1
|
Kulkarni GC, Saha R, Peters CJ. Ion channel expression and function in glioblastoma multiforme (GBM): pathophysiological mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119982. [PMID: 40328081 DOI: 10.1016/j.bbamcr.2025.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant and diffusely invasive WHO Grade IV brain tumor arising from glial and neural stem cells. GBM is characterized by rapid proliferation and migration, aggressive invasion of local brain parenchyma, a hypoxic microenvironment, resistance to apoptosis and high vascular remodeling and angiogenesis. These hallmarks contribute to a near universal tumor recurrence after treatment or resection and poor patient prognosis. Ion channels, a superfamily of proteins responsible for permitting ion flux across otherwise impermeant membranes, show extensive remodeling in GBM with aberrant function mechanistically linked to manipulation of each of these hallmarks. In this review, we will discuss the known links between ion channel expression and activity and cellular processes that are enhanced or perturbed during GBM formation or progression. We will also discuss the extent to which basic or translational findings on ion channels in GBM samples or cell lines have shown preclinical promise towards the development of improved therapeutics against GBMs.
Collapse
Affiliation(s)
- Gauri C Kulkarni
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Rayna Saha
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Christian J Peters
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Zhou Q, You Y, Zhao Y, Xiao S, Song Z, Huang C, Qian J, Lu W, Tong H, Zhang Y, Wang Z, Li W, Zhang C, Guo X, Luo R, Hou Y, Cui J, Lu L, Zhou Y. TRPV4 drives the progression of leiomyosarcoma by promoting ECM1 generation and co-activating the FAK/PI3K/AKT/GSK3β pathway. Cell Oncol (Dordr) 2025; 48:455-470. [PMID: 39612152 PMCID: PMC11996984 DOI: 10.1007/s13402-024-01008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE Leiomyosarcoma (LMS) is an aggressive mesenchymal malignant tumor with poor therapeutic options, but the molecular mechanisms underlying LMS remain largely unknown. Increasing evidence indicates that transient receptor potential vanilloid 4 (TRPV4) levels are closely related to the advancement of various malignant tumors through diverse molecular mechanisms. However, the roles and regulatory mechanisms of TRPV4 in LMS progression remain unclear. METHODS Immunohistochemistry, Western blot, and immunofluorescence were used to investigate the relationship between TRPV4 expression and LMS. Survival analysis was conducted to evaluate the association between TRPV4 levels and prognosis in LMS patients. Intracellular Ca2+ measurement, colony formation, CCK-8, wound healing and Transwell assays and peritoneal metastasis mouse model were used to verify the effect of TRPV4 activity and expression on LMS proliferation and metastasis. RNA-seq and proteomics were performed to explore the underlying mechanism. RESULTS TRPV4 was upregulated in LMS tissues and cells and served as a novel prognostic factor. Moreover, TRPV4 overexpression enhanced cell proliferation, cell migration and invasion of LMS cells in vitro, as well as promoted tumor metastasis in vivo, which could be blocked by HC067047 intervention or TRPV4 knockdown. Combined RNA-seq and proteomics analysis of KEGG pathway indicated that ECM receptor interaction was obviously activated. Extracellular matrix protein 1 (ECM1) was identified as downstream gene of TRPV4. Mechanistically, TRPV4 overexpression increased ECM1 level and activated the FAK/PI3K/AKT/GSK3β pathway, which could be reversed by TRPV4 knockdown or LY294002 treatment. Moreover, ECM1 overexpression enhanced the activation of FAK/PI3K/AKT/GSK3β pathway. And simultaneous overexpression of TRPV4 and ECM1 synergistically activated this pathway. CONCLUSION Our findings provide a novel mechanism by which TRPV4 directly activates Ca2+/FAK/PI3K/AKT/GSK3β pathway and further indirectly enhances the FAK/PI3K/AKT/GSK3β pathway through the promotion and secretion of ECM1 to promote LMS malignant progression. Targeting the TRPV4/FAK axis might be a promising potential strategy for prognosis and treatment of LMS.
Collapse
Affiliation(s)
- Qiwen Zhou
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yang You
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yingying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Shuxiu Xiao
- Clinical Centre for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhengqing Song
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chuxin Huang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiali Qian
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Li
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenlu Zhang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xi Guo
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Lili Lu
- Clinical Centre for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Xiamen Key Laboratory of Biotherapy, Xiamen, 361000, China.
| | - Yuhong Zhou
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Centre for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Xu J, Wang Z, Niu Y, Tang Y, Wang Y, Huang J, Leung ELH. TRP channels in cancer: Therapeutic opportunities and research strategies. Pharmacol Res 2024; 209:107412. [PMID: 39303771 DOI: 10.1016/j.phrs.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
The influence of gut microbiota on transient receptor potential (TRP) channels has been identified as an important element in the development of gastrointestinal conditions, yet its involvement in cancer progression is not as thoroughly understood. This review explores the multifaceted roles of TRP channels in oncogenesis and emphasizes their significance in cancer progression and therapeutic outcomes. Critical focus was placed on the influence of traditional medicines, such as traditional Chinese medicine (TCM) related aromatic medicines, on TRP channel functions. Moreover, we explored the interplay between the gut microbiota and TRP channels in cancer signaling, highlighting the therapeutic potential of targeting this axis in cancer treatment. The impact of current therapies on TRP channel function was examined, demonstrating the need for a comprehensive understanding of how different modalities affect TRP channels in cancer. Technological advancements, including artificial intelligence (AI) tools and computer-aided drug development (CADD), have been discussed in the context of leveraging TRP channels for innovative cancer therapies. Future directions emphasize the potential applications of TRP channel research in advancing cancer treatment and enhancing patients' well-being.
Collapse
Affiliation(s)
- Jiahui Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Ziming Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Yuqing Niu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Yuwei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China.
