1
|
Streubel MK, Baumgartner A, Meier-Vollrath I, Frambach Y, Brandenburger M, Kisch T. Transcriptomics of Subcutaneous Tissue of Lipedema Identified Differentially Expressed Genes Involved in Adipogenesis, Inflammation, and Pain. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6288. [PMID: 39525887 PMCID: PMC11548906 DOI: 10.1097/gox.0000000000006288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Background Lipedema is a disease typically affecting women with a symmetrical, painful fat distribution disorder, which is hypothesized to be caused by impaired adipogenesis, inflammation, and extracellular matrix remodeling, leading to fibrosis and the development of edema in lipedema subcutaneous adipose tissue. The pathogenesis and molecular processes leading to lipedema have not yet been clarified. Methods A whole transcriptome analysis of subcutaneous tissue of lipedema stages I (n = 12), II (n = 9), and III (n = 8) compared with hypertrophied subcutaneous tissue (n = 4) was performed. Further data about hormonal substitution and body morphology were collected. The study is registered at ClinicalTrials.gov (NCT05861583). Results We identified several differentially expressed genes involved in mechanisms leading to the development of lipedema. Some genes, such as PRKG2, MEDAG, CSF1R, BICC1, ERBB4, and ACP5, are involved in adipogenesis, regulating the development of mature adipocytes from mesenchymal stem cells. Other genes, such as MAFB, C1Q, C2, CD68, CD209, CD163, CD84, BCAT1, and TREM2, are predicted to be involved in lipid accumulation, hypertrophy, and the inflammation process. Further genes such as SHTN1, SCN7A, and SCL12A2 are predicted to be involved in the regulation and transmission of pain. Conclusions In summary, the pathogenesis and development of lipedema might be caused by alterations in adipogenesis, inflammation, and extracellular matrix remodeling, leading to fibrosis and the formation of edema resulting in this painful disease. These processes differ from hypertrophied adipose tissue and may therefore play a main role in the formation of lipedema.
Collapse
Affiliation(s)
- Maria Karolin Streubel
- From the University of Luebeck, Luebeck, Germany
- University Hospital Schleswig-Holstein, Luebeck, Germany
| | | | | | | | - Matthias Brandenburger
- Fraunhofer Research Institution for Individualized and Cell Based Medical Engineering, IMTE, Luebeck, Germany
| | - Tobias Kisch
- From the University of Luebeck, Luebeck, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Praxisklinik Kronshagen, Kiel-Kronshagen, Germany
| |
Collapse
|
2
|
Díaz-Sáez F, Balcells C, Rosselló L, López-Soldado I, Romero M, Sebastián D, López-Soriano FJ, Busquets S, Cascante M, Ricart W, Fernández-Real JM, Moreno-Navarrete JM, Aragonés J, Testar X, Camps M, Zorzano A, Gumà A. Neuregulin 4 Downregulation Alters Mitochondrial Morphology and Induces Oxidative Stress in 3T3-L1 Adipocytes. Int J Mol Sci 2024; 25:11718. [PMID: 39519269 PMCID: PMC11546241 DOI: 10.3390/ijms252111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Neuregulin 4 (Nrg4) is an adipokine that belongs to the epidermal growth factor family and binds to ErbB4 tyrosine kinase receptors. In 3T3-L1 adipocytes, the downregulation of Nrg4 expression enhances inflammation and autophagy, resulting in insulin resistance. Here, we searched for the causes of this phenotype. Nrg4 knockdown (Nrg4 KD) adipocytes showed a significant reduction in mitochondrial content and elongation, along with a lower content of the mitochondria fusion protein mitofusin 2 (MFN2), and increased H2O2 production compared to the control scrambled cells (Scr). The antioxidant N-acetylcysteine reversed the oxidative stress and reduced the gene expression of the pro-inflammatory cytokine tumor necrosis factor α (TNFα). Nrg4 KD adipocytes showed enhanced lipolysis and reduced lipogenesis, in addition to a significant reduction in several intermediates of the Krebs cycle. In summary, Nrg4 downregulation in adipocytes affects mitochondrial content and functioning, causing impaired cellular metabolism, which in turn results in oxidative stress, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Francisco Díaz-Sáez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Cristina Balcells
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
| | - Laura Rosselló
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
| | - Iliana López-Soldado
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Montserrat Romero
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - David Sebastián
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Francisco Javier López-Soriano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sílvia Busquets
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Marta Cascante
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Wifredo Ricart
- Department of Medical Sciences, University of Girona, Carrer Emili Grahit, 77, 17003 Girona, Spain; (W.R.); (J.M.F.-R.); (J.M.M.-N.)
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), Carrer del Dr. Castany, s/n, 17190 Salt, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Medical Sciences, University of Girona, Carrer Emili Grahit, 77, 17003 Girona, Spain; (W.R.); (J.M.F.-R.); (J.M.M.-N.)
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), Carrer del Dr. Castany, s/n, 17190 Salt, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José María Moreno-Navarrete
- Department of Medical Sciences, University of Girona, Carrer Emili Grahit, 77, 17003 Girona, Spain; (W.R.); (J.M.F.-R.); (J.M.M.-N.)
