs rescued by AS-IV and HSYA could be functionally activated in vitro, with AS-IV and HSYA showing synergetic effects in rescuing BMECs survival in vitro by reducing the expression of PHLPP-1 and activating Akt signaling. Our results elucidated the potential of AS-IV and HSYA in the prevention and treatment of stroke by protecting against cerebral ischemia-reperfusion injury.
Collapse
|
43
|
Gao B, Zhou S, Sun C, Cheng D, Zhang Y, Li X, Zhang L, Zhao J, Xu D, Bai Y. Brain Endothelial Cell-Derived Exosomes Induce Neuroplasticity in Rats with Ischemia/Reperfusion Injury. ACS Chem Neurosci 2020; 11:2201-2213. [PMID: 32574032 DOI: 10.1021/acschemneuro.0c00089] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Exosomes derived from the cerebral endothelial cells play essential roles in protecting neurons from hypoxia injury, but little is known regarding the biological effects and mechanisms of exosomes on brain plasticity. In this study, exosomes were isolated from rodent cerebral endothelial cells (bEnd.3 cells) by ultracentrifugation, either endothelial cell-derived exosomes (EC-Exo) or PBS was injected intraventricularly 2 h after the middle cerebral artery occlusion/reperfusion (MCAO/R) model surgery in the Exo group and control group, respectively. Sham group rats received the same surgical but not ischemic procedure. We evaluated the motor function of rats after MCAO/R, and the foot-fault rate of the Exo group was significantly lower than that of the control group within 23 days (p < 0.05); the Catwalk analysis also showed gait difference between two groups (p < 0.05). On day 28 after MCAO/R, we euthanized the rats, removed the motor cortex from the brain, and then sequenced the genes by using GO and KEGG to find transcriptome analysis of biological terms and functional annotations: The pathway enrichment revealed that the function of synaptic transmission, regulation of synaptic plasticity, and regulation of synaptic vesicle cycle was significantly enriched with the Exo group than control group. Furthermore, the upregulation of synapsin-I expression in the motor cortex (p < 0.05) as well as the increase of the length of the dendrites were found in the Exo group (p < 0.05) than the control group. We determined the content of exosome microRNA levels, and microRNA-126-3p was the highest (TPM) by transcriptome analysis. Moreover, the microRNA-126-3p protected PC12 cells from apoptosis and increased neurite outgrowth, illustrating the mechanism of how exosomes play a role in altering brain plasticity. This study demonstrated that EC-Exo promoted functional motor recovery in the MCAO/R model, exosomes were critical for the reconstruction of synaptic function in ischemic brain injury, and microRNA-126-3p from EC-Exo could serve as a treatment for nerve damage.
Collapse
Affiliation(s)
- Beiyao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Jing’an District, Shanghai, China 200041
| | - Shaoting Zhou
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, 170 Xinsong Rd, Minhang District, Shanghai, China 201100
| | - Chengcheng Sun
- Rehabilitation Section, Department of Spine Surgery, Tongji Hospital Affiliated to Tongji University, 389 Xincun Road, Putuo District, Shanghai, China 200065
| | - Dandan Cheng
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Jing’an District, Shanghai, China 200041
| | - Ye Zhang
- Rehabilitation Section, Department of Spine Surgery, Tongji Hospital Affiliated to Tongji University, 389 Xincun Road, Putuo District, Shanghai, China 200065
| | - Xutong Li
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, 170 Xinsong Rd, Minhang District, Shanghai, China 201100
| | - Li Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Jing’an District, Shanghai, China 200041
| | - Jing Zhao
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, 170 Xinsong Rd, Minhang District, Shanghai, China 201100
| | - Dongsheng Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, 110 Ganhe Road,
Hongkou District, Shanghai, China 201203
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, China 201203
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, China 201203
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Jing’an District, Shanghai, China 200041
| |
Collapse
|
44
|
miR-183-5p alleviates early injury after intracerebral hemorrhage by inhibiting heme oxygenase-1 expression. Aging (Albany NY) 2020; 12:12869-12895. [PMID: 32602850 PMCID: PMC7377845 DOI: 10.18632/aging.103343] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Differences in microRNA (miRNA) expression after intracerebral hemorrhage (ICH) have been reported in human and animal models, and miRNAs are being investigated as a new treatment for inflammation and oxidative stress after ICH. In this study, we found that microRNA-183-5p expression was decreased in the mouse brain after ICH. To investigate the effect of miRNA-183-5p on injury and repair of brain tissue after ICH, saline, miRNA-183-5p agomir, or miRNA-183-5p antagomir were injected into the lateral ventricles of 8-week-old mice with collagenase-induced ICH. Three days after ICH, mice treated with exogenous miRNA-183-5p showed less brain edema, neurobehavioral defects, inflammation, oxidative stress, and ferrous deposition than control mice. In addition, by alternately treating mice with a heme oxygenase-1 (HO-1) inducer, a HO-1 inhibitor, a nuclear factor erythroid 2-related factor (Nrf2) activator, and Nrf2 knockout, we demonstrated an indirect, HO-1-dependent regulatory relationship between miRNA-183-5p and Nrf2. Our results indicate that miRNA-183-5p and HO-1 are promising therapeutic targets for controlling inflammation and oxidative damage after hemorrhagic stroke.
