1
|
Tice AL, Lee C, Hickner RC, Steiner JL. Scheduled Exercise Partially Offsets Alcohol-Induced Clock Dysfunction in Skeletal Muscle and Liver of Female Mice. J Biol Rhythms 2025; 40:208-228. [PMID: 39924857 DOI: 10.1177/07487304241312461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Binge and chronic alcohol intake impair skeletal muscle and liver circadian clocks. Scheduled exercise is suggested to protect against circadian misalignment, like that induced by alcohol. It was tested whether scheduled, voluntary daily wheel running would protect the gastrocnemius and liver clocks against alcohol-induced perturbations. Female C57BL6/Hsd mice were assigned to 1 of 4 groups: control-sedentary (CON SED, n = 26), control-exercise (CON EX, n = 28), alcohol-sedentary (ETOH SED, n = 27), or alcohol-exercise (ETOH EX, n = 25). Exercise mice were granted access to running wheels for 2 h/day (ZT13-15) while ETOH mice consumed alcohol-containing liquid diet for 6 weeks. Tissues were collected every 4 h starting at ZT12 from 4-5 mice/group and were used for RNA/cDNA/RT-PCR (gastrocnemius and liver) and Western blotting (gastrocnemius). A second cohort of mice were weaned off alcohol, given regular chow, and continued daily exercise (2 h/day) for ~2 weeks. Then, all mice (EX and SED) were given 24-h wheel access for 1 week to assess cyclic running behaviors during abstinence. While alcohol differentially disrupted muscle and liver clocks in sedentary mice, differences between exercised groups were minimized. BMAL1 protein expression increased in the nuclear-enriched fraction in the gastrocnemius of both exercise groups compared to both sedentary groups. In the second cohort, wheel running was increased in ETOH EX compared to ETOH SED in the dark cycle. In the light cycle, ETOH mice ran less than CON mice, and EX mice ran less than SED mice despite all mice receiving chow diet and no EtOH. Overall, scheduled wheel running partially offset the alcohol-induced perturbations in the muscle and liver clock while ETOH and EX both influenced the timing of subsequent activity after the dietary intervention ended.
Collapse
Affiliation(s)
- Abigail L Tice
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida
| | - Choogon Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Robert C Hickner
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Jennifer L Steiner
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
2
|
Smith HA, Templeman I, Davis M, Slater T, Clayton DJ, Varley I, James LJ, Middleton B, Johnston JD, Karagounis LG, Tsintzas K, Thompson D, Gonzalez JT, Walhin JP, Betts JA. Characterizing 24-Hour Skeletal Muscle Gene Expression Alongside Metabolic and Endocrine Responses Under Diurnal Conditions. J Clin Endocrinol Metab 2025; 110:e1017-e1030. [PMID: 38779872 PMCID: PMC11913097 DOI: 10.1210/clinem/dgae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
CONTEXT Skeletal muscle plays a central role in the storage, synthesis, and breakdown of nutrients, yet little research has explored temporal responses of this human tissue, especially with concurrent measures of systemic biomarkers of metabolism. OBJECTIVE To characterize temporal profiles in skeletal muscle expression of genes involved in carbohydrate metabolism, lipid metabolism, circadian clocks, and autophagy and descriptively relate them to systemic metabolites and hormones during a controlled laboratory protocol. METHODS Ten healthy adults (9M/1F, [mean ± SD] age 30 ± 10 years; BMI 24.1 ± 2.7 kg·m-2) rested in the laboratory for 37 hours with all data collected during the final 24 hours (08:00-08:00 hours). Participants ingested hourly isocaloric liquid meal replacements alongside appetite assessments during waking before a sleep opportunity from 22:00 to 07:00 hours. Blood samples were collected hourly for endocrine and metabolite analyses, with muscle biopsies occurring every 4 hours from 12:00 to 08:00 hours the following day to quantify gene expression. RESULTS Plasma insulin displayed diurnal rhythmicity peaking at 18:04 hours. Expression of skeletal muscle genes involved in carbohydrate metabolism (Name, Acrophase [hours]: GLUT4, 14:40; PPARGC1A, 16:13; HK2, 18:24) and lipid metabolism (FABP3, 12:37; PDK4, 05:30; CPT1B, 12:58) displayed 24-hour rhythmicity that reflected the temporal rhythm of insulin. Equally, circulating glucose (00:19 hours), nonesterified fatty acids (04:56), glycerol (04:32), triglyceride (23:14), urea (00:46), C-terminal telopeptide (05:07), and cortisol (22:50) concentrations also all displayed diurnal rhythmicity. CONCLUSION Diurnal rhythms were present in human skeletal muscle gene expression as well systemic metabolites and hormones under controlled diurnal conditions. The temporal patterns of genes relating to carbohydrate and lipid metabolism alongside circulating insulin are consistent with diurnal rhythms being driven in part by the diurnal influence of cyclic feeding and fasting.
Collapse
Affiliation(s)
- Harry A Smith
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Iain Templeman
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Max Davis
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Tommy Slater
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - David J Clayton
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK, LE11 3TU
| | - Benita Middleton
- Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK, GU2 7XH
| | - Jonathan D Johnston
- Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK, GU2 7XH
| | - Leonidas G Karagounis
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University (ACU), Melbourne, VIC 3000, Australia
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK, NG7 2UH
| | - Dylan Thompson
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Jean-Philippe Walhin
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - James A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| |
Collapse
|
3
|
Laskin GR, Rentería LI, Muller-Delp JM, Kim JS, Chase PB, Hwang HS, Gordon BS. Short-term aerobic exercise prevents development of glucocorticoid myopathic features in aged skeletal muscle in a sex-dependent manner. J Physiol 2025; 603:127-149. [PMID: 38861348 DOI: 10.1113/jp286334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Older adults are vulnerable to glucocorticoid-induced muscle atrophy and weakness, with sex potentially influencing their susceptibility to those effects. Aerobic exercise can reduce glucocorticoid-induced muscle atrophy in young rodents. However, it is unknown whether aerobic exercise can prevent glucocorticoid myopathy in aged muscle. The objectives of this study were to define the extent to which sex influences the development of glucocorticoid myopathy in aged muscle, and to determine the extent to which aerobic exercise training protects against myopathy development. Twenty-four-month-old female (n = 30) and male (n = 33) mice were randomized to either sedentary or aerobic exercise groups. Within their respective groups, mice were randomized to either daily treatment with dexamethasone (DEX) or saline. Upon completing treatments, the contractile properties of the triceps surae complex were assessed in situ. DEX marginally lowered muscle mass and soluble protein content in both sexes, which was attenuated by aerobic exercise only in females. DEX increased sub-tetanic force and rate of force development only in females, which was not influenced by aerobic exercise. Muscle fatigue was higher in both sexes following DEX, but aerobic exercise prevented fatigue induction only in females. The sex-specific differences to muscle function in response to DEX treatment coincided with sex-specific changes to the content of proteins related to calcium handling, mitochondrial quality control, reactive oxygen species production, and glucocorticoid receptor in muscle. These findings define several important sexually dimorphic changes to aged skeletal muscle physiology in response to glucocorticoid treatment and define the capacity of short-term aerobic exercise to protect against those changes. KEY POINTS: There are sexually dimorphic effects of glucocorticoids on aged skeletal muscle physiology. Glucocorticoid-induced changes to aged muscle contractile properties coincide with sex-specific differences in the content of calcium handling proteins. Aerobic exercise prevents glucocorticoid-induced fatigue only in aged females and coincides with differences in the content of mitochondrial quality control proteins and glucocorticoid receptors.