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), Carrer del Dr. Castany, s/n, 17190 Salt, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julián Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa, University Hospital of la Princesa, Autonomous University of Madrid, c/Maestro Vives, 2, 28009 Madrid, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xavier Testar
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Marta Camps
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Anna Gumà
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain; (F.D.-S.); (C.B.); (L.R.); (I.L.-S.); (M.R.); (F.J.L.-S.); (S.B.); (M.C.); (X.T.); (M.C.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
3
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Chen L, Xuan Y, Zhu Y, Wang J, Tian W, Yang X, Chen W, Chen S, Wang S, Miao Q, Liu Y, Zhang R, Hu C, Zhang Y, Jin L, Yu H. Adipocyte secreted NRG4 ameliorates age-associated metabolic dysfunction. Biochem Pharmacol 2024; 225:116327. [PMID: 38823457 DOI: 10.1016/j.bcp.2024.116327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
With the progressive aging of society, there is an increasing prevalence of age-related diseases that pose a threat to the elderly's quality of life. Adipose tissue, a vital energy reservoir with endocrine functions, is one of the most vulnerable tissues in aging, which in turn influences systematic aging process, including metabolic dysfunction. However, the underlying mechanism is still poorly understood. In this study, we found that NRG4, a novel adipokine, is obviously decreased in adipocyte tissues and serums during aging. Moreover, delivered recombinant NRG4 protein (rNRG4) into aged mice can ameliorate age-associated insulin resistance, glucose disorders and other metabolic disfunction. In addition, rNRG4 treatment alleviates age-associated hepatic steatosis and sarcopenia, accompanied with altered gene signatures. Together, these results indicate that NRG4 plays a key role in the aging process and is a therapeutic target for the treatment of age-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Liwei Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ye Xuan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yangyang Zhu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 226001, China
| | - Jinghui Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Department of Endocrinology, Xihua Xian People's Hospital, Zhoukou 466000, China
| | - Wen Tian
- Department of Endocrinology, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaoyue Yang
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Si Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Siyi Wang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qizeng Miao
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yahui Liu
- Department of Laboratory Medicine, Shanghai Post and Telecommunications Hospital, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 226001, China.
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Li Jin
- Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China.
| | - Haoyong Yu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
5
|
Chen J, Zheng H, Wu X, Niu X, Dai Y, Zhou Z, Ye F. Neuregulin 1 as a potential biomarker for disease progression in moyamoya disease: A case-control study in Chinese population. J Stroke Cerebrovasc Dis 2024; 33:107581. [PMID: 38224792 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024] Open
Abstract
OBJECTIVE Moyamoya disease (MMD) is a rare and progressive stenosis of cerebral arteries characterized by abnormally proliferative vasculopathy. Current studies have demonstrated that Neuregulin 1 (NRG1) plays a key role in angiogenesis-related disorders. Thus, the aim of our study is to investigate the serum NRG1 levels and their clinical correlations in MMD patients. METHODS In this study, thirty adult patients with MMD and age-gender matched healthy controls were enrolled from our hospital between July 2020 and April 2022. Peripheral blood samples were collected at baseline, and clinical data were obtained from the electronic medical record system. Serum NRG1 concentrations were measured by enzyme-linked immunosorbent assay. Sanger sequencing was applied to detect the RNF213 p.R4810K mutation. RESULTS The serum NRG1 levels were significantly higher in MMD patients compared to controls (14.48 ± 10.81 vs.7.54 ± 6.35mmol/L, p < 0.001). No statistical difference in baseline clinical characteristics was found between both groups. Correlation analyses showed that NRG1 levels were positively associated with Suzuki staging (r = 0.4137, p = 0.023) while not related to other clinical features (reduced cerebral blood flow, posterior cerebral artery involvement, bilateral or unilateral steno-occlusive changes). Furthermore, subgroup analysis revealed that MMD patients with the RNF213 p.R4810K mutation presented with significantly higher NRG1 levels than those without the mutation (9.60 ± 0.929 vs. 25.89 ± 4.338 mmol/L, p = 0.001). CONCLUSIONS Our study suggests that increased serum NRG1 levels may constitute a characteristic feature of MMD, indicating a potential positive correlation with disease progression and the presence of the RNF213 mutation. This positions NRG1 as a potentially crucial target for further studies aimed at comprehending the pathogenesis of MMD.
Collapse
Affiliation(s)
- Jie Chen
- Department of Neurology and Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hanyue Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxin Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingyang Niu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Dai
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenhua Zhou
- Department of Neurology and Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Fei Ye
- Department of Neurology and Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Chen M, Zhu J, Luo H, Mu W, Guo L. The journey towards physiology and pathology: Tracing the path of neuregulin 4. Genes Dis 2024; 11:687-700. [PMID: 37692526 PMCID: PMC10491916 DOI: 10.1016/j.gendis.2023.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/11/2023] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
Neuregulin 4 (Nrg4), an epidermal growth factor (EGF) family member, can bind to and activate the ErbB4 receptor tyrosine kinase. Nrg4 has five different isoforms by alternative splicing and performs a wide variety of functions. Nrg4 is involved in a spectrum of physiological processes including neurobiogenesis, lipid metabolism, glucose metabolism, thermogenesis, and angiogenesis. In pathological processes, Nrg4 inhibits inflammatory factor levels and suppresses apoptosis in inflammatory diseases. In addition, Nrg4 could ameliorate obesity, insulin resistance, and cardiovascular diseases. Furthermore, Nrg4 improves non-alcoholic fatty liver disease (NAFLD) by promoting autophagy, improving lipid metabolism, and inhibiting cell death of hepatocytes. Besides, Nrg4 is closely related to the development of cancer, hyperthyroidism, and some other diseases. Therefore, elucidation of the functional role and mechanisms of Nrg4 will provide a clearer view of the therapeutic potential and possible risks of Nrg4.