Collapse
|
45
|
Li L, Wang P, Zhao H, Luo Y. Noncoding RNAs and Intracerebral Hemorrhage. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:205-211. [PMID: 30714535 DOI: 10.2174/1871527318666190204102604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & OBJECTIVE Intracerebral hemorrhage (ICH) is the most devastating subtype of stroke, for which there are few effective interventions. Computed tomography is accepted as the gold standard for diagnosis, whereas surgical evacuation is the main treatment for ICH. However, in emergency rooms, time is limited and information regarding a patient's clinical status or tolerance is typically not available. Many studies over the last decade have investigated the fundamental mechanisms of ICH and especially hematoma, which not only cause physical damage but also release toxins that have detrimental effects. However, there remain many gaps in our understanding of ICH. Compared to ischemic stroke, there is little known about the ICH pathogenesis and treatment options, and few specific biomarkers are available for monitoring disease progression, which include hematoma enlargement and perihematoma edema. Noncoding RNAs (ncRNAs) are involved in various biological processes and are potential biomarkers and therapeutic tools in central nervous system diseases. Recent studies have examined the role of ncRNAs including microRNAs, long noncoding RNAs, and circular RNAs-the three main subgroups associated with stroke-in ICH models. A deeper understanding of the functions of ncRNAs in different biological processes can provide a basis for developing more effective therapeutic strategies to prevent neuronal damage following ICH. In clinical settings, ncRNAs can serve as biomarkers for predicting the degree of injury resulting from ICH. CONCLUSION In this review, we discuss the current state of knowledge of the role of ncRNAs in ICH.
Collapse
Affiliation(s)
- Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Pingping Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
46
|
Fu R, Tong JS. miR-126 reduces trastuzumab resistance by targeting PIK3R2 and regulating AKT/mTOR pathway in breast cancer cells. J Cell Mol Med 2020; 24:7600-7608. [PMID: 32410348 PMCID: PMC7339158 DOI: 10.1111/jcmm.15396] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to play a key role in drug resistance. In the current study, we aimed to explore the potential role of miR‐126 in trastuzumab resistance in breast cancer cells. We found that the trastuzumab‐resistant cell lines SKBR3/TR and BT474/TR had low expression of miR‐126 and increased ability to migrate and invade. The resistance, invasion and mobilization abilities of the cells resistant to trastuzumab were reduced by ectopic expression of miR‐126 mimics. In comparison, inhibition of miR‐126 in SKBR3 parental cells had the opposite effect of an increased resistance to trastuzumab as well as invasion and migration. It was also found that miR‐126 directly targets PIK3R2 in breast cancer cells. PIK3R2‐knockdown cells showed decreased resistance to trastuzumab, while overexpression of PIK3R2 increased trastuzumab resistance. In addition, our finding showed that overexpression of miR‐126 reduced resistance to trastuzumab in the trastuzumab‐resistant cells and that inhibition of the PIK3R2/PI3K/AKT/mTOR signalling pathway was involved in this effect. SKBR3/TR cells also showed increased sensitivity to trastuzumab mediated by miR‐126 in vivo. In conclusion, the above findings demonstrated that overexpression of miR‐126 or down‐regulation of its target gene may be a potential approach to overcome trastuzumab resistance in breast cancer cells.