Collapse
Affiliation(s)
- Grant R Laskin
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Liliana I Rentería
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, USA
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Jeong-Su Kim
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Hyun Seok Hwang
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Bradley S Gordon
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
4
|
Harmsen J, Kotte M, Habets I, Bosschee F, Frenken K, Jorgensen JA, de Kam S, Moonen‐Kornips E, Cissen J, Doligkeit D, van de Weijer T, Erazo‐Tapia E, Buitinga M, Hoeks J, Schrauwen P. Exercise training modifies skeletal muscle clock gene expression but not 24-hour rhythmicity in substrate metabolism of men with insulin resistance. J Physiol 2024; 602:6417-6433. [PMID: 38051503 PMCID: PMC11607886 DOI: 10.1113/jp285523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Twenty-four hour rhythmicity in whole-body substrate metabolism, skeletal muscle clock gene expression and mitochondrial respiration is compromised upon insulin resistance. With exercise training known to ameliorate insulin resistance, our objective was to test if exercise training can reinforce diurnal variation in whole-body and skeletal muscle metabolism in men with insulin resistance. In a single-arm longitudinal design, 10 overweight and obese men with insulin resistance performed 12 weeks of high-intensity interval training recurrently in the afternoon (between 14.00 and 18.00 h) and were tested pre- and post-exercise training, while staying in a metabolic research unit for 2 days under free-living conditions with regular meals. On the second days, indirect calorimetry was performed at 08.00, 13.00, 18.00, 23.00 and 04.00 h, muscle biopsies were taken from the vastus lateralis at 08.30, 13.30 and 23.30 h, and blood was drawn at least bi-hourly over 24 h. Participants did not lose body weight over 12 weeks, but improved body composition and exercise capacity. Exercise training resulted in reduced 24-h plasma glucose levels, but did not modify free fatty acid and triacylglycerol levels. Diurnal variation of muscle clock gene expression was modified by exercise training with period genes showing an interaction (time × exercise) effect and reduced mRNA levels at 13.00 h. Exercise training increased mitochondrial respiration without inducing diurnal variation. Twenty-four-hour substrate metabolism and energy expenditure remained unchanged. Future studies should investigate alternative exercise strategies or types of interventions (e.g. diet or drugs aiming at improving insulin sensitivity) for their capacity to reinforce diurnal variation in substrate metabolism and mitochondrial respiration. KEY POINTS: Insulin resistance is associated with blunted 24-h flexibility in whole-body substrate metabolism and skeletal muscle mitochondrial respiration, and disruptions in the skeletal muscle molecular circadian clock. We hypothesized that exercise training modifies 24-h rhythmicity in whole-body substrate metabolism and diurnal variation in skeletal muscle molecular clock and mitochondrial respiration in men with insulin resistance. We found that metabolic inflexibility over 24 h persisted after exercise training, whereas mitochondrial respiration increased independent of time of day. Gene expression of Per1-3 and Rorα in skeletal muscle changed particularly close to the time of day at which exercise training was performed. These results provide the rationale to further investigate the differential metabolic impact of differently timed exercise to treat metabolic defects of insulin resistance that manifest at a particular time of day.
Collapse
Affiliation(s)
- Jan‐Frieder Harmsen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Marit Kotte
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Ivo Habets
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Frederieke Bosschee
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Koen Frenken
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Johanna A. Jorgensen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Soraya de Kam
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Esther Moonen‐Kornips
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jochem Cissen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Daniel Doligkeit
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Tineke van de Weijer
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Edmundo Erazo‐Tapia
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Mijke Buitinga
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| |
Collapse
|
5
|
Lee K, Hong KS, Park J, Park W. Readjustment of circadian clocks by exercise intervention is a potential therapeutic target for sleep disorders: a narrative review. Phys Act Nutr 2024; 28:35-42. [PMID: 39097996 PMCID: PMC11298283 DOI: 10.20463/pan.2024.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 08/06/2024] Open
Abstract
PURPOSE Circadian clocks are evolved endogenous biological systems that communicate with environmental cues to optimize physiological processes, such as the sleep-wake cycle, which is nearly related to quality of life. Sleep disorders can be treated using pharmacological strategies targeting melatonin, orexin, or core clock genes. Exercise has been widely explored as a behavioral treatment because it challenges homeostasis in the human body and affects the regulation of core clock genes. Exercise intervention at the appropriate time of the day can induce a phase shift in internal clocks. Although exercise is a strong external time cue for resetting the circadian clock, exercise therapy for sleep disorders remains poorly understood. METHODS This review focused on exercise as a potential treatment for sleep disorders by tuning the internal circadian clock. We used scientific paper depositories, including Google Scholar, PubMed, and the Cochrane Library, to identify previous studies that investigated the effects of exercise on circadian clocks and sleep disorders. RESULTS The exercise-induced adjustment of the circadian clock phase depended on exercise timing and individual chronotypes. Adjustment of circadian clocks through scheduled morning exercises can be appropriately prescribed for individuals with delayed sleep phase disorders. Individuals with advanced sleep phase disorders can synchronize their internal clocks with their living environment by performing evening exercises. Exercise-induced physiological responses are affected by age, sex, and current fitness conditions. CONCLUSION Personalized approaches are necessary when implementing exercise interventions for sleep disorders.
Collapse
Affiliation(s)
- Kwangjun Lee
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kwang-Seok Hong
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, Republic of Korea
| | - Jonghoon Park
- Department of Physical Education, Korea University, Seoul, Republic of Korea
| | - Wonil Park
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Li M, Yin Y, Qin D. Treadmill training impacts the skeletal muscle molecular clock after ischemia stroke in rats. Heliyon 2024; 10:e27430. [PMID: 38509905 PMCID: PMC10951531 DOI: 10.1016/j.heliyon.2024.e27430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE Stroke is frequently associated with muscle mass loss. Treadmill training is considered the most effective treatment for sarcopenia. Circadian rhythms are closely related to exercise and have been extensively studied. The skeletal muscle has its molecular clock genes. Exercise may regulate skeletal muscle clock genes. This study evaluated the effects of early treadmill training on the skeletal muscle molecular clock machinery in rats with stroke and determined the relationship of these changes with exercise-induced improvements in skeletal muscle health. MATERIALS AND METHODS Overall, 168 Sprague-Dawley rats were included in this study. We established an ischemic stroke rat model of sarcopenia. Finally, 144 rats were randomly allocated to four groups (36 per group): normal, sham, middle cerebral artery occlusion, and training. Neurological scores, rotating rod test, body weight, muscle circumference, wet weight, and hematoxylin-eosin staining were assessed. Twenty-four rats were used for transcriptome sequencing. Gene and protein expressions of skeletal muscles, such as brain muscle arnt-like 1, period 1, and period 2, were measured by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assays. RESULTS Neurological function scores and rotating rod test results improved after treadmill training. Nine differentially expressed genes were identified by comparing the sham group with the hemiplegic side of the model group. Seventeen differentially expressed genes were identified between the hemiplegic and non-hemiplegic sides. BMAL1, PER1, and PER2 mRNA levels increased on both sides after treadmill training. BMAL1 expression increased, and PER1 expression decreased on both sides, whereas PER2 expression decreased on the hemiplegic side but increased on the non-hemiplegic side. CONCLUSION Treadmill training can mitigate muscle loss and regulate skeletal muscle clock gene expression following ischemic stroke. Exercise affects the hemiplegic side and has a positive regulatory effect on the non-hemiplegic side.