Collapse
Affiliation(s)
- Min Chen
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jieying Zhu
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Hongyang Luo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wangjing Mu
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
7
|
Kabbani N, Blüher M, Stepan H, Stumvoll M, Ebert T, Tönjes A, Schrey-Petersen S. Adipokines in Pregnancy: A Systematic Review of Clinical Data. Biomedicines 2023; 11:biomedicines11051419. [PMID: 37239090 DOI: 10.3390/biomedicines11051419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines are signaling proteins involved in metabolic, endocrinological, vascular and immunogenic processes. Associations of various adipokines with not only insulin resistance but also with increased insulin sensitivity, increased systolic blood pressure, and atherosclerosis highlight the significance of adipokines in several components of metabolic syndrome and metabolic diseases in general. As pregnancy presents a unique metabolic state, the role of adipokines in pregnancy, and even in various pregnancy complications, appears to be key to elucidating these metabolic processes. Many studies in recent years have attempted to clarify the role of adipokines in pregnancy and gestational pathologies. In this review, we aim to investigate the changes in maternal adipokine levels in physiological gestation, as well as the association of adipokines with pregnancy pathologies, such as gestational diabetes mellitus (GDM) and preeclampsia (PE). Furthermore, we will analyze the association of adipokines in both maternal serum and cord blood with parameters of intrauterine growth and various pregnancy outcomes.
Collapse
Affiliation(s)
- Noura Kabbani
- Department of Obstetrics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, The University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Holger Stepan
- Department of Obstetrics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Thomas Ebert
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Anke Tönjes
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | | |
Collapse
|
8
|
Kreissl FK, Banki MA, Droujinine IA. Molecular methods to study protein trafficking between organs. Proteomics 2023; 23:e2100331. [PMID: 36478633 DOI: 10.1002/pmic.202100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Interorgan communication networks are key regulators of organismal homeostasis, and their dysregulation is associated with a variety of pathologies. While mass spectrometry proteomics identifies circulating proteins and can correlate their abundance with disease phenotypes, the tissues of origin and destinations of these secreted proteins remain largely unknown. In vitro approaches to study protein secretion are valuable, however, they may not mimic the complexity of in vivo environments. More recently, the development of engineered promiscuous BirA* biotin ligase derivatives has enabled tissue-specific tagging of cellular secreted proteomes in vivo. The use of biotin as a molecular tag provides information on the tissue of origin and destination, and enables the enrichment of low-abundance hormone proteins. Therefore, promiscuous protein biotinylation is a valuable tool to study protein secretion in vivo.
Collapse
Affiliation(s)
- Felix K Kreissl
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Michael A Banki
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Ilia A Droujinine
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
9
|
Lee E, Korf H, Vidal-Puig A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J Hepatol 2023; 78:1048-1062. [PMID: 36740049 DOI: 10.1016/j.jhep.2023.01.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Alongside the liver, white adipose tissue (WAT) is critical in regulating systemic energy homeostasis. Although each organ has its specialised functions, they must work coordinately to regulate whole-body metabolism. Adipose tissues and the liver are relatively resilient and can adapt to an energy surplus by facilitating triglyceride (TG) storage up to a certain threshold level without significant metabolic disturbances. However, lipid storage in WAT beyond a "personalised" adiposity threshold becomes dysfunctional, leading to metabolic inflexibility, progressive inflammation, and aberrant adipokine secretion. Moreover, the failure of adipose tissue to store and mobilise lipids results in systemic knock-on lipid overload, particularly in the liver. Factors contributing to hepatic lipid overload include lipids released from WAT, dietary fat intake, and enhanced de novo lipogenesis. In contrast, extrahepatic mechanisms counteracting toxic hepatic lipid overload entail coordinated compensation through oxidation of surplus fatty acids in brown adipose tissue and storage of fatty acids as TGs in WAT. Failure of these integrated homeostatic mechanisms leads to quantitative increases and qualitative alterations to the lipidome of the liver. Initially, hepatocytes preferentially accumulate TG species leading to a relatively "benign" non-alcoholic fatty liver. However, with time, inflammatory responses ensue, progressing into more severe conditions such as non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma, in some individuals (often without an early prognostic clue). Herein, we highlight the pathogenic importance of obesity-induced "adipose tissue failure", resulting in decreased adipose tissue functionality (i.e. fat storage capacity and metabolic flexibility), in the development and progression of NAFL/NASH.
Collapse
Affiliation(s)
- Eunyoung Lee
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Centro de Innvestigacion Principe Felipe, Valencia, Spain; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| |
Collapse
|
10
|
Liu Y, Chen M. Neuregulin 4 as a novel adipokine in energy metabolism. Front Physiol 2023; 13:1106380. [PMID: 36703934 PMCID: PMC9873244 DOI: 10.3389/fphys.2022.1106380] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Adipose tissue has been shown to play a key role in energy metabolism and it has been shown to regulate metabolic homeostasis through the secretion of adipokines. Neuregulin 4 (Nrg4), a novel adipokine secreted mainly by brown adipose tissue (BAT), has recently been characterized as having an important effect on the regulation of energy homeostasis and glucolipid metabolism. Nrg4 can modulate BAT-related thermogenesis by increasing sympathetic innervation of adipose tissue and therefore has potential metabolic benefits. Nrg4 improves metabolic dysregulation in various metabolic diseases such as insulin resistance, obesity, non-alcoholic fatty liver disease, and diabetes through several mechanisms such as anti-inflammation, autophagy regulation, pro-angiogenesis, and lipid metabolism normalization. However, inconsistent findings are found regarding the effects of Nrg4 on metabolic diseases in clinical settings, and this heterogeneity needs to be further clarified by future studies. The potential metabolic protective effect of Nrg4 suggests that it may be a promising endocrine therapeutic target.