Collapse
Affiliation(s)
- Rao Fu
- College of Chemical Engineering, Northeast Electric Power University, Jilin city, China
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Nammian P, Razban V, Tabei SMB, Asadi-Yousefabad SL. MicroRNA-126: Dual Role in Angiogenesis Dependent Diseases. Curr Pharm Des 2020; 26:4883-4893. [PMID: 32364067 DOI: 10.2174/1381612826666200504120737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNA-126, a microRNA implicated in blood vessel integrity and angiogenesis is significantly up/down regulated in different physiological and pathological conditions related to angiogenesis such as cardiovascular formation and angiogenesis dependent diseases. MicroRNA-126 plays a critical role in angiogenesis via regulating the proliferation, differentiation, migration, and apoptosis of angiogenesis related cells such as endothelial cells. OBJECTIVE The aim of this review is to investigate the molecular mechanisms and the effects of microRNA-126 on the process of angiogenesis in pathophysiological conditions. METHODS To conduct this review, related articles published between 2001 and 2019 were collected from the PubMed, Web of Science, Google Scholar, Scopus and Scientific Information Database using search terms such as microRNA-126, angiogenesis, cardiovascular disorders, hypoxia, VEFG-A, endothelial cells, VEGF pathway, and gene silencing. Then, the qualified articles were reviewed. RESULTS MicroRNA-126 regulates the response of endothelial cells to VEGF, through directly repressing multiple targets, including Sprouty-related EVH1 domain-containing protein 1 (SPRED1) and phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2/p85-b). MicroRNA-126 -3p and microRNA-126 -5p have cell-type and strandspecific functions and also various targets in angiogenesis that lead to the regulation of angiogenesis via different pathways and consequently diverse responses. CONCLUSION MicroRNA-126 can bind to multiple targets and potentially be both positive and negative regulators of gene expression. Thus, microRNA-126 could cause the opposite biological effects depending on the context. As a result, understanding the different cellular pathways through which microRNA-126 regulates angiogenesis in various situations is a critical aspect in the development of novel and effective treatments for diseases with insufficient angiogenesis.
Collapse
Affiliation(s)
- Pegah Nammian
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
48
|
Cui J, Liu N, Chang Z, Gao Y, Bao M, Xie Y, Xu W, Liu X, Jiang S, Liu Y, Shi R, Xie W, Jia X, Shi J, Ren C, Gong K, Zhang C, Bade R, Shao G, Ji X. Exosomal MicroRNA-126 from RIPC Serum Is Involved in Hypoxia Tolerance in SH-SY5Y Cells by Downregulating DNMT3B. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:649-660. [PMID: 32380415 PMCID: PMC7210387 DOI: 10.1016/j.omtn.2020.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Ischemic tolerance in the brain can be induced by transient limb ischemia, and this phenomenon is termed remote ischemic preconditioning (RIPC). It still remains elusive how this transfer of tolerance occurs. Exosomes can cross the blood-brain barrier, and some molecules may transfer neuroprotective signals from the periphery to the brain. Serum miRNA-126 is associated with ischemic stroke, and exosomal miRNA-126 has shown protective effects against acute myocardial infarction. Therefore, this study aims to explore whether exosomal miRNA-126 from RIPC serum can play a similar neuroprotective role. Exosomes were isolated from the venous serum of four healthy young male subjects, both before and after RIPC. Exosomal miRNA-126 was measured by real-time PCR. The miRNA-126 target sequence was predicted by bioinformatics software. SH-SY5Y neuronal cells were incubated with exosomes, and the cell cycle was analyzed by flow cytometry. The expression and activity of DNA methyltransferase (DNMT) 3B, a potential target gene of miRNA-126, were examined in SH-SY5Y cells. The cell viability of SH-SY5Y cells exposed to oxygen-glucose deprivation (OGD) was also investigated. To confirm the association between miRNA-126 and DNMT3B, we overexpressed miRNA-126 in SH-SY5Y cells using lentiviral transfection. miRNA-126 expression was upregulated in RIPC exosomes, and bioinformatics prediction showed that miRNA-126 could bind with DNMT3B. DNMT levels and DNMT3B activity were downregulated in SH-SY5Y cells incubated with RIPC exosomes. After overexpression of miRNA-126 in SH-SY5Y cells, global methylation levels and DNMT3B gene expression were downregulated in these cells, consistent with the bioinformatics predictions. RIPC exosomes can affect the cell cycle and increase OGD tolerance in SH-SY5Y cells. RIPC seems to have neuroprotective effects by downregulating the expression of DNMTs in neural cells through the upregulation of serum exosomal miRNA-126.