| |
Collapse
|
4
|
Hunek G, Zembala J, Januszewski J, Bełżek A, Syty K, Jabiry-Zieniewicz Z, Ludwin A, Flieger J, Baj J. Micro- and Macronutrients in Endometrial Cancer-From Metallomic Analysis to Improvements in Treatment Strategies. Int J Mol Sci 2024; 25:9918. [PMID: 39337406 PMCID: PMC11432114 DOI: 10.3390/ijms25189918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Endometrial cancer is reported to be one of the most prevalent cancers of the female reproductive organs worldwide, with increasing incidence and mortality rates over the past decade. Early diagnosis is critical for effective treatment. Recently, there has been a growing focus on the role of nutrition and micronutrient and macronutrient status in patients with gynecologic cancers, including endometrial cancer. In the following paper, we have conducted an in-depth narrative literature review with the aim of evaluating the results of metallomic studies specifically concerning the micro- and macronutrient status of patients with endometrial cancer. The main objective of the paper was to analyze the results regarding the nutritional status of endometrial cancer patients and describe the role of chosen elements in the onset and progression of endometrial carcinogenesis. Further, we have focused on the evaluation of the usage of the described elements in the potential treatment of the abovementioned cancer, as well as the possible prevention of cancer considering proper supplementation of chosen elements in healthy individuals. Calcium supplementation has been proposed to reduce the risk of endometrial cancer, although some studies offer conflicting evidence. Deficiencies in phosphorus, selenium, and zinc have been inversely associated with endometrial cancer risk, suggesting they may play a protective role, whereas excessive levels of iron, copper, and cadmium have been positively correlated with increased risk. However, the molecular mechanisms by which these elements affect endometrial carcinogenesis are not fully understood, and current findings are often contradictory. Further research is needed to clarify these relationships and to evaluate the potential of nutritional interventions for the prevention and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Julita Zembala
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Aleksandra Bełżek
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Kinga Syty
- Institute of Health Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1G, 20-708 Lublin, Poland
| | - Zoulikha Jabiry-Zieniewicz
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Artur Ludwin
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| |
Collapse
|
5
|
Pan T, Gao Y, Xu G, Yu L, Xu Q, Yu J, Liu M, Zhang C, Ma Y, Li Y. Widespread transcriptomic alterations of transient receptor potential channel genes in cancer. Brief Funct Genomics 2024; 23:214-227. [PMID: 37288496 DOI: 10.1093/bfgp/elad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Ion channels, in particular transient-receptor potential (TRP) channels, are essential genes that play important roles in many physiological processes. Emerging evidence has demonstrated that TRP genes are involved in a number of diseases, including various cancer types. However, we still lack knowledge about the expression alterations landscape of TRP genes across cancer types. In this review, we comprehensively reviewed and summarised the transcriptomes from more than 10 000 samples in 33 cancer types. We found that TRP genes were widespreadly transcriptomic dysregulated in cancer, which was associated with clinical survival of cancer patients. Perturbations of TRP genes were associated with a number of cancer pathways across cancer types. Moreover, we reviewed the functions of TRP family gene alterations in a number of diseases reported in recent studies. Taken together, our study comprehensively reviewed TRP genes with extensive transcriptomic alterations and their functions will directly contribute to cancer therapy and precision medicine.
Collapse
Affiliation(s)
- Tao Pan
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yueying Gao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Gang Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | | | - Qi Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jinyang Yu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Meng Liu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Can Zhang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yongsheng Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| |
Collapse
|
6
|
Keller M, Mergler S, Li A, Zahn I, Paulsen F, Garreis F. Thermosensitive TRP Channels Are Functionally Expressed and Influence the Lipogenesis in Human Meibomian Gland Cells. Int J Mol Sci 2024; 25:4043. [PMID: 38612853 PMCID: PMC11012639 DOI: 10.3390/ijms25074043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
While the involvement of thermosensitive transient receptor potential channels (TRPs) in dry eye disease (DED) has been known for years, their expression in the meibomian gland (MG) has never been investigated. This study aims to show their expression and involvement in the lipogenesis of the MG, providing a possible new drug target in the treatment of DED. Our RT-PCR, Western blot and immunofluorescence analysis showed the expression of TRPV1, TRPV3, TRPV4 and TRPM8 in the MG at the gene and the protein level. RT-PCR also showed gene expression of TRPV2 but not TRPA1. Calcium imaging and planar patch-clamping performed on an immortalized human meibomian gland epithelial cell line (hMGECs) demonstrated increasing whole-cell currents after the application of capsaicin (TRPV1) or icilin (TRPM8). Decreasing whole-cell currents could be registered after the application of AMG9810 (TRPV1) or AMTB (TRPM8). Oil red O staining on hMGECs showed an increase in lipid expression after TRPV1 activation and a decrease after TRPM8 activation. We conclude that thermo-TRPs are expressed at the gene and the protein level in MGs. Moreover, TRPV1 and TRPM8's functional expression and their contribution to their lipid expression could be demonstrated. Therefore, TRPs are potential drug targets and their clinical relevance in the therapy of meibomian gland dysfunction requires further investigation.
Collapse
Affiliation(s)
- Melina Keller
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| | - Stefan Mergler
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (S.M.); (A.L.)
| | - Aruna Li
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (S.M.); (A.L.)
| | - Ingrid Zahn
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| | - Fabian Garreis
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| |
Collapse
|
7
|
Sun X, Kong J, Dong S, Kato H, Sato H, Hirofuji Y, Ito Y, Wang L, Kato TA, Torio M, Sakai Y, Ohga S, Fukumoto S, Masuda K. TRPV4-mediated Ca 2+ deregulation causes mitochondrial dysfunction via the AKT/α-synuclein pathway in dopaminergic neurons. FASEB Bioadv 2023; 5:507-520. [PMID: 38094157 PMCID: PMC10714070 DOI: 10.1096/fba.2023-00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 06/30/2024] Open
Abstract
Mutations in the gene encoding the transient receptor potential vanilloid member 4 (TRPV4), a Ca2+ permeable nonselective cation channel, cause TRPV4-related disorders. TRPV4 is widely expressed in the brain; however, the pathogenesis underlying TRPV4-mediated Ca2+ deregulation in neurodevelopment remains unresolved and an effective therapeutic strategy remains to be established. These issues were addressed by isolating mutant dental pulp stem cells from a tooth donated by a child diagnosed with metatropic dysplasia with neurodevelopmental comorbidities caused by a gain-of-function TRPV4 mutation, c.1855C > T (p.L619F). The mutation was repaired using CRISPR/Cas9 to generate corrected isogenic stem cells. These stem cells were differentiated into dopaminergic neurons and the pharmacological effects of folic acid were examined. In mutant neurons, constitutively elevated cytosolic Ca2+ augmented AKT-mediated α-synuclein (α-syn) induction, resulting in mitochondrial Ca2+ accumulation and dysfunction. The TRPV4 antagonist, AKT inhibitor, or α-syn knockdown, normalizes the mitochondrial Ca2+ levels in mutant neurons, suggesting the importance of mutant TRPV4/Ca2+/AKT-induced α-syn in mitochondrial Ca2+ accumulation. Folic acid was effective in normalizing mitochondrial Ca2+ levels via the transcriptional repression of α-syn and improving mitochondrial reactive oxygen species levels, adenosine triphosphate synthesis, and neurite outgrowth of mutant neurons. This study provides new insights into the neuropathological mechanisms underlying TRPV4-related disorders and related therapeutic strategies.