Collapse
Affiliation(s)
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Latorre J, Martínez C, Ortega F, Oliveras-Cañellas N, Díaz-Sáez F, Aragonés J, Camps M, Gumà A, Ricart W, Fernández-Real JM, Moreno-Navarrete JM. The relevance of EGFR, ErbB receptors and neuregulins in human adipocytes and adipose tissue in obesity. Biomed Pharmacother 2022; 156:113972. [DOI: 10.1016/j.biopha.2022.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
|
12
|
Liao ZZ, Ran L, Qi XY, Wang YD, Wang YY, Yang J, Liu JH, Xiao XH. Adipose endothelial cells mastering adipose tissues metabolic fate. Adipocyte 2022; 11:108-119. [PMID: 35067158 PMCID: PMC8786343 DOI: 10.1080/21623945.2022.2028372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Dynamic communication within adipose tissue depends on highly vascularized structural characteristics to maintain systemic metabolic homoeostasis. Recently, it has been noted that adipose endothelial cells (AdECs) act as essential bridges for biological information transmission between adipose-resident cells. Hence, paracrine regulators that mediate crosstalk between AdECs and adipose stromal cells were summarized. We also highlight the importance of AdECs to maintain adipocytes metabolic homoeostasis by regulating insulin sensitivity, lipid turnover and plasticity. The differential regulation of AdECs in adipose plasticity often depends on vascular density and metabolic states. Although choosing pro-angiogenic or anti-angiogenic therapies for obesity is still a matter of debate in clinical settings, the growing numbers of drugs have been confirmed to play an anti-obesity effect by affecting vascularization. Pharmacologic angiogenesis intervention has great potential as therapeutic strategies for obesity.
Collapse
Affiliation(s)
- Zhe-Zhen Liao
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Ran
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao-Yan Qi
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang-Hua Liu
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
The Shades of Grey in Adipose Tissue Reprogramming. Biosci Rep 2022; 42:230844. [PMID: 35211733 PMCID: PMC8905306 DOI: 10.1042/bsr20212358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
The adipose tissue (AT) has a major role in contributing to obesity-related pathologies through regulating systemic immunometabolism. The pathogenicity of the AT is underpinned by its remarkable plasticity to be reprogrammed during obesity, in the perspectives of tissue morphology, extracellular matrix (ECM) composition, angiogenesis, immunometabolic homoeostasis and circadian rhythmicity. Dysregulation in these features escalates the pathogenesis conferred by this endometabolic organ. Intriguingly, the potential to be reprogrammed appears to be an Achilles’ heel of the obese AT that can be targeted for the management of obesity and its associated comorbidities. Here, we provide an overview of the reprogramming processes of white AT (WAT), with a focus on their dynamics and pleiotropic actions over local and systemic homoeostases, followed by a discussion of potential strategies favouring therapeutic reprogramming. The potential involvement of AT remodelling in the pathogenesis of COVID-19 is also discussed.
Collapse
|
14
|
Neuregulin 4 Downregulation Induces Insulin Resistance in 3T3-L1 Adipocytes through Inflammation and Autophagic Degradation of GLUT4 Vesicles. Int J Mol Sci 2021; 22:ijms222312960. [PMID: 34884763 PMCID: PMC8657571 DOI: 10.3390/ijms222312960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
The adipokine Neuregulin 4 (Nrg4) protects against obesity-induced insulin resistance. Here, we analyze how the downregulation of Nrg4 influences insulin action and the underlying mechanisms in adipocytes. Validated shRNA lentiviral vectors were used to generate scramble (Scr) and Nrg4 knockdown (KD) 3T3-L1 adipocytes. Adipogenesis was unaffected in Nrg4 KD adipocytes, but there was a complete impairment of the insulin-induced 2-deoxyglucose uptake, which was likely the result of reduced insulin receptor and Glut4 protein. Downregulation of Nrg4 enhanced the expression of proinflammatory cytokines. Anti-inflammatory agents recovered the insulin receptor, but not Glut4, content. Proteins enriched in Glut4 storage vesicles such as the insulin-responsive aminopeptidase (IRAP) and Syntaxin-6 as well as TBC1D4, a protein involved in the intracellular retention of Glut4 vesicles, also decreased by Nrg4 KD. Insulin failed to reduce autophagy in Nrg4 KD adipocytes, observed by a minor effect on mTOR phosphorylation, at the time that proteins involved in autophagy such as LC3-II, Rab11, and Clathrin were markedly upregulated. The lysosomal activity inhibitor bafilomycin A1 restored Glut4, IRAP, Syntaxin-6, and TBC1D4 content to those found in control adipocytes. Our study reveals that Nrg4 preserves the insulin responsiveness by preventing inflammation and, in turn, benefits the insulin regulation of autophagy.