Collapse
Affiliation(s)
- Mai Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374, Fengning Street, Dianmian Road, 650101, Kunming, China
| | - Yong Yin
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, No. 176, Qingnian Road, 650021, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, 650500, Kunming, China
| |
Collapse
|
7
|
Raza GS, Kaya Y, Stenbäck V, Sharma R, Sodum N, Mutt SJ, Gagnon DD, Tulppo M, Järvelin MR, Herzig KH, Mäkelä KA. Effect of Aerobic Exercise and Time-Restricted Feeding on Metabolic Markers and Circadian Rhythm in Mice Fed with the High-Fat Diet. Mol Nutr Food Res 2024; 68:e2300465. [PMID: 38389173 DOI: 10.1002/mnfr.202300465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/30/2023] [Indexed: 02/24/2024]
Abstract
SCOPE Diet and exercise are significant players in obesity and metabolic diseases. Time-restricted feeding (tRF) has been shown to improve metabolic responses by regulating circadian clocks but whether it acts synergically with exercise remains unknown. It is hypothesized that forced exercise alone or combined with tRF alleviates obesity and its metabolic complications. METHODS AND RESULTS Male C57bl6 mice are fed with high-fat or a control diet for 12 weeks either ad libitum or tRF for 10 h during their active period. High-fat diet (HFD)-fed mice are divided into exercise (treadmill for 1 h at 12 m min-1 alternate days for 9 weeks and 16 m min-1 daily for the following 3 weeks) and non-exercise groups. tRF and tRF-Ex significantly decreased body weight, food intake, and plasma lipids, and improved glucose tolerance. However, exercise reduced only body weight and plasma lipids. tRF and tRF-Ex significantly downregulated Fasn, Hmgcr, and Srebp1c, while exercise only Hmgcr. HFD feeding disrupted clock genes, but exercise, tRF, and tRF-Ex coordinated the circadian clock genes Bmal1, Per2, and Rev-Erbα in the liver, adipose tissue, and skeletal muscles. CONCLUSION HFD feeding disrupted clock genes in the peripheral organs while exercise, tRF, and their combination restored clock genes and improved metabolic consequences induced by high-fat diet feeding.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Yağmur Kaya
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Kent University, Istanbul, 34406, Turkey
| | - Ville Stenbäck
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Shivaprakash Jagalur Mutt
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, 75123, Sweden
| | - Dominique D Gagnon
- Faculty of Sports and Health Sciences, University of Jyväskylä, Seminaarinkatu 15, Jyväskylä, 40014, Finland
- Clinic for Sports and Exercise Medicine, Department of Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki Mäkelänkatu, Helsinki, 00550, Finland
| | - Mikko Tulppo
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, SW72AZ, UK
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
- Pediatric Gastroenterology and Metabolic Diseases, Pediatric Institute, Poznan University of Medical Sciences, Poznań, 60-572, Poland
| | - Kari A Mäkelä
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| |
Collapse
|
8
|
Kim JY, Kwon YG, Kim YM. The stress-responsive protein REDD1 and its pathophysiological functions. Exp Mol Med 2023; 55:1933-1944. [PMID: 37653030 PMCID: PMC10545776 DOI: 10.1038/s12276-023-01056-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023] Open
Abstract
Regulated in development and DNA damage-response 1 (REDD1) is a stress-induced protein that controls various cellular functions, including metabolism, oxidative stress, autophagy, and cell fate, and contributes to the pathogenesis of metabolic and inflammatory disorders, neurodegeneration, and cancer. REDD1 usually exerts deleterious effects, including tumorigenesis, metabolic inflammation, neurodegeneration, and muscle dystrophy; however, it also exhibits protective functions by regulating multiple intrinsic cell activities through either an mTORC1-dependent or -independent mechanism. REDD1 typically regulates mTORC1 signaling, NF-κB activation, and cellular pro-oxidant or antioxidant activity by interacting with 14-3-3 proteins, IκBα, and thioredoxin-interacting protein or 75 kDa glucose-regulated protein, respectively. The diverse functions of REDD1 depend on cell type, cellular context, interaction partners, and cellular localization (e.g., mitochondria, endomembrane, or cytosol). Therefore, comprehensively understanding the molecular mechanisms and biological roles of REDD1 under pathophysiological conditions is of utmost importance. In this review, based on the published literature, we highlight and discuss the molecular mechanisms underlying the REDD1 expression and its actions, biological functions, and pathophysiological roles.
Collapse
Affiliation(s)
- Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
9
|
Dintwa L, Hughes CE, Blain EJ. Importance of mechanical cues in regulating musculoskeletal circadian clock rhythmicity: Implications for articular cartilage. Physiol Rep 2023; 11:e15780. [PMID: 37537718 PMCID: PMC10400755 DOI: 10.14814/phy2.15780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
The circadian clock, a collection of endogenous cellular oscillators with an approximate 24-h cycle, involves autoregulatory transcriptional/translational feedback loops to enable synchronization within the body. Circadian rhythmicity is controlled by a master clock situated in the hypothalamus; however, peripheral tissues are also under the control of autonomous clocks which are coordinated by the master clock to regulate physiological processes. Although light is the primary signal required to entrain the body to the external day, non-photic zeitgeber including exercise also entrains circadian rhythmicity. Cellular mechano-sensing is imperative for functionality of physiological systems including musculoskeletal tissues. Over the last decade, mechano-regulation of circadian rhythmicity in skeletal muscle, intervertebral disc, and bone has been demonstrated to impact tissue homeostasis. In contrast, few publications exist characterizing the influence of mechanical loading on the circadian rhythm in articular cartilage, a musculoskeletal tissue in which loading is imperative for function; importantly, a dysregulated cartilage clock contributes to development of osteoarthritis. Hence, this review summarizes the literature on mechano-regulation of circadian clocks in musculoskeletal tissues and infers on their collective importance in understanding the circadian clock and its synchronicity for articular cartilage mechanobiology.