Collapse
Affiliation(s)
- Junhe Cui
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Na Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Zhehan Chang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Yongsheng Gao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Mulan Bao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Yabin Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Wenqiang Xu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Xiaolei Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Shuyuan Jiang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - You Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Rui Shi
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Wei Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Xiaoe Jia
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Jinghua Shi
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia, China
| | - Rengui Bade
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC.
| | - Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, PRC; Biomedicine Research Center, Basic Medical College and Baotou Medical College of the Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC; Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia, China.
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC.
| |
Collapse
|
49
|
Bache S, Rasmussen R, Wolcott Z, Rossing M, Møgelvang R, Tolnai D, Hassager C, Forman JL, Køber L, Nielsen FC, Kimberly WT, Møller K. Elevated miR-9 in Cerebrospinal Fluid Is Associated with Poor Functional Outcome After Subarachnoid Hemorrhage. Transl Stroke Res 2020; 11:1243-1252. [PMID: 32248435 DOI: 10.1007/s12975-020-00793-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/10/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
This study evaluated microRNA (miRNA) changes in cerebrospinal fluid (CSF) and their association with the occurrence of delayed cerebral ischemia (DCI) and poor functional outcome after SAH. Forty-three selected miRNAs were measured in daily CSF samples from a discovery cohort of SAH patients admitted to Rigshospitalet, Copenhagen, Denmark, and compared with neurologically healthy patients. Findings were validated in CSF from a replication cohort of SAH patients admitted to Massachusetts General Hospital, Boston, Massachusetts. The CSF levels of miRNA over time were compared with the occurrence of DCI, and functional outcome after 3 months. miRNAs were quantified in 427 CSF samples from 63 SAH patients in the discovery cohort, in 104 CSF samples from 63 SAH patients in the replication cohort, and in 11 CSF samples from 11 neurologically healthy patients. The miRNA profile changed remarkably immediately after SAH. Elevated miR-9-3p was associated with a poor functional outcome in the discovery cohort (p < 0.0001) after correction for multiple testing (q < 0.01) and in the replication cohort (p < 0.01). Furthermore, elevated miR-9-5p was associated with a poor functional outcome in the discovery cohort (p < 0.01) after correction for multiple testing (q < 0.05). No miRNA was associated with DCI in both cohorts. miR-9-3p and miR-9-5p are elevated in the CSF following SAH and this elevation is associated with a poor functional outcome. These elevations have potential roles in the progression of cerebral injury and could add to early prognostication.
Collapse
Affiliation(s)
- Søren Bache
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark. .,Centre for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Rune Rasmussen
- Department of Neurosurgery, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Zoe Wolcott
- Department of Neurology & Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Maria Rossing
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus Møgelvang
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Tolnai
- Department of Radiology, The Diagnostic Centre, Rigshospitalet, Copenhagen, Denmark
| | - Christian Hassager
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark
| | - Julie L Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Lars Køber
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - William T Kimberly
- Department of Neurology & Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kirsten Møller
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Gareev IF, Beilerly OA, Nazarov VV. [MicroRNA and their potential role in the pathogenesis of hemorrhagic stroke]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:86-93. [PMID: 32207747 DOI: 10.17116/neiro20208401186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spontaneous (non-traumatic) intracerebral hemorrhage (ICH), or hemorrhagic stroke, is a common and serious disease with high morbidity and mortality. Current methods of treating hemorrhagic stroke, from conservative to surgical, are insufficient, which justifies the continuation of the study of this condition, including cellular and molecular changes that occur during a stroke. MicroRNAs (miRNAs) are a class of small non-coding RNAs that play an important role in post-transcriptional regulation of gene expression. MicroRNAs are involved in almost all biological processes, including cell proliferation, apoptosis and cell differentiation, and are also key substances in pathophysiological processes in many diseases, and therefore they can be both potential biomarkers and new therapeutic targets in cancer, degenerative and cardiovascular disease. In recent years, a number of studies have been aimed at studying the role of microRNAs in pathophysiological processes in hemorrhagic stroke, such as apoptosis, inflammation, oxidative stress, violation of the blood-brain barrier (BBB) and cerebral edema. The results of the studies demonstrated that changes in miRNA expression may be associated with the prognosis of ICH. In this article, we consider studies related to miRNAs and hemorrhagic stroke, and clarify the complex relationship between them.
Collapse
Affiliation(s)
- I F Gareev
- Bashkir State Medical University, Ufa, Russia
| | | | - V V Nazarov
- Burdenko NeurosurgicalCenter, Moscow, Russia
| |
Collapse
|