Collapse
|
15
|
Prabata A, Ikeda K, Rahardini EP, Hirata KI, Emoto N. GPNMB plays a protective role against obesity-related metabolic disorders by reducing macrophage inflammatory capacity. J Biol Chem 2021; 297:101232. [PMID: 34582891 PMCID: PMC8524194 DOI: 10.1016/j.jbc.2021.101232] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 01/30/2023] Open
Abstract
Obesity is a global health problem that is often related to cardiovascular and metabolic diseases. Chronic low-grade inflammation in white adipose tissue (WAT) is a hallmark of obesity. Previously, during a search for differentially expressed genes in WAT of obese mice, we identified glycoprotein nonmetastatic melanoma protein B (GPNMB), of which expression was robustly induced in pathologically expanded WAT. Here, we investigated the role of GPNMB in obesity-related metabolic disorders utilizing GPNMB-deficient mice. When fed a high-fat diet (HFD), GPNMB-deficient mice showed body weight and adiposity similar to those of wild-type (WT) mice. Nonetheless, insulin and glucose tolerance tests revealed significant obesity-related metabolic disorders in GPNMB-KO mice compared with WT mice fed with HFD. Chronic WAT inflammation was remarkably worsened in HFD-fed GPNMB-KO mice, accompanied by a striking increase in crown-like structures, typical hallmarks for diseased WAT. Macrophages isolated from GPNMB-KO mice were observed to produce more inflammatory cytokines than those of WT mice, a difference abolished by supplementation with recombinant soluble GPNMB extracellular domain. We demonstrated that GPNMB reduced the inflammatory capacity of macrophages by inhibiting NF-κB signaling largely through binding to CD44. Finally, we showed that macrophage depletion by addition of clodronate liposomes abolished the worsened WAT inflammation and abrogated the exacerbation of metabolic disorders in GPNMB-deficient mice fed on HFD. Our data reveal that GPNMB negatively regulates macrophage inflammatory capacities and ameliorates the WAT inflammation in obesity; therefore we conclude that GPNMB is a promising therapeutic target for the treatment of metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Adam Prabata
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan; Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan; Department of Epidemiology for Longevity and Regional Health, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Elda Putri Rahardini
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan; Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan. ,
| |
Collapse
|
16
|
Honda S, Ikeda K, Urata R, Yamazaki E, Emoto N, Matoba S. Cellular senescence promotes endothelial activation through epigenetic alteration, and consequently accelerates atherosclerosis. Sci Rep 2021; 11:14608. [PMID: 34272458 PMCID: PMC8285500 DOI: 10.1038/s41598-021-94097-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/05/2021] [Indexed: 12/28/2022] Open
Abstract
Senescent vascular cells are detected in atherosclerotic lesion, and its involvement in the development of atherosclerosis has been revealed; however, whether and the mechanism by which endothelial cell (EC) senescence is causally implicated in atherosclerosis remains unclear. We here investigate a role of EC senescence in atherosclerosis by utilizing EC-specific progeroid mice that overexpress the dominant negative form of telomeric repeat-binding factor 2 under the control of the Tie2 or vascular endothelial cadherin promoter. EC-specific progeria accelerated atherosclerosis in mice with target deletion of ApoE. Mechanistically, senescent ECs were markedly sensitive for inflammation-mediated VCAM-1 induction, leading to enhanced monocyte adhesion. Inhibition of NF-κB signaling abolished the enhanced inflammatory responses in senescent ECs, while NF-κB nuclear translocation in response to TNF-α were similar between young and senescent ECs. We found a higher association of VCAM-1 gene with active histone H3 trimethylated on lysine 4, leading to increased NF-κB accessibility in senescent ECs. Our data revealed that EC cellular senescence causes endothelial hyper-inflammability through epigenetic alteration, which consequently accelerates atherosclerosis. Therefore, EC senescence is a promising therapeutic target for the prevention and/or treatment of atherosclerotic disease in elderly population.
Collapse
Affiliation(s)
- Sakiko Honda
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Koji Ikeda
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan. .,Department of Epidemiology for Longevity and Regional Health, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan. .,Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe, 658-8558, Japan.
| | - Ryota Urata
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Ekura Yamazaki
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe, 658-8558, Japan
| | - Satoaki Matoba
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto, 602-8566, Japan
| |
Collapse
|
17
|
Abstract
Neuregulins, members of the largest subclass of growth factors of the epidermal growth factor family, mediate a myriad of cellular functions including survival, proliferation, and differentiation in normal tissues through binding to receptor tyrosine kinases of the ErbB family. However, aberrant neuregulin signaling in the tumor microenvironment is increasingly recognized as a key player in initiation and malignant progression of human cancers. In this chapter, we focus on the role of neuregulin signaling in the hallmarks of cancer, including cancer initiation and development, metastasis, as well as therapeutic resistance. Moreover, role of neuregulin signaling in the regulation of tumor microenvironment and targeting of neuregulin signaling in cancer from the therapeutic perspective are also briefly discussed.
Collapse
|
18
|
Chondronikola M, Sarkar S. Total-body PET Imaging: A New Frontier for the Assessment of Metabolic Disease and Obesity. PET Clin 2020; 16:75-87. [PMID: 33160928 DOI: 10.1016/j.cpet.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity and associated metabolic syndrome are a global public health issue. Understanding the pathophysiology of this systemic disease is of critical importance for the development of future therapeutic interventions to improve clinical outcomes. The multiorgan nature of the pathophysiology of obesity presents a unique challenge. Total-body PET imaging, either static or dynamic, provides a vital set of tools to study organ crosstalk. The visualization and quantification of tissue metabolic kinetics with total-body PET in health and disease provides essential information to better understand disease physiology and potentially develop diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Maria Chondronikola
- Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; Harokopio University of Athens, El Venizelou 70, Kallithea 17676, Greece
| | - Souvik Sarkar
- Harokopio University of Athens, El Venizelou 70, Kallithea 17676, Greece; Division of Gastroenterology and Hepatology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
19
|
Scheja L, Heeren J. Novel Adipose Tissue Targets to Prevent and Treat Atherosclerosis. Handb Exp Pharmacol 2020; 270:289-310. [PMID: 33373032 DOI: 10.1007/164_2020_363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipose tissue as a major organ of lipid and lipoprotein metabolism has a major impact on metabolic homeostasis and thus influences the development of atherosclerosis and related cardiometabolic diseases. Unhealthy adipose tissue, which is often associated with obesity and systemic insulin resistance, promotes the development of diabetic dyslipidemia and can negatively affect vascular tissue homeostasis by secreting pro-inflammatory peptides and lipids. Conversely, paracrine and endocrine factors that are released from healthy adipose tissue can preserve metabolic balance and a functional vasculature. In this chapter, we describe adipose tissue types relevant for atherosclerosis and address the question how lipid metabolism as well as regulatory molecules produced in these fat depots can be targeted to counteract atherogenic processes in the vessel wall and improve plasma lipids. We discuss the role of adipose tissues in the action of approved drugs with anti-atherogenic activity. In addition, we present potential novel targets and therapeutic approaches aimed at increasing lipoprotein disposal in adipose tissue, boosting the activity of heat-producing (thermogenic) adipocytes, reducing adipose tissue inflammation, and improving or replacing beneficial hormones released from adipose tissues. Furthermore, we describe the future potential of innovative drug delivery technologies.