Collapse
Affiliation(s)
- Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
- Present address:
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong UniversityXi'anChina
- Present address:
Department of Pediatric DentistryCollege of Stomatology, Xi'an Jiaotong UniversityXi'anChina
| | - Jun Kong
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Shuangshan Dong
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral AnatomyKyushu University Graduate School of Dental ScienceFukuokaJapan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Yosuke Ito
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Lu Wang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Takahiro A. Kato
- Department of Neuropsychiatry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Michiko Torio
- Department of General Pediatrics, Fukuoka Children's HospitalFukuokaJapan
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| |
Collapse
|
8
|
Taivanbat B, Yamazaki S, Nasanbat B, Uchiyama A, Amalia SN, Nasan-Ochir M, Inoue Y, Ishikawa M, Kosaka K, Sekiguchi A, Ogino S, Yokoyama Y, Torii R, Hosoi M, Shibasaki K, Motegi SI. Transient receptor potential vanilloid 4 promotes cutaneous wound healing by regulating keratinocytes and fibroblasts migration and collagen production in fibroblasts in a mouse model. J Dermatol Sci 2023; 112:54-62. [PMID: 37839930 DOI: 10.1016/j.jdermsci.2023.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/29/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Transient receptor potential vanilloid 4 (TRPV4), a cation ion channel, is expressed in different cells, and it regulates the development of different diseases. We recently found a high TRPV4 expression in the wounded skin area. However, the role of TRPV4 in cutaneous wound healing is unknown. OBJECTIVE To investigate the role of TRPV4 in cutaneous wound healing in a mouse model. METHODS Skin wound healing experiment and histopathological studies were performed between WT and TRPV4 KO mice. The effect of TRPV4 antagonist and agonist on cell migration, proliferation, and differentiation were examined in vitro. RESULTS TRPV4 expression was enhanced in wounded area in the skin. TRPV4 KO mice had impaired cutaneous wound healing compared with the WT mice. Further, they had significantly suppressed re-epithelialization and formation of granulation tissue, amount of collagen deposition, and number of α-SMA-positive myofibroblasts in skin wounds. qPCR revealed that the KO mice had decreased mRNA expression of COL1A1 and ACTA2 in skin wounds. In vitro, treatment with selective TRPV4 antagonist suppressed migrating capacity, scratch stimulation enhanced the expression of phospho-ERK in keratinocytes, and TGF-β stimulation enhanced the mRNA expression of COL1A1 and ACTA2 in fibroblasts. Selective TRPV4 agonist suppressed cell migration in keratinocytes, and did not enhance proliferation and migration, but promoted differentiation in fibroblasts. CONCLUSION TRPV4 mediates keratinocytes and fibroblasts migration and increases collagen deposition in the wound area, thereby promoting cutaneous wound healing.
Collapse
Affiliation(s)
- Bayarmaa Taivanbat
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Bolor Nasanbat
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Syahla Nisaa Amalia
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Yuta Inoue
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mai Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Keiji Kosaka
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Torii
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mari Hosoi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Shibasaki
- Laboratory of Neurochemistry, Department of Nutrition Science, University of Nagasaki, Nagasaki, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
9
|
Liu J, Guo Y, Zhang R, Xu Y, Luo C, Wang R, Xu S, Wei L. Inhibition of TRPV4 remodels single cell polarity and suppresses the metastasis of hepatocellular carcinoma. Cell Death Dis 2023; 14:379. [PMID: 37369706 DOI: 10.1038/s41419-023-05903-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor, frequently causing both intrahepatic and extrahepatic metastases. The overall prognosis of patients with metastatic HCC is poor. Recently, single-cell (sc) polarity is proved to be an innate feature of some tumor cells in liquid phase, and directly involved in the cell adhesion to blood vessel and tumor metastasis. Here, we characterize the maintained sc polarity of HCC cells in a suspension culture, and investigate its roles and regulatory mechanisms during metastasis. We demonstrate that transient receptor potential vanilloid 4 (TRPV4) is a promoting regulator of sc polarity via activating Ca2+-dependent AMPK/MLC/ERM pathway. This attenuates the adhesion of metastatic HCC cells to vascular endothelial cells. The reduction of cancer metastases can result from TRPV4 inhibition, which not only impacts the migration and invasion of tumor cells, but also prevents the adhesion to vascular endothelial cells. Additionally, we discover a brand-new TRPV4 inhibitor called GL-V9 that modifies the degree of sc polarization and significantly decreases the metastatic capacity of HCC cells. Taken together, our data shows that TRPV4 and calcium signal are significant sc polarity regulators in metastatic HCC, and that the pharmacological intervention that results in HCC cells becoming depolarized suggests a promising treatment for cancer metastasis.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, The People's Republic of China
| | - Ruitian Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Ye Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Chengju Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Shu Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China.
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China.
| |
Collapse
|
10
|
Wang Y, Sakaguchi M, Sabit H, Tamai S, Ichinose T, Tanaka S, Kinoshita M, Uchida Y, Ohtsuki S, Nakada M. COL1A2 inhibition suppresses glioblastoma cell proliferation and invasion. J Neurosurg 2023; 138:639-648. [PMID: 35932265 DOI: 10.3171/2022.6.jns22319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE An extracellular matrix such as collagen is an essential component of the tumor microenvironment. Collagen alpha-2(I) chain (COL1A2) is a chain of type I collagen whose triple helix comprises two alpha-1 chains and one alpha-2 chain. The authors' proteomics data showed that COL1A2 is significantly higher in the blood of patients with glioblastoma (GBM) compared with healthy controls. COL1A2 has many different functions in various types of cancers. However, the functions of COL1A2 in GBM are poorly understood. In this study, the authors analyzed the functions of COL1A2 and its signaling pathways in GBM. METHODS Surgical specimens and GBM cell lines (T98, U87, and U251) were used. The expression level of COL1A2 was examined using GBM tissues and normal brain tissues by quantitative real-time polymerase chain reaction. The clinical significance of these levels was evaluated using Kaplan-Meier analysis. Small interfering RNA (siRNA) and small hairpin RNA of COL1A2 were transfected into GBM cell lines to investigate the function of COL1A2 in vitro and in vivo. Flow cytometry was introduced to analyze the alteration of cell cycles. Western blot and immunohistochemistry were performed to analyze the underlying mechanisms. RESULTS The expression level of COL1A2 was upregulated in GBM compared with normal brain tissues. A higher expression of COL1A2 was correlated with poor progression-free survival and overall survival. COL1A2 inhibition significantly suppressed cell proliferation in vitro and in vivo, likely due to G1 arrest. The invasion ability was notably deteriorated by inhibiting COL1A2. Cyclin D1, cyclin-dependent kinase 1, and cyclin-dependent kinase 4, which are involved in the cell cycle, were all downregulated after blockade of COL1A2 in vitro and in vivo. Phosphoinositide 3-kinase inhibitor reduced the expression of COL1A2. Although downregulation of COL1A2 decreased the protein kinase B (Akt) phosphorylation, Akt activator can phosphorylate Akt in siRNA-treated cells. This finding suggests that Akt phosphorylation is partially dependent on COL1A2. CONCLUSIONS COL1A2 plays an important role in driving GBM progression. COL1A2 inhibition attenuated GBM proliferation by promoting cell cycle arrest, indicating that COL1A2 could be a promising therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Yi Wang
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Maki Sakaguchi
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa.,2Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa
| | - Hemragul Sabit
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Sho Tamai
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Toshiya Ichinose
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Shingo Tanaka
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Masashi Kinoshita
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Yasuo Uchida
- 3Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai; and
| | - Sumio Ohtsuki
- 4Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsutoshi Nakada
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| |
Collapse
|
11
|
Zeng ML, Kong S, Chen TX, Peng BW. Transient Receptor Potential Vanilloid 4: a Double-Edged Sword in the Central Nervous System. Mol Neurobiol 2023; 60:1232-1249. [PMID: 36434370 DOI: 10.1007/s12035-022-03141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel that can be activated by diverse stimuli, such as heat, mechanical force, hypo-osmolarity, and arachidonic acid metabolites. TRPV4 is widely expressed in the central nervous system (CNS) and participates in many significant physiological processes. However, accumulative evidence has suggested that deficiency, abnormal expression or distribution, and overactivation of TRPV4 are involved in pathological processes of multiple neurological diseases. Here, we review the latest studies concerning the known features of this channel, including its expression, structure, and its physiological and pathological roles in the CNS, proposing an emerging therapeutic strategy for CNS diseases.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.