Collapse
Affiliation(s)
- Lekau Dintwa
- Biomedicine Division, School of BiosciencesCardiff UniversityCardiffUK
| | - Clare E. Hughes
- Biomedicine Division, School of BiosciencesCardiff UniversityCardiffUK
| | - Emma J. Blain
- Biomedicine Division, School of BiosciencesCardiff UniversityCardiffUK
- Biomechanics and Bioengineering Centre Versus Arthritis, School of BiosciencesCardiff UniversityCardiffUK
| |
Collapse
|
10
|
Cai Y, Liu Y, Wu Z, Wang J, Zhang X. Effects of Diet and Exercise on Circadian Rhythm: Role of Gut Microbiota in Immune and Metabolic Systems. Nutrients 2023; 15:2743. [PMID: 37375647 DOI: 10.3390/nu15122743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
A close relationship exists between the intestinal microbiota and the circadian rhythm, which is mainly regulated by the central-biological-clock system and the peripheral-biological-clock system. At the same time, the intestinal flora also reflects a certain rhythmic oscillation. A poor diet and sedentary lifestyle will lead to immune and metabolic diseases. A large number of studies have shown that the human body can be influenced in its immune regulation, energy metabolism and expression of biological-clock genes through diet, including fasting, and exercise, with intestinal flora as the vector, thereby reducing the incidence rates of diseases. This article mainly discusses the effects of diet and exercise on the intestinal flora and the immune and metabolic systems from the perspective of the circadian rhythm, which provides a more effective way to prevent immune and metabolic diseases by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Yidan Cai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jing Wang
- China Rural Technology Development Center, Beijing 100045, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Billon C, Sitaula S, Banerjee S, Welch R, Elgendy B, Hegazy L, Oh TG, Kazantzis M, Chatterjee A, Chrivia J, Hayes ME, Xu W, Hamilton A, Huss JM, Zhang L, Walker JK, Downes M, Evans RM, Burris TP. Synthetic ERRα/β/γ Agonist Induces an ERRα-Dependent Acute Aerobic Exercise Response and Enhances Exercise Capacity. ACS Chem Biol 2023; 18:756-771. [PMID: 36988910 PMCID: PMC11584170 DOI: 10.1021/acschembio.2c00720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Repetitive physical exercise induces physiological adaptations in skeletal muscle that improves exercise performance and is effective for the prevention and treatment of several diseases. Genetic evidence indicates that the orphan nuclear receptors estrogen receptor-related receptors (ERRs) play an important role in skeletal muscle exercise capacity. Three ERR subtypes exist (ERRα, β, and γ), and although ERRβ/γ agonists have been designed, there have been significant difficulties in designing compounds with ERRα agonist activity. Additionally, there are limited synthetic agonists that can be used to target ERRs in vivo. Here, we report the identification of a synthetic ERR pan agonist, SLU-PP-332, that targets all three ERRs but has the highest potency for ERRα. Additionally, SLU-PP-332 has sufficient pharmacokinetic properties to be used as an in vivo chemical tool. SLU-PP-332 increases mitochondrial function and cellular respiration in a skeletal muscle cell line. When administered to mice, SLU-PP-332 increased the type IIa oxidative skeletal muscle fibers and enhanced exercise endurance. We also observed that SLU-PP-332 induced an ERRα-specific acute aerobic exercise genetic program, and the ERRα activation was critical for enhancing exercise endurance in mice. These data indicate the feasibility of targeting ERRα for the development of compounds that act as exercise mimetics that may be effective in the treatment of numerous metabolic disorders and to improve muscle function in the aging.
Collapse
Affiliation(s)
- Cyrielle Billon
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Sadichha Sitaula
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Subhashis Banerjee
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Ryan Welch
- Gene Expression Laboratory Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Lamees Hegazy
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Tae Gyu Oh
- Gene Expression Laboratory Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Melissa Kazantzis
- The Scripps Research Institute Jupiter, Jupiter, Florida 33458, United States
| | - Arindam Chatterjee
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - John Chrivia
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Matthew E Hayes
- University of Florida Genetics Institute, Gainesville, Florida 32610, United States
| | - Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Angelica Hamilton
- Department of Molecular & Cellular Endocrinology, City of Hope, Duarte, California 91010, United States
| | - Janice M Huss
- Department of Molecular & Cellular Endocrinology, City of Hope, Duarte, California 91010, United States
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - John K Walker
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Michael Downes
- Gene Expression Laboratory Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Ronald M Evans
- Gene Expression Laboratory Salk Institute for Biological Studies, La Jolla, California 92037, United States
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Thomas P Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
- University of Florida Genetics Institute, Gainesville, Florida 32610, United States
| |
Collapse
|
12
|
Barney DE, Gordon BS, Hennigar SR. REDD1 deletion and treadmill running increase liver hepcidin and gluconeogenic enzymes in male mice. J Nutr Sci 2023; 12:e49. [PMID: 37123395 PMCID: PMC10131055 DOI: 10.1017/jns.2023.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
The iron-regulatory hormone hepcidin is transcriptionally up-regulated by gluconeogenic signals. Recent evidence suggeststhat increases in circulating hepcidin may decrease dietary iron absorption following prolonged exercise, however evidence is limited on whether gluconeogenic signals contribute to post-exercise increases in hepcidin. Mice with genetic knockout of regulated in development and DNA response-1 (REDD1) display greater glycogen depletion following exercise, possibly indicating greater gluconeogenesis. The objective of the present study was to determine liver hepcidin, markers of gluconeogenesis and iron metabolism in REDD1 knockout and wild-type mice following prolonged exercise. Twelve-week-old male REDD1 knockout and wild-type mice were randomised to rest or 60 min treadmill running with 1, 3 or 6 h recovery (n = 5-8/genotype/group). Liver gene expression of hepcidin (Hamp) and gluconeogenic enzymes (Ppargc1a, Creb3l3, Pck1, Pygl) were determined by qRT-PCR. Effects of genotype, exercise and their interaction were assessed by two-way ANOVAs with Tukey's post-hoc tests, and Pearson correlations were used to assess the relationships between Hamp and study outcomes. Liver Hamp increased 1- and 4-fold at 3 and 6 h post-exercise, compared to rest (P-adjusted < 0⋅009 for all), and was 50% greater in REDD1 knockout compared to wild-type mice (P = 0⋅0015). Liver Ppargc1a, Creb3l3 and Pck1 increased with treadmill running (P < 0⋅0001 for all), and liver Ppargc1a, Pck1 and Pygl were greater with REDD1 deletion (P < 0⋅02 for all). Liver Hamp was positively correlated with liver Creb3l3 (R = 0⋅62, P < 0⋅0001) and Pck1 (R = 0⋅44, P = 0⋅0014). In conclusion, REDD1 deletion and prolonged treadmill running increased liver Hamp and gluconeogenic regulators of Hamp, suggesting gluconeogenic signalling of hepcidin with prolonged exercise.
Collapse
Affiliation(s)
- David E. Barney
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Bradley S. Gordon
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Stephen R. Hennigar
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Corresponding author: Stephen R. Hennigar, email
| |
Collapse
|
13
|
Dunlap KR, Laskin GR, Waddell DS, Black AJ, Steiner JL, Vied C, Gordon BS. Aerobic exercise-mediated changes in the expression of glucocorticoid responsive genes in skeletal muscle differ across the day. Mol Cell Endocrinol 2022; 550:111652. [PMID: 35461977 DOI: 10.1016/j.mce.2022.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Glucocorticoids are released in response to acute aerobic exercise. The objective was to define changes in the expression of glucocorticoid target genes in skeletal muscle in response to acute aerobic exercise at different times of day. We identified glucocorticoid target genes altered in skeletal muscle by acute exercise by comparing data sets from rodents subjected to acute aerobic exercise in the light or dark cycles to data sets from C2C12 myotubes treated with glucocorticoids. The role of glucocorticoid receptor signaling and REDD1 protein in mediating gene expression was assessed in exercised mice. Changes to expression of glucocorticoid genes were greater when exercise occurred in the dark cycle. REDD1 was required for the induction of genes induced at both times of day. In all, the time of day at which aerobic exercise is conducted dictates changes to the expression of glucocorticoid target genes in skeletal muscle with REDD1 contributing to those changes.