Collapse
Affiliation(s)
- Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Vohra MS, Ahmad B, Serpell CJ, Parhar IS, Wong EH. Murine in vitro cellular models to better understand adipogenesis and its potential applications. Differentiation 2020; 115:62-84. [PMID: 32891960 DOI: 10.1016/j.diff.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, PJ 47500, Selangor, Malaysia.
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
21
|
Wang R, Zhou W, Zhu X, Zhou N, Yang F, Sun B, Li X. Differences in Neuregulin 4 Expression in Children: Effects of Fat Depots and Obese Status. Endocr Res 2020; 45:190-201. [PMID: 31986906 DOI: 10.1080/07435800.2020.1721528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE To observe the expression of Nrg4, uncoupling protein-1 (UCP1), tumor necrosis factor α (TNFα), CD31, VE-cadherin/CDH5 and vascular endothelial growth factor A (VEGF-A) mRNA in abdominal subcutaneous (SC), omental (OM) adipose tissue in children with relation to anthropometric parameters. Further to verify the effect of inflammatory mediators on Nrg4 and UCP1 mRNA expression in adipocytes. METHODS Paired SC and OM adipose tissues were obtained from 58 children. In vitro, the adipocytes isolated from primary inguinal adipose tissue of mice were treated with TNFα (50 ng/ml) for 12-48 h. mRNA levels of Nrg4, UCP1 and TNFα were determined by real-time PCR. RESULTS Nrg4, UCP1, VEGF-A and CDH5 mRNA levels in SC were significantly higher than those in OM adipose tissue and the mRNA level of TNFα showed the opposite result. Moreover, Nrg4 and UCP1 mRNA in SC were significantly lower in overweight children compared to normal weight children. Nrg4 in SC and OM was negatively associated with BMISDS, WHtR. CDH55 mRNA in OM was negatively associated with WHR. VEGF-A was positively correlated with Nrg4 in SC. In vitro, Nrg4 and UCP1 mRNA levels in adipocytes were dose- and time-dependently decreased under TNFα treatment. CONCLUSIONS Nrg4, UCP1, VEGF-A and CDH5 mRNA expression in adipose tissues display a depot-specific pattern. Nrg4 mRNA levels in adipose tissue are decreased with obesity and associated with WAT browning and angiogenesis. TNFα may be involved in the regulation of Nrg4 level in adipose tissue, which may be one of the causes of the down-regulation of Nrg4 expression in obesity with chronic inflammatory response.
Collapse
Affiliation(s)
- Ran Wang
- Department of Children Health Care, Children's Hospital of Nanjing Medical University , Nanjing, China
| | - Wei Zhou
- Department of Children Health Care, Children's Hospital of Nanjing Medical University , Nanjing, China
| | - Xiaolei Zhu
- Department of Children Health Care, Children's Hospital of Nanjing Medical University , Nanjing, China
| | - Nan Zhou
- Department of Children Health Care, Children's Hospital of Nanjing Medical University , Nanjing, China
| | - Fan Yang
- Department of Children Health Care, Children's Hospital of Nanjing Medical University , Nanjing, China
| | - Bin Sun
- Department of General Surgery, Children's Hospital of Nanjing Medical University , Nanjing, China
| | - Xiaonan Li
- Department of Children Health Care, Children's Hospital of Nanjing Medical University , Nanjing, China
- Institute of Pediatric Research, Nanjing Medical University , Nanjing, China
| |
Collapse
|
22
|
Gumà A, Díaz-Sáez F, Camps M, Zorzano A. Neuregulin, an Effector on Mitochondria Metabolism That Preserves Insulin Sensitivity. Front Physiol 2020; 11:696. [PMID: 32655416 PMCID: PMC7324780 DOI: 10.3389/fphys.2020.00696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023] Open
Abstract
Various external factors modulate the metabolic efficiency of mitochondria. This review focuses on the impact of the growth factor neuregulin and its ErbB receptors on mitochondria and their relationship with several physiopathological alterations. Neuregulin is involved in the differentiation of heart, skeletal muscle, and the neuronal system, among others; and its deficiency is deleterious for the health. Information gathered over the last two decades suggests that neuregulin plays a key role in regulating the mitochondrial oxidative machinery, which sustains cell survival and insulin sensitivity.
Collapse
Affiliation(s)
- Anna Gumà
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Francisco Díaz-Sáez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marta Camps
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
23
|
Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab 2020; 34:27-42. [PMID: 32180558 PMCID: PMC6997501 DOI: 10.1016/j.molmet.2019.12.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The diminished glucose lowering effect of insulin in obesity, called "insulin resistance," is associated with glucose intolerance, type 2 diabetes, and other serious maladies. Many publications on this topic have suggested numerous hypotheses on the molecular and cellular disruptions that contribute to the syndrome. However, significant uncertainty remains on the mechanisms of its initiation and long-term maintenance. SCOPE OF REVIEW To simplify insulin resistance analysis, this review focuses on the unifying concept that adipose tissue is a central regulator of systemic glucose homeostasis by controlling liver and skeletal muscle metabolism. Key aspects of adipose function related to insulin resistance reviewed are: 1) the modes by which specific adipose tissues control hepatic glucose output and systemic glucose disposal, 2) recently acquired understanding of the underlying mechanisms of these modes of regulation, and 3) the steps in these pathways adversely affected by obesity that cause insulin resistance. MAJOR CONCLUSIONS Adipocyte heterogeneity is required to mediate the multiple pathways that control systemic glucose tolerance. White adipocytes specialize in sequestering triglycerides away from the liver, muscle, and other tissues to limit toxicity. In contrast, brown/beige adipocytes are very active in directly taking up glucose in response to β adrenergic signaling and insulin and enhancing energy expenditure. Nonetheless, white, beige, and brown adipocytes all share the common feature of secreting factors and possibly exosomes that act on distant tissues to control glucose homeostasis. Obesity exerts deleterious effects on each of these adipocyte functions to cause insulin resistance.