| |
Collapse
|
12
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
13
|
Sinha S, Ayushman M, Tong X, Yang F. Dynamically Crosslinked Poly(ethylene-glycol) Hydrogels Reveal a Critical Role of Viscoelasticity in Modulating Glioblastoma Fates and Drug Responses in 3D. Adv Healthc Mater 2023; 12:e2202147. [PMID: 36239185 PMCID: PMC9813196 DOI: 10.1002/adhm.202202147] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Indexed: 02/03/2023]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive brain tumor in adults. Hydrogels have been employed as 3D in vitro culture models to elucidate how matrix cues such as stiffness and degradation drive GBM progression and drug responses. Recently, viscoelasticity has been identified as an important niche cue in regulating stem cell differentiation and morphogenesis in 3D. Brain is a viscoelastic tissue, yet how viscoelasticity modulates GBM fate and drug response remains largely unknown. Using dynamic hydrazone crosslinking chemistry, a poly(ethylene-glycol)-based hydrogel system with brain-mimicking stiffness and tunable stress relaxation is reported to interrogate the role of viscoelasticity on GBM fates in 3D. The hydrogel design allows tuning stress relaxation without changing stiffness, biochemical ligand density, or diffusion. The results reveal that increasing stress relaxation promotes invasive GBM behavior, such as cell spreading, migration, and GBM stem-like cell marker expression. Furthermore, increasing stress relaxation enhances GBM proliferation and drug sensitivity. Stress-relaxation induced changes on GBM fates and drug response are found to be mediated through the cytoskeleton and transient receptor potential vanilloid-type 4. These results highlight the importance of incorporating viscoelasticity into 3D in vitro GBM models and provide novel insights into how viscoelasticity modulates GBM cell fates.
Collapse
Affiliation(s)
- Sauradeep Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Manish Ayushman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
15
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|
16
|
Yang H, Hou C, Xiao W, Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front Physiol 2022; 13:904203. [PMID: 36060694 PMCID: PMC9437298 DOI: 10.3389/fphys.2022.904203] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Haoyu Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Chaofeng Hou
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yuan Qiu,
| |
Collapse
|
17
|
Beeken J, Mertens M, Stas N, Kessels S, Aerts L, Janssen B, Mussen F, Pinto S, Vennekens R, Rigo JM, Nguyen L, Brône B, Alpizar YA. Acute inhibition of transient receptor potential vanilloid-type 4 cation channel halts cytoskeletal dynamism in microglia. Glia 2022; 70:2157-2168. [PMID: 35809029 DOI: 10.1002/glia.24243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/04/2023]
Abstract
Microglia, the resident macrophages of the central nervous system, are highly motile cells that support brain development, provision neuronal signaling, and protect brain cells against damage. Proper microglial functioning requires constant cell movement and morphological changes. Interestingly, the transient receptor potential vanilloid 4 (TRPV4) channel, a calcium-permeable channel, is involved in hypoosmotic morphological changes of retinal microglia and regulates temperature-dependent movement of microglial cells both in vitro and in vivo. Despite the broad functions of TRPV4 and the recent findings stating a role for TRPV4 in microglial movement, little is known about how TRPV4 modulates cytoskeletal remodeling to promote changes of microglial motility. Here we show that acute inhibition of TRPV4, but not its constitutive absence in the Trpv4 KO cells, affects the morphology and motility of microglia in vitro. Using high-end confocal imaging techniques, we show a decrease in actin-rich filopodia and tubulin dynamics upon acute inhibition of TRPV4 in vitro. Furthermore, using acute brain slices we demonstrate that Trpv4 knockout microglia display lower ramification complexity, slower process extension speed and consequently smaller surveyed area. We conclude that TRPV4 inhibition triggers a shift in cytoskeleton remodeling of microglia influencing their migration and morphology.
Collapse
Affiliation(s)
- Jolien Beeken
- UHasselt, BIOMED, Diepenbeek, Belgium.,Université de Liège, GIGA-Stem-Cells, Liège, Belgium
| | | | | | | | | | | | | | - Silvia Pinto
- Laboratory of Ion Channel Research, VIB-KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB-KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
18
|
Chinigò G, Grolez GP, Audero M, Bokhobza A, Bernardini M, Cicero J, Toillon RA, Bailleul Q, Visentin L, Ruffinatti FA, Brysbaert G, Lensink MF, De Ruyck J, Cantelmo AR, Fiorio Pla A, Gkika D. TRPM8-Rap1A Interaction Sites as Critical Determinants for Adhesion and Migration of Prostate and Other Epithelial Cancer Cells. Cancers (Basel) 2022; 14:2261. [PMID: 35565390 PMCID: PMC9102551 DOI: 10.3390/cancers14092261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence indicates that the TRPM8 channel plays an important role in prostate cancer (PCa) progression, by impairing the motility of these cancer cells. Here, we reveal a novel facet of PCa motility control via direct protein-protein interaction (PPI) of the channel with the small GTPase Rap1A. The functional interaction of the two proteins was assessed by active Rap1 pull-down assays and live-cell imaging experiments. Molecular modeling analysis allowed the identification of four putative residues involved in TRPM8-Rap1A interaction. Point mutations of these sites impaired PPI as shown by GST-pull-down, co-immunoprecipitation, and PLA experiments and revealed their key functional role in the adhesion and migration of PC3 prostate cancer cells. More precisely, TRPM8 inhibits cell migration and adhesion by trapping Rap1A in its GDP-bound inactive form, thus preventing its activation at the plasma membrane. In particular, residues E207 and Y240 in the sequence of TRPM8 and Y32 in that of Rap1A are critical for the interaction between the two proteins not only in PC3 cells but also in cervical (HeLa) and breast (MCF-7) cancer cells. This study deepens our knowledge of the mechanism through which TRPM8 would exert a protective role in cancer progression and provides new insights into the possible use of TRPM8 as a new therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Guillaume P. Grolez
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Madelaine Audero
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Alexandre Bokhobza
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Michela Bernardini
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
| | - Julien Cicero
- CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France; (J.C.); (R.-A.T.)
- UR 2465—Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University of Artois, F-62300 Lens, France
| | - Robert-Alain Toillon
- CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France; (J.C.); (R.-A.T.)
| | - Quentin Bailleul
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Luca Visentin
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
| | - Federico Alessandro Ruffinatti
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
| | - Guillaume Brysbaert
- CNRS UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, 59000 Lille, France; (G.B.); (M.F.L.); (J.D.R.)
| | - Marc F. Lensink
- CNRS UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, 59000 Lille, France; (G.B.); (M.F.L.); (J.D.R.)
| | - Jerome De Ruyck
- CNRS UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, 59000 Lille, France; (G.B.); (M.F.L.); (J.D.R.)
| | - Anna Rita Cantelmo
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Dimitra Gkika
- CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France; (J.C.); (R.-A.T.)