Collapse
Affiliation(s)
- Kirsten R Dunlap
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA
| | - Grant R Laskin
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA
| | - David S Waddell
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Adam J Black
- Department of Cell Biology and Physiology, University of North Carolina, 111 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. Cottage Ave, Tallahassee, FL, 32306, USA
| | - Cynthia Vied
- Translational Sciences Laboratory, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. Cottage Ave, Tallahassee, FL, 32306, USA.
| |
Collapse
|
14
|
APEX2-Mediated Proximity Labeling Resolves the DDIT4-Interacting Proteome. Int J Mol Sci 2022; 23:ijms23095189. [PMID: 35563580 PMCID: PMC9102673 DOI: 10.3390/ijms23095189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
DNA damage-inducible transcript 4 (DDIT4) is a ubiquitous protein whose expression is transiently increased in response to various stressors. Chronic expression has been linked to various pathologies, including neurodegeneration, inflammation, and cancer. DDIT4 is best recognized for repressing mTORC1, an essential protein complex activated by nutrients and hormones. Accordingly, DDIT4 regulates metabolism, oxidative stress, hypoxic survival, and apoptosis. Despite these well-defined biological functions, little is known about its interacting partners and their unique molecular functions. Here, fusing an enhanced ascorbate peroxidase 2 (APEX2) biotin-labeling enzyme to DDIT4 combined with mass spectrometry, the proteins in the immediate vicinity of DDIT4 in either unstressed or acute stress conditions were identified in situ. The context-dependent interacting proteomes were quantitatively but not functionally distinct. DDIT4 had twice the number of interaction partners during acute stress compared to unstressed conditions, and while the two protein lists had minimal overlap in terms of identity, the proteins’ molecular function and classification were essentially identical. Moonlighting keratins and ribosomal proteins dominated the proteomes in both unstressed and stressed conditions, with many of their members having established non-canonical and indispensable roles during stress. Multiple keratins regulate mTORC1 signaling via the recruitment of 14-3-3 proteins, whereas ribosomal proteins control translation, cell cycle progression, DNA repair, and death by sequestering critical proteins. In summary, two potentially distinct mechanisms of DDIT4 molecular function have been identified, paving the way for additional research to confirm and consolidate these findings.
Collapse
|
15
|
Gao L, Tian J. BIOMEDICINE ON HORMONE MEDIATION OF SPORTS IN ADOLESCENT HEIGHT DEVELOPMENT. REV BRAS MED ESPORTE 2022. [DOI: 10.1590/1517-8692202228012021_0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Physical exercise is an important factor in regulating energy balance and body composition. Exercise itself is a kind of body stress. It involves the central nervous system, cardiovascular, respiratory, endocrine, and other systems. Sports have various effects on the hormones in adolescent height development. Objective: This article analyzes the effects of different time and load exercise training on the levels of serum testosterone, free testosterone, and cortisol in young athletes. Methods: The athletes’ blood samples were collected at the quiet time in the morning before each experiment, immediately after exercise, and at three time intervals the next morning. Then blood testosterone (T), free testosterone (FT), and corticosteroids (C) were measured. Results: One-time and one-day high-volume training can cause a decrease in serum testosterone and free testosterone levels and an increase in cortisol hormones in young athletes. The testosterone level of young athletes rises immediately after exercise. Conclusion: Hormonal changes after physical exercise provide a scientific basis for athlete exercise load prediction and exercise plan formulation. Level of evidence II; Therapeutic studies - investigation of treatment results.
Collapse
Affiliation(s)
- Lulu Gao
- Technology & Media University of Henan, China
| | | |
Collapse
|
16
|
Chang SW, Yoshihara T, Tsuzuki T, Natsume T, Kakigi R, Machida S, Naito H. Circadian rhythms modulate the effect of eccentric exercise on rat soleus muscles. PLoS One 2022; 17:e0264171. [PMID: 35213577 PMCID: PMC8880858 DOI: 10.1371/journal.pone.0264171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
We investigated whether time-of-day dependent changes in the rat soleus (SOL) muscle size, after eccentric exercises, operate via the mechanistic target of rapamycin (mTOR) signaling pathway. For our first experiment, we assigned 9-week-old male Wistar rats randomly into four groups: light phase (zeitgeber time; ZT6) non-trained control, dark phase (ZT18) non-trained control, light phase-trained, and dark phase-trained. Trained animals performed 90 min of downhill running once every 3 d for 8 weeks. The second experiment involved dividing 9-week-old male Wistar rats to control and exercise groups. The latter were subjected to 15 min of downhill running at ZT6 and ZT18. The absolute (+12.8%) and relative (+9.4%) SOL muscle weights were higher in the light phase-trained group. p70S6K phosphorylation ratio was 42.6% higher in the SOL muscle of rats that had exercised only in light (non-trained ZT6). Collectively, the degree of muscle hypertrophy in SOL is time-of-day dependent, perhaps via the mTOR/p70S6K signaling.
Collapse
Affiliation(s)
- Shuo-wen Chang
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Department of Physical Education, National University of Tainan, Tainan, Taiwan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Takamasa Tsuzuki
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Toshiharu Natsume
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- School of Medicine, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Ryo Kakigi
- Faculty of Management & Information Sciences, Josai International University, Chiba, Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- * E-mail:
| |
Collapse
|
17
|
Tice AL, Laudato JA, Rossetti ML, Wolff CA, Esser KA, Lee C, Lang CH, Vied C, Gordon BS, Steiner JL. Binge alcohol disrupts skeletal muscle core molecular clock independent of glucocorticoids. Am J Physiol Endocrinol Metab 2021; 321:E606-E620. [PMID: 34541876 PMCID: PMC8791790 DOI: 10.1152/ajpendo.00187.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 01/11/2023]
Abstract
Circadian rhythms are central to optimal physiological function, as disruption contributes to the development of several chronic diseases. Alcohol (EtOH) intoxication disrupts circadian rhythms within liver, brain, and intestines, but it is unknown whether alcohol also disrupts components of the core clock in skeletal muscle. Female C57BL/6Hsd mice were randomized to receive either saline (control) or alcohol (EtOH) (5 g/kg) via intraperitoneal injection at the start of the dark cycle [Zeitgeber time (ZT12)], and gastrocnemius was collected every 4 h from control and EtOH-treated mice for the next 48 h following isoflurane anesthetization. In addition, metyrapone was administered before alcohol intoxication in separate mice to determine whether the alcohol-induced increase in serum corticosterone contributed to circadian gene regulation. Finally, synchronized C2C12 myotubes were treated with alcohol (100 mM) to assess the influence of centrally or peripherally mediated effects of alcohol on the muscle clock. Alcohol significantly disrupted mRNA expression of Bmal1, Per1/2, and Cry1/2 in addition to perturbing the circadian pattern of clock-controlled genes, Myod1, Dbp, Tef, and Bhlhe40 (P < 0.05), in muscle. Alcohol increased serum corticosterone levels and glucocorticoid target gene, Redd1, in muscle. Metyrapone prevented the EtOH-mediated increase in serum corticosterone but did not normalize the EtOH-induced change in Per1, Cry1 and Cry2, and Myod1 mRNA expression. Core clock gene expression (Bmal, Per1/2, and Cry1/2) was not changed following 4, 8, or 12 h of alcohol treatment on synchronized C2C12 myotubes. Therefore, binge alcohol disrupted genes of the core molecular clock independently of elevated serum corticosterone or direct effects of EtOH on the muscle.NEW & NOTEWORTHY Alcohol is a myotoxin that impairs skeletal muscle metabolism and function following either chronic consumption or acute binge drinking; however, mechanisms underlying alcohol-related myotoxicity have not been fully elucidated. Herein, we demonstrate that alcohol acutely interrupts oscillation of skeletal muscle core clock genes, and this is neither a direct effect of ethanol on the skeletal muscle, nor an effect of elevated serum corticosterone, a major clock regulator.