Collapse
Affiliation(s)
- Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
24
|
Tutunchi H, Ostadrahimi A, Hosseinzadeh-Attar MJ, Miryan M, Mobasseri M, Ebrahimi-Mameghani M. A systematic review of the association of neuregulin 4, a brown fat-enriched secreted factor, with obesity and related metabolic disturbances. Obes Rev 2020; 21:e12952. [PMID: 31782243 DOI: 10.1111/obr.12952] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Neuregulin 4 (Nrg4), a novel brown fat-enriched hormone, plays a key role in the modulation of glucose and lipid metabolism and energy balance. Recent data have demonstrated that the expression of Nrg4 is substantially down-regulated in mouse and human obesity, making its regulatory aspect intriguing. Because of the close relationship between Nrg4, obesity, and associated metabolic diseases, this systematic review aimed to assess the association of Nrg4 with obesity and related metabolic disturbances, emphasizing its possible mechanisms of action in these disorders. We searched PubMed/Medline, ScienceDirect, Scopus, EMBASE, ProQuest, and Google Scholar up until June 2019. The evidence reviewed here indicates that Nrg4 may contribute to the prevention of obesity and related metabolic complications by elevating brown adipose tissue activity, increasing the expression of thermogenic markers, decreasing the expression of lipogenic/adipogenic genes, exacerbating white adipose tissue browning, increasing the number of brite/beige adipocytes, promoting hepatic fat oxidation and ketogenesis, inducing neurite outgrowth, enhancing blood vessels in adipose tissue, increasing the circulatory levels of healthy adipokines, and improving glucose homeostasis. Thus, Nrg4 appears to be a novel therapeutic strategy for the treatment of obesity and associated metabolic complications. However, prospective cohort studies are warranted to confirm these outcomes.
Collapse
Affiliation(s)
- Helda Tutunchi
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahsa Miryan
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Social Determinants of Health Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Barinda AJ, Ikeda K, Nugroho DB, Wardhana DA, Sasaki N, Honda S, Urata R, Matoba S, Hirata KI, Emoto N. Endothelial progeria induces adipose tissue senescence and impairs insulin sensitivity through senescence associated secretory phenotype. Nat Commun 2020; 11:481. [PMID: 31980643 PMCID: PMC6981212 DOI: 10.1038/s41467-020-14387-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
Vascular senescence is thought to play a crucial role in an ageing-associated decline of organ functions; however, whether vascular senescence is causally implicated in age-related disease remains unclear. Here we show that endothelial cell (EC) senescence induces metabolic disorders through the senescence-associated secretory phenotype. Senescence-messaging secretomes from senescent ECs induced a senescence-like state and reduced insulin receptor substrate-1 in adipocytes, which thereby impaired insulin signaling. We generated EC-specific progeroid mice that overexpressed the dominant negative form of telomeric repeat-binding factor 2 under the control of the Tie2 promoter. EC-specific progeria impaired systemic metabolic health in mice in association with adipose tissue dysfunction even while consuming normal chow. Notably, shared circulation with EC-specific progeroid mice by parabiosis sufficiently transmitted the metabolic disorders into wild-type recipient mice. Our data provides direct evidence that EC senescence impairs systemic metabolic health, and thus establishes EC senescence as a bona fide risk for age-related metabolic disease.
Collapse
Affiliation(s)
- Agian Jeffilano Barinda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan.,Department of Pharmacology and Therapeutic, Faculty of Medicine, Universitas Indonesia, Salemba Raya 6, Jakarta, 10430, Indonesia
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan.
| | - Dhite Bayu Nugroho
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan
| | - Donytra Arby Wardhana
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan
| | - Naoto Sasaki
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan
| | - Sakiko Honda
- Department of Cardiology, Kyoto Prefectural University Graduate School of Medical Science, 465 Kajii, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Ryota Urata
- Department of Cardiology, Kyoto Prefectural University Graduate School of Medical Science, 465 Kajii, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiology, Kyoto Prefectural University Graduate School of Medical Science, 465 Kajii, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, 6500017, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, 6500017, Japan
| |
Collapse
|
26
|
Maller SM, Cagnoni AJ, Bannoud N, Sigaut L, Pérez Sáez JM, Pietrasanta LI, Yang RY, Liu FT, Croci DO, Di Lella S, Sundblad V, Rabinovich GA, Mariño KV. An adipose tissue galectin controls endothelial cell function via preferential recognition of 3-fucosylated glycans. FASEB J 2019; 34:735-753. [PMID: 31914594 DOI: 10.1096/fj.201901817r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022]
Abstract
Upon overnutrition, adipocytes activate a homeostatic program to adjust anabolic pressure. An inflammatory response enables adipose tissue (AT) expansion with concomitant enlargement of its capillary network, and reduces energy storage by increasing insulin resistance. Galectin-12 (Gal-12), an endogenous lectin preferentially expressed in AT, plays a key role in adipocyte differentiation, lipolysis, and glucose homeostasis. Here, we reveal biochemical and biophysical determinants of Gal-12 structure, including its preferential recognition of 3-fucosylated structures, a unique feature among members of the galectin family. Furthermore, we identify a previously unanticipated role for this lectin in the regulation of angiogenesis within AT. Gal-12 showed preferential localization within the inner side of lipid droplets, and its expression was upregulated under hypoxic conditions. Through glycosylation-dependent binding to endothelial cells, Gal-12 promoted in vitro angiogenesis. Moreover, analysis of in vivo AT vasculature showed reduced vascular networks in Gal-12-deficient (Lgals12-/-) compared to wild-type mice, supporting a role for this lectin in AT angiogenesis. In conclusion, this study unveils biochemical, topological, and functional features of a hypoxia-regulated galectin in AT, which modulates endothelial cell function through recognition of 3-fucosylated glycans. Thus, glycosylation-dependent programs may control AT homeostasis by modulating endothelial cell biology with critical implications in metabolic disorders and inflammation.