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
19
|
Nguyen TN, Siddiqui G, Veldhuis NA, Poole DP. Diverse Roles of TRPV4 in Macrophages: A Need for Unbiased Profiling. Front Immunol 2022; 12:828115. [PMID: 35126384 PMCID: PMC8811046 DOI: 10.3389/fimmu.2021.828115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a non-selective mechanosensitive ion channel expressed by various macrophage populations. Recent reports have characterized the role of TRPV4 in shaping the activity and phenotype of macrophages to influence the innate immune response to pathogen exposure and inflammation. TRPV4 has been studied extensively in the context of inflammation and inflammatory pain. Although TRPV4 activity has been generally described as pro-inflammatory, emerging evidence suggests a more complex role where this channel may also contribute to anti-inflammatory activities. However, detailed understanding of how TRPV4 may influence the initiation, maintenance, and resolution of inflammatory disease remains limited. This review highlights recent insights into the cellular processes through which TRPV4 contributes to pathological conditions and immune processes, with a focus on macrophage biology. The potential use of high-throughput and omics methods as an unbiased approach for studying the functional outcomes of TRPV4 activation is also discussed.
Collapse
Affiliation(s)
- Thanh-Nhan Nguyen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Nicholas A. Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- *Correspondence: Daniel P. Poole, ; Nicholas A. Veldhuis,
| | - Daniel P. Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- *Correspondence: Daniel P. Poole, ; Nicholas A. Veldhuis,
| |
Collapse
|
20
|
Zhang P, Xu J, Zhang H, Liu XY. Identification of TRPV4 as a novel target in invasiveness of colorectal cancer. BMC Cancer 2021; 21:1264. [PMID: 34814869 PMCID: PMC8611894 DOI: 10.1186/s12885-021-08970-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Emerging evidence has indicated the critical role of TRPV4 in diverse human cancers. However, the underlying molecular mechanism of TRPV4 in colon cancer invasiveness is still unknown. Methods Immunohistochemistry staining was used to analyze the expression of TRPV4 and ZEB1 in clinical tissues; Wound healing and transwell assays were applied to determine the cell invasiveness; Western blot was used to explore the relation between TRPV4 and ZEB1. Results Colon cancer cells were transfected with siRNA against TRPV4 or HC067047 (a selective TRPV4 antagonist), TRPV4 full-length plasmid or siRNA against ZEB1, or both, in order to measure cell migration and invasion. And we found that TRPV4 silencing or inhibition exhibited an inhibitory role in colon cancer cell migration and invasion, coupled with compromised EMT process, and suppressed AKT activity. TRPV4 stimulated expression of ZEB1 and consequently contributed to EMT process and invasiveness. It was also revealed that overexpression of TRPV4 and ZEB1 in clinical patients with local metastasis, and positive correlation between TRPV4 and ZEB1. Conclusions Our results uncovered the role of TRPV4 in tumor metastasis and highlighted the potential mechanism of TRPV4-ZEB1 axis in indicating EMT. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08970-7.
Collapse
Affiliation(s)
- Peng Zhang
- Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China.
| | - Jian Xu
- Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
| | - Hua Zhang
- Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
| | - Xiao-Yu Liu
- School of Medicine, Jiangnan University, Wuxi, Jiangsu, China. .,School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China.
| |
Collapse
|
21
|
Canales Coutiño B, Mayor R. Reprint of: Mechanosensitive ion channels in cell migration. Cells Dev 2021; 168:203730. [PMID: 34456177 DOI: 10.1016/j.cdev.2021.203730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
Cellular processes are initiated and regulated by different stimuli, including mechanical forces. Cell membrane mechanosensors represent the first step towards the conversion of mechanical stimuli to a biochemical or electrical response. Mechanosensitive (MS) ion channels form a growing family of ion gating channels that respond to direct physical force or plasma membrane deformations. A number of calcium (Ca2+) permeable MS channels are known to regulate the initiation, direction, and persistence of cell migration during development and tumour progression. While the evidence that links individual MS ion channels to cell migration is growing, a unified analysis of the molecular mechanisms regulated downstream of MS ion channel activation is lacking. In this review, we describe the MS ion channel families known to regulate cell migration. We discuss the molecular mechanisms that act downstream of MS ion channels with an emphasis on Ca2+ mediated processes. Finally, we propose the future directions and impact of MS ion channel activity in the field of cell migration.
Collapse
Affiliation(s)
- Brenda Canales Coutiño
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
22
|
Kärki T, Tojkander S. TRPV Protein Family-From Mechanosensing to Cancer Invasion. Biomolecules 2021; 11:1019. [PMID: 34356643 PMCID: PMC8301805 DOI: 10.3390/biom11071019] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Biophysical cues from the cellular microenvironment are detected by mechanosensitive machineries that translate physical signals into biochemical signaling cascades. At the crossroads of extracellular space and cell interior are located several ion channel families, including TRP family proteins, that are triggered by mechanical stimuli and drive intracellular signaling pathways through spatio-temporally controlled Ca2+-influx. Mechanosensitive Ca2+-channels, therefore, act as critical components in the rapid transmission of physical signals into biologically compatible information to impact crucial processes during development, morphogenesis and regeneration. Given the mechanosensitive nature of many of the TRP family channels, they must also respond to the biophysical changes along the development of several pathophysiological conditions and have also been linked to cancer progression. In this review, we will focus on the TRPV, vanilloid family of TRP proteins, and their connection to cancer progression through their mechanosensitive nature.
Collapse
Affiliation(s)
- Tytti Kärki
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| | - Sari Tojkander
- Department of Veterinary Biosciences, Section of Pathology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
23
|
So JS, Kim H, Han KS. Mechanisms of Invasion in Glioblastoma: Extracellular Matrix, Ca 2+ Signaling, and Glutamate. Front Cell Neurosci 2021; 15:663092. [PMID: 34149360 PMCID: PMC8206529 DOI: 10.3389/fncel.2021.663092] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant form of primary brain tumor with a median survival time of 14–16 months in GBM patients. Surgical treatment with chemotherapy and radiotherapy may help increase survival by removing GBM from the brain. However, complete surgical resection to eliminate GBM is almost impossible due to its high invasiveness. When GBM cells migrate to the brain, they interact with various cells, including astrocytes, neurons, endothelial cells, and the extracellular matrix (ECM). They can also make their cell body shrink to infiltrate into narrow spaces in the brain; thereby, they can invade regions of the brain and escape from surgery. Brain tumor cells create an appropriate microenvironment for migration and invasion by modifying and degrading the ECM. During those processes, the Ca2+ signaling pathway and other signaling cascades mediated by various ion channels contribute mainly to gene expression, motility, and invasion of GBM cells. Furthermore, GBM cells release glutamate, affecting migration via activation of ionotropic glutamate receptors in an autocrine manner. This review focuses on the cellular mechanisms of glioblastoma invasion and motility related to ECM, Ca2+ signaling, and glutamate. Finally, we discuss possible therapeutic interventions to inhibit invasion by GBM cells.