Collapse
Affiliation(s)
- Abigail L Tice
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Joseph A Laudato
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Michael L Rossetti
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Christopher A Wolff
- Department of Physiology and Functional Genomics, University of Florida, Gainesville Florida
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville Florida
| | - Choogon Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee Florida
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Cynthia Vied
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee Florida
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
18
|
Garrigos D, Martínez-Morga M, Toval A, Kutsenko Y, Barreda A, Do Couto BR, Navarro-Mateu F, Ferran JL. A Handful of Details to Ensure the Experimental Reproducibility on the FORCED Running Wheel in Rodents: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:638261. [PMID: 34040580 PMCID: PMC8141847 DOI: 10.3389/fendo.2021.638261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
A well-documented method and experimental design are essential to ensure the reproducibility and reliability in animal research. Experimental studies using exercise programs in animal models have experienced an exponential increase in the last decades. Complete reporting of forced wheel and treadmill exercise protocols would help to ensure the reproducibility of training programs. However, forced exercise programs are characterized by a poorly detailed methodology. Also, current guidelines do not cover the minimum data that must be included in published works to reproduce training programs. For this reason, we have carried out a systematic review to determine the reproducibility of training programs and experimental designs of published research in rodents using a forced wheel system. Having determined that most of the studies were not detailed enough to be reproducible, we have suggested guidelines for animal research using FORCED exercise wheels, which could also be applicable to any form of forced exercise.
Collapse
Affiliation(s)
- Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Marta Martínez-Morga
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Alberto Barreda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Fernando Navarro-Mateu
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Unidad de Docencia, Investigación y Formación en Salud Mental (UDIF-SM), Servicio Murciano de Salud, Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Departamento de Psicología Básica y Metodología, Universidad de Murcia, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- *Correspondence: José Luis Ferran,
| |
Collapse
|
19
|
Zhang H, Liang J, Chen N. Do not neglect the role of circadian rhythm in muscle atrophy. Ageing Res Rev 2020; 63:101155. [PMID: 32882420 DOI: 10.1016/j.arr.2020.101155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
In addition to its role in movement, human skeletal muscle also plays important roles in physiological activities related to metabolism and the endocrine system. Aging and disease onset and progression can induce the reduction of skeletal muscle mass and function, thereby exacerbating skeletal muscle atrophy. Recent studies have confirmed that skeletal muscle atrophy is mainly controlled by the balance between protein synthesis and degradation, the activation of satellite cells, and mitochondrial quality in skeletal muscle. Circadian rhythm is an internal rhythm related to an organism's adaptation to light-dark or day-night cycles of the planet, and consists of a core biological clock and a peripheral biological clock. Skeletal muscle, as the most abundant tissue in the human body, is an essential part of the peripheral biological clock in humans. Increasing evidence has confirmed that maintaining a normal circadian rhythm can be beneficial for increasing protein content, improving mitochondrial quality, and stimulating regeneration and repairing of cells in skeletal muscle to prevent or alleviate skeletal muscle atrophy. In this review, we summarize the roles and underlying mechanisms of circadian rhythm in delaying skeletal muscle atrophy, which will provide a theoretical reference for incorporating aspects of circadian rhythm to the prevention and treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Hu Zhang
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Jiling Liang
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
20
|
Small L, Altıntaş A, Laker RC, Ehrlich A, Pattamaprapanont P, Villarroel J, Pillon NJ, Zierath JR, Barrès R. Contraction influences Per2 gene expression in skeletal muscle through a calcium-dependent pathway. J Physiol 2020; 598:5739-5752. [PMID: 32939754 PMCID: PMC7756801 DOI: 10.1113/jp280428] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Exercising at different times of day elicits different effects on exercise performance and metabolic health. However, the specific signals driving the observed time-of-day specific effects of exercise have not been fully identified. Exercise influences the skeletal muscle circadian clock, although the relative contribution of muscle contraction and extracellular signals is unknown. Here, we show that contraction acutely increases the expression of the core circadian clock gene Period Circadian Regulator 2 (Per2) and phase-shifts Per2 rhythmicity in muscle cells. This contraction effect on core clock genes is mediated through a calcium-dependant mechanism; The results obtained in the present study suggest that a proportion of the ability of exercise to entrain the skeletal muscle clock is driven directly by muscle contraction. Contraction interventions may be used to mimic some time-of-day specific effects of exercise on metabolism and muscle performance. ABSTRACT Exercise entrains the central and peripheral circadian clocks, although the mechanism by which exercise modulates expression of skeletal muscle clock genes is unclear. The present study aimed to determine whether skeletal muscle contraction alone could directly influence circadian rhythmicity and uncover the underlying mechanism by which contraction modulates clock gene expression. We investigated the expression of core clock genes in human skeletal muscle after acute exercise, as well as following in vitro contraction in mouse soleus muscle and cultured C2C12 skeletal muscle myotubes. Additionally, we interrogated the molecular pathways by which skeletal muscle contraction could influence clock gene expression. Contraction acutely increased the expression of the core circadian clock gene Period Circadian Regulator 2 (Per2) and phase-shifted Per2 rhythmicity in C2C12 myotubes in vitro. Further investigation revealed that pharmacologically increasing cytosolic calcium concentrations by ionomycin treatment mimicked the effect of contraction on Per2 expression. Similarly, treatment with a calcium channel blocker, nifedipine, blocked the effect of electric pulse stimulation-induced contraction on Per2 expression. Increased calcium influx from contraction lead to binding of the phosphorylated form of cAMP response element-binding protein (CREB) to the Per2 promoter, suggesting a role of CREB in contraction-induced Per2 transcription. Thus, by dissociating the effect of muscle contraction alone from the whole effect of exercise, our investigations indicate that a proportion of the ability of exercise to entrain the skeletal muscle clock is driven directly by contraction.
Collapse
Affiliation(s)
- Lewin Small
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rhianna C Laker
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pattarawan Pattamaprapanont
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julia Villarroel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Erickson ML, Zhang H, Mey JT, Kirwan JP. Exercise Training Impacts Skeletal Muscle Clock Machinery in Prediabetes. Med Sci Sports Exerc 2020; 52:2078-2085. [PMID: 32496736 PMCID: PMC7494535 DOI: 10.1249/mss.0000000000002368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Disruption of the skeletal muscle molecular clock leads to metabolic disease, whereas exercise may be restorative, leading to improvements in metabolic health. The purpose of this study was to evaluate the effects of a 12-wk exercise intervention on skeletal muscle molecular clock machinery in adults with obesity and prediabetes, and determine whether these changes were related to exercise-induced improvements in metabolic health. METHODS Twenty-six adults (age, 66 ± 4.5 yr; body mass index (BMI), 34 ± 3.4 kg·m; fasting plasma glucose, 105 ± 15 mg·dL) participated in a 12-wk exercise intervention and were fully provided isoenergetic diets. Body composition (dual x-ray absorptiometry), abdominal adiposity (computed tomography scans), peripheral insulin sensitivity (euglycemic-hyperinsulinemic clamp), exercise capacity (maximal oxygen consumption), and skeletal muscle molecular clock machinery (vastus lateralis biopsy) were assessed at baseline and after intervention. Gene and protein expression of skeletal muscle BMAL1, CLOCK, CRY1/2, and PER 1/2 were measured by quantitative real-time polymerase chain reaction and Western blot, respectively. RESULTS Body composition (BMI, dual x-ray absorptiometry, computed tomography), peripheral insulin sensitivity (glucose disposal rate), and exercise capacity (maximal oxygen consumption) all improved (P < 0.005) with exercise training. Skeletal muscle BMAL1 gene (fold change, 1.62 ± 1.01; P = 0.027) and PER2 protein expression (fold change, 1.35 ± 0.05; P = 0.02) increased, whereas CLOCK, CRY1/2, and PER1 were unchanged. The fold change in BMAL1 correlated with post-glucose disposal rate (r = 0.43, P = 0.044), BMI (r = -0.44, P = 0.042), and body weight changes (r = -0.44, P = 0.039) expressed as percent delta. CONCLUSIONS Exercise training impacts skeletal muscle molecular clock machinery in a clinically relevant cohort of adults with obesity and prediabetes. Skeletal muscle BMAL1 gene expression may improve insulin sensitivity. Future studies are needed to determine the physiological significance of exercise-induced alterations in skeletal muscle clock machinery.