Collapse
Affiliation(s)
- Sebastián M Maller
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina.,Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Nadia Bannoud
- Laboratorio de Inmunopatología, Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Lorena Sigaut
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA-CONICET), Buenos Aires, Argentina
| | - Juan M Pérez Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Lía I Pietrasanta
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA-CONICET), Buenos Aires, Argentina.,Centro de Microscopías Avanzadas (CMA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ri-Yao Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Diego O Croci
- Laboratorio de Inmunopatología, Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Santiago Di Lella
- Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Sundblad
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
27
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
28
|
Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 2019; 15:507-524. [PMID: 31296970 DOI: 10.1038/s41574-019-0230-6] [Citation(s) in RCA: 397] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
In addition to their role in glucose and lipid metabolism, adipocytes respond differentially to physiological cues or metabolic stress by releasing endocrine factors that regulate diverse processes, such as energy expenditure, appetite control, glucose homeostasis, insulin sensitivity, inflammation and tissue repair. Both energy-storing white adipocytes and thermogenic brown and beige adipocytes secrete hormones, which can be peptides (adipokines), lipids (lipokines) and exosomal microRNAs. Some of these factors have defined targets; for example, adiponectin and leptin signal through their respective receptors that are expressed in multiple organs. For other adipocyte hormones, receptors are more promiscuous or remain to be identified. Furthermore, many of these hormones are also produced by other organs and tissues, which makes defining the endocrine contribution of adipose tissues a challenge. In this Review, we discuss the functional role of adipose tissue-derived endocrine hormones for metabolic adaptations to the environment and we highlight how these factors contribute to the development of cardiometabolic diseases. We also cover how this knowledge can be translated into human therapies. In addition, we discuss recent findings that emphasize the endocrine role of white versus thermogenic adipocytes in conditions of health and disease.
Collapse
Affiliation(s)
- Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
29
|
Comas F, Martínez C, Sabater M, Ortega F, Latorre J, Díaz-Sáez F, Aragonés J, Camps M, Gumà A, Ricart W, Fernández-Real JM, Moreno-Navarrete JM. Neuregulin 4 Is a Novel Marker of Beige Adipocyte Precursor Cells in Human Adipose Tissue. Front Physiol 2019; 10:39. [PMID: 30766490 PMCID: PMC6365457 DOI: 10.3389/fphys.2019.00039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/14/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Nrg4 expression has been linked to brown adipose tissue activity and browning of white adipocytes in mice. Here, we aimed to investigate whether these observations could be translated to humans by investigating NRG4 mRNA and markers of brown/beige adipocytes in human visceral (VAT) and subcutaneous adipose tissue (SAT). We also studied the possible association of NRG4 with insulin action. Methods: SAT and VAT NRG4 and markers of brown/beige (UCP1, UCP3, and TMEM26)-related gene expression were analyzed in two independent cohorts (n = 331 and n = 59). Insulin resistance/sensitivity was measured using HOMAIR and glucose infusion rate during euglycemic hyperinsulinemic clamp. Results: In both cohort 1 and cohort 2, NRG4 and thermogenic/beige-related gene expression were significantly increased in VAT compared to SAT. Adipogenic-related genes followed an opposite pattern. In cohort 1, VAT NRG4 gene expression was positively correlated with BMI and expression of UCP1, UCP3, TMEM26, and negatively with adipogenic (FASN, PPARG, and SLC2A4)- and inflammatory (IL6 and IL8)-related genes. In SAT, NRG4 gene expression was negatively correlated with HOMAIR and positively with UCP1 and TMEM26 gene expression. Multiple linear regression analysis revealed that expression of TMEM26 gene was the best predictor of NRG4 gene expression in both VAT and SAT. Specifically, NRG4 and TMEM26 gene expression was significantly increased in VAT, but not in SAT stromal vascular fraction cells (p < 0.001). In cohort 2, the significant association between NRG4 and TMEM26 gene expression in both VAT and SAT was confirmed, and SAT NRG4 gene expression also was positively correlated with insulin action and the expression of UCP1. Conclusion: Current findings suggest NRG4 gene expression as a novel marker of beige adipocytes in human adipose tissue.
Collapse
Affiliation(s)
- Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, Spain.,CIBEROBN (CB06/03/010), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Martínez
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, Spain
| | - Mònica Sabater
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, Spain.,CIBEROBN (CB06/03/010), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, Spain.,CIBEROBN (CB06/03/010), Instituto de Salud Carlos III, Madrid, Spain
| | - Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, Spain.,CIBEROBN (CB06/03/010), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Díaz-Sáez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Julian Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa, Autonomous University of Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Marta Camps
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Gumà
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, Spain.,CIBEROBN (CB06/03/010), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, University of Girona, Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, Spain.,CIBEROBN (CB06/03/010), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, University of Girona, Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, Spain.,CIBEROBN (CB06/03/010), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
30
|
Decreased plasma neuregulin 4 levels are associated with peripheral neuropathy in Chinese patients with newly diagnosed type 2 diabetes: A cross-sectional study. Cytokine 2019; 113:356-364. [DOI: 10.1016/j.cyto.2018.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
|
31
|
Nugroho DB, Ikeda K, Kajimoto K, Hirata KI, Emoto N. Activation of neuregulin-4 in adipocytes improves metabolic health by enhancing adipose tissue angiogenesis. Biochem Biophys Res Commun 2018; 504:427-433. [DOI: 10.1016/j.bbrc.2018.08.197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 01/16/2023]
|