Collapse
Affiliation(s)
- Jae-Seon So
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, South Korea
| | - Hyeono Kim
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, South Korea
| | - Kyung-Seok Han
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, South Korea
| |
Collapse
|
24
|
Canales Coutiño B, Mayor R. Mechanosensitive ion channels in cell migration. Cells Dev 2021; 166:203683. [PMID: 33994356 PMCID: PMC8240554 DOI: 10.1016/j.cdev.2021.203683] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/05/2023]
Abstract
Cellular processes are initiated and regulated by different stimuli, including mechanical forces. Cell membrane mechanosensors represent the first step towards the conversion of mechanical stimuli to a biochemical or electrical response. Mechanosensitive (MS) ion channels form a growing family of ion gating channels that respond to direct physical force or plasma membrane deformations. A number of calcium (Ca2+) permeable MS channels are known to regulate the initiation, direction, and persistence of cell migration during development and tumour progression. While the evidence that links individual MS ion channels to cell migration is growing, a unified analysis of the molecular mechanisms regulated downstream of MS ion channel activation is lacking. In this review, we describe the MS ion channel families known to regulate cell migration. We discuss the molecular mechanisms that act downstream of MS ion channels with an emphasis on Ca2+ mediated processes. Finally, we propose the future directions and impact of MS ion channel activity in the field of cell migration.
Collapse
Affiliation(s)
- Brenda Canales Coutiño
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
25
|
Chinigò G, Castel H, Chever O, Gkika D. TRP Channels in Brain Tumors. Front Cell Dev Biol 2021; 9:617801. [PMID: 33928077 PMCID: PMC8076903 DOI: 10.3389/fcell.2021.617801] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant glioma including glioblastoma (GBM) is the most common group of primary brain tumors. Despite standard optimized treatment consisting of extensive resection followed by radiotherapy/concomitant and adjuvant therapy, GBM remains one of the most aggressive human cancers. GBM is a typical example of intra-heterogeneity modeled by different micro-environmental situations, one of the main causes of resistance to conventional treatments. The resistance to treatment is associated with angiogenesis, hypoxic and necrotic tumor areas while heterogeneity would accumulate during glioma cell invasion, supporting recurrence. These complex mechanisms require a focus on potential new molecular actors to consider new treatment options for gliomas. Among emerging and underexplored targets, transient receptor potential (TRP) channels belonging to a superfamily of non-selective cation channels which play critical roles in the responses to a number of external stimuli from the external environment were found to be related to cancer development, including glioma. Here, we discuss the potential as biological markers of diagnosis and prognosis of TRPC6, TRPM8, TRPV4, or TRPV1/V2 being associated with glioma patient overall survival. TRPs-inducing common or distinct mechanisms associated with their Ca2+-channel permeability and/or kinase function were detailed as involving miRNA or secondary effector signaling cascades in turn controlling proliferation, cell cycle, apoptotic pathways, DNA repair, resistance to treatment as well as migration/invasion. These recent observations of the key role played by TRPs such as TRPC6 in GBM growth and invasiveness, TRPV2 in proliferation and glioma-stem cell differentiation and TRPM2 as channel carriers of cytotoxic chemotherapy within glioma cells, should offer new directions for innovation in treatment strategies of high-grade glioma as GBM to overcome high resistance and recurrence.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Laboratory of Cell Physiology, Department of Life Sciences, Univ. Lille, Inserm, U1003 - PHYCEL, University of Lille, Lille, France.,Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Hélène Castel
- UNIROUEN, Inserm U1239, DC2N, Normandie Université, Rouen, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Oana Chever
- UNIROUEN, Inserm U1239, DC2N, Normandie Université, Rouen, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dimitra Gkika
- CNRS, Inserm, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
26
|
Arya RK, Goswami R, Rahaman SO. Mechanotransduction via a TRPV4-Rac1 signaling axis plays a role in multinucleated giant cell formation. J Biol Chem 2021; 296:100129. [PMID: 33262217 PMCID: PMC7948992 DOI: 10.1074/jbc.ra120.014597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Multinucleated giant cells are formed by the fusion of macrophages and are a characteristic feature in numerous pathophysiological conditions including the foreign body response (FBR). Foreign body giant cells (FBGCs) are inflammatory and destructive multinucleated macrophages and may cause damage and/or rejection of implants. However, while these features of FBGCs are well established, the molecular mechanisms underlying their formation remain elusive. Improved understanding of the molecular mechanisms underlying the formation of FBGCs may permit the development of novel implants that eliminate or reduce the FBR. Our previous study showed that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel/receptor, is required for FBGC formation and FBR to biomaterials. Here, we have determined that (a) TRPV4 is directly involved in fusogenic cytokine (interleukin-4 plus granulocyte macrophage-colony stimulating factor)-induced activation of Rac1, in bone marrow-derived macrophages; (b) TRPV4 directly interacts with Rac1, and their interaction is further augmented in the presence of fusogenic cytokines; (c) TRPV4-dependent activation of Rac1 is essential for the augmentation of intracellular stiffness and regulation of cytoskeletal remodeling; and (d) TRPV4-Rac1 signaling axis is critical in fusogenic cytokine-induced FBGC formation. Together, these data suggest a novel mechanism whereby a functional interaction between TRPV4 and Rac1 leads to cytoskeletal remodeling and intracellular stiffness generation to modulate FBGC formation.
Collapse
Affiliation(s)
- Rakesh K Arya
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
27
|
Lavanderos B, Silva I, Cruz P, Orellana-Serradell O, Saldías MP, Cerda O. TRP Channels Regulation of Rho GTPases in Brain Context and Diseases. Front Cell Dev Biol 2020; 8:582975. [PMID: 33240883 PMCID: PMC7683514 DOI: 10.3389/fcell.2020.582975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Neurological and neuropsychiatric disorders are mediated by several pathophysiological mechanisms, including developmental and degenerative abnormalities caused primarily by disturbances in cell migration, structural plasticity of the synapse, and blood-vessel barrier function. In this context, critical pathways involved in the pathogenesis of these diseases are related to structural, scaffolding, and enzymatic activity-bearing proteins, which participate in Ca2+- and Ras Homologs (Rho) GTPases-mediated signaling. Rho GTPases are GDP/GTP binding proteins that regulate the cytoskeletal structure, cellular protrusion, and migration. These proteins cycle between GTP-bound (active) and GDP-bound (inactive) states due to their intrinsic GTPase activity and their dynamic regulation by GEFs, GAPs, and GDIs. One of the most important upstream inputs that modulate Rho GTPases activity is Ca2+ signaling, positioning ion channels as pivotal molecular entities for Rho GTPases regulation. Multiple non-selective cationic channels belonging to the Transient Receptor Potential (TRP) family participate in cytoskeletal-dependent processes through Ca2+-mediated modulation of Rho GTPases. Moreover, these ion channels have a role in several neuropathological events such as neuronal cell death, brain tumor progression and strokes. Although Rho GTPases-dependent pathways have been extensively studied, how they converge with TRP channels in the development or progression of neuropathologies is poorly understood. Herein, we review recent evidence and insights that link TRP channels activity to downstream Rho GTPase signaling or modulation. Moreover, using the TRIP database, we establish associations between possible mediators of Rho GTPase signaling with TRP ion channels. As such, we propose mechanisms that might explain the TRP-dependent modulation of Rho GTPases as possible pathways participating in the emergence or maintenance of neuropathological conditions.