Collapse
Affiliation(s)
- Melissa L. Erickson
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Hui Zhang
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
- Department of Physiology and Biophysics, Case Western University, Cleveland, OH
| | - Jacob T. Mey
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - John P. Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
- Department of Physiology and Biophysics, Case Western University, Cleveland, OH
| |
Collapse
|
22
|
Britto FA, Dumas K, Giorgetti-Peraldi S, Ollendorff V, Favier FB. Is REDD1 a metabolic double agent? Lessons from physiology and pathology. Am J Physiol Cell Physiol 2020; 319:C807-C824. [PMID: 32877205 DOI: 10.1152/ajpcell.00340.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Akt/mechanistic target of rapamycin (mTOR) signaling pathway governs macromolecule synthesis, cell growth, and metabolism in response to nutrients and growth factors. Regulated in development and DNA damage response (REDD)1 is a conserved and ubiquitous protein, which is transiently induced in response to multiple stimuli. Acting like an endogenous inhibitor of the Akt/mTOR signaling pathway, REDD1 protein has been shown to regulate cell growth, mitochondrial function, oxidative stress, and apoptosis. Recent studies also indicate that timely REDD1 expression limits Akt/mTOR-dependent synthesis processes to spare energy during metabolic stresses, avoiding energy collapse and detrimental consequences. In contrast to this beneficial role for metabolic adaptation, REDD1 chronic expression appears involved in the pathogenesis of several diseases. Indeed, REDD1 expression is found as an early biomarker in many pathologies including inflammatory diseases, cancer, neurodegenerative disorders, depression, diabetes, and obesity. Moreover, prolonged REDD1 expression is associated with cell apoptosis, excessive reactive oxygen species (ROS) production, and inflammation activation leading to tissue damage. In this review, we decipher several mechanisms that make REDD1 a likely metabolic double agent depending on its duration of expression in different physiological and pathological contexts. We also discuss the role played by REDD1 in the cross talk between the Akt/mTOR signaling pathway and the energetic metabolism.
Collapse
Affiliation(s)
| | - Karine Dumas
- Université Cote d'Azur, INSERM, UMR1065, C3M, Nice, France
| | | | | | | |
Collapse
|
23
|
Re-Setting the Circadian Clock Using Exercise against Sarcopenia. Int J Mol Sci 2020; 21:ijms21093106. [PMID: 32354038 PMCID: PMC7247148 DOI: 10.3390/ijms21093106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is defined as the involuntary loss of skeletal muscle mass and function with aging and is associated with several adverse health outcomes. Recently, the disruption of regular circadian rhythms, due to shift work or nocturnal lifestyle, is emerging as a novel deleterious factor for the development of sarcopenia. The underlying mechanisms responsible for circadian disruption-induced sarcopenia include molecular circadian clock and mitochondrial function associated with the regulation of circadian rhythms. Exercise is a potent modulator of skeletal muscle metabolism and is considered to be a crucial preventative and therapeutic intervention strategy for sarcopenia. Moreover, emerging evidence shows that exercise, acting as a zeitgeber (time cue) of the skeletal muscle clock, can be an efficacious tool for re-setting the clock in sarcopenia. In this review, we provide the evidence of the impact of circadian disruption on skeletal muscle loss resulting in sarcopenia. Furthermore, we highlight the importance of exercise timing (i.e., scheduled physical activity) as a novel therapeutic strategy to target circadian disruption in skeletal muscle.
Collapse
|
24
|
Tanaka Y, Ogata H, Kayaba M, Ando A, Park I, Yajima K, Araki A, Suzuki C, Osumi H, Zhang S, Ishihara A, Takahashi K, Shoda J, Nabekura Y, Satoh M, Tokuyama K. Effect of a single bout of exercise on clock gene expression in human leukocyte. J Appl Physiol (1985) 2020; 128:847-854. [PMID: 32134712 DOI: 10.1152/japplphysiol.00891.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mammals have circadian clocks, which consist of the central clock in the suprachiasmatic nucleus and the peripheral clocks in the peripheral tissues. The effect of exercise on phase of peripheral clocks have been reported in rodents but not in humans. Continuous sampling is necessary to assess the phase of the circadian rhythm of peripheral clock gene expressions. It has been assumed that the expression of the genes in leukocyte may be "an accessible window to the multiorgan transcriptome." The present study aimed to examine whether exercise affects the level and phase of clock gene expression in human leukocytes. Eleven young men participated in three trials, in which they performed a single bout of exercise at 60% V̇o2max for 1 h beginning either at 0700 (morning exercise) or 1600 (afternoon exercise) or no exercise (control). Blood samples were collected at 0600, 0900, 1200, 1500, 1800, 2100, and 2300 and at 0600 the next morning, to assess diurnal changes of clock gene expression in leukocytes. Brain and muscle ARNT-like protein 1 (Bmal1) expression level increased after morning and afternoon exercise, and Cryptochrome 1 (Cry1) expression level increased after morning exercise. Compared with control trial, acrophase of Bmal1 expression tended to be earlier in morning exercise trial and later in afternoon exercise trial. Acrophase of Cry1 expression was earlier in morning exercise trial but not affected by afternoon exercise. Circadian locomotor output cycles kaput (Clock), Period 1-3 (Per1-3), and Cry2 expression levels and those acrophases were not affected by exercise. The present results suggest a potential role of a single bout of exercise to modify peripheral clocks in humans.NEW & NOTEWORTHY The present study showed that a single bout of exercise affected peripheral clock gene expression in human leukocytes and the effect of exercise depended on when it was performed. Brain and muscle ARNT-like protein 1 (Bmal1) expression was increased after exercises performed in the morning and afternoon. Cryptochrome 1 (Cry1) expression was also increased after the morning exercise. The effect of exercise on acrophase of Bmal1 depended on the time of the exercise: advanced after morning exercise and delayed after afternoon exercise.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Hitomi Ogata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Momoko Kayaba
- Department of Somnology, Tokyo Medical University, Nishi-Shinjuku, Shinjuku, Tokyo, Japan
| | - Akira Ando
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Insung Park
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Katsuhiko Yajima
- Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama, Japan
| | - Akihiro Araki
- Faculty of Health Science, Tsukuba International University, Manabe, Tsuchiura, Ibaraki, Japan
| | - Chihiro Suzuki
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Haruka Osumi
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Simeng Zhang
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Asuka Ishihara
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Keigo Takahashi
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Junichi Shoda
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Yoshiharu Nabekura
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Makoto Satoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Kumpei Tokuyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
25
|
Zhang S, Dai M, Wang X, Jiang SH, Hu LP, Zhang XL, Zhang ZG. Signalling entrains the peripheral circadian clock. Cell Signal 2020; 69:109433. [PMID: 31982551 DOI: 10.1016/j.cellsig.2019.109433] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022]
Abstract
In mammals, 24-h rhythms of behaviour and physiology are regulated by the circadian clock. The circadian clock is controlled by a central clock in the brain's suprachiasmatic nucleus (SCN) that synchronizes peripheral clocks in peripheral tissues. Clock genes in the SCN are primarily entrained by light. Increasing evidence has shown that peripheral clocks are also regulated by light and hormones independent of the SCN. How the peripheral clocks deal with internal signals is dependent on the relevance of a specific cue to a specific tissue. In different tissues, most genes that are under circadian control are not overlapping, revealing the tissue-specific control of peripheral clocks. We will discuss how different signals control the peripheral clocks in different peripheral tissues, such as the liver, gastrointestinal tract, and pancreas, and discuss the organ-to-organ communication between the peripheral clocks at the molecular level.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Dai
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Vitale JA, Bonato M, La Torre A, Banfi G. The Role of the Molecular Clock in Promoting Skeletal Muscle Growth and Protecting against Sarcopenia. Int J Mol Sci 2019; 20:ijms20174318. [PMID: 31484440 PMCID: PMC6747101 DOI: 10.3390/ijms20174318] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022] Open
Abstract
The circadian clock has a critical role in many physiological functions of skeletal muscle and is essential to fully understand the precise underlying mechanisms involved in these complex interactions. The importance of circadian expression for structure, function and metabolism of skeletal muscle is clear when observing the muscle phenotype in models of molecular clock disruption. Presently, the maintenance of circadian rhythms is emerging as an important new factor in human health, with disruptions linked to ageing, as well as to the development of many chronic diseases, including sarcopenia. Therefore, the aim of this review is to present the latest findings demonstrating how circadian rhythms in skeletal muscle are important for maintenance of the cellular physiology, metabolism and function of skeletal muscle. Moreover, we will present the current knowledge about the tissue-specific functions of the molecular clock in skeletal muscle.
Collapse
Affiliation(s)
- Jacopo A Vitale
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy
| | - Matteo Bonato
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy.
| | - Antonio La Torre
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy
- Vita-Salute San Raffaele University, via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
27
|
Circadian protein BMAL1 promotes breast cancer cell invasion and metastasis by up-regulating matrix metalloproteinase9 expression. Cancer Cell Int 2019; 19:182. [PMID: 31346317 PMCID: PMC6636133 DOI: 10.1186/s12935-019-0902-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background Metastasis is an important factor in the poor prognosis of breast cancer. As an important core clock protein, brain and muscle arnt-like 1 (BMAL1) is closely related to tumorigenesis. However, the molecular mechanisms that mediate the role of BMAL1 in invasion and metastasis remain largely unknown. In this study, we investigated the BMAL1 may take a crucial effect in the progression of breast cancer cells. Methods BMAL1 and MMP9 expression was measured in breast cell lines. Transwell and scratch wound-healing assays were used to detect the movement of cells and MTT assays and clonal formation assays were used to assess cells’ proliferation. The effects of BMAL1 on the MMP9/NF-κB pathway were examined by western blotting, co-immunoprecipitation and mammalian two-hybrid. Results In our study, it showed that cell migration and invasion were significantly enhanced when overexpressed BMAL1. Functionally, overexpression BMAL1 significantly increased the mRNA and protein level of matrix metalloproteinase9 (MMP9) and improved the activity of MMP9. Moreover, BMAL1 activated the NF-κB signaling pathway by increasing the phosphorylation of IκB and promoted human MMP9 promoter activity by interacting with NF-kB p65, leading to increased expression of MMP9. When overexpressed BMAL1, CBP (CREB binding protein) was recruited to enhance the activity of p65 and further activate the NF-κB signaling pathway to regulate the expression of its downstream target genes, including MMP9, TNFα, uPA and IL8, and then promote the invasion and metastasis of breast cancer cells. Conclusions This study confirmed a new mechanism by which BMAL1 up-regulated MMP9 expression to increase breast cancer metastasis, to provide research support for the prevention and treatment of breast cancer.
Collapse
|
28
|
Gordon BS, Rossetti ML, Eroshkin AM. Arrdc2 and Arrdc3 elicit divergent changes in gene expression in skeletal muscle following anabolic and catabolic stimuli. Physiol Genomics 2019; 51:208-217. [DOI: 10.1152/physiolgenomics.00007.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is a highly plastic organ regulating various processes in the body. As such, loss of skeletal muscle underlies the increased morbidity and mortality risk that is associated with numerous conditions. However, no therapies are available to combat the loss of muscle mass during atrophic conditions, which is due in part to the incomplete understanding of the molecular networks altered by anabolic and catabolic stimuli. Thus, the current objective was to identify novel gene networks modulated by such stimuli. For this, total RNA from the tibialis anterior muscle of mice that were fasted overnight or fasted overnight and refed the next morning was subjected to microarray analysis. The refeeding stimulus altered the expression of genes associated with signal transduction. Specifically, expression of alpha arrestin domain containing 2 (Arrdc2) and alpha arrestin domain containing 3 (Arrdc3) was significantly lowered 70–85% by refeeding. Subsequent analysis showed that expression of these genes was also lowered 50–75% by mechanical overload, with the combination of nutrients and mechanical overload acting synergistically to lower Arrdc2 and Arrdc3 expression. On the converse, stimuli that suppress growth such as testosterone depletion or acute aerobic exercise increased Arrdc2 and Arrdc3 expression in skeletal muscle. While Arrdc2 and Arrdc3 exhibited divergent changes in expression following anabolic or catabolic stimuli, no other member of the Arrdc family of genes exhibited the consistent change in expression across the analyzed conditions. Thus, Arrdc2 and Arrdc3 are a novel set of genes that may be implicated in the regulation of skeletal muscle mass.
Collapse
Affiliation(s)
- Bradley S. Gordon
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Michael L. Rossetti
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, Florida
| | - Alexey M. Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Rancho BioSciences, San Diego, California
| |
Collapse
|
29
|
Abstract
Circadian rhythms and exercise physiology are intimately linked, but the symbiosis of this relationship has yet to be fully unraveled. Exercise exerts numerous health benefits from the organelle to the organism. Proper circadian function is also emerging as a prerequisite for maintaining health. The positive effects of exercise on health may be partially mediated by an exercise-induced change in tissue molecular clocks and/or the outcomes of exercise may be modified depending on when exercise is performed. This review provides a brief overview of circadian biology and the influence of exercise on the molecular clock, with an emphasis on skeletal muscle. Additionally, we provide considerations for future investigations seeking to unravel the mechanistic interactions of exercise and the molecular clock.
Collapse
Affiliation(s)
- Christopher A Wolff
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, USA 32610.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, USA 32610
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, USA 32610.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, USA 32610
| |
Collapse
|