Collapse
Affiliation(s)
- Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Octavio Orellana-Serradell
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
28
|
Takayasu T, Kurisu K, Esquenazi Y, Ballester LY. Ion Channels and Their Role in the Pathophysiology of Gliomas. Mol Cancer Ther 2020; 19:1959-1969. [PMID: 33008831 PMCID: PMC7577395 DOI: 10.1158/1535-7163.mct-19-0929] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/24/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023]
Abstract
Malignant gliomas are the most common primary central nervous system tumors and their prognosis is very poor. In recent years, ion channels have been demonstrated to play important roles in tumor pathophysiology such as regulation of gene expression, cell migration, and cell proliferation. In this review, we summarize the current knowledge on the role of ion channels on the development and progression of gliomas. Cell volume changes through the regulation of ion flux, accompanied by water flux, are essential for migration and invasion. Signaling pathways affected by ion channel activity play roles in cell survival and cell proliferation. Moreover, ion channels are involved in glioma-related seizures, sensitivity to chemotherapy, and tumor metabolism. Ion channels are potential targets for the treatment of these lethal tumors. Despite our increased understanding of the contributions of ion channels to glioma biology, this field remains poorly studied. This review summarizes the current literature on this important topic.
Collapse
Affiliation(s)
- Takeshi Takayasu
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
- Department of Neurosurgery, Institute of Biomedical and Health Sciences, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Institute of Biomedical and Health Sciences, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas.
- Memorial Hermann Hospital-TMC, Houston, Texas
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas.
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas
- Memorial Hermann Hospital-TMC, Houston, Texas
| |
Collapse
|
29
|
Chinigò G, Fiorio Pla A, Gkika D. TRP Channels and Small GTPases Interplay in the Main Hallmarks of Metastatic Cancer. Front Pharmacol 2020; 11:581455. [PMID: 33132914 PMCID: PMC7550629 DOI: 10.3389/fphar.2020.581455] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Transient Receptor Potential (TRP) cations channels, as key regulators of intracellular calcium homeostasis, play a central role in the essential hallmarks of cancer. Among the multiple pathways in which TRPs may be involved, here we focus our attention on the ones involving small guanosine triphosphatases (GTPases), summarizing the main processes associated with the metastatic cascade, such as migration, invasion and tumor vascularization. In the last decade, several studies have highlighted a bidirectional interplay between TRPs and small GTPases in cancer progression: TRP channels may affect small GTPases activity via both Ca2+-dependent or Ca2+-independent pathways, and, conversely, some small GTPases may affect TRP channels activity through the regulation of their intracellular trafficking to the plasma membrane or acting directly on channel gating. In particular, we will describe the interplay between TRPC1, TRPC5, TRPC6, TRPM4, TRPM7 or TRPV4, and Rho-like GTPases in regulating cell migration, the cooperation of TRPM2 and TRPV2 with Rho GTPases in increasing cell invasiveness and finally, the crosstalk between TRPC1, TRPC6, TRPM8, TRPV4 and both Rho- and Ras-like GTPases in inducing aberrant tumor vascularization.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Alessandra Fiorio Pla
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Dimitra Gkika
- Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France.,Univ. Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
30
|
Liu N, Yan F, Ma Q, Zhao J. Modulation of TRPV4 and BKCa for treatment of brain diseases. Bioorg Med Chem 2020; 28:115609. [PMID: 32690264 DOI: 10.1016/j.bmc.2020.115609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
As a member of transient receptor potential family, the transient receptor potential vanilloid 4 (TRPV4) is a kind of nonselective calcium-permeable cation channel, which belongs to non-voltage gated Ca2+ channel. Large-conductance Ca2+-activated K+ channel (BKCa) represents a unique superfamily of Ca2+-activated K+ channel (KCa) that is both voltage and intracellular Ca2+ dependent. Not surprisingly, aberrant function of either TRPV4 or BKCa in neurons has been associated with brain disorders, such as Alzheimer's disease, cerebral ischemia, brain tumor, epilepsy, as well as headache. In these diseases, vascular dysfunction is a common characteristic. Notably, endothelial and smooth muscle TRPV4 can mediate BKCa to regulate cerebral blood flow and pressure. Therefore, in this review, we not only discuss the diverse functions of TRPV4 and BKCa in neurons to integrate relative signaling pathways in the context of cerebral physiological and pathological situations respectively, but also reveal the relationship between TRPV4 and BKCa in regulation of cerebral vascular tone as an etiologic factor. Based on these analyses, this review demonstrates the effective mechanisms of compounds targeting these two channels, which may be potential therapeutic strategies for diseases in the brain.
Collapse
Affiliation(s)
- Na Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Fang Yan
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qingjie Ma
- Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Jianhua Zhao
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China.
| |
Collapse
|
31
|
Leverrier-Penna S, Destaing O, Penna A. Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium 2020; 90:102251. [PMID: 32683175 DOI: 10.1016/j.ceca.2020.102251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Development of metastasis causes the most serious clinical consequences of cancer and is responsible for over 90 % of cancer-related deaths. Hence, a better understanding of the mechanisms that drive metastasis formation appears critical for drug development designed to prevent the spread of cancer and related mortality. Metastasis dissemination is a multistep process supported by the increased motility and invasiveness capacities of tumor cells. To succeed in overcoming the mechanical constraints imposed by the basement membrane and surrounding tissues, cancer cells reorganize their focal adhesions or extend acto-adhesive cellular protrusions, called invadosomes, that can both contact the extracellular matrix and tune its degradation through metalloprotease activity. Over the last decade, accumulating evidence has demonstrated that altered Ca2+ channel activities and/or expression promote tumor cell-specific phenotypic changes, such as exacerbated migration and invasion capacities, leading to metastasis formation. While several studies have addressed the molecular basis of Ca2+ channel-dependent cancer cell migration, we are still far from having a comprehensive vision of the Ca2+ channel-regulated mechanisms of migration/invasion. This is especially true regarding the specific context of invadosome-driven invasion. This review aims to provide an overview of the current evidence supporting a central role for Ca2+ channel-dependent signaling in the regulation of these dynamic degradative structures. It will present available data on the few Ca2+ channels that have been studied in that specific context and discuss some potential interesting actors that have not been fully explored yet.
Collapse
Affiliation(s)
| | - Olivier Destaing
- Institute for Advanced BioSciences, CNRS UMR 5309, INSERM U1209, Institut Albert Bonniot, University Grenoble Alpes, 38700 Grenoble, France.
| | - Aubin Penna
- STIM, CNRS ERL7003, University of Poitiers, 86000 Poitiers, France.
| |
Collapse
|
32
|
Fujii S, Tajiri Y, Hasegawa K, Matsumoto S, Yoshimoto RU, Wada H, Kishida S, Kido MA, Yoshikawa H, Ozeki S, Kiyoshima T. The TRPV4-AKT axis promotes oral squamous cell carcinoma cell proliferation via CaMKII activation. J Transl Med 2020; 100:311-323. [PMID: 31857698 DOI: 10.1038/s41374-019-0357-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 11/09/2022] Open
Abstract
Most human malignant tumor cells arise from epithelial tissues, which show distinctive characteristics, such as polarization, cell-to-cell contact between neighboring cells, and anchoring to a basement membrane. When tumor cells invaginate into the stroma, the cells are exposed to extracellular environments, including the extracellular matrix (ECM). Increased ECM stiffness has been reported to promote cellular biological activities, such as excessive cellular growth and enhanced migration capability. Therefore, tumorous ECM stiffness is not only an important clinical tumor feature but also plays a pivotal role in tumor cell behavior. Transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable nonselective cation channel, has been reported to be mechano-sensitive and to regulate tumorigenesis, but the underlying molecular mechanism in tumorigenesis remains unclear. The function of TRPV4 in oral squamous cell carcinoma (OSCC) is also unknown. The current study was conducted to investigate whether or not TRPV4 might be involved in OSCC tumorigenesis. TRPV4 mRNA levels were elevated in OSCC cell lines compared with normal oral epithelial cells, and its expression was required for TRPV4 agonist-dependent Ca2+ entry. TRPV4-depleted tumor cells exhibited decreased proliferation capabilities in three-dimensional culture but not in a low-attachment plastic dish. A xenograft tumor model demonstrated that TRPV4 expression was involved in cancer cell proliferation in vivo. Furthermore, loss-of-function experiments using siRNA or an inhibitor revealed that the TRPV4 expression was required for CaMKII-mediated AKT activation. Immunohistochemical analyses of tissue specimens obtained from 36 OSCC patients showed that TRPV4 was weakly observed in non-tumor regions but was strongly expressed in tumor lesions at high frequencies where phosphorylated AKT expression was frequently detected. These results suggest that the TRPV4/CaMKII/AKT axis, which might be activated by extracellular environments, promotes OSCC tumor cell growth.
Collapse
Affiliation(s)
- Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yudai Tajiri
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Dentistry and Oral Surgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-8563, Japan
| | - Kana Hasegawa
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Reiko U Yoshimoto
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Anatomy and Physiology, Division of Histology and Neuroanatomy, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.,Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroko Wada
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shosei Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mizuho A Kido
- Department of Anatomy and Physiology, Division of Histology and Neuroanatomy, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hiromasa Yoshikawa
- Department of Dentistry and Oral Surgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-8563, Japan
| | - Satoru Ozeki
- Department of Dentistry and Oral Surgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-8563, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
33
|
ASIC1a promotes synovial invasion of rheumatoid arthritis via Ca 2+/Rac1 pathway. Int Immunopharmacol 2019; 79:106089. [PMID: 31865241 DOI: 10.1016/j.intimp.2019.106089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023]
Abstract
Acid-sensitive ion channels (ASICs) as Ca2+ and Na+ cation channels are activated by changing in extracellular pH, which expressed in various diseases and participated in underlying pathogenesis. ASIC1a is involved in migration and invasion of various tumor cells. Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) located at the edge of the synovium were identified as key players in the pathophysiological process of rheumatoid arthritis and reported to have many similar properties to tumor cells. Here, we investigated the roles of ASIC1a in synovial invasion in vivo and the migration and invasion of RA-FLSs in vitro. Our results showed ASIC1a highly expressed in RA synovial tissues and RA-FLSs. Inhibition of ASIC1a by PCTX-1 reduces synovial invasion and the expressions of MMP2, MMP9, p-FAK to protect articular cartilage in AA rats. Moreover, the acidity-promoted invasion and migration as well as the expressions of MMP2, MMP9, p-FAK of RA-FLSs were down-regulated by ASIC1a-RNAi and PCTX-1 while they were increased by overexpression-ASIC1a. ASIC1a mediated Ca2+ influx and the activation of Ras-related C3 botulinum toxin substrate 1(Rac1), which was decreased by the intracellular calcium chelating agent BAPTA-AM. Meanwhile, the migration and invasion as well as the expressions of MMP2, MMP9, p-FAK of RA-FLSs were decreased by Rac1 specific blocker NSC23766. In conclusion, this study indicated that ASIC1a may be a master regulator of synovial invasion via Ca2+/Rac1 pathway.
Collapse
|
34
|
Matsumoto K, Deguchi A, Motoyoshi A, Morita A, Maebashi U, Nakamoto T, Kawanishi S, Sueyoshi M, Nishimura K, Takata K, Tominaga M, Nakahara T, Kato S. Role of transient receptor potential vanilloid subtype 4 in the regulation of azoymethane/dextran sulphate sodium-induced colitis-associated cancer in mice. Eur J Pharmacol 2019; 867:172853. [PMID: 31836532 DOI: 10.1016/j.ejphar.2019.172853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Ca2+-permeable ion channels, such as transient receptor channels, are one of the potential therapeutic targets in cancer. Transient receptor potential vanilloid subtype 4 (TRPV4) is a nonselective cation channel associated with cancer progression. This study investigates the roles of TRPV4 in the pathogenesis of colitis-associated cancer (CAC) in mice. The role of TRPV4 was examined in azoxymethane (AOM)/dextran sulphate sodium (DSS)-induced murine CAC model. The formation of colon tumours induced by AOM/DSS treatment was significantly attenuated in TRPV4-deficient mice (TRPV4KO). TRPV4 was co-localised with markers of angiogenesis and macrophages. AOM/DSS treatment upregulated the expression of CD105, vascular endothelial growth factor receptor 2, and TRPV4 in wildtype, but the upregulation of CD105 was significantly attenuated in TRPV4KO. Bone marrow chimera experiments indicated that TRPV4, expressed in both vascular endothelial cells and bone marrow-derived macrophages, played a significant role in colitis-associated tumorigenesis. There was no significant difference in the population of hematopoietic cells, neutrophils, and monocytes between untreated and AOM/DSS-treated WT and TRPV4KO on flow cytometric analysis. TRPV4 activation by a selective agonist induced TNF-α and CXCL2 release in macrophages. Furthermore, TRPV4 activation enhanced the proliferation of human umbilical vein endothelial cells. These results suggest that TRPV4 expressed in neovascular endothelial cells and bone marrow-derived macrophages contributes to the progression of CAC in mice.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, 6078414, Japan.
| | - Ayuka Deguchi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, 6078414, Japan
| | - Aoi Motoyoshi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, 6078414, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, 1070072, Japan
| | - Urara Maebashi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, 6078414, Japan
| | - Tomohiro Nakamoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, 6078414, Japan
| | - Shohei Kawanishi
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto, 6078414, Japan; Division of Biological Sciences, Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, 6078414, Japan
| | - Mari Sueyoshi
- Division of Biological Sciences, Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, 6078414, Japan
| | - Kaneyasu Nishimura
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto, 6078414, Japan
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto, 6078414, Japan; Division of Biological Sciences, Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, 6078414, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, 4440864, Japan; Thermal Biology Group, Exploratory Research Center on Life and Living Systems, Okazaki, 4440864, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, 1070072, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, 6078414, Japan
| |
Collapse
|
35
|
Goutsou S, Tsakona C, Polia A, Moutafidi A, Zolota V, Gatzounis G, Assimakopoulou M. Transient receptor potential vanilloid (TRPV) channel expression in meningiomas: prognostic and predictive significance. Virchows Arch 2019; 475:105-114. [DOI: 10.1007/s00428-019-02584-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023]
|